Browsing by Author "Xiao, Shunyuan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew(Springer Nature, 2018-09-25) Wu, Ying; Ma, Xianfeng; Pan, Zhiyong; Kale, Shiv D.; Song, Yi; King, Harlan; Zhang, Qiong; Presley, Christian; Deng, Xiuxin; Wei, Cheng-I; Xiao, ShunyuanPowdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620–6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116–175 genes encoding CSEPs with limited gene amplification. Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.Item Silicon modulates multi-layered defense against powdery mildew in Arabidopsis(Springer Nature, 2020-03-27) Wang, Lili; Dong, Min; Zhang, Qiong; Wu, Ying; Hu, Liang; Parson, James F.; Eisenstein, Edward; Du, Xiangge; Xiao, ShunyuanSilicon (Si) has been widely employed in agriculture to enhance resistance against pathogens in many crop plants. However, the underlying molecular mechanisms of Si-mediated resistance remain elusive. In this study, the Arabidopsis-powdery mildew pathosystem was employed to investigate possible defense mechanisms of Si-mediated resistance. Because Arabidopsis lacks efficient Si transporters and thus is a low Si-accumulator, two heterologous Si influx transporters (from barley and muskmelon) were individually expressed in wild-type Arabidopsis Col-0 and a panel of mutants defective in different immune signaling pathways. Results from infection tests showed that while very low leaf Si content slightly induced salicylic acid (SA)-dependent resistance, high Si promoted PAD4-dependent but largely EDS1- and SA-independent resistance against the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. Intriguingly, our results also showed that high Si could largely reboot non-host resistance in an immune-compromised eds1/pad4/sid2 triple mutant background against a non-adapted powdery mildew isolate G. cichoracearum UMSG1. Taken together, our results suggest that assimilated Si modulates distinct, multi-layered defense mechanisms to enhance plant resistance against adapted and no-adapted powdery mildew pathogens, possibly via synergistic interaction with defense-induced callose.