UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
3 results
Search Results
Item ATOMIC LAYER DEPOSITION OF NICKEL THIN FILMS FOR SPACECRAFT OPTICAL APPLICATIONS(2020) Ku, Ching-En; Adomaitis, Raymond A.; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Two approaches for Ni Atomic Layer Deposition on glass substrates have been studied for spacecraft optical applications. The first strategy is to first deposit a NiO thin film and then reduce the metal oxide film using noble gas under high temperature. NiCp2 and O3 as the precursors were chosen due to the low-temperature required for deposition and high growth rate. An alternative pathway was to deposit a Ru metallic film as the adsorption layer, using Ru(DMBD)(CO)3 and H2O, then deposit the Ni metallic film on the Ru film using Ni(DAD)2 and tert-butylamine. The reaction mechanisms for both processes were developed. The ideal theoretical growth rates of these ALD processes were calculated as 2.40 Å/cycle for NiO, 2.19 Å/cycle for Ru and 2.04 Å/cycle for Ni metallic film.Item Mechanical and electrical properties of metal-carbon connections for battery applications(2014) Bilger, Christopher John; Bruck, Hugh A; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Material selection and processing techniques were investigated to form carbon-metal bonds. Mechanical and electrical characterization was performed to more fully comprehend the bonding mechanisms and properties. Utilizing carbon fibers as a primary conduction medium, the specimens from the processes investigated were utilized with lithium-ion cells to further characterize the electrical performance. Electroplating nickel onto the ends of the carbon fibers provides a relatively simple processing technique which improves fiber adhesion to nickel tabs by over 4.7 times when compared to conductive silver epoxy and over 5 times greater than a 1 inch immersion of carbon fiber into a SAC305 solder ingot. Additionally, a reduction of electrical resistance by 0.7 times over the solder ingot is achieved with the electroplating technique. The results of the electroplating are achieved by using about 25% less available contact area than the solder ingot and are scalable for usage in electrical circuits.Item MOLECULAR DYNAMICS STUDIES OF METALLIC NANOPARTICLES(2009) Henz, Brian John; Zachariah, Michael R; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Metal nanoparticles have many desirable electrical, magnetic, optical, chemi-cal, and physical properties. In order to utilize these properties effectively it is neces-sary to be able to accurately predict their size-dependent properties. One common method used to predict these properties is with numerical simulation. The numerical simulation technique used throughout this effort is the molecular dynamics (MD) si-mulation method. Using MD simulations I have investigated various metallic nano-particle systems including gold nanoparticles coated with an organic self-assembled monolayer (SAM), the self-propagating high-temperature synthesis (SHS) reaction of nickel and aluminum nanoparticles, and the mechano-chemical behavior of oxide coated aluminum nanoparticles. The model definition, boundary conditions, and re-sults of these simulations are presented in the following dissertation. In the first material system investigated MD simulations are used to probe the structure and stability of alkanethiolate self-assembled monolayers (SAMs) on gold nanoparticles. Numerous results and observations from this parametric study are pre-sented here. By analyzing the mechanical and chemical properties of gold nanopar-ticles at temperatures below the melting point of gold, with different SAM chain lengths and surface coverage properties, we have determined that the material system is metastable. The model and computational results that provide support for this hy-pothesis are presented. The second material system investigated, namely sintering of aluminum and nickel, is explored in chapter 4. In this chapter MD simulations are used to simulate the kinetic reaction of Ni and Al particles at the nanometer scale. The affect of par-ticle size on reaction time and temperature for separate nanoparticles has been consi-dered as a model system for a powder metallurgy process. Coated nanoparticles in the form of Ni-coated Al nanoparticles and Al-coated Ni nanoparticles are also analyzed as a model for nanoparticles of one material embedded within a matrix of the second. Simulation results show that the sintering time for separate and coated nanoparticles is dependent upon the number of atoms or volume of the sintering nanoparticles and their surface area. We have also found that nanoparticle size and surface energy is an important factor in determining the adiabatic reaction temperature for both systems, coated and separate, at nanoparticle sizes of less than 10nm in diameter. The final material system investigated in chapters 5 and 6 is the oxide coated aluminum nanoparticle. This material system is simulated using the reactive force field (ReaxFF) potential which is capable of considering the charge transfer that occurs during oxidation. The oxidation process of oxide coated aluminum nanoparticles has been observed to occur at a lower temperature and a faster rate than micron sized nanoparticles, suggesting a different oxidation mechanism. From this effort we have discovered that the oxidation process for nanometer sized oxide coated aluminum particles is the result of an enhanced transport due to a built-in electric field induced by the oxide shell. In contrast to the currently assumed pressure driven diffusion process the results presented here demonstrate that the high temperature oxidation process is driven by the electric field present in the oxide layer. This electric field ac-counts for over 90% of the mass flux of aluminum ions through the oxide shell. The computed electric fields show good agreement with published theoretical and experi-mental results. The final chapter includes some important conclusions from this work and highlights some future work in these areas. Future work that is outlined includes ef-forts that are currently underway to analyze the interactions of multiple alkanethiolate coated gold nanoparticles in vacuum and in solvent. Other future efforts are farther out over the horizon and include using advanced computing techniques such as gen-eral purpose graphical processing units (GPGPU) to expand simulation sizes and physical details over what it is currently possible to simulate.