UMD Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/3

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a given thesis/dissertation in DRUM.

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Algorithms and Generalizations for the Lovasz Local Lemma
    (2015) Harris, David; Srinivasan, Aravind; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Lovasz Local Lemma (LLL) is a cornerstone principle of the probabilistic method for combinatorics. This shows that one can avoid a large of set of “bad-events” (forbidden configurations of variables), provided the local conditions are satisfied. The original probabilistic formulation of this principle did not give efficient algorithms. A breakthrough result of Moser & Tardos led to an framework based on resampling variables which turns nearly all applications of the LLL into efficient algorithms. We extend and generalize the algorithm of Moser & Tardos in a variety of ways. We show tighter bounds on the complexity of the Moser-Tardos algorithm, particularly its parallel form. We also give a new, faster parallel algorithm for the LLL. We show that in some cases, the Moser-Tardos algorithm can converge even thoughthe LLL itself does not apply; we give a new criterion (comparable to the LLL) for determining when this occurs. This leads to improved bounds for k-SAT and hypergraph coloring among other applications. We describe an extension of the Moser-Tardos algorithm based on partial resampling, and use this to obtain better bounds for problems involving sums of independent random variables, such as column-sparse packing and packet-routing. We describe a variant of the partial resampling algorithm specialized to approximating column-sparse covering integer programs, a generalization of set-cover. We also give hardness reductions and integrality gaps, showing that our partial resampling based algorithm obtains nearly optimal approximation factors. We give a variant of the Moser-Tardos algorithm for random permutations, one of the few cases of the LLL not covered by the original algorithm of Moser & Tardos. We use this to develop the first constructive algorithms for Latin transversals and hypergraph packing, including parallel algorithms. We analyze the distribution of variables induced by the Moser-Tardos algorithm. We show it has a random-like structure, which can be used to accelerate the Moser-Tardos algorithm itself as well as to cover problems such as MAX k-SAT in which we only partially avoid bad-events.