Geography Research Works
Permanent URI for this collection
Browse
Browsing Geography Research Works by Issue Date
Now showing 1 - 20 of 134
Results Per Page
Sort Options
Item Calculation of the Angular Radiance Distribution for a Coupled Atmosphere and Canopy(Institute of Electrical and Electronics Engineers, 1993-03) Liang, Shunlin; Strahler, Alan H.The radiative transfer equations for a coupled atmosphere and canopy are solved numerically by an improved Gause-Seidel iteration algorithm. The radiation field is decomposed into three components: unscattered sunlight, single scattering, and multiple scattering radiance for which the corresponding equations and boundary conditions are set up and their analytical or iterational solutions are explicitly derived. The classic Guass-Seidel algorithm has been widely applied in atomospheric research. This is its first application for calculating the multiple scattering radiance of a coupled atmosphere and canopy. This algorithm enables us to obtain the internal radiation field as well as radiances at boundaries. Any form of bidirectional reflectance distribution function (BRDF) as a boundary condition can be easily incorporated into the iteration procedure. The hotspot effect of the canopy is accommodated by means of the modification of the extiniction coefficients of upward single scattering radiation and unscatteered sunlight using the formulation of Nilson and Kuusk. To reduce the computation for the case of large optical thickness, an improved iteration formula is derived to speed convergence. The upwelling radiances have been evaluated for different atmospheric conditions, leaf area index (LAI), leaf angle distribution (LAD), leaf size and so on. The formulation presented in this paper is also well suited to analyze the relative magnitude of multiple scattering radiance and single scattering radiance in both the visible and near infrared regions.Item An Analytic BRDF Model of Canopy Radiative Transfer and Its Inversion(Institute of Electrical and Electronics Engineers, 1993-09) Liang, Shunlin; Strahler, Alan H.Radiative transfer modeling of the bidirectional reflectance distribution function (BRDF) of leaf canopies is a powerful tool to relate multiangle remotely sensed data to biophysical parameters of the leaf canopy and to retrieve such parameters from multiangle imagery. However, the approximate approaches for multiple scattering that are used in the inversion of existing models are quite limited, and the sky radiance frequently is simply treated as isotropic. This paper presents an analytical model based on a rigorous canopy radiative transfer equation in which the multiple-scattering component is approximated by asymptotic theory and the single-scattering calculation, which requires numerical integration to properly accommodate the hotspot effect, is also simplified. Because the model is sensitive to angular variation in sky radiance, we further provide an accompanying new formulation for directional radiance in which the unscattered solar radiance and single-scattering radiance are calculated exactly, and multiple-scattering is approximated by the well-known two-stream Dirac delta function approach. A series of validations against exact calculations indicates that both models are quite accurate, especially when the viewing angle is smaller than 55 degrees. The Powell algorithm is then used to retrieve biophysical parameters from multiangle observations based on both the canopy and the sky radiance distribution models. The results using the soybean data of Ranson et al. to recover four of nine soybean biophysical parameters indicate that inversion of the present canopy model retrieves leaf area index well. Leaf angle distribution was not retrieved as accurately for the same dataset, perhaps because these measurements do not describe the hotspot well. Further experiments are required to explore the applicability of this canopy model.Item An Optimization Algorithm for Separating Land Surface Temperature and Emissivity from Multispectral Thermal Infrared Imagery(Institute of Electrical and Electronics Engineers, 2001-02) Liang, ShunlinLand surface temperature (LST) and emissivity are important components of land surface modeling and applications. The only practical means of obtaining LST at spatial and temporal resolutions appropriate for most modeling applications is through remote sensing. While the popular split-window method has been widely used to estimate LST, it requires known emissivity values. Multispectral thermal infrared imagery provides us with an excellent opportunity to estimate both LST and emissivity simultaneously, but the difficulty is that a single multispectral thermal measurement with bands presents equations in + 1 unknowns ( spectral emissivities and LST). In this study, we developed a general algorithm that can separate land surface emissivity and LST from any multispectral thermal imagery, such as moderate-resolution imaging spectroradiometer (MODIS) and advanced spaceborne thermal emission and reflection radiometer (ASTER). The central idea was to establish empirical constraints, and regularization methods were used to estimate both emissivity and LST through an optimization algorithm. It allows us to incorporate any prior knowledge in a formal way. The numerical experiments showed that this algorithm is very effective (more than 43.4% inversion results differed from the actual LST within 0.5 , 70.2% within 1 and 84% within 1.5 ), although improvements are still needed.Item Atmospheric Correction of Landsat ETM+ Land Surface Imagery—Part I: Methods(Institute of Electrical and Electronics Engineers, 2001-11) Liang, Shunlin; Fang, Hongliang; Chen, MingzhenTo extract quantitative information from the Enhanced Thematic Mapper-Plus (ETM+) imagery accurately, atmospheric correction is a necessary step. After reviewing historical development of atmospheric correction of Landsat thematic mapper (TM) imagery, we present a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from ETM+ imagery under general atmospheric and surface conditions. This algorithm is therefore suitable for operational applications. A new formula that accounts for adjacency effects is also presented. Several examples are given to demonstrate that this new algorithm works very well under a variety of atmospheric and surface conditions. The companion paper will validate this method using ground measurements, and illustrate the improvements of several applications due to atmospheric correction.Item Atmospheric Correction of Landsat ETM+ Land Surface Imagery: II. Validation and Applications(Institute of Electrical and Electronics Engineers, 2002) Liang, Shunlin; Morisette, Jeffrey T.; Fang, Hongliang; Chen, Mingzhen; Shuey, Chad J.; Daughtry, Craig S. T.; Walthall, Charles L.This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to correct MODIS and SeaWiFS imagery; and 3) demonstrate how much atmospheric correction of ETM+ imagery can improve land cover classification, change detection, and broadband albedo calculations. Validation results indicate that this new algorithm can retrieve surface reflectance from ETM+ imagery accurately. All experimental cases demonstrate that this algorithm can be used for correcting both MODIS and SeaWiFS imagery. Although more tests and validation exercises are needed, it has been proven promising to correct different multispectral imagery operationally. We have also demonstrated that atmospheric correction does matter.Item A Direct Algorithm for Estimating Land Surface Broadband Albedos From MODIS Imagery(Institute of Electrical and Electronics Engineers, 2003-01) Liang, ShunlinLand surface albedo is a critical variable needed in land surface modeling. The conventional methods for estimating broadband albedos rely on a series of steps in the processing chain, including atmospheric correction, surface angular modeling, and narrowband-to-broadband albedo conversions. Unfortunately, errors associated with each procedure may be accumulated and significantly impact the accuracy of the final albedo products. In an earlier study, we developed a new direct procedure that links the top-of-atmosphere spectral albedos with land surface broadband albedos without performing atmospheric correction and other processes. In this paper, this method is further improved in several aspects and implemented using actual Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Several case studies indicated that this new method can predict land surface broadband albedos very accurately and eliminate aerosol effects effectively. It is very promising for global applications and is particularly suitable for nonvegetated land surfaces. Note that a Lambertian surface has been assumed in the radiative transfer simulation in this paper as a first-order approximation; this assumption can be easily removed as long as a global bidirectional reflectance distribution function climatology is available,Item Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation(American Geophysical Union, 2003-03-08) Liang, Shunlin; Lucht, Wolfgang; Jin, Yufang; Schaaf, Crystal B.; Woodcock, Curtis E.; Gao, Feng; Li, XiaowenThe evaluation of the first available satellite-based global albedo product at 1-km resolution is essential for its application in climate studies. We evaluate the accuracy of the Moderate-Resolution Imaging Spectroradiometer (MODIS) albedo product using available field measurements at Surface Radiation Budget Network (SURFRAD) and Cloud and Radiation Testbed–Southern Great Plains (CART/SGP) stations and examine the consistency between the MODIS surface albedos and the Clouds and Earth’s Radiant Energy System (CERES) top-of-the-atmosphere albedos as well as historical global albedos from advanced very high resolution radiometer (AVHRR) and Earth Radiation Budget Experiment (ERBE) observations. A comparison with the field measurements shows that the MODIS surface albedo generally meets an absolute accuracy requirement of 0.02 for our study sites during April–September 2001, with the root mean square errors less than 0.018. Larger differences appear in the winter season probably due to the increased heterogeneity of surface reflectivity in the presence of snow. To examine the effect of spatial heterogeneity on the validation of the MODIS albedos using fine resolution field measurements, we derive an intermediate albedo product from four Landsat Enhanced Thematic Mapper Plus (ETM+) images at 30-m spatial resolution as a surrogate for the distributed field measurements. The surface albedo is relatively homogeneous over the study stations in growing seasons, and therefore the validation during April–September is supported. A case study over three SURFRAD stations reveals that the MODIS bidirectional reflectance distribution function model is able to capture the solar zenith angle dependence of surface albedo as shown by the field measurements. We also find that the MODIS surface shortwave albedo is consistent with the contemporary and collocated CERES top-of atmosphere albedos derived directly from broadband observations. The MODIS albedo is also well correlated with historical surface albedos derived from AVHRR and ERBE observations, and a high bias of 0.016 and a low bias of 0.034 compared to those of the latter albedos are reasonable considering the differences in instruments and retrieval algorithms as well as environmental changes.Item Consistency of MODIS surface BRDF/Albedo retrievals 1. Algorithm performance(American Geophysical Union, 2003-03-08) Liang, Shunlin; Jin, Yufang; Lucht, Wolfgang; Schaaf, Crystal B.; Gao, Feng; Li, Xiaowen; Strahler, Alan H.The first consistent year (November 2000 to November 2001) of global albedo product was produced at 1-km resolution every 16 days from the observations of the Moderate- Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA’s Terra spacecraft.We evaluated the quality of the operational albedo retrievals in two ways: (1) by examining the algorithm performance using the product quality assurance (QA) fields (this paper) and (2) by comparing retrieved albedos with those observed at ground stations and by other satellite instruments (in a companion paper). The internal diagnostics of the retrieval algorithm adequately reflect the goodness of the model fit and the random noise amplification in the retrieved albedo. Global QA statistics show that the RossThick- LiSparse-Reciprocal model fits the atmospherically corrected surface reflectances very well, and the random noise amplification factors for white sky albedo and reflectance are generally less than 1.0. Cloud obscuration is the main reason for the activation of the backup magnitude retrieval algorithm. Over the 60°S to 60°N latitude band, 50% of the land pixels acquire more than six clear looks during 14–29 September 2001, and only 5% of these pixels are inverted with the backup algorithm. The latitude dependence and temporal distribution of the QA fields further demonstrate that the retrieval status mainly follows the pattern of angular sampling determined by cloud climatology and the instrument/orbit characteristics. A case study over the west coast of the United States shows that white sky shortwave albedos retrieved from magnitude inversions agree on average with those from full inversions to within 0.033 in reflectance units and have a slightly lower bias ranging from 0.014 to 0.023. We also explored the effect of residual cloud and aerosol contamination in the atmospherically corrected surface reflectance inputs in another case study over southern Africa. The quality assurance procedure of the operational MODIS bidirectional reflectance distribution function and albedo algorithm compensates for some of these residual effects and improves the albedo retrieval results by an order of 0.005 (10%) in the visible for more than 12% of pixels.Item Estimation and Validation of Land Surface Broadband Albedos and Leaf Area Index From EO-1 ALI Data(Institute of Electrical and Electronics Engineers, 2003-06) Liang, Shunlin; Fang, Hongliang; Kaul, Monisha; Van Niel, Tom G.; McVicar, Tim R.; Pearlman, Jay S.; Huemmrich, Karl Fred; Walthall, Charles L.; Daughtry, Craig S. T.The Advanced Land Imager (ALI) is a multispectral sensor onboard the National Aeronautics and Space Administration Earth Observing 1 (EO-1) satellite. It has similar spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo and leaf area index (LAI) from ALI data. A recently developed atmospheric correction algorithm for ETM+ imagery was extended to retrieve surface spectral reflectance from ALI top-of-atmosphere observations. A feature common to these algorithms is the use of new multispectral information from ALI. The additional blue band of ALI is very useful in our atmospheric correction algorithm, and two additional ALI near-infrared bands are valuable for estimating both broadband albedo and LAI. Ground measurements at Beltsville, MD, and Coleambally, Australia, were used to validate the products generated by these algorithms.Item Retrieving Leaf Area Index With a Neural Network Method: Simulation and Validation(Institute of Electrical and Electronics Engineers, 2003-09) Liang, Shunlin; Fang, HongliangLeaf area index () is a crucial biophysical parameter that is indispensable for many biophysical and climatic models. A neural network algorithm in conjunction with extensive canopy and atmospheric radiative transfer simulations is presented in this paper to estimateLAIfromLandsat-7 Enhanced ThematicMapper Plus data. Two schemes were explored; the first was based on surface reflectance, and the second on top-of-atmosphere (TOA) radiance. The implication of the second scheme is that atmospheric corrections are not needed for estimating the surface LAI. A soil reflectance index (SRI) was proposed to account for variable soil background reflectances. Ground-measured LAI data acquired at Beltsville, MD were used to validate both schemes. The results indicate that both methods can be used to estimate LAI accurately. The experiments also showed that the use of SRI is very critical.Item An Improved Atmospheric Correction Algorithm for Hyperspectral Remotely Sensed Imagery(Institute of Electrical and Electronics Engineers, 2004-04) Liang, Shunlin; Fang, HongliangThere is an increased trend toward quantitative estimation of land surface variables from hyperspectral remote sensing. One challenging issue is retrieving surface reflectance spectra from observed radiance through atmospheric correction, most methods for which are intended to correct water vapor and other absorbing gases. In this letter, methods for correcting both aerosols and water vapor are explored. We first apply the cluster matching technique developed earlier for Landsat-7 ETM+ imagery to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, then improve its aerosol estimation and incorporate a new method for estimating column water vapor content using the neural network technique. The improved algorithm is then used to correct Hyperion imagery. Case studies using AVIRIS and Hyperion images demonstrate that both the original and improved methods are very effective to remove heterogeneous atmospheric effects and recover surface reflectance spectra.Item Hyperdiffusion, maximum entropy production, and the simulated equator-pole temperature gradient in an atmospheric general circulation model(2005-01-10T19:47:03Z) Kleidon, AxelHyperdiffusion is used in atmospheric General Circulation Models to account for turbulent dissipation at subgrid scale and its intensity affects the efficiency of poleward heat transport by the atmospheric circulation. We perform sensitivity simulations with a dynamic-core GCM to investigate the effects of different intensities of hyperdiffusion and different model resolutions on the simulated equator-pole temperature gradient. We examine the different simulations using entropy production as a measure of baroclinic activity and show that there is a maximum in entropy production. In comparison to the climate at a state of maximum entropy production, every other simulated climate at a given resolution leads to an increased equator-pole temperature gradient. We then demonstrate that maximum entropy production can be used to tune low-resolution models to closely resemble the simulated climate of a high-resolution simulation. We conclude that tuning a GCM to a state of maximum entropy production is an efficient tool to tune low-resolution climate system models to adequately simulate the equator-pole temperature gradient.Item Enhancing the efficiency of terrestrial biosphere model simulations by reducing the redundancy in global forcing data sets(2005-01-10T19:51:15Z) Kleidon, AxelData sets of climatic variables and other geographic characteristics are becoming available in increasingly higher resolutions, resulting in substantial computing burdens for simulation models of the terrestrial biosphere. But by how much do higher resolutions of forcing data actually contribute to higher accuracy in model predictions? I investigated this question using the Cramer-Leemans climatology as an example for a high resolution forcing data set and a model of net primary productivity (NPP). I first used cluster analysis to reduce the complete grid of the climatology to a few grid points, each representative of regions with similar values. A global map of NPP was reconstructed by using the simulated values of the representative grid points for the respective regions. I then compared the reconstructed map of NPP to the one obtained from all grid points. The results show that a high accuracy in simulating the high resolution pattern and magnitude can be achieved by only considering a comparatively small subset of representative grid points. What this suggests is that, while high resolution data sets provide the necessary means to determine the typical regions, they do not add much accuracy to the overall outcome of model simulations because they contain many grid points with similar values. By reducing this redundancy, the methodology used here allows model simulations to be considerably more computing-time efficient while still retaining the accuracy in predicted quantities.Item Simulated impact of global climatic change on the geographic distribution of plant diversity(2005-01-13T14:03:37Z) Kleidon, AxelElevated concentrations of atmospheric carbon dioxide (pCO2) are likely to lead to substantial warming in the coming century with altered hydrological regimes, thereby affecting the distribution of plant species. Here I use an individual-based modeling approach to plant diversity to estimate the impact of global climatic change on the geographic distribution of plant diversity. Differences in temperature, precipitation, and light use efficiency (to represent stimulation of photosynthesis due to higher pCO2) are used in isolation and in combination in order to investigate the role of these drivers. I find that the general warming associated with elevated pCO2 leads to profoundly different responses of simulated diversity in temperature-limited and tropical environments. While the growing season is lengthened in northern latitudes and therefore enables more plant growth strategies to be successful, elevated autotrophic respiration rates lead to higher mortality during plant establishment in the tropics, therefore reducing the range of successful plant growth strategies. The overall impact of elevated pCO2 on plant diversity will clearly be a combination of various factors. What these model results nevertheless point out is that global climatic change may alter plant diversity patterns disproportionally by reducing the overall success of plant establishment.Item Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement(American Geophysical Union, 2005-05-26) Liang, Shunlin; Stroeve, Julienne; Box, Jason E.Snow/ice albedo is a critical variable in surface energy balance calculations. The Moderate Resolution Imaging Spectroradiometer (MODIS) data have been used routinely to provide global land surface albedo. The MODIS algorithm includes atmospheric correction, surface reflectance angular modeling, and narrowband to broadband albedo conversion. In an earlier study, a "direct retrieval" methodology was proposed to calculate instantaneous albedo over snow and ice-covered surfaces directly from top-of-atmosphere (TOA) MODIS reflectance data. The method consists of extensive radiative transfer simulations for a variety of atmospheric and surface snow conditions and links the TOA reflectance with surface broadband albedo through regression analysis. Therefore the direct retrieval algorithm implicitly incorporates in a single step all three procedures used in the standard MODIS surface albedo algorithm. This study presents improvements to the retrieval algorithm including validation with in situ measurements distributed over the Greenland ice sheet. Comparison with surface observations demonstrates that the direct retrieval algorithm can produce very accurate daily snow/ice albedo with mean bias of less than 0.02 and residual standard error of 0.04.Item Continuous tree distribution in China: A comparison of two estimates from MODIS and Landsat data(American Geophysical Union, 2006-04-18) Liang, Shunlin; Liu, Ronggao; Liu, Jiyuan; Zhuang, DafangForest change is a major contributor to changes in carbon stocks and trace gas fluxes between terrestrial and atmospheric layers. This study compares two satellite estimates of percent tree distribution data sets over China. One estimate is from the Chinese National Land Cover Data Set (NLCD) generated by a multiyear national land cover project in China through visual interpretation of Landsat thematic mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) images primarily acquired in the year 2000. The other estimate is the Moderate-Resolution Imaging Spectroradiometer (MODIS) standard product (MOD44B) from the same year. The two products reveal some common features, but significant discrepancies exist. Detailed analyses are carried out with different land cover types and over different regions. Comparison results show that the difference of the total tree canopy area for the whole country is 159,000 km2. The pixel counts in the NLCD data set for dense forest are ~4 times those in the MODIS data set with the reverse holding for sparse forest. Generally, the percent tree canopy area of the NLCD data set is larger in eastern China and lower in the Tibetan plateau margin region. For different land cover types the percentage of tree canopy areas shows a good agreement for evergreen forests but a large discrepancy for deciduous forests. The largest variations are associated with grassland and nonvegetation classes. Regarding the spatial distributions of their differences, Inner Mongolia is the place where both data sets show a diverse result, but Guizhou and Fujian present the least divergence among those provinces with the tree canopy area being more than 20,000 km2.Item Special Issue on Global Land Product Validation(Institute of Electrical and Electronics Engineers, 2006-07) Liang, Shunlin; Baret, Frédéric; Morisette, Jeffrey T.Overview of the Special Issue on Global Land Product Validation: In parallel with the recent bloom of sensors providing frequent medium-resolution observations (Fig. 1), global land products have been increasingly developed and released within the community. The raw data acquired by these sensors are transformed into higher level products that can be more easily exploited by the user community. In many cases, multiple products are developed from each sensor and similar products derived from different sensors. With this, users need access to quantitative information on product uncertainties to help them assess the most suitable product, or combination of products for their specific needs. As remote sensing observations are generally merged with other sources of information or assimilated within process models, evaluation of product accuracy is required. Making quantified accuracy information available to the user can ultimately provide developers the necessary feedback for improving the products, and can possibly provide methods for their fusion to construct a consistent long-term series of surface status.Item Estimation of incident Photosynthetically Active Radiation from MODIS Data(American Geophysical Union, 2006-08-08) Liang, Shunlin; Zheng, Tao; Liu, Ronggao; Fang, Hongliang; Tsay, Si-Chee; Running, StevenIncident photosynthetically active radiation (PAR) is a key variable needed by almost all terrestrial ecosystem models. Unfortunately, the current incident PAR products estimated from remotely sensed data at spatial and temporal resolutions are not sufficient for carbon cycle modeling and various applications. In this study, the authors develop a new method based on the look-up table approach for estimating instantaneous incident PAR from the polar-orbiting Moderate Resolution Imaging Spectrometer (MODIS) data. Since the top-of-atmosphere (TOA) radiance depends on both surface reflectance and atmospheric properties that largely determine the incident PAR, our first step is to estimate surface reflectance. The approach assumes known aerosol properties for the observations with minimum blue reflectance from a temporal window of each pixel. Their inverted surface reflectance is then interpolated to determine the surface reflectance of other observations. The second step is to calculate PAR by matching the computed TOA reflectance from the look-up table with the TOA values of the satellite observations. Both the direct and diffuse PAR components, as well as the total shortwave radiation, are determined in exactly the same fashion. The calculation of a daily average PAR value from one or two instantaneous PAR values is also explored. Ground measurements from seven FLUXNET sites are used for validating the algorithm. The results indicate that this approach can produce reasonable PAR product at 1 km resolution and is suitable for global applications, although more quantitative validation activities are still needed.Item Estimation of Systematic Errors of MODIS Thermal Infrared Bands(Institute of Electrical and Electronics Engineers, 2006-10) Liang, Shunlin; Liu, Ronggao G.; Liu, Jiyuan Y.This letter reports a statistical method to estimate detector-dependent systematic error in Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) Bands 20–25 and 27–36. There exist scan-to-scan overlapped pixels in MODIS data. By analyzing a sufficiently large amount of those most overlapped pixels, the systematic error of each detector in the TIR bands can be estimated. The results show that the Aqua MODIS data are generally better than the Terra MODIS data in 160 MODIS TIR detectors. There are no detector-dependent systematic errors in Bands 31 and 32 for both Terra and Aqua MODIS data. The maximum detector errors are 3.00 K in Band 21 of Terra and −8.15 K in that of Aqua for brightness temperatures of more than 250 K.Item Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China(MDPI, 2011-12-27) Hubacek, Klaus; Feng, Kuishuang; Chen, BinChina has achieved notable success in developing its economy with approximate 10 percent average annual GDP growth over the last two decades. At the same time, energy consumption and CO2 emissions almost doubled every five years, which led China to be the world top emitter in 2007. In response, China’s government has put forward a carbon mitigation target of 40%–45% reduction of CO2 emission intensity by 2020. To better understand the potential for success or failure of such a policy, it is essential to assess different driving forces such as population, lifestyle and technology and their associated CO2 emissions. This study confirms that increase of affluence has been the main driving force for China’s CO2 emissions since the late 1970s, which outweighs reductions achieved through technical progress. Meanwhile, the contribution of population growth to CO2 emissions was relatively small. We also found a huge disparity between urban and rural households in terms of changes of lifestyle and consumption patterns. Lifestyles in urban China are beginning to resemble Western lifestyles, and approaching their level of CO2 emissions. Therefore, in addition to the apparent inefficiencies in terms of production technologies there is also a lot of room for improvement on the consumption side especially in interaction of current infrastructure investments and future consumption.