UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Microwave-Supported Acid Hydrolysis for Proteomics
    (2012) Cannon, Joe; Fenselau, Catherine; Biochemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Our goal is to develop, optimize and demonstrate workflows that incorporate rapid Asp-selective chemical proteolysis into proteomic studies of complex mixtures. This can be further divided into several specific aims. The first aim is to develop and optimize the sample preparation, mass spectrometric, and bioinformatic methods required for complex mixture analysis of peptides resulting from acid digestion both in solution and in polyacrylamide gels. Second, the optimized methods will be applied to three model systems. In the first application, the large peptides derived from microwave-supported acid hydrolysis of human ribosomes isolated from MCF-7 breast cancer cells are analyzed. Secondly, acid hydrolysis will be applied to characterize Lys63 linkages in polyubiquitins. Finally, all the above methods will be combined for the analysis of extracellular vesicles shed by myeloid derived suppressor cells from a murine mammary carcinoma model. After optimizing the mass spectrometric and bioinformatic methods required for analysis of peptides resulting from acid hydrolysis, the most comprehensive analysis using this digestion technique to date was achieved both for in gel and in solution analysis. In gel digestion resulted in identification of over twelve hundred peptides representing 642 proteins, and in solution digestion via mass biased partitioning allowed identification of over 300 proteins. Mass biased partitioning also resulted in two distinct peptide populations from the high and low mass analyses implemented. Nearly 90% of the predicted human ribosomal proteins were identified after acid hydrolysis. High resolution analysis of both precursor and product ions resulted in an average sequence coverage of 46% among identified proteins. It was also demonstrated that microwave-supported acid hydrolysis facilitates a more informative method for analysis of Lys63 linked polyubiquitin. After acid hydrolysis, ~629 Da mass shifts were found to be indicative of isopeptides. These isopeptides were easily identified from complex mixtures using tandem mass spectrometry and diagnostic b ions. Extracellular vesicles from a murine carcinoma model were then analyzed using in gel microwave-supported acid hydrolysis, mass biased partitioning after in solution digestion, and the sample was interrogated for the presence of ubiquitinated peptides.
  • Thumbnail Image
    Item
    Bottom-Up Multiferroic Nanostructures
    (2009) Ren, Shenqiang; Wuttig, Manfred; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Multiferroic and especially magnetoelectric (ME) nanocomposites have received extensive attention due to their potential applications in spintronics, information storage and logic devices. The extrinsic ME coupling in composites is strain mediated via the interface between the piezoelectric and magnetostrictive components. However, the design and synthesis of controlled nanostructures with engineering enhanced coupling remain a significant challenge. The purpose of this thesis is to create nanostructures with very large interface densities and unique connectivities of the two phases in a controlled manner. Using inorganic solid state phase transformations and organic block copolymer self assembly methodologies, we present novel self assembly "bottom-up" techniques as a general protocol for the nanofabrication of multifunctional devices. First, Lead-Zirconium-Titanate/Nickel-Ferrite (PZT/NFO) vertical multilamellar nanostructures have been produced by crystallizing and decomposing a gel in a magnetic field below the Curie temperature of NFO. The ensuing microstructure is nanoscopically periodic and anisotropic. The wavelength of the PZT/NFO alternation, 25 nm, agrees within a factor of two with the theoretically estimated value. The macroscopic ferromagnetic and magnetoelectric responses correspond qualitatively and semi-quantitatively to the features of the nanostructure. The maximum of the field dependent magnetoelectric susceptibility equals 1.8 V/cm Oe. Second, a magnetoelectric composite with controlled nanostructures is synthesized using co-assembly of two inorganic precursors with a block copolymer. This solution processed material consists of hexagonally arranged ferromagnetic cobalt ferrite (CFO) nano-cylinders within a matrix of ferroelectric Lead-Zirconium-Titanate (PZT). The initial magnetic permeability of the self-assembled CFO/PZT nanocomposite changes by a factor of 5 through the application of 2.5 V. This work may have significant impact on the development of novel memory or logic devices through self assembly techniques. It also demonstrates a universal two-phase hard template application. Last, solid-state self assembly had been used recently to form pseudoperiodic chessboard-like nanoscale morphologies in a series of chemically homogeneous complex oxide systems. We improved on this approach by synthesizing a spontaneously phase separated nanolamellar BaTiO3-CoFe2O4 bi-crystal. The superlattice is magnetoelectric with a frequency dependent coupling. The BaTiO3 component is a ferroelectric relaxor with a Vogel-Fulcher temperature of 311 K. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices.