UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item High Pressure Emulsion and Miniemulsion Copolymerization of Vinyl Acetate and Ethylene(2017) Narayanan, Manu; Choi, Kyu Y; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Miniemulsion copolymerization in gas-liquid systems such as vinyl acetate-ethylene (VAE) differs from that of conventional VAE emulsion copolymerization. Particle nucleation in miniemulsions is mainly due to the radical entry into the monomer droplets. The objective of this thesis is to study the reaction mechanism of VAE miniemulsion copolymerization, characterize the copolymer formed and compare it to the conventionally and commercially used VAE emulsion copolymer, and highlight any advantages of VAE miniemulsions over normal VAE emulsions. Miniemulsions have shown to be more stable and long-lasting than emulsions in terms of particle size distributions. The amount of ethylene incorporated in the copolymer is higher in the case of miniemulsions as compared to emulsions due to decreased mass transfer limitations of ethylene in the aqueous phase and subsequent incorporation into the VAE copolymer.Item Synthesis of Novel Alkaline Polymer Electrolyte for Alkaline Fuel Cell Applicaitons(2012) Luo, Yanting; Wang, Chunsheng; Chemical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Development of the intrinsically OH- conductive polymeric electrolyte (alkaline polymer electrolyte, APE) is the critical component to enable the wide application of alkaline fuel cell (AFC) technology. Alkaline polymer electrolyte fuel cell (APEFC) based on AFC technology has been revived recently for applications in transportation and portable electronic devices due to its advantages of using non-noble metal catalysts, faster oxygen reduction in alkaline medium, and compact design. The research described in this dissertation aims to synthesize a novel APE, with controlled ionic conductivity and mechanical strength to achieve high fuel cell power density and long durability. Most APEs synthesized up to now use a modification of existing engineering polymer backbones, which are very difficult to balance its mechanical properties with its ionic conductivities. In this research, we copolymerized APE precursor polymers, namely poly (methyl methacrylate-co-butyl acrylate-co vinylbenzyl chloride) (PMBV) from three functional monomers, methyl methacrylate (MMA), butyl acrylate (BA) and vinylbenzyl chloride (VBC), where VBC was the functional group that was attached with trimethylamine (TMA) and was the OH- carrier after ion-exchanging. MMA was used for mechanical support and BA was used to alleviate the brittleness coming from MMA and VBC. We synthesized alkaline polymer electrolytes from bottom-up polymerization of these selected functional monomers using free radical solution and miniemulsion copolymerization techniques. By miniemulsion copolymerization, the properties of the obtained APEs could be precisely controlled by tuning the (1) monomer ratio, (2) glass transition temperature (Tg), (3) molecular weight (MW), and (4) crosslinking the copolymer. The increase in Tg was realized by eliminating BA from monomers, which was a low Tg component. MW was optimized through investigating binary copolymerization kinetics factors (initiator and surfactant). For crosslinking, the newly obtained poly (methyl methacrylate-co-vinylbenzyl chloride) (PMV) was crosslinked as a semi-interpenetrating network (s-IPN) to reduce water uptake and thus enhanced the mechanical strength in a humidified environment for APEFCs. After the optimization, our best quaternized PMBV (QPMBV) series APE membranes could reach a maximum power density of 180 mW/cm2 and the crosslinked QPMV APE could last 420 hours on APEFCs, which was among the best overall performance in APE technologies. In the future, we propose to use fluorinated polymer monomers to redesign the polymer backbone. Another direction in the design of APEs is to reselect the possible functional OH- carrier groups to make APEs more chemically and mechanically stable in a high pH environment. And last but not least, atomic force spectroscopy (AFM) is proposed to observe the APE nanostructure, the ionic conductive path, and the local mechanical strength by applying a small voltage between the tip and stage.