Epidemiology & Biostatistics Research Works
Permanent URI for this collection
Browse
Browsing Epidemiology & Biostatistics Research Works by Subject "big data"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Google Street View Derived Built Environment Indicators and Associations with State-Level Obesity, Physical Activity, and Chronic Disease Mortality in the United States(MDPI, 2020-05-22) Phan, Lynn; Yu, Weijun; Keralis, Jessica M.; Mukhija, Krishay; Dwivedi, Pallavi; Brunisholz, Kimberly D.; Javanmardi, Mehran; Tasdizen, Tolga; Nguyen, Quynh C.Previous studies have demonstrated that there is a high possibility that the presence of certain built environment characteristics can influence health outcomes, especially those related to obesity and physical activity. We examined the associations between select neighborhood built environment indicators (crosswalks, non-single family home buildings, single-lane roads, and visible wires), and health outcomes, including obesity, diabetes, cardiovascular disease, and premature mortality, at the state level. We utilized 31,247,167 images collected from Google Street View to create indicators for neighborhood built environment characteristics using deep learning techniques. Adjusted linear regression models were used to estimate the associations between aggregated built environment indicators and state-level health outcomes. Our results indicated that the presence of a crosswalk was associated with reductions in obesity and premature mortality. Visible wires were associated with increased obesity, decreased physical activity, and increases in premature mortality, diabetes mortality, and cardiovascular mortality (however, these results were not significant). Non-single family homes were associated with decreased diabetes and premature mortality, as well as increased physical activity and park and recreational access. Single-lane roads were associated with increased obesity and decreased park access. The findings of our study demonstrated that built environment features may be associated with a variety of adverse health outcomes.Item Using 164 Million Google Street View Images to Derive Built Environment Predictors of COVID-19 Cases(MDPI, 2020-09-01) Nguyen, Quynh C.; Huang, Yuru; Kumar, Abhinav; Duan, Haoshu; Keralis, Jessica M.; Dwivedi, Pallavi; Meng, Hsien-Wen; Brunisholz, Kimberly D.; Jay, Jonathan; Javanmardi, Mehran; Tasdizen, TolgaThe spread of COVID-19 is not evenly distributed. Neighborhood environments may structure risks and resources that produce COVID-19 disparities. Neighborhood built environments that allow greater flow of people into an area or impede social distancing practices may increase residents’ risk for contracting the virus. We leveraged Google Street View (GSV) images and computer vision to detect built environment features (presence of a crosswalk, non-single family home, single-lane roads, dilapidated building and visible wires). We utilized Poisson regression models to determine associations of built environment characteristics with COVID-19 cases. Indicators of mixed land use (non-single family home), walkability (sidewalks), and physical disorder (dilapidated buildings and visible wires) were connected with higher COVID-19 cases. Indicators of lower urban development (single lane roads and green streets) were connected with fewer COVID-19 cases. Percent black and percent with less than a high school education were associated with more COVID-19 cases. Our findings suggest that built environment characteristics can help characterize community-level COVID-19 risk. Sociodemographic disparities also highlight differential COVID-19 risk across groups of people. Computer vision and big data image sources make national studies of built environment effects on COVID-19 risk possible, to inform local area decision-making.Item Using Convolutional Neural Networks to Derive Neighborhood Built Environments from Google Street View Images and Examine Their Associations with Health Outcomes(MDPI, 2022-09-24) Yue, Xiaohe; Antonietti, Anne; Alirezaei, Mitra; Tasdizen, Tolga; Li, Dapeng; Nguyen, Leah; Mane, Heran; Sun, Abby; Hu. Ming; Whitaker, Ross T.; Nguyen, Quynh C.Built environment neighborhood characteristics are difficult to measure and assess on a large scale. Consequently, there is a lack of sufficient data that can help us investigate neighborhood characteristics as structural determinants of health on a national level. The objective of this study is to utilize publicly available Google Street View images as a data source for characterizing built environments and to examine the influence of built environments on chronic diseases and health behaviors in the United States. Data were collected by processing 164 million Google Street View images from November 2019 across the United States. Convolutional Neural Networks, a class of multi-layer deep neural networks, were used to extract features of the built environment. Validation analyses found accuracies of 82% or higher across neighborhood characteristics. In regression analyses controlling for census tract sociodemographics, we find that single-lane roads (an indicator of lower urban development) were linked with chronic conditions and worse mental health. Walkability and urbanicity indicators such as crosswalks, sidewalks, and two or more cars were associated with better health, including reduction in depression, obesity, high blood pressure, and high cholesterol. Street signs and streetlights were also found to be associated with decreased chronic conditions. Chain link fence (physical disorder indicator) was generally associated with poorer mental health. Living in neighborhoods with a built environment that supports social interaction and physical activity can lead to positive health outcomes. Computer vision models using manually annotated Google Street View images as a training dataset were able to accurately identify neighborhood built environment characteristics. These methods increases the feasibility, scale, and efficiency of neighborhood studies on health.