UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Efficient Image Segmentation and Segment-Based Analysis in Computer Vision Applications
    (2015) Soares, Joao V. B.; Jacobs, David W; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation focuses on efficient image segmentation and segment-based object recognition in computer vision applications. Special attention is devoted to analyzing shape, of particular importance for our two applications: plant species identification from leaf photos, and object classification in remote sensing images. Additionally, both problems are bound by efficiency, constraining the choice of applicable methods: leaf recognition results are to be used within an interactive system, while remote sensing image analysis must scale well over very large image sets. Leafsnap was the first mobile app to provide automatic recognition of tree species, currently counting with over 1.7 million downloads. We present an overview of the mobile app and corresponding back end recognition system, as well as a preliminary analysis of user-submitted data. More than 1.7 million valid leaf photos have been uploaded by users, 1.3 million of which are GPS-tagged. We then focus on the problem of segmenting photos of leaves taken against plain light-colored backgrounds. These types of photos are used in practice within Leafsnap for tree species recognition. A good segmentation is essential in order to make use of the distinctive shape of leaves for recognition. We present a comparative experimental evaluation of several segmentation methods, including quantitative and qualitative results. We then introduce a custom-tailored leaf segmentation method that shows superior performance while maintaining computational efficiency. The other contribution of this work is a set of attributes for analysis of image segments. The set of attributes is designed for use in knowledge-based systems, so they are selected to be intuitive and easily describable. The attributes can also be computed efficiently, to allow applicability across different problems. We experiment with several descriptive measures from the literature and encounter certain limitations, leading us to introduce new attribute formulations and more efficient computational methods. Finally, we experiment with the attribute set on our two applications: plant species identification from leaf photos and object recognition in remote sensing images.
  • Thumbnail Image
    Item
    Towards segmentation into surfaces
    (2010) Bitsakos, Konstantinos; Aloimonos, Yiannis; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Image segmentation is a fundamental problem of low level computer vision and is also used as a preprocessing step for a number of higher level tasks (e.g. object detection and recognition, action classification, optical flow and stereo computation etc). In this dissertation we study the image segmentation problem focusing on the task of segmentation into surfaces. First we present our unifying framework through which mean shift, bilateral filtering and anisotropic diffusion can be described. Three new methods are also described and implemented and the most prominent of them, called Color Mean Shift (CMS), is extensively tested and compared against the existing methods. We experimentally show that CMS outperforms the other methods i.e., creates more uniform regions and retains equally well the edges between segments. Next we argue that color based segmentation should be a two stage process; edge preserving filtering, followed by pixel clustering. We create novel segmentation algorithms by coupling the previously described filtering methods with standard grouping techniques. We compare all the segmentation methods with current state of the art grouping methods and show that they produce better results on the Berkeley and Weizmann segmentation datasets. A number of other interesting conclusions are also drawn from the comparison. Then we focus on surface normal estimation techniques. We present two novel methods to estimate the parameters of a planar surface viewed by a moving robot when the odometry is known. We also present a way of combining them and integrate the measurements over time using an extended Kalman filter. We test the estimation accuracy by demonstrating the ability of the system to navigate in an indoor environment using exclusively vision. We conclude this dissertation with a discussion on how color based segmentation can be integrated into a structure from motion framework that computes planar surfaces using homographies.