UMD Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/3
New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.
More information is available at Theses and Dissertations at University of Maryland Libraries.
Browse
2 results
Search Results
Item One-Dimensional Analytical Model Development of a Plasma-Based Actuator(2014) Popkin, Sarah Haack; Flatau, Alison B; Aerospace Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation provides a method for modeling the complex, multi-physics, multi-dimensional processes associated with a plasma-based flow control actuator, also known as the SparkJet, by using a one-dimensional analytical model derived from the Euler and thermodynamic equations, under varying assumptions. This model is compared to CFD simulations and experimental data to verify and/or modify the model where simplifying assumptions poorly represent the real actuator. The model was exercised to explore high-frequency actuation and methods of improving actuator performance. Using peak jet momentum as a performance metric, the model shows that a typical SparkJet design (1 mm orifice diameter, 84.8 mm3 cavity volume, and 0.5 J energy input) operated over a range of frequencies from 1 Hz to 10 kHz shows a decrease in peak momentum corresponding to an actuation cutoff frequency of 800 Hz. The model results show that the cutoff frequency is primarily a function of orifice diameter and cavity volume. To further verify model accuracy, experimental testing was performed involving time-dependent, cavity pressure and arc power measurements as a function of orifice diameter, cavity volume, input energy, and electrode gap. The cavity pressure measurements showed that pressure-based efficiency ranges from 20% to 40%. The arc power measurements exposed the deficiency in assuming instantaneous energy deposition and a calorically perfect gas and also showed that arc efficiency was approximately 80%. Additional comparisons between the pressure-based modeling and experimental results show that the model captures the actuator dependence on orifice diameter, cavity volume, and input energy but over-estimates the duration of the jet flow during Stage 2. The likely cause of the disagreement is an inaccurate representation of thermal heat transfer related to convective heat transfer or heat loss to the electrodes.Item TRANSPORT PROTOCOL AND FLOW CONTROL FOR IP-BASED BROADBAND AERONAUTICAL SATELLITE NETWORKS(2007-08-06) Shang, Yadong; Baras, John S; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The IP-based broadband aeronautical satellite network will provide numerous new applications and services for both airspace system operations and passenger communications. However, the interoperation between a satellite system and the exiting terrestrial Internet infrastructure introduces new challenges. In this thesis, we recommend suitable transport protocols for an aeronautical network supporting Internet and data services via satellite. We study the future IP-based aeronautical satellite hybrid network and focus on the problems that cause dramatically degraded performance of the Transport Protocol. Based on the observation that it is difficult for an end-to-end TCP solution to solve the performance problem effectively, we proposed a new splitting based transport protocol, called Aeronautical Transport Control Protocol (AeroTCP). The main idea of AeroTCP is the fixed window flow control, adaptive congestion control, and super fast error control. Simulation results showed that AeroTCP can achieve high utilization of satellite channel and fairness.