Browsing by Author "Lamp, William O."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges(PLOS (Public Library of Science), 2014-10-08) Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid- Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stal 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.Item Analysis of Plant Trait Data of Host Plants of Lycorma delicatula in the US Suggests Evidence for Ecological Fitting(MDPI, 2022-11-29) Avanesyan, Alina; McPherson, Cameron; Lamp, William O.Plant traits, used by the invasive insect herbivores to find and select suitable hosts, can play an important role in insect host range expansion. With regard to invasive Lycorma delicatula, it is not well explored, however, how the plant origin affects insect host selection, and whether native and introduced host plants differ in their morphology, lifespan, as well as environmental requirements for growth. We addressed this issue in our study through the comprehensive assessment of 25 relevant plant traits (a total of 27,601 records retrieved from the TRY database), as well as the origin and phylogenetic relationships of 37 host plants of L. delicatula in the U.S. Our results showed that only leaf area, leaf chlorophyll content, and canopy size were significantly greater in the introduced hosts than that in native plants. We did not detect a significant effect of the plant origin on other characteristics. Additionally, no significant differences between native and introduced hosts of L. delicatula in genetic distances from introduced Ailanthus altissima (the most preferred host) were detected. These results, for the first time, suggest strong evidence for ecological fitting which might drive the host plant selection of L. delicatula and its rapid spread in the U.S.Item Climate Change and Phenology: Empoasca fabae (Hemiptera: Cicadellidae) Migration and Severity of Impact(PLOS (Public Library of Science), 2015-05-13) Baker, Mitchell B.; Venugopal, P. Dilip; Lamp, William O.Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951–2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops.Item Diverse Host Plants of the First Instars of the Invasive Lycorma delicatula: Insights from eDNA Metabarcoding(MDPI, 2022-06-10) McPherson, Cameron; Avanesyan, Alina; Lamp, William O.Identification of host plants of the invasive spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), has been the focus of many studies. While the adults and late nymphs are relatively easy to observe on plants and to use for molecular gut-content analysis, studying the early instars is more challenging. This study is the continuation of our ongoing efforts to determine the host range for each developmental stage of L. delicatula. In the present study, we focused exclusively on the first nymphal instars, and we used a novel approach, utilizing “bulk” DNA extracts for DNA metabarcoding of nymphal gut contents, to identify all the detectable plants that the nymphs had ingested prior to being collected. We were able to obtain high-quality amplicons (up to 406 bp) of a portion of the rbcL gene and detect 27 unique ingested plant species belonging to 17 families. Both native and introduced plants with the prevalence of trees and grasses were present among the ingested plants. We also identified 13 novel host plants that have not been previously reported for L. delicatula on the U.S. territory. The results from our study have important applications for developing effective programs on early monitoring of invasive L. delicatula.Item Response of Five Miscanthus sinensis Cultivars to Grasshopper Herbivory: Implications for Monitoring of Invasive Grasses in Protected Areas(MDPI, 2021-12-25) Avanesyan, Alina; Lamp, William O.Introduced grasses can aggressively expand their range and invade native habitats, including protected areas. Miscanthus sinensis is an introduced ornamental grass with 100+ cultivars of various invasive potential. Previous studies have demonstrated that the invasive potential of M. sinensis cultivars may be linked to seed viability, and some of the physiological traits, such as growth rate. Little is known, however, about whether these traits are associated with response of M. sinensis to insect herbivory, and whether plant tolerance and resistance to herbivory vary among its cultivars; which, in turn, can contribute to the invasive potential of some of M. sinensis cultivars. To address this issue, in our study we explored the response of five cultivars of M. sinensis to herbivory by Melanoplus grasshoppers. We demonstrated that plant responses varied among the cultivars during a season; all the cultivars, but “Zebrinus”, demonstrated a significant increase in plant tolerance by the end of the growing season regardless of the amount of sustained leaf damage. Different patterns in plant responses from “solid green” and “striped/spotted” varieties were recorded, with the lowest plant resistance detected for “Autumn Anthem” in the cage experiment. Our results have important applications for monitoring low-risk invaders in protected areas, as well as for biotic resistance of native communities to invasive grasses.Item Use of Molecular Gut Content Analysis to Decipher the Range of Food Plants of the Invasive Spotted Lanternfly, Lycorma delicatula(MDPI, 2020-04-01) Avanesyan, Alina; Lamp, William O.Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.