Browsing by Author "Khanchustambham, Raju G."
Results Per Page
Sort Options
Item Neural Network Applications in On-line Monitoring of Turning Processes(1992) Zhang, G.M.; Khanchustambham, Raju G.; ISRThe need to improve quality and decrease scrap rate while increasing the production rate is motivating industry to consider untended machining as viable alternative. On-line monitoring of a machining process is the key component to success for an untended machining operation. In this chapter, a framework for sensorbased intelligent decision-making systems to perform on- line monitoring is proposed. Such a monitoring system interprets the detected signals from the sensors, extracts the relevant information, and decides on the appropriate control action. Emphasis is laid on applying neural networks to perform information processing, and to recognize the process abnormalities in a machining operation. A prototype monitoring system is implemented to demonstrate the working mechanism. For successful implementation of the developed intelligent monitor, an instrumented force transducer is designed for signal detection and is used in a real time turning operation. A neural network monitor based on feedforward back-propagation algorithm is developed and tested under the machining of advanced ceramic materials and steel. The monitor is trained by the detected cutting force signal, the measured surface finish, and the observed tool wear. The superior learning and noise suppression abilities of the developed monitor enable high success rates for monitoring in machining process.Item A Neural Network Approach to On-line Monitoring of a Turning Process(1992) Khanchustambham, Raju G.; Zhang, G.M.; ISRProduction automation has been the focus of the research to improve product quality and to increase productivity. Implementation of computer-based untended machining has attracted great attention in the manufacturing community. In this paper, a framework for sensor-based intelligent decision-making systems to perform on-line monitoring is proposed. Such a monitoring system interprets the detected signals from the sensors, extracts the relevant information, and decide on the appropriate control action. Emphasis is given to applying neural networks to perform information processing, and to recognize the process abnormalities in a machining operation. A prototype monitoring system is implemented. For signal detection, an instrumented force transducer is designed and used in a real time turning operation. A neural network monitor based on a feedforward back- propagation algorithm is developed. The monitor is trained by the detected cutting force signal and measured surface finish. The superior learning and noise suppression abilities of the developed monitor enable high success rates for monitoring the cutting force and the quality of surface finish under the machining of advanced ceramic materials.Item A Neural Network Approach to On-line Monitoring of Machining Processes(1992) Khanchustambham, Raju G.; Zhang, G.M.; ISRIn recent years, production automation has been the focus of this research endeavor to improve product quality and to increase productivity. Implementation of computer-based untended machining has attracted great attention in the manufacturing community. For a successful implementation of untended machining, a better understanding of the machining processes and the functions they perform is required. This necessitates the development of sensors and intelligent decision-making systems.In this thesis work, a framework for sensor-based intelligent decision-making systems to perform on-line monitoring is proposed. Such a monitoring system interprets the detected signals from the sensors, extracts the relevant information, and decide on the appropriate control action. In this thesis, emphasis is given to applying neural networks to perform information processing, and to recognize the process abnormalities in a machining operation. For signal detection, an instrumented force transducer is designed and implemented in real time turning operation. A neural network program based on feedforward back-propagation algorithm is developed. The program is tested by the simulation data and varified by the experimental data. The superior learning and noise suppression abilities of the developed program enable high success rates for monitoring the tool wear and surface roughness under machining of advanced ceramic materials.
It is evident that the development of hardware neural networks provides the monitoring system with fast computational capabilities. The advances in sensor technology enables inexpensive sensors to be easily mounted for monitoring the machining process. All these evidences justify that neural networks will become an attractive modeling tool for use in on- line monitoring of machining processes in near future