Chemistry & Biochemistry Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2752

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Controlled Nucleation and Growth of Carbon Nanotubes
    (2024) Alibrahim, Ayman; Wang, YuHuang; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Single-walled carbon nanotubes (SWCNTs) exhibit exceptional electrical, mechanical, and optical properties, making them potential game changers for diverse applications. However, the synthesis of SWCNTs faces significant challenges, including low yield, inadequate control over catalyst particle size, and prevalent impurities. This dissertation focuses on elucidating SWCNTs' nucleation and growth mechanisms to address these challenging issues. First, I applied in-situ absorption spectroscopy to monitor the SWCNT production by chemical vapor deposition. Second, I investigated the factors affecting metal catalyst nucleation and introduced a confinement strategy that enabled a record-breaking growth rate of 4500 meters per hour for SWCNTs. Furthermore, I developed a novel “seed doping” technique to control the nucleation of metal catalysts, significantly reducing catalyst particle size and producing purer, smaller-diameter SWCNTs continuously. Finally, I explored the role of ethanol in enabling the controlled growth of double-walled carbon nanotubes by building on SWCNTs as templates.
  • Thumbnail Image
    Item
    Heterogeneous Ordered Mesoporous Carbon/Metal Oxide Composites for the Electrochemical Energy Storage
    (2015) Hu, Junkai; Lee, Sang Bok; Chemistry; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The combination of high electronic conductivity, enhanced ionic mobility, and large pore volume make ordered mesoporous carbons (OMCs) promising scaffolds for active energy storage materials. However, mesoporous structures and material morphology need to be more thoroughly addressed. This dissertation discusses the effects of mesoporous structures and material morphologies on the electrochemical performance of OMC/Fe2O3 composites. In the first approach, Fe2O3 was embedded into 1D cylindrical (FDU-15), 2D hexagonal (CMK-3), and 3D bicontinuous (CMK-8) symmetries of mesoporous carbons. These materials were used as supercapacitors for a systematic study of the effects of mesoporous architecture on the structure stability, ion mobility, and performance of mesoporous composite electrodes. The results show that the CMK-3 and CMK-8 synthesized by hard template method can provide high pore volume, but the instability of their mesostructures hinders the total electrode performances upon oxide impregnation. In contrast, the FDU-15 from the soft template method can provide a stable mesostructure. However, it contains much smaller pore volume and surface area, leading to limited metal oxide loading and electrode capacitance. Based on these results, anodized aluminum oxide (AAO) and triblock copolymer F127 are used together as hard and soft templates to fabricate ordered mesoporous carbon nanowires (OMCNW) as a host material for Fe2O3 nanoparticles. The synergistic effects in the dual template strategy provide a high pore volume and surface area, and the structure remains stable even with high metal oxide loading amounts. Additionally, the unique nanowire morphology and mesoporous structure of the OMCNW/Fe2O3 facilitate high ionic mobility in the composite, leading to a large capacitance with good rate capability and cycling stability. I further evaluated this OMCNW/Fe2O3 as a lithium-ion battery (LIB) anode, which showed that the porous symmetry, material morphology, and structure stability are even more important in the rate and cycling performances of LIBs. This work helps further the understanding and optimization of porous structures and morphologies of heterogeneous composites for next generation electrochemical energy storage materials.