Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    SENSITIVITY ANALYSIS OF MACHINE LEARNING IN BRIGHTNESS TEMPERATURE PREDICTIONS OVER SNOW-COVERD REGIONS USING THE ADVANCED MICROWAVE SCANNING RADIOMETER
    (2014) Xue, Yuan; Forman, Barton; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Snow is a critical component in the global energy and hydrologic cycle. Further, it is important to know the mass of snow because it serves as the dominant source of drinking water for more than one billion people worldwide. Since direct quantification of snow water equivalent (SWE) is complicated by spatial and temporal variability, space-borne passive microwave SWE retrieval products have been utilized over regional and continental-scales to better estimate SWE. Previous studies have explored the possibility of employing machine learning, namely an artificial neural network (ANN) or a support vector machine (SVM), to replace the traditional radiative transfer model (RTM) during brightness temperatures (Tb) assimilation. However, we still need to address the following question: What are the most significant parameters in the machine-learning model based on either ANN or SVM? The goal of this study is to compare and contrast sensitivity analysis of Tb with respect to each model input between the ANN- and SVM-based estimates. In general, the results suggest the SVM (relative to the ANN) may be more beneficial during Tb assimilation studies where enhanced SWE estimation is the main objective.
  • Thumbnail Image
    Item
    MODELING CAR OWNERSHIP, TYPE AND USAGE FOR THE STATE OF MARYLAND
    (2010) Liu, Yangwen; Cirillo, Cinzia; Civil Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Over the last few decades there has been a great increase in the number of cars in the United States. Given the importance of vehicle ownership on both transport and land-use planning and its relationship with energy consumption, the environment and health, the growth in the number of vehicles and their use has been one of the most intensely researched transport topics over many years. This thesis presents a car ownership model framework for the State of Maryland. The model has been calibrated on publicly available data (2001 and 2009 National Household Travel Survey) without the burden and the consequent cost of collecting additional data. The sample has been sufficient to correctly estimate a number of relevant socio demographic and land use variables. The model has then been applied, for demonstration purposes, to test a number of sensitivity analysis concerning changes in housing density, income, urbanization, unemployment rates and fuel price.