Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Stabilizing Column Generation via Dual Optimal Inequalities with Applications in Logistics and Robotics
    (2020) Haghani, Naveed; Balan, Radu; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This work addresses the challenge of stabilizing column generation (CG) via dual optimal inequalities (DOI). We present two novel classes of DOI for the general context of set cover problems. We refer to these as Smooth DOI (S-DOI) and Flexible DOI (F-DOI). S-DOI can be interpreted as allowing for the undercovering of items at the cost of overcovering others and incurring an objective penalty. SDOI leverage the fact that dual values associated with items should change smoothly over space. F-DOI can be interpreted as offering primal objective rewards for the overcovering of items. We combine these DOI to produce a joint class of DOI called Smooth-Flexible DOI (SF-DOI). We apply these DOI to three classical problems in logistics and operations research: the Single Source Capacitated Facility Location Problem, the Capacitated p-Median Problem, and the Capacitated Vehicle Routing Problem. We prove that these DOI are valid and are guaranteed to not alter the optimal solution of CG. We also present techniques for their use in the case of solvingCG with relaxed column restrictions. This work also introduces a CG approach to Multi-Robot Routing (MRR). MRR considers the problem of routing a fleet of robots in a warehouse to collectively complete a set of tasks while prohibiting collisions. We present two distinct formulations that tackle unique problem variants. The first we model as a set packing problem, while the second we model as a set cover problem. We show that the pricing problem for both approaches amounts to an elementary resource constrained shortest path problem (ERCSPP); an NP-hard problem commonly studied in other CG problem contexts. We present an efficient implementation of our CG approach that radically reduces the state size of the ERCSPP. Finally, we present a novel heuristic algorithm for solving the ERCSPP and offer probabilistic guarantees forits likelihood to deliver the optimal solution.