UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Classification of Closed Conformally Flat Lorentzian 3-Manifolds with Unipotent Holonomy
    (2023) Lee, Nakyung; Melnick, Karin; Goldman, William; Mathematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    A conformally flat manifold is a manifold that is locally conformally equivalent to a flat affine space. In this thesis, we classify closed conformally flat Lorentzian manifolds of dimension three whose holonomy group is unipotent. More specifically, we show that such a manifold is finitely covered by either $S^2\times S^1$ or a parabolic torus bundle. Furthermore, we show that such a manifold is Kleinian and is essential if and only if it can be covered by $S^2\times S^1$.