Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Solving POMDP by On﬐olicy Linear Approximate Learning Algorithm
    (1999) He, Qiming; Shayman, Mark A.; Shayman, Mark A.; ISR
    This paper presents a fast Reinforcement Learning (RL) algorithm to solve Partially Observable Markov Decision Processes (POMDP) prob﫠lem. The proposed algorithm is devised to provide a policyשּׂaking frame﫠work for Network Management Systems (NMS) which is in essence an engineering application without an exact model.

    The algorithm consists of two phases. Firstly, the model is estimated and policy is learned in a completely observable simulator. Secondly, the estimated model is brought into the partially observed real﬷orld where the learned policy is then fineהּuned.

    The learning algorithm is based on the onאּolicy linear gradientﬤescent learning algorithm with eligibility traces. This implies that the Qזּalue on belief space is linearly approximated by the Qזּalue at vertex over the belief space where onשּׁine TD method will be applied.

    The proposed algorithm is tested against the exact solutions to exten﫠sive small/middleדּize benchmark examples from POMDP literature and found near optimal in terms of averageﬤiscountedגּeward and stepהּo﫠goal. The proposed algorithm significantly reduces the convergence time and can easily be adapted to large stateאַumber problems.