Department of Veterinary Medicine Research Works
Permanent URI for this collection
Browse
Browsing Department of Veterinary Medicine Research Works by Issue Date
Now showing 1 - 20 of 52
Results Per Page
Sort Options
Item Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75(Springer Nature, 2008-10-20) Nayak, Baibaswata; Kumar, Sachin; Collins, Peter L; Samal, Siba KAvian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1–9). Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9. As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt) in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F) does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family Paramyxoviridae showed that APMV-4 is more closely related to the APMVs than to other paramyxoviruses, reinforcing the classification of all APMVs in the genus Avulavirus of the family Paramyxoviridae.Item Partial direct contact transmission in ferrets of a mallard H7N3 influenza virus with typical avian-like receptor specificity(Springer Nature, 2009-08-14) Song, Haichen; Wan, Hongquan; Araya, Yonas; Perez, Daniel RAvian influenza viruses of the H7 subtype have caused multiple outbreaks in domestic poultry and represent a significant threat to public health due to their propensity to occasionally transmit directly from birds to humans. In order to better understand the cross species transmission potential of H7 viruses in nature, we performed biological and molecular characterizations of an H7N3 virus isolated from mallards in Canada in 2001. Sequence analysis that the HA gene of the mallard H7N3 virus shares 97% identity with the highly pathogenic avian influenza (HPAI) H7N3 virus isolated from a human case in British Columbia, Canada in 2004. The mallard H7N3 virus was able to replicate in quail and chickens, and transmitted efficiently in quail but not in chickens. Interestingly, although this virus showed preferential binding to analogs of avian-like receptors with sialic acid (SA) linked to galactose in an α2–3 linkage (SAα2–3Gal), it replicated to high titers in cultures of primary human airway epithelial (HAE) cells, comparable to an avian H9N2 influenza virus with human-like α2–6 linkage receptors (SAα2–6Gal). In addition, the virus replicated in mice and ferrets without prior adaptation and was able to transmit partially among ferrets. Our findings highlight the importance and need for systematic in vitro and in vivo analysis of avian influenza viruses isolated from the natural reservoir in order to define their zoonotic potential.Item Detection of NP, N3 and N7 antibodies to avian influenza virus by indirect ELISA using yeast-expressed antigens(Springer Nature, 2009-10-07) Upadhyay, Chitra; Ammayappan, Arun; Vakharia, Vikram NAvian influenza viruses, belonging to the family Orthomyxoviridae, possess distinct combinations of hemagglutinin (H) and the neuraminidase (N) surface glycoproteins. Typing of both H and N antigens is essential for the epidemiological and surveillance studies. Therefore, it is important to find a rapid, sensitive, and specific method for their assay, and ELISA can be useful for this purpose, by using recombinant proteins. The nucleoprotein (NP) and truncated neuraminidase subtype 3 and 7 of avian influenza virus (AIV) were expressed in Saccharomyces cerevisiae and used to develop an indirect enzyme-linked immunosorbent assay for antibody detection. The developed assays were evaluated with a panel of 64 chicken serum samples. The performance of NP-ELISA was compared with the commercially available ProFlok® AIV ELISA kit. The results showed comparable agreement and sensitivity between the two tests, indicating that NP-ELISA assay can be used for screening the influenza type A antibody in AIV infected birds. The N3 and N7- ELISAs also reacted specifically to their type specific sera and did not exhibit any cross-reaction with heterologous neuraminidase subtype specific sera. The study demonstrates the expression of the NP, N3, and N7 proteins of AIV in yeast (S. cerevisiae) and their application in developing an indirect ELISA for detecting NP, N3 and N7 antibodies from AIV-infected chicken sera. The described indirect ELISAs are rapid, sensitive, specific and can be used as promising tests during serological surveillance.Item Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV) isolate from USA(Springer Nature, 2009-10-25) Ammayappan, Arun; Vakharia, Vikram NViral hemorrhagic septicemia virus (VHSV) is a highly contagious viral disease of fresh and saltwater fish worldwide. VHSV caused several large scale fish kills in the Great Lakes area and has been found in 28 different host species. The emergence of VHS in the Great Lakes began with the isolation of VHSV from a diseased muskellunge (Esox masquinongy) caught from Lake St. Clair in 2003. VHSV is a member of the genus Novirhabdovirus, within the family Rhabdoviridae. It has a linear single-stranded, negative-sense RNA genome of approximately 11 kbp, with six genes. VHSV replicates in the cytoplasm and produces six monocistronic mRNAs. The gene order of VHSV is 3'-N-P-M-G-NV-L-5'. This study describes molecular characterization of the Great Lakes VHSV strain (MI03GL), and its phylogenetic relationships with selected European and North American isolates. The complete genomic sequences of VHSV-MI03GL strain was determined from cloned cDNA of six overlapping fragments, obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of MI03GL comprises 11,184 nucleotides (GenBank GQ385941) with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. The first 4 nucleotides at the termini of the VHSV genome are complementary and identical to other novirhadoviruses genomic termini. Sequence homology and phylogenetic analysis show that the Great Lakes virus is closely related to the Japanese strains JF00Ehi1 (96%) and KRRV9822 (95%). Among other novirhabdoviruses, VHSV shares highest sequence homology (62%) with snakehead rhabdovirus. Phylogenetic tree obtained by comparing 48 glycoprotein gene sequences of different VHSV strains demonstrate that the Great Lakes VHSV is closely related to the North American and Japanese genotype IVa, but forms a distinct genotype IVb, which is clearly different from the three European genotypes. Molecular characterization of the Great Lakes isolate will be helpful in studying the pathogenesis of VHSV using a reverse genetics approach and developing efficient control strategies.Item Characterization of influenza virus sialic acid receptors in minor poultry species(2010-12-09) Kimble, Brian; Ramirez Nieto, Gloria; Perez, Daniel RIt is commonly accepted that avian influenza viruses (AIVs) bind to terminal a2,3 sialic acid (SA) residues whereas human influenza viruses bind to a2,6 SA residues. By a series of amino acid changes on the HA surface protein, AIVs can switch receptor specificity and recognize a2,6 SA positive cells, including human respiratory epithelial cells. Animal species, like pigs and Japanese quail, that contain both a2,3 and a2,6 SA become ideal environments for receptor switching. Here, we describe the SA patterns and distributions in 6 common minor domestic poultry species: Peking duck, Toulouse geese, Chinese ring-neck pheasant, white midget turkey, bobwhite quail, and pearl guinea fowl. Lectins specific to a2,3 and a2,6 SA (Maakia amurensis agglutinin and Sambuca nigra agglutinin, respectively) were used to detect SA by an alkaline phosphotase-based method and a fluorescent-based method. Differences in SA moieties and their ability to bind influenza viruses were visualized by fluorescent labeling of 4 different H3N2 influenza viruses known to be specific for one receptor or the other. The geese and ducks showed a2,3 SA throughout the respiratory tract and marginal a2,6 SA only in the colon. The four other avian species showed both a2,3 and a2,6 SA in the respiratory tract and the intestines. Furthermore, the turkey respiratory tract showed a positive correlation between age and a2,6 SA levels. The fact that these birds have both avian and human flu receptors, combined with their common presence in backyard farms and live bird markets worldwide, mark them as potential mixing bowl species and necessitates improved surveillance and additional research about the role of these birds in influenza host switching.Item Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses(2011-01-21) Cai, Yibin; Song, Haichen; Ye, Jianqiang; Shao, Hongxia; Padmanabhan, Rangarajan; Sutton, Troy C; Perez, Daniel RMass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18- day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 10 6 EID50 of LAIVs improved hatchability to ≥90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation.Item Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9(Springer Nature, 2011-02-23) Samuel, Arthur S; Subbiah, Madhuri; Shive, Heather; Collins, Peter L; Samal, Siba KAvian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9). Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi). All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology.Item Sequence analysis of fusion protein gene of Newcastle disease virus isolated from outbreaks in Egypt during 2006(2011-05-18) Mohamed, Mahmoud HA; Kumar, Sachin; Paldurai, Anandan; Samal, Siba KBackground: Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. The F protein cleavage site sequence is a well-characterized determinant of NDV pathogenicity in chickens. In this study, the sequences of fusion protein (F) gene of three Newcastle disease virus (NDV) strains isolated from outbreak in chickens in the Al-Sharkia province of Egypt in 2006 were determined. Findings: The viral genomic RNAs were extracted from the infective allantoic fluid and F gene is amplified using primer sets designed from the available sequences of NDV strains from GenBank. The pathogenicity of NDV strains was determined by three internationally recognized tests mean death time, intracerebral pathogenicity index, and intravenous pathogenicity index. The phylogenetic analysis showed that the Egypt isolates are closely related with the genotype II of class II NDV strains. Conclusions: The sequences of the F genes of the 2006 Egypt isolates are closely related to that of the 2005 Egypt isolate from the same province suggesting that these strains are probably circulating in the vaccinated bird population in Egypt until development of an outbreak.Item Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi(Springer Nature, 2012-03-23) Ouyang, Zhiming; Narasimhan, Sukanya; Neelakanta, Girish; Kumar, Manish; Pal, Utpal; Fikrig, Erol; Norgard, Michael VThe maintenance of Borrelia burgdorferi in its complex tick-mammalian enzootic life cycle is dependent on the organism's adaptation to its diverse niches. To this end, the RpoN-RpoS regulatory pathway in B. burgdorferi plays a central role in microbial survival and Lyme disease pathogenesis by up- or down-regulating the expression of a number of virulence-associated outer membrane lipoproteins in response to key environmental stimuli. Whereas a number of studies have reported on the expression of RpoS and its target genes, a more comprehensive understanding of when activation of the RpoN-RpoS pathway occurs, and when induction of the pathway is most relevant to specific stage(s) in the life cycle of B. burgdorferi, has been lacking. Herein, we examined the expression of rpoS and key lipoprotein genes regulated by RpoS, including ospC, ospA, and dbpA, throughout the entire tick-mammal infectious cycle of B. burgdorferi. Our data revealed that transcription of rpoS, ospC, and dbpA is highly induced in nymphal ticks when taking a blood meal. The RpoN-RpoS pathway remains active during the mammalian infection phase, as indicated by the sustained transcription of rpoS and dbpA in B. burgdorferi within mouse tissues following borrelial dissemination. However, dbpA transcription levels in fed larvae and intermolt larvae suggested that an additional layer of control likely is involved in the expression of the dbpBA operon. Our results also provide further evidence for the downregulation of ospA expression during mammalian infection, and the repression of ospC at later phases of mammalian infection by B. burgdorferi. Our study demonstrates that the RpoN-RpoS regulatory pathway is initially activated during the tick transmission of B. burgdorferi to its mammalian host, and is sustained during mammalian infection.Item BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex(Springer Nature, 2012-04-20) Lenhart, Tiffany R; Kenedy, Melisha R; Yang, Xiuli; Pal, Utpal; Akins, Darrin RSimilar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general.Item Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens(MDPI, 2014-12-12) Nan, Yuchen; Nan, Guoxin; Zhang, Yan-JinInterferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.Item CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation(Springer Nature, 2015-05-21) Wu, Fengjiao; Zhao, Yawei; Jiao, Tian; Shi, Dongyan; Zhu, Xingxing; Zhang, Mingshun; Shi, Meiqing; Zhou, HongChemokines and chemokine receptors cooperate to promote immune cell recruitment to the central nervous system (CNS). In this study, we investigated the roles of CXCR2 and CXCL1 in leukocyte recruitment to the CNS using a murine model of neuroinflammation. Wild-type (WT), CXCL1−/−, and CXCR2−/− mice each received an intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS). Esterase staining and intravital microscopy were performed to examine neutrophil recruitment to the brain. To assess endothelial activation in these mice, the expression of adhesion molecules was measured via quantitative real-time polymerase chain reaction (PCR) and Western blotting. To identify the cellular source of functional CXCR2, chimeric mice were generated by transferring bone marrow cells between the WT and CXCR2−/− mice. Expression levels of the chemokines CXCL1, CXCL2, and CXCL5 were significantly increased in the brain following the i.c.v. injection of LPS. CXCR2 or CXCL1 deficiency blocked neutrophil infiltration and leukocyte recruitment in the cerebral microvessels. In the CXCR2−/− and CXCL1−/− mice, the cerebral endothelial expression of adhesion molecules such as P-selectin and VCAM-1 was dramatically reduced. Furthermore, the bone marrow transfer experiments demonstrated that CXCR2 expression on CNS-residing cells is essential for cerebral endothelial activation and leukocyte recruitment. Compared with microglia, cultured astrocytes secreted a much higher level of CXCL1 in vitro. Astrocyte culture conditioned medium significantly increased the expression of VCAM-1 and ICAM-1 in cerebral endothelial cells in a CXCR2-dependent manner. Additionally, CXCR2 messenger RNA (mRNA) expression in cerebral endothelial cells but not in microglia or astrocytes was increased following tumor necrosis factor-α (TNF-α) stimulation. The intravenous injection of the CXCR2 antagonist SB225002 significantly inhibited endothelial activation and leukocyte recruitment to cerebral microvessels. CXCL1 secreted by astrocytes and endothelial CXCR2 play essential roles in cerebral endothelial activation and subsequent leukocyte recruitment during neuroinflammation.Item Less Grease, Please. Phosphatidylethanolamine Is the Only Lipid Required for Replication of a (+)RNA Virus(MDPI, 2015-06-26) Belovm George A.All positive strand RNA viruses of eukaryotes replicate their genomes in association with membranes. These viruses actively change cellular lipid metabolism to build replication membranes enriched in specific lipids. The ubiquitous use of membranes by positive strand RNA viruses apparently holds major evolutionary advantages; however our understanding of the mechanistic role of membranes, let alone of specific lipid components of the membrane bilayer, in the viral replication cycle is minimal. The replication complexes that can be isolated from infected cells, or reconstituted in vitro from crude cell lysates, do not allow controlled manipulation of the membrane constituents thus limiting their usefulness for understanding how exactly membranes support the replication reaction. Recent work from Peter Nagy group demonstrates that replication of a model positive strand RNA virus can be reconstituted in the in vitro reaction with liposomes of chemically defined composition and reveals an exclusive role of phosphatidylethanolamine in sustaining efficient viral RNA replication. This study opens new possibilities for investigation of membrane contribution in the replication process that may ultimately lead to development of novel broad spectrum antiviral compounds targeting the membrane-dependent elements of the replication cycle conserved among diverse groups of viruses.Item Inducing Autophagic Cell Death by Nsp5 of Porcine Reproductive and Respiratory Syndrome Virus(Austin Publishing Group, 2015-11-10) Yang, Liping; Wang, Rong; Ma, Zexu; Wang, Yu; Zhang, YanjinPorcine Reproductive and Respiratory Syndrome (PRRS) leads to severe economic losses to the swine-producing industry. Many unclear questions remain on pathogenesis of PRRS virus (PRRSV), including the mechanism of PRRSV-induced cell death. In this study, we cloned and expressed a PRRSV non-structural protein, nsp5, and discovered that it induced cell death in cultured cells. The nsp5 protein localized in cytoplasm and majority of the protein concentrated in perinuclear region. Along with extension of incubation time, the nsp5 tended to form puncta and polarized besides nucleus. An interesting observation was that the nsp5 expression induced cell death. Cell viability assay showed that the cells with nsp5 expression had over 2-fold more cell death than cells with empty vector. Further study indicated that the nsp5 induced cell death via autophagy. Treatment with 3-MA, an autophagy inhibitor, blocked the nsp5- induced cell death. These results suggest that nsp5 might play an important role in PRRSV-induced cell death. Further examination on the mechanism is warranted.Item Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines(MDPI, 2016-07-04) Kim, Shin-Hee; Samal, Siba K.Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.Item A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus(MDPI, 2016-08-18) Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, YanjinHepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology.Item Characterization of a Chikungunya virus strain isolated from banked patients’ sera(Springer Nature, 2016-09-02) Chalaem, Pattra; Chusri, Sarunyou; Fernandez, Stefan; Chotigeat, Wilaiwan; Anguita, Juan; Pal, Utpal; Promnares, KamoltipChikungunya virus (CHIKV) is a prevalent mosquito-borne pathogen that is emerging in many parts of the globe causing significant human morbidity. Here, we report the isolation and characterization of an infectious CHIKV from banked serum specimens of suspected patients from the 2009 epidemic in Thailand. Standard plaque assay was used for CHIKV isolation from the banked serum specimens. Isolated CHIKV was identified base on E1 structural gene sequence. Growth kinetic, infectivity, cell viability and cytokine gene expression throughout CHIKV infection in a permissive cell line, 293T cells, was performed using several approaches, including standard plaque assay, immunofluorescence assay, classical MTT assay, and quantitative real-time PCR. Two tailed Student’s t test was used for evaluation statistically significance between the mean values of the groups. Based on the E1 structural gene sequence and phylogenetic analysis, we identified the virus as the CHIK/SBY8/10 isolate from Indonesia. Assessment of the growth kinetics, cytopathic effects as well as its ability to induce cellular immune responses suggested that the currently isolated CHIK/SBY8/10 virus is relatively more virulent than a known CHIKV vaccine strain, which also induces more dramatic proinflammatory responses.Item Sustaining Interferon Induction by a High-Passage Atypical Porcine Reproductive and Respiratory Syndrome Virus Strain(Nature Publishing Group, 2016-11-02) Ma, Zexu; Yu, Ying; Xiao, Yueqiang; Opriessnig, Tanja; Wang, Rong; Yang, Liping; Nan, Yuchen; Samal, Siba K.; Halbur, Patrick G.; Zhang, Yan-JinPorcine reproductive and respiratory syndrome virus (PRRSV) strain A2MC2 induces type I interferons in cultured cells. The objective of this study was to attenuate this strain by serial passaging in MARC-145 cells and assess its virulence and immunogenicity in pigs. The A2MC2 serially passaged 90 times (A2MC2-P90) retains the feature of interferon induction. The A2MC2-P90 replicates faster with a higher virus yield than wild type A2MC2 virus. Infection of primary pulmonary alveolar macrophages (PAMs) also induces interferons. Sequence analysis showed that the A2MC2-P90 has genomic nucleic acid identity of 99.8% to the wild type but has a deletion of 543 nucleotides in nsp2. The deletion occurred in passage 60. The A2MC2-P90 genome has a total of 35 nucleotide variations from the wild type, leading to 26 amino acid differences. Inoculation of three-week-old piglets showed that A2MC2-P90 is avirulent and elicits immune response. Compared with Ingelvac PRRS® MLV strain, A2MC2-P90 elicits higher virus neutralizing antibodies. The attenuated IFN inducing A2MC2-P90 should be useful for development of an improved PRRSV vaccine.Item Interference of Apoptosis by Hepatitis B Virus(MDPI, 2017-08-18) Lin, Shaoli; Zhang, Yan-JinHepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.Item Interference of Apoptosis by Hepatitis B Virus(MDPI, 2017-08-18) Lin, Shaoli; Zhang, Yan-JinHepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
- «
- 1 (current)
- 2
- 3
- »