Browsing by Author "Hu, Chao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ADVANCES IN SYSTEM RELIABILITY-BASED DESIGN AND PROGNOSTICS AND HEALTH MANAGEMENT (PHM) FOR SYSTEM RESILIENCE ANALYSIS AND DESIGN(2011) Hu, Chao; Youn, Byeng D.; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Failures of engineered systems can lead to significant economic and societal losses. Despite tremendous efforts (e.g., $200 billion annually) denoted to reliability and maintenance, unexpected catastrophic failures still occurs. To minimize the losses, reliability of engineered systems must be ensured throughout their life-cycle amidst uncertain operational condition and manufacturing variability. In most engineered systems, the required system reliability level under adverse events is achieved by adding system redundancies and/or conducting system reliability-based design optimization (RBDO). However, a high level of system redundancy increases a system's life-cycle cost (LCC) and system RBDO cannot ensure the system reliability when unexpected loading/environmental conditions are applied and unexpected system failures are developed. In contrast, a new design paradigm, referred to as resilience-driven system design, can ensure highly reliable system designs under any loading/environmental conditions and system failures while considerably reducing systems' LCC. In order to facilitate the development of formal methodologies for this design paradigm, this research aims at advancing two essential and co-related research areas: Research Thrust 1 - system RBDO and Research Thrust 2 - system prognostics and health management (PHM). In Research Thrust 1, reliability analyses under uncertainty will be carried out in both component and system levels against critical failure mechanisms. In Research Thrust 2, highly accurate and robust PHM systems will be designed for engineered systems with a single or multiple time-scale(s). To demonstrate the effectiveness of the proposed system RBDO and PHM techniques, multiple engineering case studies will be presented and discussed. Following the development of Research Thrusts 1 and 2, Research Thrust 3 - resilience-driven system design will establish a theoretical basis and design framework of engineering resilience in a mathematical and statistical context, where engineering resilience will be formulated in terms of system reliability and restoration and the proposed design framework will be demonstrated with a simplified aircraft control actuator design problem.Item Implementation and Performance Evaluation of a Bivariate Cut-HDMR Metamodel for Semiconductor Packaging Design Problems with a Large Number of Input Variables(MDPI, 2021-08-17) Yang, Yu-Hsiang; Wei, Hsiu-Ping; Han, Bongtae; Hu, ChaoA metamodeling technique based on Bivariate Cut High Dimensional Model Representation (Bivariate Cut HDMR) is implemented for a semiconductor packaging design problem with 10 design variables. Bivariate Cut-HDMR constructs a metamodel by considering only up to second-order interactions. The implementation uses three uniformly distributed sample points (s = 3) with quadratic spline interpolation to construct the component functions of Bivariate Cut-HDMR, which can be used to make a direct comparison with a metamodel based on Central Composite Design (CCD). The performance of Bivariate Cut-HDMR is evaluated by two well-known error metrics: R-squared and Relative Average Absolute Error (RAAE). The results are compared with the performance of CCD. Bivariate Cut HDMR does not compromise the accuracy compared to CCD, although the former uses only one-fifth of sample points (201 sample points) required by the latter (1045 sample points). The sampling schemes and the predictions of cut-planes and boundary-planes are discussed to explain possible reasons for the outstanding performance of Bivariate Cut HDMR.