Cell Biology & Molecular Genetics Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2750

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    THE STANDALONE REGULATOR ROFA OF STREPTOCOCCUS PYOGENES EXHIBITS CHARACTERISTICS OF A PRD-CONTAINING VIRULENCE REGULATOR
    (2024) Hart, Meaghan Taylor; McIver, Kevin S; Cell Biology & Molecular Genetics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Streptococcus pyogenes (Group A Streptococcus; GAS) is a human pathogen estimated to cause nearly 790 million cases of disease annually at diverse tissue sites. To successfully infect these sites, GAS must detect nutrient availability and adapt accordingly. One mechanism employed to detect and import carbohydrates is the phosphoenolpyruvate transferase system ‎ (PTS), which mediates both carbohydrate uptake and metabolic gene regulation. Gene regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several stand-alone regulators that contain PRDs, with corresponding regulons encoding both metabolic genes and important virulence factors. These regulators form a family called PRD-Containing Virulence Regulators (PCVRs). RofA is a putative member of this family and is known to regulate the expression of genes important for virulence. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate appropriate virulence gene expression. In this dissertation, the RofA regulon was determined in strain 5448, a representative strain of the globally disseminated M1T1 serotype. The pilus and capsule operons were consistently dysregulated across growth in the absence of RofA. This correlated with increased capsule production and decreased adherence to primary keratinocytes. Purified RofA-His was phosphorylated in vitro by the general PTS components EI and HPr, and phosphorylated species of RofA-FLAG were detected in vivo late in stationary phase in a glucose-dependent manner. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar detection and utilization with GAS virulence gene regulation. Additionally, a bioluminescent construct was generated for allelic exchange into any S. pyogenes strain. Allelic exchange of this construct into WT 5448 yielded strains that were highly bioluminescent, grew to a similar density as WT, and survived as well as WT when challenged with human neutrophils. This tool could be used to study the contribution of specific proteins on in vivo virulence in a non-invasive manner, including RofA and RofA phosphorylation.
  • Thumbnail Image
    Item
    CHARACTERIZING THE ROLE OF THE PHOSPHOENOLPYRUVATE-DEPENDENT PHOSPHOTRANSFERASE SYSTEM ENZYME II LOCI IN THE PATHOGENESIS OF THE GROUP A STREPTOCOCCUS
    (2017) Sundar, Ganesh; McIver, Kevin S; Molecular and Cell Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome to functionally characterize each EIIC. It was found that a few EIIs had a limited in uence on PTS sugar metabolism, whereas others were promiscuous. The mannose-speci c EII locus exhibited the most in uence on PTS sugar metabolism. Importantly, the mannose-speci c EII also acted to prevent the early onset of SLS-mediated hemolysis. These roles were not identical in two different M1T1 GAS strains, highlighting the versatility of the PTS to adapt to strain-speci c needs. This is further illustrated by the fructose-speci c EII, which is important for survival in whole human blood for MGAS5005, but not 5448. The mannose-speci c EII can transport glucose in other pathogens, but the route of glucose utilization is unknown in GAS. MGAS5005 mutants were generated in a non-PTS glucose transporter (GlcU) and a glucokinase (NagC) of an annotated non-PTS glucose metabolic pathway. Since ∆ptsI, ∆nagC, and ∆glcU all grow to some extent in glucose, it is evident that glucose can be metabolized both by PTS and non-PTS routes. . However, the route of glucose utilization affects overall pathogenesis, as ∆nagC survives like WT in whole human blood, whereas ptsI is unable to survive. Subcutaneous infection of mice with ∆nagC did not exhibit increased lesion size, although these lesions are more severe than MGAS5005 due to the early onset of hemolysis. Overall this suggests that the routes of glucose metabolism greatly in uence SLS-mediated hemolysis. These results highlight that PTS carbohydrate metabolism plays an important role for GAS pathogenesis in both the skin and whole human blood, through the actions of EIIs.