Browsing by Author "Ash, Richard"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Age, genetics, and crystallization sequence of the group IIIE iron meteorites(Elsevier, 2023-06-14) Chiappe, Emily M.; Ash, Richard; Walker, Richard J.Chemical and isotopic data were obtained for ten iron meteorites classified as members of the IIIE group. Nine of the IIIE irons exhibit broadly similar bulk siderophile element characteristics. Modeling of highly siderophile element abundances suggests that they can be related to one another through simple crystal-liquid fractionation of a parent melt. Our preferred model suggests initial S, P, and C concentrations of approximately 12 wt%, 0.8 wt %, and 0.08 wt%, respectively. The modeled IIIE parent melt composition is ~4 times more enriched in highly siderophile elements than a non-carbonaceous (NC) chondrite-like parent body, suggesting a core comprising ~22% of the mass of the parent body. Although chemically distinct from the other IIIE irons, formation of the anomalous IIIE iron Aletai can potentially be accounted for under the conditions of this model through the nonequilibrium mixing of an evolved liquid and early formed solid. Cosmic ray exposure-corrected nucleosynthetic Mo, Ru, and W isotopic compositions of four of the bona fide IIIE irons and Aletai indicate that they originated from the non-carbonaceous (NC) isotopic domain. Tungsten-182 isotopic data for the IIIE irons and Aletai yield similar model metal-silicate segregation ages of 1.6 ± 0.8 Myr and 1.2 ± 0.8 Myr, respectively, after calcium aluminum-rich inclusion (CAI) formation. These ages are consistent with those reported for other NC-type iron meteorite parent bodies. The IIIE irons are chemically and isotopically similar to the much larger IIIAB group. Despite some textural, mineralogical, and chemical differences, such as higher C content, the new results suggest they may have originated from a different crystallization sequence on the same or closely-related parent body.Item Crystallization histories of the group IIF iron meteorites and Eagle Station pallasites(Wiley - Meteoritics & Planetary Science, 2020) Hilton, Connor; Ash, Richard; Walker, RichardThe group IIF iron meteorites and Eagle Station pallasites (PES) have highly siderophile element abundances (HSE; Re, Os, Ir, Ru, Pt, and Pd) of metal that are consistent with formation in planetesimal cores by fractional crystallization with minor to major solid metal–liquid metal mixing. Modeling of HSE abundances of the IIF irons indicates a complex formation history that included the mixing of primitive and evolved solid and liquid metals. By contrast, modeling of HSE abundances of PES metal suggests these meteorites formed mainly as equilibrium solids from a common liquid. Abundances of some of the siderophile elements in the IIF irons and PES are permissive of a common core origin; however, the abundances of W and Ni indicate the PES ultimately formed on a more oxidized body. The PES most likely formed by the injection of olivine present at the core–mantle boundary into a metallic core liquid as a result of impact. The core then crystallized inward, trapping the olivine.Item Supplementary Research Data for "Brachinites record divergent evolutionary pathways"(2020) Crossley, Samuel; Ash, Richard; Sunshine, Jessica; Corrigan, Catherine; McCoy, Timothy; Mittlefehldt, David; Puchtel, Igor; Sunshine, Jessica; Ash, RichardThe brachinite family of meteorites records divergent trends of differentiation based on O and S fugacities. We find that S and O-rich materials differentiate into distinct igneous products from reduced counterparts.