Geography Research Works
Permanent URI for this collection
Browse
Browsing Geography Research Works by Subject "Aboveground biomass"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system(Springer Nature, 2014-05-08) Johnson, Kristofer D; Birdsey, Richard; Finley, Andrew O; Swantaran, Anu; Dubayah, Ralph; Wayson, Craig; Riemann, RachelForest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon monitoring system, but integration of the two observation systems is not without challenges. To explore integration methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered. In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by comparing plot biomass to pixel values. However, at plots that were defined as “nonforest”, FIA plots had limited value because tree data was not collected even though trees may be present. When the FIA data were combined with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting that the choice of allometric model is important. To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include measurements of all trees in a landscape, not just those on land defined as “forest”. Improved GPS accuracy of plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also recommended.Item Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA(Springer Nature, 2015-08-16) Huang, Wenli; Swatantran, Anu; Johnson, Kristofer; Duncanson, Laura; Tang, Hao; O’Neil Dunne, Jarlath; Hurtt, George; Dubayah, RalphContinental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-derived biomass map over Maryland, USA. We conduct detailed comparisons at pixel-, county-, and state-level. Spatial patterns of biomass are broadly consistent in all maps, but there are large differences at fine scales (RMSD 48.5–92.7 Mg ha−1). Discrepancies reduce with aggregation and the agreement among products improves at the county level. However, continental scale maps exhibit residual negative biases in mean (33.0–54.6 Mg ha−1) and total biomass (3.5–5.8 Tg) when compared to the high-resolution lidar biomass map. Three of the four continental scale maps reach near-perfect agreement at ~4 km and onward but do not converge with the high-resolution biomass map even at county scale. At the State level, these maps underestimate biomass by 30–80 Tg in forested and 40–50 Tg in non-forested areas. Local discrepancies in continental scale biomass maps are caused by factors including data inputs, modeling approaches, forest/non-forest definitions and time lags. There is a net underestimation over high biomass forests and non-forested areas that could impact carbon accounting at all levels. Local, high-resolution lidar-derived biomass maps provide a valuable bottom-up reference to improve the analysis and interpretation of large-scale maps produced in carbon monitoring systems.