UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    INTEGRATION OF CLASSICAL/NONCLASSICAL OPTICAL NONLINEARITIES WITH PHOTONIC CIRCUITS
    (2023) Buyukkaya, Mustafa A; Waks, Edo; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Recent developments in nanofabrication have opened opportunities for strong light-matter interactions that can enhance optical nonlinearities, both classical and non-classical, for applications such as optical computing, quantum communication, and quantum computing. However, the challenge lies in integrating these optical nonlinearities efficiently and practically with fiber-based and silicon-based photonic circuits on a large scale and at low power. In this thesis, we aimed to achieve this integration of classical and quantum optical nonlinearities with fiber-based and silicon-based photonic circuits.For classical optical applications, optical bistability is a well-researched nonlinear optical phenomenon that has hysteresis in the output light intensity, resulting from two stable electromagnetic states. This can be utilized in various applications such as optical switches, memories, and differential amplifiers. However, integrating these applications on a large scale requires low-power optical nonlinearity, fast modulation speeds, and photonic designs with small footprints that are compatible with fiber optics or silicon photonic circuits. Thermo-optic devices are an effective means of producing optical bistability through thermally induced refractive index changes caused by optical absorption. The materials used must have high absorption coefficients and strong thermo-optic effects to realize low-power optical bistability. For this purpose, we choose high-density semiconductor quantum dots as the material platform and engineer nanobeam photonic crystal structures that can efficiently be coupled to an optical fiber while achieving low-power thermo-optical bistability. For applications that require non-classical nonlinearities such as quantum communication and quantum computing, single photons are promising carriers of quantum information due to their ability to propagate over long distances in optical fibers with extremely low loss. However, the efficient coupling of single photons to optical fibers is crucial for the successful transmission of quantum information. Semiconductor quantum dots that emit around telecom wavelengths have emerged as a popular choice for single photon sources due to their ability to produce bright and indistinguishable single photons, and travel long distances in fiber optics. Here, we present our advances in integrating telecom wavelength single photons from semiconductor quantum dots to optical fibers to realize efficient fiber-integrated on-demand single photon sources at telecom wavelengths. Finally, using the same methodology, we demonstrate the integration of these quantum dots with CMOS foundry-made silicon photonic circuits. The foundry chip is designed to individually tune quantum dots using the quantum confined stark shift with localized electric fields at different sections of the chip. This feature could potentially enable the tuning of multiple quantum emitters for large-scale integration of single photon sources for on-chip quantum information processing.
  • Thumbnail Image
    Item
    Metal hydrides as a platform for reconfigurable photonic and plasmonic elements
    (2021) Palm, Kevin James; Munday, Jeremy N; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Metal hydrides often display dramatic changes in optical properties upon hydrogenation. These shifts make them prime candidates for many tunable optical devices from optical hydrogen sensors and switchable mirrors to physical encryption schemes. In order to design and fabricate optimized devices for any of these applications, we need to determine the optical and structural properties of these materials. In this dissertation, we design and implement an apparatus that dynamically measures the gravimetric, stress, calorimetric, and optical properties of metal hydrides as they are exposed to H2. We use this apparatus to measure the properties of 5 different pure metal hydrides (Pd, Mg, Ti, V, and Zr) and then use these properties to design tunable color filters and switchable perfect absorbers, among other devices. To widen our parameter space and to combine desirable characteristics of different metal systems, we use the same apparatus to investigate the properties of different metal alloy hydride systems including Pd-Au, Mg-Ni, Mg-Ti, and Mg-Al. We demonstrate many improved nanophotonic designs with these materials, including a thin-film physical encryption scheme with Pd-Au and a switchable solar absorber with Mg-Ti. Many of these photonic devices can be further enhanced by tailoring the substrate of the device along with the metal hydride. In this dissertation, we also investigate combining the switchable optical properties of metal hydrides with near-zero-index substrates to further enhance the optical device changes. Near-zero-index materials are ones where the refractive index is below 1 and can lead to a variety of interesting optical effects, including high absorption in surrounding materials and enhanced non-linear effects. By combining an ITO substrate with a near-zero-index resonance at ~1250 nm with a thin Pd capped Mg film, we demonstrate a switchable absorption device with >76% absorption change at 1335 nm illumination. To further explore the possibility of large-scale fabrication of these devices, we survey the properties of commercially available near-zero-index materials and report the range of attainable optical properties, showing its feasibility.
  • Thumbnail Image
    Item
    An Integrated Photonic Platform For Quantum Information Processing
    (2021) Dutta, Subhojit; Waks, Edo EW; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Quantum photonics provides a powerful toolbox with vast applications ranging from quantum simulation, photonic information processing, all optical universal quantum computation, secure quantum internet as well as quantum enhanced sensing. Many of these applications require the integration of several complex optical elements and material systems which pose a challenge to scalability. It is essential to integrate linear and non-linear photonics on a chip to tackle this issue leading to more compact, high bandwidth devices. In this thesis we demonstrate a pathway to achieving several components in the quantum photonic toolbox on the same integrated photonic platform. We focus particularly on two of the more nontrivial components, a single photon source and an integrated quantum light-matter interface. We address the problem of a scalable, chip integrated, fast single photon source, by using atomically thin layers of 2D materials interfaced with plasmonic waveguides. We further embark on the challenge of creating a new material system by integrating rare earth ions with the emerging commercial platform of thin film lithium niobate on insulator. Rare earth ions have found widespread use in classical and quantum information processing. However, these are traditionally doped in bulk crystals which hinder their scalability. We demonstrate an integrated photonic interface for rare earth ions in thin film lithium niobate that preserves the optical and coherence properties of the ions. This combination of rare earth ions with the chip-scale active interface of thin film lithium niobate opens a plethora of opportunities for compact optoelectronic devices. As an immediate application we demonstrate an integrated optical quantum memory with a rare earth atomic ensemble in the thin film. The new light matter interface in thin film lithium niobate acts as a key enabler in an already rich optical platform representing a significant advancement in the field of integrated quantum photonics.
  • Thumbnail Image
    Item
    Investigation of nanophotonic structures for imaging and sensing
    (2017) ZHANG, ZHIJIAN; Yu, Miao; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The ability to image micro/nano scale objectives with miniaturized optical components has always been of great interest due to its great potential in applications such as microscopy, nanofabrication, and biomedical monitoring. However, in traditional practice using dielectric lenses, the focal size is inevitably limited by the Abbe’s diffraction limit (0.51fλ/ρ). Here, λ is the wavelength in vacuum, and f and ρ are the focal length and the radius of the lens, respectively. Moreover, the performance of conventional spherical lenses deteriorates as their sizes approach the wavelength. On the other hand, owing to the recent advances in micro/nano fabrication techniques, miniature sensors have received much attention, which are highly desirable in many sensing applications for physical, chemical, and biomedical parameter measurements. However, the performance of miniature sensors usually suffers from the similar difficulty as miniaturized imaging systems. Recently nanophotonic structures have been explored for the development of miniaturizing imaging and sensing systems due to their capability of confining and manipulating light at a subwavelength scale. In this dissertation work, several different mechanisms that nanophotonic structures can be used to help enhance the performance of imaging and sensing in miniaturized systems are investigated. First, plasmonic lens utilizing the nanophotonic structure to achieve the subwavelength focusing ability is studied. Three different regions in the plasmonic lens design are defined. Furthermore, a plasmonic lens in the Fresnel’s region is designed and k.ed to achieve a sub-diffraction limit focus. Second, radially polarized light generated by the TEM mode in the annular aperture in metal is investigated, which can further enhance the focusing ability. Third, in terms of sensing, an ultra-thin plasmonic interferometer constructed with a nano-hole array is fabricated on a fiber facet. By using this structure, the multi-parameter sensing capability of this interferometer is demonstrated; high sensitivity refractive index and temperature sensing are achieved. Finally, a novel sensor design based on the cladding modes and buffer modes generated by the planar grating on the fiber facet is proposed. Experimental studies of this sensor demonstrate its superior temperature sensitivity and the potential of multi-parameter sensing.
  • Thumbnail Image
    Item
    Ultrafast nonlinear plasmonics
    (2012) Nah, Sanghee; Fourkas, John T; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Metal nanostructures can enhance the optical signals by orders of magnitude due to surface plasmon resonance. This field enhancement of the plasmonic nanostructures has led to optical detection and light manipulation beyond the free space diffraction limit. However, the significant enhancement of optical signals of the nanostructures has not been fully understood. In order to examine field-enhanced phenomena, this dissertation studies a variety of plasmonic nanostructures using two nonlinear optical processes, multiphoton-absorption-induced luminescence (MAIL) and metal-enhanced multiphoton absorption polymerization (MEMAP). Nonlinear absorption of near-infrared light can lead to luminescence of metal nanostructures. This luminescence can be observed at localized areas of the nanostructures because of localized surface plasmon resonance and the “lightning rod” nanoantenna effect. In the presence of a prepolymer resin, luminescence generated from the nanostructures can induce polymerization by exciting a photoinitiator. The strong correlation between MAIL and MEMAP is demonstrated by using different excitation wavelengths and different types of prepolymer resins. While localized surface plasmon resonance plays a pivotal role in field-enhanced optical phenomena observed at local areas of gold nanoparticles, nanowires, and nanoplates, surface plasmon propagation is essential to understanding of the nonlinear optical properties in silver nanowires. As silver nanowires can support surface plasmon propagation for many microns, excitation of NIR light at one end of the nanowire can induce luminescence at the other end of the nanowire. This broadband luminescence can excite a photoinitiator, inducing polymerization. The luminescence-induced polymerization in remote positions can be used to assemble nanostructures. Nonlinear luminescence and its correlation to polymerization are also studied using carbon nanostructures. While metal nanostructures exhibit plasmonic field enhancement, carbon nanotubes have strong Coulomb interactions between excited electrons and holes, which results in luminescent emission. Additionally, the high density of electron states of carbon nanotubes can increase the probability of the recombination of the excited electron and hole, which in turn induce luminescence. The luminescence emission and photopolymerization are studied using different kinds of carbon nanostructures.