Biology
Permanent URI for this community
Browse
Browsing Biology by Title
Now showing 1 - 20 of 1040
Results Per Page
Sort Options
Item The Abundance and Distribution of Transparent Exopolymer Particles in the Turbidity Maximum Region of Chesapeake Bay(2010) Malpezzi, Michael A.; Crump, Byron C; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Transparent exopolymer particle (TEP) concentrations were measured in the turbidity maximum (ETM) region of Chesapeake Bay during eight research cruises over a two-year period. TEP concentrations ranged from <100 to >2500 ug XG eq l^-1 and accounted for an estimated average of 31% ± 14 of POC. Spatially averaged TEP and chl a concentrations were positively correlated over the two year period, although these parameters were rarely correlated within cruises. Peak TEP concentrations were often separated from chl a maxima, suggesting that formation and concentration processes are more responsible for TEP concentrations than the proximity to precursor source material. Significant correlations between TEP and phaeophytin, POC, DOC, TSS and level of stratification were observed during some sampling periods. Settling tube experiments revealed a positive correlation between TEP concentration and the fraction of settling particulate matter. A hypothetical model for TEP formation and concentration in estuaries is proposed.Item Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1(Springer Nature, 2011-10-15) Yaklichkin, Sergey Yu; Darnell, Diana K; Pier, Maricela V; Antin, Parker B; Hannenhalli, SridharThe forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS) of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene during development. Our evolutionary analyses suggest that while a relaxed purifying selection is likely to be the dominant force driving accelerated evolution of avian FOXE1 genes, a few residues may have evolved adaptively. This study provides a basis for future genetic and comparative biochemical studies of FOXE1.Item An Access database of records collated from the literature about flies pollinating or at least visiting flowers, updated 2017(2017-04-20) Inouye, DavidAn Access database of over 11,000 records collated from the literature about flies pollinating or at least visiting flowers (version updated as of April 2017). An accompanying EndNote bibliography of the 499 papers from which the data were obtained is also available.Item Acclimation of marine macrophytes (Saccharina latissima and Zostera marina) to water flow(2008-05-12) Jordan, Terry Lynn; Koch, Evamaria; Davison, Ian; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)I examined the physiological response of two marine macrophytes, the brown alga Saccharina latissima and the angiosperm Zostera marina, to water flow in nature and in controlled experiments. Limitation of photosynthesis of both species by the availability of dissolved inorganic carbon (DIC) was increased under low current velocities. Physiological acclimation to low water flow occurred via upregulation of DIC uptake mechanisms in both S. latissima and Z. marina. Both species increased their ability to generate CO2 in the boundary layer by increasing external carbonic anhydrase and in Z. marina by also increasing proton extrusion and photosynthetic capacity. Changes in the xanthophyll-cycle in low-flow grown S. latissima increased non-photochemical quenching, thus reducing photodamage when photosynthesis was limited by DIC uptake. Water flow also affected root length in Z. marina but root length and below ground biomass were also significantly affected by sediment type, an indirect effect of water flow.Item Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences(Springer Nature, 2011-07-27) Liu, Bo; Gibbons, Theodore; Ghodsi, Mohammad; Treangen, Todd; Pop, MihaiA major goal of metagenomics is to characterize the microbial composition of an environment. The most popular approach relies on 16S rRNA sequencing, however this approach can generate biased estimates due to differences in the copy number of the gene between even closely related organisms, and due to PCR artifacts. The taxonomic composition can also be determined from metagenomic shotgun sequencing data by matching individual reads against a database of reference sequences. One major limitation of prior computational methods used for this purpose is the use of a universal classification threshold for all genes at all taxonomic levels. We propose that better classification results can be obtained by tuning the taxonomic classifier to each matching length, reference gene, and taxonomic level. We present a novel taxonomic classifier MetaPhyler (http://metaphyler.cbcb.umd.edu), which uses phylogenetic marker genes as a taxonomic reference. Results on simulated datasets demonstrate that MetaPhyler outperforms other tools commonly used in this context (CARMA, Megan and PhymmBL). We also present interesting results by analyzing a real metagenomic dataset. We have introduced a novel taxonomic classification method for analyzing the microbial diversity from whole-metagenome shotgun sequences. Compared with previous approaches, MetaPhyler is much more accurate in estimating the phylogenetic composition. In addition, we have shown that MetaPhyler can be used to guide the discovery of novel organisms from metagenomic samples.Item An accurate circuit-based description of retinal ganglion cell computation(Springer Nature, 2015-12-04) Cui, Yuwei; Wang, Yanbin V; Demb, Jonathan B; Butts, Daniel AItem Acoel and platyhelminth models for stem-cell research(Springer Nature, 2010-02-16) Bely, Alexandra E; Sikes, James MAcoel and platyhelminth worms are particularly attractive invertebrate models for stem-cell research because their bodies are continually renewed from large pools of somatic stem cells. Several recent studies, including one in BMC Developmental Biology, are beginning to reveal the cellular dynamics and molecular basis of stem-cell function in these animals. See research article http://www.biomedcentral.com/1471-213X/9/69 .Item THE ACOUSTIC QUALITIES THAT INFLUENCE AUDITORY OBJECT AND EVENT RECOGNITION(2019) Ogg, Mattson Wallace; Slevc, L. Robert; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Throughout the course of a given day, human listeners encounter an immense variety of sounds in their environment. These are quickly transformed into mental representations of objects and events in the world, which guide more complex cognitive processes and behaviors. Through five experiments in this dissertation, I investigated the rapid formation of auditory object and event representations (i.e., shortly after sound onset) with a particular focus on understanding what acoustic information the auditory system uses to support this recognition process. The first three experiments analyzed behavioral (dissimilarity ratings in Experiment 1; duration-gated identification in Experiment 2) and neural (MEG decoding in Experiment 3) responses to a diverse array of natural sound recordings as a function of the acoustic qualities of the stimuli and their temporal development alongside participants’ concurrently developing responses. The findings from these studies highlight the importance of acoustic qualities related to noisiness, spectral envelope, spectrotemporal change over time, and change in fundamental frequency over time for sound recognition. Two additional studies further tested these results via syntheszied stimuli that explicitly manipulated these acoustic cues, interspersed among a new set of natural sounds. Findings from these acoustic manipulations as well as replications of my previous findings (with new stimuli and tasks) again revealed the importance of aperiodicity, spectral envelope, spectral variability and fundamental frequency in sound-category representations. Moreover, analyses of the synthesized stimuli suggested that aperiodicity is a particularly robust cue for some categories and that speech is difficult to characterize acoustically, at least based on this set of acoustic dimensions and synthesis approach. While the study of the perception of these acoustic cues has a long history, a fuller understanding of how these qualities contribute to natural auditory object recognition in humans has been difficult to glean. This is in part because behaviorally important categories of sound (studied together in this work) have previously been studied in isolation. By bringing these literatures together over these five experiments, this dissertation begins to outline a feature space that encapsulates many different behaviorally relevant sounds with dimensions related to aperiodicity, spectral envelope, spectral variability and fundamental frequency.Item Action and perception: Neural indices of learning in infants(2016) Yoo Chon, Kathryn Hye Jin; Fox, Nathan A; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Early human development offers a unique perspective in investigating the potential cognitive and social implications of action and perception. Specifically, during infancy, action production and action perception undergo foundational developments. One essential component to examine developments in action processing is the analysis of others’ actions as meaningful and goal-directed. Little research, however, has examined the underlying neural systems that may be associated with emerging action and perception abilities, and infants’ learning of goal-directed actions. The current study examines the mu rhythm—a brain oscillation found in the electroencephalogram (EEG)—that has been associated with action and perception. Specifically, the present work investigates whether the mu signal is related to 9-month-olds’ learning of a novel goal-directed means-end task. The findings of this study demonstrate a relation between variations in mu rhythm activity and infants’ ability to learn a novel goal-directed means-end action task (compared to a visual pattern learning task used as a comparison task). Additionally, we examined the relations between standardized assessments of early motor competence, infants’ ability to learn a novel goal-directed task, and mu rhythm activity. We found that: 1a) mu rhythm activity during observation of a grasp uniquely predicted infants’ learning on the cane training task, 1b) mu rhythm activity during observation and execution of a grasp did not uniquely predict infants’ learning on the visual pattern learning task (comparison learning task), 2) infants’ motor competence did not predict infants’ learning on the cane training task, 3) mu rhythm activity during observation and execution was not related to infants’ measure of motor competence, and 4) mu rhythm activity did not predict infants’ learning on the cane task above and beyond infants’ motor competence. The results from this study demonstrate that mu rhythm activity is a sensitive measure to detect individual differences in infants’ action and perception abilities, specifically their learning of a novel goal-directed action.Item Active female sampling of male display predicts female uncertainty in mate choice(2009) Cendes, Linda Marie; Borgia, Gerald; Behavior, Ecology, Evolution and Systematics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Information on how females use male display elements can be critical in understanding mate choice. Females often passively sample male displays, therefore female use of an element can be difficult to quantify. In satin bowerbirds, female tasting associated with male paint offers an opportunity to study how females actively assess of male display. In a preliminary study, I found that tasting was less common by females during courtships ending in copulation. This suggested that females with a greater proportion of tastes are less certain in their mate choice. I tested this hypothesis in several ways, and each indicated that a greater proportion of tasting was associated with measures suggesting mate choice uncertainty: visiting more times and more males, mating with multiple males, and switching among males. This active sampling behavior allows for examination of female assessment of a single component of male display and to predict certain female characteristics.Item Activity-dependent regulation of Schwann cell development by extracellular ATP(2003-12-05) Stevens, Beth; Davenport, Roger W; Fields, Douglas; BiologyDuring development, the importance of activity-dependent plasticity in neurons is widely appreciated, but comparatively less is known of the role of electrical activity in controlling glial development. Schwann cells (SCs)--the myelinating cells in the peripheral nervous system--are critically dependent on axons during the perinatal period, but axonal signals controlling SC development and myelination have remained elusive. The onset of high frequency action potential activity along developing peripheral nerves corresponds to the period when SCs are exiting the cell cycle and initiating myelination. We postulated that neural impulse activity could play an instructive role in regulating SC gene expression and function during development. To address these questions, a neuron/SC co-culture system equipped with stimulating electrodes was used to evoke action potentials in dorsal root ganglion neurons (DRGs), and study the ensuing effects in pre-myelinating SCs. We found that SCs can detect neural impulse activity in pre-myelinated axons, and the activity-dependent axon-Schwann cell signaling molecule was identified as extracellular ATP. Activity-dependent release of ATP activated multiple intracellular signaling pathways in SCs, and increased levels of several transcription factors, including CREB, c-fos, and krox-24. Importantly, we found that ATP has profound effects on SC development. Activity-dependent ATP release significantly inhibited SC proliferation, arrested SC differentiation, and completely prevented the formation of myelin. Extracellular ATP can activate multiple types of purinergic receptors; therefore we explored the specific purinergic receptors and signaling pathways that could mediate this form of activity-dependent neuron-SC communication. Using a combination of pharmacological and molecular approaches, we found that pre-myelinating SCs express a far more complex array of ATP receptors (P2X and P2Y) that previously thought. Surprisingly, we discovered that pre-myelinating SCs also express a class of functional adenosine receptors (A2), which are positively coupled to cAMP. Extracellular adenosine, a breakdown product of ATP, regulated MAP Kinase signaling and proliferation in SCs independently of ATP. Collectively, our findings suggest that ATP and adenosine released from electrically active axons activate a complex intracellular signaling network in SCs, whereby ATP and adenosine act together to regulate SC function during development and nervous system plasticity.Item ACUTE EXERCISE INDUCED MICROSTRUCTURAL AND FUNCTIONAL CHANGES IN THE HIPPOCAMPUS OF OLDER ADULTS(2023) Callow, Daniel; Carson, Jerome J; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Declining memory function is a common complaint of aging adults and a primary symptom of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The hippocampus is often the first brain area to exhibit noticeable deficits in age and pathologically-related cognitive decline and is a necessary structure for proper memory function. More specifically, the dentate gyrus (DG) and the third cornu ammonis area (CA3) of the hippocampus directly support mnemonic discrimination (MD), which is the process of reducing interference among new representations and distinctly encoding them as independent memories. Poor MD is associated with age and is a presymptomatic biomarker of cognitive decline and is believed to result from reduced neurogenesis, angiogenesis, and synaptogenesis within the DG/CA3 subregion of the hippocampus. While causes and treatments for memory decline remain elusive, lifestyle interventions, especially physical activity, have received attention as cost-effective and safe means of ameliorating and potentially preventing cognitive decline in a growing aging population. Animal and human studies suggest exercise benefits the hippocampal structure, preserving neurogenesis and angiogenesis in aging rodents and macrostructure and memory in older adults. However, the mechanisms by which exercise affects the human hippocampus remains a significant knowledge gap in the field and is a critical aspect in understanding the long-term impact exercise has on the aging hippocampus. To better address this gap, researchers have begun implementing acute exercise studies, which allow for greater control of non-exercise-related factors, are cheaper and more time efficient to conduct than training studies, and can predict and inform training-related adaptations. Unfortunately, limitations in the study designs, population tested, specificity of cognitive tasks, and spatial resolution of human imaging techniques have posed significant barriers to our understanding of how acute exercise relates to healthy brain aging at the functional and microstructural levels. Therefore, the objective of this dissertation was to expand our understanding of how acute aerobic exercise alters the function and microstructure of the aging hippocampus. Three within-subject studies were conducted comparing the relationship between a 30-minute bout of moderate to vigorous intensity aerobic exercise vs seated rest on MD performance, hippocampal microstructure, and high-resolution hippocampal-subfield microstructure and functional activity in healthy older adults. In study one, acute exercise preserved MD performance compared to decrements exhibited after seated rest in a pre and post-condition study design. In study two, a post-condition-only study design, acute exercise elevated microstructural diffusion within the hippocampus, indicative of a hippocampal neuroinflammatory response and upregulation of neurotrophic factors. Finally, in study three, a post-condition-only study design, we found that acute exercise resulted in lower MD, suppressed MD-related DG/CA3 network hyperactivity (indicative of healthier network function), and led to higher DG/CA3 extracellular diffusion. However, these neuroimaging-based correlates of hippocampal neuroplasticity and network function were not associated with differences in MD performance. These findings suggest that higher-intensity acute exercise can alter memory performance and stimulate neuroplasticity and neurotrophic cascades within the hippocampus and the DG/CA3 subfield, potentially via different mechanisms. Furthermore these results give insight into the immediate neurotrophic and behavioral effects of acute moderate to vigorous intensity aerobic exercise in older adults and provide new methods and tools for better understanding if and how exercise promotes healthy brain aging. Finally, these initial findings lay a foundation for optimizing exercise prescription and identifying future effective exercise treatments.Item ADAPTIVE FLIGHT AND ECHOLOCATION BEHAVIOR IN BATS(2015) Falk, Ben; Moss, Cynthia F; Neuroscience and Cognitive Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Bats use sonar to identify and localize objects as they fly and navigate in the dark. They actively adjust the timing, intensity, and frequency content of their sonar signals in response to task demands. They also control the directional characteristics of their sonar vocalizations with respect to objects in the environment. Bats demonstrate highly maneuverable and agile flight, producing high turn rates and abrupt changes in speed, as they travel through the air to capture insects and avoid obstacles. Bats face the challenge of coordinating flight kinematics with sonar behavior, as they adapt to meet the varied demands of their environment. This thesis includes three studies, one on the comparison of flight and echolocation behavior between an open space and a complex environment, one on the coordination of flight and echolocation behavior during climbing and turning, and one on the flight kinematic changes that occur under wind gust conditions. In the first study, we found that bats adapt the structure of the sonar signals, temporal patterning, and flight speed in response to a change in their environment. We also found that flight stereotypy developed over time in the more complex environment, but not to the extent expected from previous studies of non-foraging bats. We found that the sonar beam aim of the bats predicted flight turn rate, and that the relationship changed as the bats reacted to the obstacles. In the second study, we characterized the coordination of flight and sonar behavior as bats made a steep climb and sharp turns while they navigated a net obstacle. We found the coordinated production of sonar pulses with the wingbeat phase became altered during navigation of tight turns. In the third study, we found that bats adapt wing kinematics to perform under wind gust conditions. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence for tight coordination of sensory and motor systems for obstacle navigation and insect capture. Through these studies, we learn about the mechanisms by which mammals and other organisms process sensory information to adapt their behaviors.Item Adaptive Mechanisms of an Estuarine Synechococcus based on Genomics, Transcriptomics, and Proteomics(2016) Marsan, David Wilfred; Chen, Feng; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Picocyanobacteria are important phytoplankton and primary producers in the ocean. Although extensive work has been conducted for picocyanobacteria (i.e. Synechococcus and Prochlorococcus) in coastal and oceanic waters, little is known about those found in estuaries like the Chesapeake Bay. Synechococcus CB0101, an estuarine isolate, is more tolerant to shifts in temperature, salinity, and metal toxicity than coastal and oceanic Synechococcus strains, WH7803 and WH7805. Further, CB0101 has a greater sensitivity to high light intensity, likely due to its adaptation to low light environments. A complete and annotated genome sequence of CB0101 was completed to explore its genetic capacity and to serve as a basis for further molecular analysis. Comparative genomics between CB0101, WH7803, and WH7805 show that CB0101 contains more genes involved in regulation, sensing, and stress response. At the transcript and protein level, CB0101 regulates its metabolic pathways, transport systems, and sensing mechanisms when nitrate and phosphate are limited. Zinc toxicity led to oxidative stress and a global down regulation of photosystems and the translation machinery. From the stress response studies seven chromosomal toxin-antitoxin (TA) genes, were identified in CB0101, which led to the discovery of TA genes in several marine Synechococcus strains. The activation of the relB2/relE1 TA system allows CB0101 to arrest its growth under stressful conditions, but the growth arrest is reversible, once the stressful environment dissipates. The genome of CB0101 contains a relatively large number of genomic island (GI) genes compared to known marine Synechococcus genomes. Interestingly, a massive shutdown (255 out of 343) of GI genes occurred after CB0101 was infected by a lytic phage. On the other hand, phage-encoded host-like proteins (hli, psbA, ThyX) were highly expressed upon phage infection. This research provides new evidence that estuarine Synechococcus like CB0101 have inherited unique genetic machinery, which allows them to be versatile in the estuarine environment.Item The adaptive significance and prevalence of courtship feeding in Hawaiian swordtail crickets(2008-06-04) deCarvalho, Tagide; Shaw, Kerry; Biology; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Males of many insect species feed their partner during courtship and mating. Studies of male nutrient donation in various systems have established that nuptial feeding has evolved mostly through sexual selection. Although there is extensive diversity in form, the function of nuptial gifts is typically limited to either facilitating copulation or increasing ejaculate transfer, depending on the time at which the gift is consumed by females. Unlike other insects, the Hawaiian swordtail cricket Laupala (Gryllidae: Trigonidiinae) exhibits serial transfer of nuptial gifts. Males transfer multiple spermless 'micro' spermatophores over several hours before mating at the end of the day (i.e. before the transfer of a single sperm-containing 'macro' spermatophore). By experimental manipulation of male microspermatophore donation, I tested several hypotheses pertaining to the adaptive significance of nuptial gifts in this system. I found that microspermatophore transfer improves insemination, by causing the female reproductive tract to take in more sperm. This result reveals a previously undocumented function for premating nuptial gift donation among insects. Enhanced sperm transfer due to microspermatophore donation may represent male manipulation or an internal mechanism of post-copulatory choice by females. I also performed experimental manipulation of male photoperiod to investigate how time and gender influence nuptial gift production and mating behavior. I found that the timing of mating is limited in males but not females and that the time of pair formation has consequences for the degree of nuptial gift donation, which suggests that both mating timing and microspermatophore number is important for male reproductive success. Finally, I observed the mating behavior of several trigonidiine taxa for a comparative analysis of sexual behavior and found that other genera also utilize spermless microspermatophores, which suggests that microspermatophore donation may be a common nuptial gift strategy among swordtail crickets. The elaborate nuptial feeding behavior of Hawaiian swordtail crickets prior to mating represents a newly discovered strategy to increase male insemination success rather than mating success. Based on this unexpected result, it is worth exploring whether courtship behaviors in other cricket or insect mating systems have also evolved to increase sperm uptake.Item Adenyl Cyclase and Its Relationship to Insect Diapause in the European Corn Borer, Ostrinia Nubilalis (Hubner)(1978) Gelman, Dale Berkman; Lockard, J. David; Hayes, Dora K.; Botany and Science Teaching; Digital Repository at the University of Maryland; University of Maryland (College Park, Md)The purpose of this study was to determine if there is a link between adenyl cyclase activity and the diapause condition in the European corn borer, Ostrinia nubilalis. Insects inhabiting those latitudes where cold and warm seasons alternate with one another have evolved mechanisms which allow them to remain dormant (in a state of diapause) during the winter months of the year. Photoperiod, as well as temperature and humidity, has been shown to control the onset, maintenance and termination of insect diapause. In recent years, evidence supporting a role for the cyclic AMP system, including adenyl cyclase, as well as a role for one or more biogenic amines in the pathway between light reception and the neuroendocrine regulation of the insect life cycle and in the multitude of neuroendocrine pathways controlling insect growth and metamorphosis has been accumulating. In light of this evidence, it was decided to investigate the effects of two light regimens, short day (diapausing-inducing) and long day (pupation-inducing), on adenyl cyclase activity of various stages of fifth instar European corn borer larval heads, and to determine the effects of the biogenic amine neurotransmitters, norepinephrine, octopamine, and dopamine on this activity. Adenyl cyclase activity was measured by a modification of the method of Krishna, et al., (1968). A summary of the results follows. In head extracts of fifth instar European corn borer larvae reared under both long day and short day photoperiodic regimens, adenyl cyclase activity in the presence of sodium fluoride increased as the larvae progressed through early, middle and mature stages. In long day larval heads, activity decreased in late prepupae and reached a low in pharate pupae. In contrast, adenyl cyclase activity in short day larval heads peaked in early diapause and then returned to prediapause levels during late diapause. Norepinephrine significantly enhanced adenyl cyclase activity only in early diapause larval head extracts, while octopamine significantly enhanced adenyl cyclase activity in head extracts of late short day mature and early diapause larvae. Dopamine was ineffective as an activator. An analysis of the combined effect of neurotransmitter and developmental stage revealed that in general, a given neurotransmitter in combination with short day larval head extracts resulted in higher adenyl cyclase levels than that neurotransmitter in combination with long day head extracts.Item Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation(Springer Nature, 2012-01-31) Ford, Andrew Q; Dasgupta, Preeta; Mikhailenko, Irina; Smith, Elizabeth MP; Noben-Trauth, Nancy; Keegan, Achsah DThe IL-4 receptor α (IL-4Rα) chain has a broad expression pattern and participates in IL-4 and IL-13 signaling, allowing it to influence several pathological components of allergic lung inflammation. We previously reported that IL-4Rα expression on both bone marrow-derived and non-bone marrow-derived cells contributed to the severity of allergic lung inflammation. There was a correlation between the number of macrophages expressing the IL-4Rα, CD11b, and IAd, and the degree of eosinophilia in ovalbumin challenged mice. The engagement of the IL-4Rα by IL-4 or IL-13 is able to stimulate the alternative activation of macrophages (AAM). The presence of AAM has been correlated with inflammatory responses to parasites and allergens. Therefore, we hypothesized that IL-4Rα+ AAM play an active role in allergic lung inflammation. To directly determine the role of AAM in allergic lung inflammation, M-CSF-dependent macrophages (BMM) were prepared from the bone-marrow of IL-4Rα positive and negative mice and transferred to IL-4RαxRAG2-/- mice. Wild type TH2 cells were provided exogenously. Mice receiving IL-4Rα+/+ BMM showed a marked increase in the recruitment of eosinophils to the lung after challenge with ovalbumin as compared to mice receiving IL-4Rα-/- BMM. As expected, the eosinophilic inflammation was dependent on the presence of TH2 cells. Furthermore, we observed an increase in cells expressing F4/80 and Mac3, and the AAM marker YM1/2 in the lungs of mice receiving IL-4Rα+/+ BMM. The BAL fluid from these mice contained elevated levels of eotaxin-1, RANTES, and CCL2. These results demonstrate that transfer of IL-4Rα + macrophages is sufficient to enhance TH2-driven, allergic inflammation. They further show that stimulation of macrophages through IL-4Rα leads to their alternative activation and positive contribution to the TH2-driven allergic inflammatory response in the lung. Since an increase in AAM and their products has been observed in patients with asthma exacerbations, these results suggest that AAM may be targeted to alleviate exacerbations.Item Age, growth and recruitment of Hudson River shortnose sturgeon (Acipenser brevirostrum)(2005-08-10) Woodland, Ryan Jordan; Secor, David H.; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Shortnose sturgeon (Acipenser brevirostrum), an Endangered Species, has experienced a several-fold increase in abundance in the Hudson River in recent decades. Age structure and growth were investigated to evaluate the hypothesis that improvements in water quality during the late 1970s stimulated population recovery. Specimens were captured using gill nets bi-monthly 2003 to 2004. Annuli in fin spine sections were determined to form at an annual rate and yielded age estimates of 5-30 years for sizes 49-105cm Total Length (n=554). Hindcast year-class strengths, corrected for gill net mesh selectivity and cumulative mortality indicated high recruitments (28,000-43,000 yearlings) during 1986-1992, which were preceded and succeeded by c. 5 year-periods of lower recruitment (5,000-15,000 yearlings). Results indicated that Hudson River shortnose sturgeon abundance increased due to the formation of several strong year-classes occurring about five years subsequent to improved water quality in important nursery and forage habitats in the upper Hudson River estuary.Item Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus)(PLoS (Public Library of Science), 2017-10-26) Mao, Beatrice; Moss, Cynthia F.; Wilkinson, Gerald S.For echolocating bats, hearing is essential for survival. Specializations for detecting and processing high frequency sounds are apparent throughout their auditory systems. Recent studies on echolocating mammals have reported evidence of parallel evolution in some hearing-related genes in which distantly related groups of echolocating animals (bats and toothed whales), cluster together in gene trees due to apparent amino acid convergence. However, molecular adaptations can occur not only in coding sequences, but also in the regulation of gene expression. The aim of this study was to examine the expression of hearingrelated genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the period in which echolocation vocalizations increase dramatically in frequency. We found that seven genes were significantly upregulated in juveniles relative to adults, and that the expression of four genes through development correlated with estimated age. Compared to available data for mice, it appears that expression of some hearing genes is extended in juvenile bats. These results are consistent with a prolonged growth period required to develop larger cochlea relative to body size, a later maturation of high frequency hearing,mand a greater dependence on high frequency hearing in echolocating bats.Item ALGAL TOXICITY AND FORMATION OF HALOGENATED ORGANIC COMPOUNDS IN BALLAST WATER AFTER OXIDATIVE TREATMENT(2019) Ziegler, Gregory; Tamburri, Mario N; Marine-Estuarine-Environmental Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Ballast water plays a vital role in the stabilization and operations of modern ships, and it is estimated that 3 to 5 billion tons of ballast water are transferred around the world each year. However, the discharge of ballast water has led to the release of non-indigenous species, and costly and ecologically damaging biological invasions. To combat this serious problem, ballast water discharge is now regulated and ballast water management systems (BWMS) have been developed to meet required discharge limits for the release of live organisms. The most common BWMS rely on chlorination of ballast water to kill planktonic organisms but also result in the formation of disinfection by-products (DBPs) and the potential for aquatic toxicity. The research in this thesis was conducted to advance the understanding of treated ballast water toxicity, and to document the formation of higher molecular weight DBPs using ultrahigh resolution mass spectrometry. Research was conducted with commercial BWMS that were based on either direct chlorination (Ch. 2 & 3) or in-situ electrochlorination (Ch. 2 & 4). Ballast water treatment was conducted in estuarine waters of the Port of Baltimore (Patapsco River, Maryland). In Chapter 2, I tested the algal toxicity of discharged ballast water from four BWMS at the time of discharge and monthly thereafter, showing the longevity of the toxic effect of treated water on micro algae. In Chapters 3 and 4, I used ultrahigh resolution mass spectrometry to identify the molecular composition of dissolved organic matter (DOM) and halogenated DBPs after oxidative treatment of ballast water. By comparing samples before and after direct chlorination, I was able to document the changes in dissolved organic matter and the formation of numerous halogenated DBPs (Ch. 3). In Chapter 4, I was able to document the change in brominated DBPs after a period of 92 days, showing the relative persistence of dibrominated compounds. This work together demonstrates that use of traditional water treatment to solve one environmental problem may, in fact, cause other unintended consequences to aquatic ecosystems.