Browsing by Author "Liu, Ronggao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Continuous tree distribution in China: A comparison of two estimates from MODIS and Landsat data(American Geophysical Union, 2006-04-18) Liang, Shunlin; Liu, Ronggao; Liu, Jiyuan; Zhuang, DafangForest change is a major contributor to changes in carbon stocks and trace gas fluxes between terrestrial and atmospheric layers. This study compares two satellite estimates of percent tree distribution data sets over China. One estimate is from the Chinese National Land Cover Data Set (NLCD) generated by a multiyear national land cover project in China through visual interpretation of Landsat thematic mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) images primarily acquired in the year 2000. The other estimate is the Moderate-Resolution Imaging Spectroradiometer (MODIS) standard product (MOD44B) from the same year. The two products reveal some common features, but significant discrepancies exist. Detailed analyses are carried out with different land cover types and over different regions. Comparison results show that the difference of the total tree canopy area for the whole country is 159,000 km2. The pixel counts in the NLCD data set for dense forest are ~4 times those in the MODIS data set with the reverse holding for sparse forest. Generally, the percent tree canopy area of the NLCD data set is larger in eastern China and lower in the Tibetan plateau margin region. For different land cover types the percentage of tree canopy areas shows a good agreement for evergreen forests but a large discrepancy for deciduous forests. The largest variations are associated with grassland and nonvegetation classes. Regarding the spatial distributions of their differences, Inner Mongolia is the place where both data sets show a diverse result, but Guizhou and Fujian present the least divergence among those provinces with the tree canopy area being more than 20,000 km2.Item Estimation of incident Photosynthetically Active Radiation from MODIS Data(American Geophysical Union, 2006-08-08) Liang, Shunlin; Zheng, Tao; Liu, Ronggao; Fang, Hongliang; Tsay, Si-Chee; Running, StevenIncident photosynthetically active radiation (PAR) is a key variable needed by almost all terrestrial ecosystem models. Unfortunately, the current incident PAR products estimated from remotely sensed data at spatial and temporal resolutions are not sufficient for carbon cycle modeling and various applications. In this study, the authors develop a new method based on the look-up table approach for estimating instantaneous incident PAR from the polar-orbiting Moderate Resolution Imaging Spectrometer (MODIS) data. Since the top-of-atmosphere (TOA) radiance depends on both surface reflectance and atmospheric properties that largely determine the incident PAR, our first step is to estimate surface reflectance. The approach assumes known aerosol properties for the observations with minimum blue reflectance from a temporal window of each pixel. Their inverted surface reflectance is then interpolated to determine the surface reflectance of other observations. The second step is to calculate PAR by matching the computed TOA reflectance from the look-up table with the TOA values of the satellite observations. Both the direct and diffuse PAR components, as well as the total shortwave radiation, are determined in exactly the same fashion. The calculation of a daily average PAR value from one or two instantaneous PAR values is also explored. Ground measurements from seven FLUXNET sites are used for validating the algorithm. The results indicate that this approach can produce reasonable PAR product at 1 km resolution and is suitable for global applications, although more quantitative validation activities are still needed.