Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    A New Paradigm for Practical Maliciously Secure Multi-Party Computation
    (2018) Wang, Xiao; Katz, Jonathan; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Secure Multi-Party Computation (MPC) protocols allow a group of mutually distrusting users to compute a function jointly on their inputs without revealing any information beyond the output. For many years, implementations of MPC protocols have targeted security against semi-honest adversaries, i.e., attackers are assumed to execute the protocol honestly but try to learn private information after the fact. Protocols secure against stronger and more realistic malicious adversaries, who could behave arbitrarily during the protocol execution, were known to exist but were much less efficient. This thesis introduces a new paradigm to construct extremely efficient MPC protocols with malicious security. In particular, this thesis consists of three major contributions. 1. We introduce the authenticated garbling framework, and present an efficient concrete instantiation of the protocol. The resulting protocol partially closes the gap between semi-honest and malicious MPC protocols asymptotically; the implementation of the protocol represents the state-of-the-art system for malicious two-party computation. 2. We discuss how to apply authenticated garbling to the multi-party setting, where all-but-one parties can be corrupted by the adversary. The resulting protocol improves upon the best previous constant-round protocol by orders of magnitude. We also present a system that, for the first time, enables MPC executions among hundreds of parties, distributed globally. 3. We present a series of optimizations to two-party authenticated garbling by interpreting authenticated garbling in a new way. The improved malicious protocol has essentially the same concrete efficiency as the best semi-honest protocol in the preprocessing model. 4. We develop these protocols in EMP-toolkit, a practical and efficient MPC tool that can be used to build new protocols and to develop applications using our existing protocols.