Theses and Dissertations from UMD
Permanent URI for this communityhttp://hdl.handle.net/1903/2
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item Uniqueness for continuous superresolution by means of Choquet theory and geometric measure theory(2021) Cinoman, Ryan M; Benedetto, John J; Mathematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The problem of superresolution is to recover an element of a vector space from data much smaller than the dimension of the space, using a prior assumption of sparsity. A famous example is compressive sensing, where the elements are images with a large finite resolution. On the other hand, we focus on a continuous form of superresolution. Given a measure $\mu$ on a continuous domain such as the two dimensional torus, can we recover $\mu$ from knowledge of only a finite number of its Fourier coefficients using a total variation minimization method? We will see that the answer depends on certain properties of $\mu$. Namely, a necessary condition is that $\mu$ be discrete.We use methods from geometric analysis to investigate the continuous superresolution problem. Tools from measure theory relate properties of the support of a measure, such as Hausdorff dimension, to properties of its Fourier transform. We also use measure theory to investigate the possibility of alternatives to total variation that may allow us to recover surface measures defined on space curves. There is a theorem of Choquet concerning representations of points in convex sets as sums of their extreme points. As it turns out, we can apply this to the superresolution problem because the extreme points of the set of measures with total variation $1$ are precisely the set of delta measures. We consider superresolution as a convex optimization problem, where the goal is to find representations of the initial data as sums of delta measures. Choquet theory provides tools to investigate the previously unresolved problem of uniqueness. We use this to give a novel sufficient condition for a measure to be uniquely superresolved, given data on a known finite set of frequencies.Item Expedition in Data and Harmonic Analysis on Graphs(2016) Begué, Matthew Joseph; Okoudjou, Kasso A; Benedetto, John J; Mathematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors are nonzero on the i’th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property. We then prove original results in modern analysis on graphs. We extend results on spectral graph wavelets to create vertex-dyanamic spectral graph wavelets whose support depends on both scale and translation parameters. We prove that Spielman’s Twice-Ramanujan graph sparsifying algorithm cannot outperform his conjectured optimal sparsification constant. Finally, we present numerical results on graph conditioning, in which edges of a graph are rescaled to best approximate the complete graph and reduce average commute time.