Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    MEASUREMENT OF INVERSE DIFFUSION FLAME QUENCHING LIMITS
    (2013) Zhang, Yi; Sunderland, Peter B; Fire Protection Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quenching limits of inverse diffusion flames were measured for different conditions. The flames were laminar and axisymmetric and were obtained by injecting various oxidizers into fuels. Burner inside diameters were 0.75, 1.53, 3.02, 4.56, and 10.1 mm. Oxygen mole fractions were 0.21, 0.3, 0.4, and 1, and the balance was nitrogen. Fuels were methane, ethylene, and propane. The flames were observed in a weak co-flow of fuel inside a glass chimney. The flames were ignited at relatively high oxidizer flow rates, after which the oxidizer flow was reduced until extinction. The typical heat release rate of quenching inverse flame ranged from 1 - 2 W, compared to a typical heat release rate of quenching normal hydrocarbon flames of 3 W. The quenching limits of inverse flames were generally independent of burner diameter, were proportional to the fuel quenching distance in premixed flames, and scaled with oxygen mole fraction to the power of -1.5. The results may help assess the hazards of firefighter respirator leaks in underventilated fires.