UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    MODIFYING GREEN ROOF SUBSTRATE FOR NUTRIENT RETENTION IN URBAN FARMING SYSTEMS
    (2020) Howard, Ian Nathaniel; Lea-Cox, John D; Plant Science and Landscape Architecture (PSLA); Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Interest in urban agriculture is steadily increasing in the Mid-Atlantic region. The conversion of extensive green roofs to food production is particularly appealing due to space availability. The modification of a relatively unfertile shale-based substrate for increased water and nutrient availability was investigated, adding mushroom and yard-waste composts, but potentially contributing to nutrient runoff from rainfall and irrigation events. Alumina and biochar were therefore tested as substrate amendments to determine their effect nutrient availability and retention. Fifteen substrate mixes were screened by column leaching tests, and four were further studied over nine-months, with crop and leachate studies. Basil, lettuce and peppers were grown and harvested in succession in replicated 50-liter tubs, with leachate collection systems. Biochar did not reduce nitrogen or phosphorus leaching and did not have an effect on plant growth. Alumina significantly reduced the amount of phosphorus leached from substrates with little to no effect on plant growth.
  • Thumbnail Image
    Item
    Model-based Analysis of Atomic Layer Deposition Growth Kinetics and Multiscale Process Dynamics
    (2014) Travis, Curtisha Denise; Adomaitis, Raymond A.; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A first principles model describing the reaction kinetics and surface species dynamics for the trimethylaluminum (TMA) and water half-reactions of alumina atomic layer deposition (ALD) is coupled with a dynamic film growth model and reactor-scale species transport model. The reaction kinetics model is based on reported enthalpies and transition state structures from published quantum-chemical computational studies; these data are used to determine kinetic parameters using statistical thermodynamics and absolute reaction rate theory. Several TMA half-reactions were modeled to account for TMA adsorption and subsequent reaction on a range of growth surfaces spanning bare to fully hydroxylated states. Several water reactions were also considered. By coupling the reaction rate models with surface species conservation equations, a dynamic model is created which is useful for examining the relative rates of competing surface reactions. To describe the continuous cyclic operation of the deposition reaction system, a numerical procedure to discretize limit-cycle solutions is developed and used to distinguish saturating growth per cycle from non-saturating conditions. The transition between the two regimes is studied as a function of precursor partial pressure, exposure times, and temperature. Finally, a cross-flow tubular ALD reactor system model is derived with components describing the precursor thermophysical properties, precursor delivery system, reactor-scale gas-phase dynamics, and surface reaction kinetics derived from absolute reaction rate theory. These model components are integrated to simulate the complete multiscale ALD process. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on temporal and spatial discretization within the reactor, resulting in an unambiguous definition of film growth per cycle. The use of the simulator for assisting in process design decisions and optimization frameworks is presented.
  • Thumbnail Image
    Item
    High elastic modulus nanopowder reinforced resin composites for dental applications
    (2007-08-27) Wang, Yijun; Lloyd, Isabel K.; Greer, Sandra C.; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the attenuation of mobility of polymer chains. Complementary studies indicate that our resin composites are promising for the proposed applications as a stiff support to all-ceramic crowns.