Browsing by Author "Ash, Richard D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chemical and genetic characterization of the ungrouped pallasite Lieksa(Wiley, 2023-11-03) Chiappe, Emily M.; Ash, Richard D.; Luttinen, Arto; Lukkari, Sari; Kuva, Jukka; Hilton, Connor D.; Walker, Richard J.The meteorite Lieksa was found in 2017 in Löpönvaara, Finland, and later donated to the Finnish Museum of Natural History. Here, we report siderophile element concentrations, genetic isotopic data, and a metal–silicate segregation age for the meteorite. The ~280 g Lieksa is ~80% metal and ~20% silicate and oxide inclusions by volume, with the inclusions consisting primarily of Fe-rich olivine. Due to Lieksa's silicate content, coupled with a texture characterized by metal enclosing the silicates, it has been classified as a pallasite. Lieksa's olivine and bulk chemical characteristics are distinct from those of the known pallasite and iron meteorite groups, consistent with its classification as ungrouped. The meteorite exhibits a flat, chondrite-normalized highly siderophile element pattern, consistent with an origin as an early crystallization product from a metallic melt with chondritic relative abundances. Molybdenum, Ru, and 183W isotopic data indicate that Lieksa formed in the non-carbonaceous (NC) domain of the solar nebula. Radiogenic 182W abundances for Lieksa yield a model metal–silicate segregation age of 1.5 ± 0.8 Myr after calcium-aluminum-rich inclusion formation, which is within the range established for other NC-type pallasite and iron meteorite parent bodies.Item Parent body histories recorded in Rumuruti chondrite sulfides: Implications for the onset of oxidized, sulfur-rich core formation(Wiley, 2023-02-27) Crossley, Samuel D.; Ash, Richard D.; Sunshine, Jessica M.; Corrigan, Catherine M.; McCoy, Timothy J.Models of planetary core formation beginning with melting of Fe,Ni metal and troilite are not readily applicable to oxidized and sulfur-rich chondrites containing only trace quantities of metal. Cores formed in these bodies must be dominated by sulfides. Siderophile trace elements used to model metallic core formation could be used to model oxidized, sulfide-dominated core formation and identify related meteorites if their trace element systematics can be quantified. Insufficient information exists regarding the behavior of these core-forming elements among sulfides during metamorphism prior to anatexis. Major, minor, and trace element concentrations of sulfides are reported in this study for petrologic type 3–6 R chondrite materials. Sulfide-dominated core-forming components in such oxidized chondrites (ƒO2 ≥ iron-wüstite) follow metamorphic evolutionary pathways that are distinct from reduced, metal-bearing counterparts. Most siderophile trace elements partition into pentlandite at approximately 10× chondritic abundances, but Pt, W, Mo, Ga, and Ge are depleted by 1–2 orders of magnitude relative to siderophile elements with similar volatilities. The distribution of siderophile elements is further altered during hydrothermal alteration as pyrrhotite oxidizes to form magnetite. Oxidized, sulfide-dominated core formation differs from metallic core formation models both physically and geochemically. Incongruent melting of pentlandite at 865°C generates melts capable of migrating along solid silicate grains, which can segregate to form a Ni,S-rich core at lower temperatures compared to reduced differentiated parent bodies and with distinct siderophile interelement proportions.