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Bose-Einstein condensates of weakly interacting dilute atomic gases provide a

unique system with which to study phenomena associated with superfluidity. The

simplicity of these systems allows us to study the fundamental physics of superflu-

idity without having to consider the strong interactions present in other superfluid

systems such as superconductors and liquid helium. While condensate-based stud-

ies have been around for 20 years, our novel approach to confining ultracold atoms

has opened a completely new range of parameter space to investigate. Armed with

an ability for straightforward creation of arbitrary, time-dependent potential land-

scapes in which to study superfluid interactions, we were able to take a closer look

at predictions of superfluid behavior that are decades old, but until now have never

been tested directly. The purpose of this research was to draw direct analogies be-

tween superfluid BEC systems, which we term superfluid atom circuits, and existing

superconducting circuits, thus allowing us to take advantage of much of the existing

knowledge that has come from this well-studied field. Specifically, existing circuits

and devices that have been created with superconductors give us insight into what



might be possible someday with atom-circuit devices and inspiration to create them.

In these experiments, we employed two different atom circuits; one classi-

cal (thermal ideal gas) and one quantum (ultracold superfluid). Our results show

that each system is equivalent to an electronic circuit consisting of a capacitor be-

ing discharged through an inductor in series with some dissipative element. In

the thermal system, dissipation can be described in terms of simple resistive flow

with the resistance equivalent to ballistic, Sharvin resistance seen in electronic cir-

cuits. The superfluid measurements show that the dissipation is best described as

a resistance-shunted Josephson junction, which is an analogue to similar devices

in superconducting circuits. Additionally, the specific geometry of the atom cir-

cuit we used in our superfluid system allowed us to investigate directly a predicted

mechanism responsible for the dissipation in superfluids caused by the generation

of collective excitations, namely vortices. Direct observation of this mechanism has

not previously been possible in superfluid helium and superconducting systems.
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Chapter 1: Introduction

1.1 History of Superfluidity

Since its first observation in the form of superconductivity in 1911 [1], the phe-

nonenon of superfluidity has continued to be of interest on the frontiers of physics.

The surprising result that came out of these experiments, that the resistance in

solid mercury suddenly drops to a value indistinguishable from zero below a critical

temperature of 4.2 K, has many interesting implications such as the possibility of

persistent currents which can flow almost indefinitely [2,3]. Not long after this, liq-

uid helium was observed to exhibit strange behaviors below a critical temperature

of 2.2 K [4,5]. Similar to the drop in resistance that was seen in superconductors, a

sudden and dramatic drop of viscosity was seen in liquid helium. Again, this drop

in viscocity leads to many new effects in liquid helium, such as the superfluid foun-

tain [5], and superfluid “creep” [6, 7]. Later still, superfluid effects were predicted

and seen in dilute atomic gases cooled to below the threshold for Bose-Einstein

Condensation [8–16]. Our goal is to use these Bose-Einstein Condensates (BECs) to

futher study the nature of superfluidity, and in particular draw analogies between

these newer systems and the superconducting systems that have been around for

longer and are more well studied. Because the parameter spaces for controls in ex-
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periments are quite different between these systems, this analogy will not only allow

a direct comparison of aspects of them that overlap, it would enable us to extend

the observations of either field to areas that are not directly observable in the other.

In order to facilitate this, we also develop two new methods for creating arbitrary

optical dipole potentials for ultracold atom research.

It took many decades to begin to understand the new phenomena observed

in superfluid systems, with the first qualitative explanations not coming until 1938

when London related it to Bose-Einstein condensation [17]. This was later extended

to include both a condensed fraction with identically zero viscosity, and the remain-

ing uncondensed fraction that contributes to dissipation and viscosity [18]. In 1941,

Landau published his quantitative description of superfluidity using a similar two-

component model with a ground superfluid state and a normal excited state [19]. In

addition to quantitatively describing the transition to superfluid, including accurate

predictions of the transition temperature, Landau’s theory also predicted as of yet

unseen phenomena such as second sound, which would later be observed [20]. In

1947, Bogoliubov started to make a stronger connection between Landau’s quanti-

tative, two component superfluid model and Bose-Einstein condensation [21]. He

showed that the excitation spectra of collective excitations in a weakly ineracting

BEC have the same dispersion relation seen in the Landau formalism. While not

directly applicable to liquid helium due to the strong interatomic interaction, it is

often used in modern descriptions of weakly interacting BEC superfluids.

Extending this description further, Onsager [22] and Feynman [23] later in-

cluded descriptions of rotation in the superfluid lacking from Landau’s description.
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These rotations, called vortices, carry an amount of energy, so a system which con-

tinually produces vortices will exhibit dissipation. Experiments have since confirmed

the existence of vortices in superfluids, although the study described in this thesis

is the first to directly observe dissipation in a system with the geometry described

by Feynman [23].

1.2 BEC Atom Circuits as Analogs of Superconducting Circuits

In order to further our understanding of superfluids, our study draws an anal-

ogy between superconducting circuit models and the dynamics of atoms in a dilute

atomic BEC. This analogy allows us to study things that are not possible in super-

conductors, as well as use existing knowledge of superconductors to further the uses

of superfluid BEC systems.

The differences between superconductors and BECs allow us to create a sys-

tem similar to what can be made in a superconductor, but having properties and

adjustable parameters different from what is possible at the moment in supercon-

ducting systems. In superconductors, the confining potential for the electrons is

always nearly hard-walled due to the structure of the wires used. Also, once the

circuit is created and cooled down to below the transition temperature, the overall

structure is fixed, although variations can be introduced such as gating potentials.

In our system, the confining potentials are created using light and magnetic fields.

This allows us to create time-varying potentials, although it constrains us to soft-

walled potentials. Additionally, we are able to observe directly the atoms in BEC,
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which is a huge advantage over either liquid helium or superconductors. Finally, in

superconducting circuits, the superconducting electrons flow through the complex

lattice structure of the superconducting wires themselves. Coupling to this lattice

can have effects on the superfluid that are not present in atomic gas systems since

these are confined in very different ways.

By drawing our analogy between these systems, we are also able to use the

wealth of knowledge that already exists in the field of superconductivity to guide our

research of superfluidity in an atomic BEC. There have been an incredible variety of

superconducting circuits studied previously, ranging from simple test setups used in

basic experiments, to complex radio frequency (RF) circuits, to practical commercial

devices such as superconducting quantum interference devices (SQUIDs) [24]. The

results of experiments with these circuits can help us to start to envision what

practical devices we might someday be able to create with superfluid BEC systems.

1.2.1 An Atom Capacitor

In chapter 2, we will show that the system we created is analogous to an

electronic capacitor being discharged through an inductor in series with a dissipative

element. The geometry we create that produces this atom capacitor consists of two

reservoirs separated by a channel. In our system, a difference in atom density

between the two reservoirs will produce a chemical potential difference that drives

atom flow through the channel to equalize the imbalance. This is equivalent to

what happens in a parallel place capacitor, where a charge imbalance between the
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two plates causes an electro-chemical potential differnce between the plates that

drives electric current to flow through a circuit to equalize the imbalance. There are

obvious differences between these systems, such as the fact that in our system the

relative location of the two reservoirs has no affect on the potential difference. Due

to the longer range interaction between electrons in the parallel plate capacitor, this

is not true for the electronic case.

The flow in our atomic system is restricted by a few factors. First, we will

derive an effective inductance in the system analogous to kinetic inductance in elec-

tronics. Again there are differences between the systems. In the electronic case,

the energy stored in an inductor is stored in a magnetic field. In our system it is

stored as the kinetic energy of atoms flowing in the channel. In addition to this

inductance, there will be dissipation due to two main factors. In the thermal part

of the system, there will be an equivalent to the Sharvin resistance seen in electron-

ics [25]. This limiting is easy to understand intuitively. It is due to the number of

collisions of the thermal atoms with an imaginary cross sectional area of the wall

that the channel covers. A narrower channel results in a lower rate of collisions with

this imaginary area, thus increasing the effective resistance. The other dissipation

that is present in our system is due to collective excitations in the superfluid, such

as vortices, phonons, and solitons. We will focus only on vortex excitations in this

study since we are folliwing the model presented by Feynman [23]. In this model,

these vortices are created when the superfluid flow exits the channel into one of the

reservoirs. If this flow is higher than some superfluid critical velocity, vortices will

be produced. These excitations carry an amount of energy in the form of kinetic

5



energy, and eventually thermalize in the system, raising the temperature.

1.2.2 Experimental Setup

In chapter 3, we describe our experimental setup in detail. Two separate

setups were used to test the theory derived in chapter 2; one classical (themal

ideal gas) system and one quantum (superfluid BEC) system. In each case, the

atoms are confined using optical dipole potentials. For the thermal system, we

extend the concept of Generalized Phase-Contrast Imaging used in microscopy to

create arbitrary two dimensional (2D) optical dipole potentials (ODP)s. In the BEC

system, we use the equipment from a microfabrication lab to create intensity masks

for direct imaging of the required geometry to create the trap. By starting these

systems with more atoms loaded into one reservoir then allowing flow for a variable

amount of time, we are able to study the dynamics of flow in the system. We are

also able to image the effects of the collective excitations present in the BEC by

releasing the trap after some flow has occured, and imaging in time-of-flight. A

detailed description of the more commonly used techniques in our experiment are

described in appendix A.

1.2.3 Results

In chapter 4, we lay out the details of the parameters varied throughout the

experimental runs, and show the data collected. We also fit this data to our expected

forms derived in chapter 2. We show that our system can in fact be modeled well
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by our proposed circuit analogy. Additionally, we show direct observation of the

collective excitations expected in our system that contribute to the dissipation seen

in the circuit.
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Chapter 2: Atom Circuit Analog

2.1 An Atom Circuit to Study Dissipation

In order to study dissipation in an ultracold atomic system, we will create

a trapping geometry for our atoms that produces dynamics in atom flow that are

analogous to those in an electronic circuit. This geometry of this trap in the hor-

izontal plane, shown in figure 2.1, consists of a dumbbell shape with two circular

reservoirs connected by a channel. In the vertical direction the trap can be de-

scribed by a tightly confining harmonic potential. As we will show below, this

dumbbell geometry provides us with an analog to a capacitor with the reservoirs

holding the potential difference needed to create flow in the circuit, and the channel

between them providing an analog to two other circuit elements. The first of these

is the common inductor, which arises in our system due to the kinetic energy of

the atoms flowing between the reservoirs. The other is a more complex resistance

shunted Josephson-Junction, caused by a weak superfluid link in combination with

collective excitations due to flow above a critical velocity.
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N1=Ne + N

Δμ

N2=Ne - N

l

wrr

Figure 2.1: A schematic of the geometry of our dumbbell potential,
showing the two reservoirs with relevant dimensions (channel width w,
channel length l, and reservoir area A = πr2

r , where rr is the radius
of the reservoirs). The number of atoms in one reservoir is given by
N1 = Ne + N , and the other N2 = Ne − N , where Ne = Ntot/2 is the
equilibrium number of atoms in either reservoir, and N is what we call
the number imbalance in the system, which is half the difference in atom
number between the reservoirs.

2.2 Chemical Potential and Capacitance

The simplest element of our system that we will look at is the atom circuit

analog to a capacitor. In any non-superconducting circuit, a source of electric po-

tential difference is needed to drive current through the various components of the

circuit. A capacitor produces such an electric potential difference between its two

leads when electrons are moved from one side to the other. Since our system con-
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sists of neutral particles, electric potential will not produce a force on the atoms.

Instead, we will look at the chemical potential difference between the two reservoirs

as an analog to the electric potential difference.

In the electronic capacitor, the amount of energy needed to move a charge

from one plate of the capacitor to the other is equal to the charge times the electric

potential difference between the plates [26]. Similarly, the energy needed to move

a small group of atoms from one of our reservoirs to the other is equal to the

number of atoms being moved times the difference in chemical potential between

the reservoirs [27]. In the BEC case, the local mean field of the atoms in a reservoir

is the same as the chemical potential of the atoms in that reservoir, except for some

offset value due to the external potential. As long as there is no offset in external

potential between the reservoirs, and we are only worried about the difference in

chemical potential between the reservoirs, this distinction is unnecessary. Since

this is the case in our system, unless otherwise noted the chemical potential will

be defined in this thesis as the local mean field when discussing quantum systems.

The classical thermodynamically calculated chemical potential is used for thermal

systems.

In the electronic capacitor, if we start with equal charge on both plates, and

then move an amount of charge Q from one plate to the other, we can write the

electric potential differnce ∆V between the two plates as

∆V =
Q

C
, (2.1)

where C is the value of the capacitance [28].
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In our system, we will start with an equilibrium number Ne of atoms in either

reservoir. We then move a number of atoms N from one reservoir to the other. This

will produce a chemical potential difference ∆µ between the reservoirs. In the limit

of this chemical potential difference being linear in this atom number imbalance

N , we can use the constant of proportionality to define our chemical capacitance

exactly as in equation 2.1:

∆µ =
N

Cc
→ Cc =

N

∆µ
. (2.2)

This linear approximation is valid over a large range of number imbalance, as can

be seen further down in figure 2.5 where we derive the capacitance of a BEC system

with this geometry. Thus to calculate the capacitance of our system, we only need

to know the form of the chemical potential as a function of atom number for one of

the reservoirs in our trap.

2.2.1 Capacitance in a BEC System

The form of the chemical potential in a BEC system will depend heavily on

the details of the experiment. If our system is hard walled in two dimensions and

harmonic in the third, as we expect for the ideal case in our experiment, the chemical

potential of atoms in either reservoir will be proportional to N
2/3
i when calculated

using the Thomas-Fermi approximation to the Gross-Pitaevskii equation of the sys-

tem [29]. Since our system will not be ideal, and the walls will me somewhat soft, we

need to make an adjustment to that form. If we go all the way to the limit of totally

soft walls, and assume a 3D harmonic potential shape, the chemical potential of
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atoms in either reservoir will then be proportional to N
2/5
i . Since we are somewhere

between these two limits, we will model our chemical potential as µi = βNγµ .

0 1 2 3

N
×1050

0.2

0.4

0.6

0.8

1

1.2

1.4

μ/
h 

(k
H

z)

Figure 2.2: A plot of the numerically calculated chemical potential of
a BEC in one reservoir of the model potential given in equation 3.1 is
plotted as the green dots. A fit of this numerical data to our model form
of the chemical potential, µi = βN

γµ
i , is shown with the red line. For

our parameter range, γµ ≈ 0.51.

In section 3.1.7.2, we show how we model our reservoir potential. By numer-

ically solving the Gross-Pitaevskii equation with this potential form, we can get a

numerical value of chemical potential for any given atom number. In figure 2.2, we

fit this numerical calculation to the form discussed here. The chemical potential

of atoms in one reservoir is plotted in normalized coordinates in figure 2.3. The

chemical potential of both reservoirs as a function of the number balance is plotted

in figure 2.4, and their difference in figure 2.5. All three of these plots take a value

of γµ = 0.51, which is approximately what we find for our particular system.

We can derive our BEC capacitance by looking at the difference in chemical

potential between the two reservoirs for a given atom number imbalance N . With
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Figure 2.3: The chemical potential of a BEC in one of our reservoirs as
a function of atom number in normalized units. The atom number can
vary from zero to twice the equilibrium number in the experiment. This
example is for a model chemical potential of µi = N0.51

i .

Ne+N atoms in one reservoir, and Ne−N atoms in the other reservoir, our chemical

potential difference is given by

∆µ = β ((Ne +N)γµ − (Ne −N)γµ) ≈ (βNγµ
e ) 2γµ

N

Ne

= 2γµ
µe − α
Ne

N, (2.3)

an example of which is plotted in figure 2.5. For a value of γµ = 0.51, which is

typical for our experiment, this linear approximation represents an error in chemical

potential of less than 10% for a number imbalance up to |N/Ne| < 0.80. Our

capacitance is then given by

Cc,BEC =
Ne

2γµ (µe − α)
. (2.4)
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Figure 2.4: The chemical potential of a BEC in both the left (red curve)
and right (blue curve) reservoirs in normalized units as a function of
the atom number imbalance N . This example is for a model chemical
potential of µi = N0.51

i .
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Figure 2.5: The difference in chemical potential between our two reser-
voirs in normalized units as a function of number imbalance N . This
example is for a model chemical potential of µi = N0.51

i .
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2.3 Kinetic Inductance

In an electronic circuit, normal or superconducting, an inductor stores energy.

The amount of energy E stored in the inductor is proportional to the square of the

current I flowing through it:

E =
1

2
I2L, (2.5)

where L is the inductance of the inductor.

In our system, we have atoms flowing through the channel. Since the atoms

are moving, they have a total kinetic energy which we will represent as K. This

energy is equal to the number of atoms in the channel Nch times the kinetic energy

of each atom 1
2
mv2, where m is the mass of an atom, and v is the velocity of the

atoms. We can rewrite both Nch and v in terms of the length of the channel l, the

one dimensional (1D) density of atoms in the channel n1D, and the current through

the channel I = dN
dt

:

Nch = ln1D; (2.6)

v =
I

n1D

. (2.7)

Now, we can write the kinetic energy of the atoms moving in the channel as

K = Nch
1

2
mv2 = (ln1D)

1

2
m
I2

n2
1D

=
1

2
I2

(
ml

n1D

)
. (2.8)

Comparing this to equation 2.5 we can see that the inductance in the channel of our

system is given by

Lk =
ml

n1D

. (2.9)
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This entire argument can also be applied to the kinetic energy of electrons

flowing in a wire, and in fact this inductance can be seen in electronic circuits,

where it is called the kinetic inductance. Generally it is too small compared to

magnetic inductance to be measured, but for some superconducting circuits it is a

measurable quantity [30].

2.4 Dissipation

In the absence of dissipation, this inductance combined with the capacitance

will give rise to LC oscillations with frequency

ωLC =
1√
LC

, (2.10)

exactly as seen in an electronic LC circuit [28]. Due to the constriction of the

channel, however, there are potential sources of dissipation that will damp this

oscillation.

2.4.1 A Superfluid Weak Link

We model the system that we have as the circuit shown in figure 2.6, with our

already derived capacitor and inductor in series with some dissipative element. We

will model this dissipative element as a resistance-shunted weak link, or Josephson

junction. The weak link will set a critical current Ic, with any additional current

flowing through the resistor [31]. This circuit can be described by the following
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three differential equations:

dN

dt
= I, (2.11)

h̄
dγ

dt
= ∆µ = R [I − Icf(γ)] , (2.12)

Lk
dI

dt
= −

[
N

Cc
+ ∆µ

]
= −

[
N

Cc
+R (I − Icf(γ))

]
, (2.13)

where h̄ is the reduced Planck constant, γ is the phase difference between the two

reservoirs, and Icf(γ) is the current-phase relation of the link.

Physically, equation 2.11 defines the current flow between the two reservoirs,

and equation 2.13 describes the dynamics caused by the series capacitor and inductor

described above. The physical motivation for the form of equation 2.12 comes from

two things. The Icf(γ) term on the right side of the equation is the basic description

of superfluid flow, with the phase difference between the reservoirs driving flow. The

RI term on the right side of the equation describes basic dissipation for any flow

over the critical current of the system. If the total current is less than the critical

current, no dissipation will occur. There will also be a separate resistance parallel

to the capacitor due to dissipation in the thermal fraction of atoms. We expect that

this is extremely small in our system, however, and it is left out here. A quantitative

description of the thermal dissipation below justifies this assumption.

These equations can be numerically integrated to fit the dynamics we will mea-

sure in the experiment with three independant parameters, τ = RC, ω2 = 1/LkCc,

and Ic. Since we can calculate the capacitance a priori, fitting these parameters

gives us the experimental values of the three relevant circuit elements, R, Lk, and

Ic. We could similarly use our calculated inductance value as given and experimen-
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Cc

Lk

RFIC

Figure 2.6: A diagram of the the circuit we will use to model our sys-
tem. It consists of a capacitor that is discharged through an inductor
in series with a resistance shunted weak link (Josephson-Junction). We
calculate the expected values for these circuit elements and compare to
the dynamics that we observe in our BEC trapped in a dumbbell shaped
potential.

tally compare our capacitance, however due to the limitations in our knowledge of

the exact shape of the potential in the channel there is more uncertainty in the

validity of this value.

2.4.2 Superfluid Dissipation - Feynman Resistance

When the superfluid in our system flows above its critical current, we will

observe dissipation due to energy from the BEC being coupled into collective ex-

citations. While we cannot create a simple model to describe all of the possible

excitations, we can quantify the rate of dissipation due to collective excitations in

the form of vortices. The argument that we will follow is that proposed by Richard

Feynman [23] when discussing vortices in superfluid helium. This argument consid-

ers a geometry as shown in figure 2.7, with a channel of superfluid flowing out into

an infinite, uniform reservoir. Since we are ignoring other collective excitations, we
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Figure 2.7: A schematic representing the situation described by Feyn-
man [23] in deriving the critical velocity for vortex creation and vortex
production rate in a superfluid gas. The system consists of a channel
with superfluid flow exiting into an infinite reservoir. Vortices are cre-
ated at either side of the channel aperture at a calculable rate, allowing
us to determine the rate of energy dissipation in the system. Our acutal
system is an approximation of this, with walls that are not infinitely
hard, and reservoir not infinitely large.

expect that any derived resistance (conductance) will be lower (higher) than what

will be observed experimentally. Similarly, our derived critical current is expected

to be higher than what we should observe.

This model, in addition to estimating the critical velocity for vortex produc-

tion,

vc =
h̄

mw
ln

(
w

ξ

)
, (2.14)

calculates the rate of vortex pair production,

γp =
v2m

2πh̄
=

I2m

2πh̄n2
1D

, (2.15)

where v is the flow velocity, I is the atom number current, n1D is the 1D density of

atoms in the channel, w is the width of the channel, which is equal to the separation

of the created vortices, and ξ =
√
h̄2/mµ is the healing length of the superfluid,
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with chemical potential µ.

For a superfluid with 2D density n2D, we can also estimate the energy of a

pair of vortices separated by a distance w as

Ep =
πn2Dh̄

2

m
ln

(
w

ξ

)
. (2.16)

This calculation is for a vortex anti-vortex pair in a homogeneous BEC. To account

for our finite geometry, we can use a method of images similar to that used in electro-

magnetism [26] to numerically calculate the energy of a pair of vortices close to the

wall of a circularly contained BEC. This calculation involves introducing image

vortices outside of the reservoir such that the velocity field satisfies the boundary

condition that it is tangent to the edges of the reservoir. This resultsin an energy that

is greater than that given in equation 2.16 by a factor of κ ≈ 1.7 for our particular

geometry. Since the vortex pairs will be created at either side of the channel, we

use the channel width w as the vortex pair separation in this calculation. It is also

possible that vortices will be created at the entrance to the channel, however this

is not treated in this analysis. Since we do not see excitation in the initially full

reservoir in the experiment, we expect that contributions due to this would be small.

From equations 2.15 and 2.16, the rate of energy dissipation in the system will

be

P = κγpEp = κI2 h̄n2D

2n2
1D

ln

(
w

ξ

)
. (2.17)

The power dissipated by a current through a resistor is given by

P = I2RF . (2.18)
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Comparing equations 2.17 and 2.18, we can now define the Feynman resistance in

our system as

RF =
1

GF

= κ
h̄n2D

2n2
1D

ln

(
w

ξ

)
, (2.19)

where GF is our expected conductance due to this dissipation mechanism. We take

the equilibrium value of the chemical potential to determine ξ. Since we can write

n1D ≈ wn2D, our conductance should be approximately proportional to n1D. This

dissipation will only be seen when the current is above the critical current. Below

this value, there will be no dissipation. Using equation 2.14 and the density of atoms

in the channel n1D, we can can write down this expected critical current

Ic = vcn1D =
h̄n1D

mw
ln

(
w

ξ

)
. (2.20)

2.4.3 Dissipation in a Thermal Gas

In our experiment, we expect that the thermal fraction of atoms will be very

low, and any contribution to the dissipation from this thermal fraction will be too

small to measure. We can, however, look at a similar system consisting only of an

ideal thermal gas. We show that dissipation in this system will be similar to the

Sharvin resistance [25] seen in electronics, where a point contact smaller than the

mean free path of the electrons restricts current flow. This system can be modeled

completely with a classical kinetic theory as follows.

The normalized 2D velocity distribution of the thermal atoms in the system

is given, in cylindrical coordinates, by [30]

f2D(v, θ)dvdθ =
( m

2πkT

)
ve−

mv2

2kT dvdθ. (2.21)
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Integrating this times n2Dwvx = n2Dwv cos θ, gives us the effusion rate F at which

atoms will leave a reservoir with a hole in the side with width w;

F =

∫ π/2

π/2

∫ ∞
0

n2Dw
( m

2πkT

)
v2 cos θe−

mv2

2kT dvdθ =

√
kT

2πm
n2Dw. (2.22)

Since atoms will also be entering the first reservoir due to leaving the second reser-

voir, the total rate of change in atom number in reservoir 1 can then be written

as

Ṅ1(t+ ∆t) = −F1(t+ ∆t) + F2(t), (2.23)

where the second term on the right hand side of the equation, representing the rate

that atoms enter reservoir 1 due to leaving reservoir 2, is evaluated at a time ∆t

earlier. This delay is due to the finite velocity of the atoms traversing the channel.

To calculate this delay time, we need to know the velocity distribution of the atoms

within the channel, which will be fch(v, θ)dvdθ = vxf2D(v, θ)dvdθ, normalized such

that ∫ π/2

−π/2

∫ ∞
0

fch(v, θ)dvdθ = 1. (2.24)

Carrying out this normalization gives

fchv, θdvdθ =
1√
2π

( m
kT

)3/2

v2 cos θe−
mv2

2kT dvdθ. (2.25)

The average velocity along the axis of the channel, of atoms in the channel, is thus

given by

〈vx〉 =

∫ π/2

−π/2

∫ ∞
0

v cos θfch(v, θ)dvdθ (2.26)

=
1√
2π

( m
kT

)3/2
∫ π/2

−π/2

∫ ∞
0

v3 cos2 θe−
mv2

2kT dvdθ (2.27)

=

√
πkT

2m
. (2.28)
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This gives us the average time for an atom to traverse the channel,

〈∆t〉 =
l

〈vx〉
= l

√
2m

πkT
, (2.29)

where l is the length of the channel. Equation 2.23 then becomes

Ṅ1(t+ ∆t) =
w

A

√
kT

2πm
(−N1(t+ ∆t) +N2(t)) , (2.30)

where A is the area of either reservoir, taken to be equal for our system. If we

expand this linearly around t, we can again rewrite this as

Ṅ1(t) + ∆tN̈1(t) =
w

A

√
kT

2πm

(
−N1(t)−∆tṄ1(t) +N2(t)

)
. (2.31)

Substituting in our definitions, N1 = Ne −N and N2 = Ne +N , we now have

−Ṅ(t)−∆tN̈(t) =
w

A

√
kT

2πm

(
−Ne +N(t) + ∆tṄ(t) +Ne +N(t)

)
(2.32)

=
w

A

√
kT

2πm

(
2N(t) + ∆tṄ(t)

)
. (2.33)

We can rewrite this as

2kT

neA
N(t) = −

√
2πmkT

new

(
1 +

wl

πA

)
Ṅ(t)− 2ml

new
N̈(t). (2.34)

For our approximations used above to hold, the area of the channel, Ach = wl� A.

We can also calculate the chemical potential of the thermal atoms in either

reservoir as [30]

µ = kT ln

[
n2D

(
h2

2πmkT

)]
, (2.35)

where k is Boltzmann’s constant, h Planck’s constant, T the temperature, n2D the

2D number density and m the mass of a particle in the gas. The difference in
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chemical potential between either reservoir is then given by

∆µ = kT ln

(
n2,2D

n1,2D

)
= kT

{
ln

[(
Ne

A

)(
1 +

N

Ne

)]
− ln

[(
Ne

A

)(
1− N

Ne

)]}
(2.36)

≈ 2kT

ne,2DA
N. (2.37)

This linear approximation is valid for N � Ne. Combining equations (2.1) and

(2.37) leads to an expression for our chemical capacitance of the thermal system,

Cc =

(
neA

2kT

)
=
neA

2εT
, (2.38)

where εT ≡ kT is the thermal energy of the gas.

If we now substitute equation 2.38 into equation 2.34, we can simplify this

expression further;

N(t)

Cc
= −
√

2πmkT

new
Ṅ(t)− 2ml

new
N̈(t). (2.39)

When we compare this to the Kirchoff equation for a series RLC circuit [28],

Q

C
= −RQ̇− LQ̈, (2.40)

with resistance and inductance given by

R =
2 〈p2D〉
new

=
2 〈p2D〉
n1D

and Lc =
2ml

new
, (2.41)

where

〈p2D〉 =

∫ π/2

−π/2

∫ ∞
0

mvf2D(v, θ)dvdθ =

√
πmkT

2
(2.42)

is the average magnitude of the 2D momentum of the particles in the system.
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As we can see, the inductance derived for the thermal part of the system is

almost identical to the form of the kinetic inductance, except for a factor of two.

This factor likely comes about for two reasons. First, we are using the average

velocity of atoms traveling down the channel as a single value approximating the

velocity for all particles. Secondly, we are taking only the first term in the expansion

about this time delay in equation 2.31.

For a 2D, electronic system the Sharvin resistance is given by [32]

RS =
π

2

pF
e2nw

, (2.43)

where pF = h̄
√

2πne is the Fermi momentum. Physically, this resistance is due to

the ballistic movement of electrons, and the statistical likelyhood of them entering

a small point contact. This has the same form as our resistance in equation (2.41),

differing by a factor of e2 and a numerical factor because the Sharvin resistance is de-

rived for a 2D, charged, T = 0 Fermi gas, which has a different velocity distribution

than our neutral, classical gas.

We verify this functional form in a purely thermal system, and as we will later

show for our BEC system, this ballistic resistance in the thermal fraction will not

contribute significantly to the overall dissipation that we observe.
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Chapter 3: Apparatus

3.1 BEC Apparatus

To experimentally test the model we have formed, we use a BEC of sodium

atoms. The BEC is created using standard atomic physics methods, including a

Zeeman slower, dark-spot Magneto-Optical Trap (MOT), quadrupole magnetic trap,

time-orbiting potential (TOP) trap, optical dipole traps (ODT), and multiple forms

of evaporative cooling. A full description of the steps from MOT to BEC are given

elsewhere [33]. The basic concepts of these methods are described in appendix A of

this thesis, and detailed descriptions can be found in atomic physics textbooks [29,

34]. The portions of the apparatus that are unique to this experiment are described

here. Figure 3.1 shows a schematic of the overall vacuum system used to create the

BEC, including the important parts that will be discussed below. This system is

capable of achieving base pressures of ≈ 10−11 Torr, providing trap lifetimes well in

excess of the duration of the atom circuit dynamics studied.
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Figure 3.1: Schematic of the vacuum system used to create the sodium
BEC. The system consists of a sodium source or oven, a Zeeman slower,
the main experimental glass cell, and the main pump, which is a combi-
nation ion and titanium sublimation pump. This system achieves base
pressures of ≈ 10−11 Torr. Also shown are the coils used to create the
Zeeman slower and quadrupole magnetic fields, and the main imaging
lens stack mounted to the underside of the upper optical breadboard
discussed below. It is attached with a 2-axis translation stage to aid in
aligning the lens stack properly.

3.1.1 Laser System

The main laser system for the sodium BEC apparatus, shown in figures 3.2

and 3.3, is based on a Toptica DL-SHG Pro frequency doubled laser. This laser

is capable of producing 2 W of usable light at 589 nm. This laser is locked to the

necessary frequency using a saturated absorption (SA) spectroscopy system using a

phase-sensitive detection scheme. For this, a small amount of power is taken from

the laser output and sent to the SA setup after being frequency modulated at 10 kHz

using a double-passed acousto-optic modulator (AOM). The output of this AOM

(AOM-1 in figure 3.2) is actively intensity stabilized using a proportional-integral

controller with a bandwidth higher than the 10 kHz modulation to avoid unwanted
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intensity fluctuations in the SA setup. The signal from the SA setup is then mixed

with the reference frequency using a lock-in amplifier. The output of this gives a

differential signal, allowing us to use a proportional-intregral controller, with output

fed back to the laser frequency modulation input, to lock to the known frequency

at a peak in the normal SA signal.

The now frequency locked laser output is then split up into three separate

beams. The first of these is used to produce the MOT trapping light, with AOM-2

used in a double-pass setup, which is coupled to an optical fiber. When not being

used for MOT light, the zero-order of the first pass through this AOM is fed through

AOM-3 in a single pass setup, and coupled into another optical fiber to be used as

the probe beam for absorption imaging.

The second beam from the laser output is send through AOM-6 in a single pass

to produce light at the frequency necessary for the Zeeman slower, which is coupled

into an optical fiber. Part of this frequency shifted beam is also sent through AOM-

4, which is a specially made 1.8 GHz Brimrose AOM, to produce light near the

repump frequency necessary for our traps. This is sent through AOM-5 to produce

the frequency needed for the MOT and imaging repump, with the zero-order output

of AOM-5 being coupled into the same fiber as the slower beam, to be used as

rempump for the slower.

The final beam from the laser output is sent to a wavemeter for rough mea-

surement of the laser wavelength. A schematic of all of the frequency shifts used in

the experiment are shown in figure 3.4.

In addition to the trapping light, there are also two separate lasers used for
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Figure 3.2: Schematic of the setup of the laser used to produce the light
for the Zeeman slower, MOT, and imaging for the Na BEC. Various
AOMs and shutters allow us to control the frequencies and powers of
the various beams with enough precision to carry out the experiment.
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Figure 3.3: Image of the setup of the laser used to produce the light
for the Zeeman slower, MOT, and imaging for the Na BEC. Various
AOMs and shutters allow us to control the frequencies and powers of
the various beams with enough precision to carry out the experiment. A
full description of the system is given in the text.
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Figure 3.4: Schmatic showing the various frequency shifts used to create
the necessary beams for the experiment.
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the ODTs in the system which are not shown in figure 3.2. The first is a red-

detuned, IPG fiber laser (1064 nm) run at approximately 5 W. This is split into

two beams, frequency shifted from each other by an amount on the order of 10 MHz

to avoid interference where they will eventually cross. These are fiber coupled to

the experimental table. The first of these beams is made into a horizontal sheet to

vertically confine the atoms. The second is crossed with this sheet to produce the

original trap from which the dumbbell potential is loaded. The other ODT laser

is a blue detuned (532 nm), Coherent diode pumped solid state laser. About 1 W

of the light from this laser is used to create two separate dipole potentials. The

first of these creates our dumbbell shaped potential. The other is aimed with a 2D

acousto-optic deflector (AOD) to create a barrier over the channel of the dumbbell.

All of the ODT beams are actively amplitude locked using feedback from photodiode

power monitors as close to the experimental chamber as possible. Shutters are also

installed on the laser table side of the fiber to allow complete shutoff of the beams

when not in use.

3.1.2 Main Experimental Optical Breadboard

Once the atoms are transfered out of the MOT, the majority of the optical

access to the atoms is taken through the vertical direction. The exception to this is

the horizontal sheet ODT. The mask, AOD, and Laguerre-Gauss (LG) beams are all

combined on the breadboard above the cell before being sent down through the main

imaging lens stack, which is just above the BEC. The imaging beam also travels along
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the same path, counterpropagating with these beams, and is split off on the same

upper breadboard before being sent to the imaging camera. Each of these beams

has a separate object plane on the upper breadboard which is imaged to the BEC

plane. The imaging and LG beamlines are combined on a dichroic plate optic since

they are of sufficiently different wavelengths. The two green beams are combined

using a polarizing beamsplitter cube. These two sets of beams are combined on

a 50/50 beamsplitter cube and sent through the imaging stack, which provides an

numerical aperture (NA) of about 0.2. A schematic of the upper breadboard is

shown in figure 3.5, and a picture of the actual setup with beamlines and important

elements highlighted is shown in figure 3.6.

3.1.3 Computer Control

The timing of the sodium BEC apparatus is controlled mainly by a pair of

PulseBlaster digital out cards in a master-slave setup. Each card has 24 TTL-level

outputs which connect to the various triggers, switches and shutters in the system.

Each digital channel is buffered using a HCPL-7720 optocoupler. One of the outputs

from the master PulseBlaster is connected to trigger the slave PulseBlaster, and

another is connected to trigger the two PCI-6713 analog output cards which control

various analog parameters of the system. Due to the long experimental run time

(∼ 30 s) and small minimum timestep (∼ 100 ns), directly writing the waveforms

for each analog and digital channel is not feasible from a memory limit standpoint.

The PulseBlaster, however, avoids the need for this by instead allowing us to write
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Figure 3.5: Schmatic of the optics used to combine the various trapping
and imaging beams on the optical breakboard located above the exper-
imental chamber. A full description of the system is given in the text.
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Figure 3.6: Image of the upper optical breadboard of the BEC appa-
ratus with artificial highlighting. The green AOD and mask beams are
highlighed in green, the infrared (IR) LG beam is highlighed in red, and
the yellow imaging beam is highlighed in orange. The main elements of
the setup are also labeled. The main imaging lens stack is below this
breadboard, above the BEC chamber.
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each step in the sequence as a state with a duration. For the analog cards, rather

than running on a continuous clock, an output from the master PulseBlaster is

used as the trigger. With this setup, we are able to write the waveform for the

analog channels for only the times when they change, rather than for each timestep

throughout the experiment. To create the sequences and waveforms for the digital

and analog cards, we use a recent version of the SetList LabVIEW program created

and maintained at the Joint Quantum Institute at the University of Maryland and

the National Institute of Standards and Technology.

3.1.4 Imaging

To image the sodium BEC, we used a variation of absorption imaging known

as partial-transfer absorption imaging [35] discussed in more detail in appendix A.

In this technique, the atoms are imaged using on-resonant absorption imaging. To

avoid the saturation of the probe imaging beam that would happen if we imaged

all of the atoms, we keep the atoms in the F = 1 dark ground state throughout

the experiment, and immediately before imaging, we transfer a known fraction of

atoms from to the F = 2 imaging ground state. By adjusting the transfered fraction

depending on the parameters of the particular experimental run, we are able to keep

the optical density in the measured regions very close to the same value. This allows

us to avoid many of the nonlinearities associated with on-resonant imaging due to

saturation and bleaching.
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3.1.5 Cooling Sequence

The full cooling sequence used for the sodium BEC apparatus follows a stan-

dard magnetic TOP trap technique, followed by final cooling in a crossed dipole

trap, which is our dumbbell potential. Initially, a Zeeman slower is used to load a

dark-spot MOT in the ultra-high vacuum (UHV) chamber.

The magnetic quadrupole field of the MOT is then ramped up while the cooling

lasers are switched off to load as many as possible of the MOT atoms into a purely

magnetic trap. Once in the magnetic trap, RF evaporation is used to cool the atoms

close to a point where spin-flip losses at the center of the trap become important.

At this point, a rotating bias field is applied with a frequency on a time scale that is

fast compared to atomic motion but low compared to splitting of the Zeeman levels

of the system, producing what is known as a TOP trap. The level of this bias field is

then ramped down, producing a “circle-of-death” evaporation. This is followed by

an additional RF evaporation step to condense the atoms into a BEC. The BEC is

then transfered to the ODT by ramping the magnetic trap down while the intensity

ODT beams is ramped up.

The dipole trap used at this point consists of a horizontal red detuned sheet

beam, which is also the final vertical confining potential in the experiment, and

a vertical, focused, red detuned LG beam. While this particular experiment does

not require that this beam be an LG profile, it existed in the apparatus to be used

for other experiments, and did not alter anything for this experiment. A simple

Gaussian beam could have been substituted with no effect.
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The intensity of the sheet beam is then ramped down as the final evaporation

step used to set the final temperature and condensate fraction. This produces a

BEC at a temperature of approximately 100 nK. Measurement of the temperature

was carried out by imaging the BEC in a direction parallel to the sheet. The optical

density in this direction is large enough that the thermal fraction can be observed,

and a temperature measurement can thus be made. This is not possible when

imaging in the vertical direction due to the significantly lower optical density of the

cloud in this direction. The critical temperature for our system is estimated to be

approximately 500 nK, and our thermal fraction is thus < 5%. The final number

of atoms that are used in the experiment is set by adjusting the length of time the

atoms are held at this point.

Finally, this BEC is transfered to the dumbbell potential by ramping up the

intensity masked ODP and AOD controlled gate across the channel, while ramping

down the LG beam with the BEC superimposed over one reservoir. This is then

allowed to settle and thermalize for 2 s, and we end up with a final ensemble

of atoms in the dumbbell potential with order 105 atoms at a temperature below

100 nK, with all of the atoms in one reservoir.

3.1.6 Imaging

After the dumbbell potential has been loaded with atoms in one reservoir, the

gate beam is switched off, allowing the atom to flow in the circuit. To measure the

state of the system at a time after release, we image the atoms using a partial transfer
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absorption technique, which allows us to image a known fraction of the atoms with

on-resonant imaging light. This technique is described in detail in appendix A. In

order to reduce the effects of non-linearities that are a part of absorption imaging,

we would ideally like to keep the optical density constant in our region of interest.

While this is not possible with the entire dumbbell as a region of interest, if we split

up the measurement into two parts and look at the reservoirs independently, we are

able to come close to this goal. For our experimental measurement of the BEC state

at some time after the gate is released, we will take two separate images. For one of

these, we choose the imaged fraction of atoms such that the optical density in the

initially full reservoir is as close to 1 as possible. For the other, we choose the imaged

fraction of atoms such that the optical density in the initially empty reservoir is as

close to 1 as possible. We then form a composite image of the BEC at this time

by independently scaling these two images of either reservoir, based on the known

fractions of atoms imaged, and combining them. For each time measured, we do

this three or four times and average the result to get our final 2D density profile as

our data point for that time, in order to reduce statistical noise. An example of one

such density profile is shown in figure 3.7.

3.1.7 Trap Geometry

The description of the trap geometry is not quite as simple as the idealized

case of a hard wall in all directions. First of all, the vertical confinement is created

using a beam with a Gaussian intensity profile, and will thus create a harmonic
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Figure 3.7: A sample plot of the atom density for the BEC trapped
in our dumbbell potential. The total atom number in this image is
495(16)× 103.

trap in this direction. This sheet trap also contributes a weak harmonic trapping

potential in the plane, on top of the dumbbell potential.

In addition to the sheet confinement, we have the dumbbell itself, which is

imaged onto our BEC using an imaging system with a numerical aperture of ap-

proximately 0.2. In addition to the inherent limits due to diffaction, this imaging

system also contributes to further degredation of the hard wall potential through

imaging aberations. Since all of this cannot be easily modeled analytically, we re-

sort to an observational measurement of the system to determine what our actual

potential is.

3.1.7.1 The Sheet

The sheet potential is created by focusing a Gaussian beam tightly in one

direction. This produces a trap in the center that is tightly confined harmonically

in the vertical direction, and loosely harmonically confined in the plane. With proper

balancing of the sheet geometry, the confinement in the plane can be made to be
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roughly azimuthally symetric. The vertical trapping frequency will be important for

our measurements, and thus needs to be measured. The process for this involved

giving the atoms a small momentum kick in the vertical direction with a pulsed

magnetic field gradient, allowing the atoms to oscillate in the harmonic trap for a

varying amount of time, followed by releasing the trap, a significant time-of-flight

(TOF), and imaging of the atoms in the horizontal direction. The vertical position

of the cloud after the TOF will depend on the vertical velocity of the cloud when

the trap was turned off. Since the atoms are oscillating in the vertical harmonic

trap, this velocity will also oscillate at our vertical trapping frequency. Carrying our

this measurement shows that the vertical trapping frequency ωz/2π = 529(2) Hz.

3.1.7.2 The Reservoirs

If we approximate the point spread function of our imaging system to be a

Gaussian shape with 1/e2 radius w, then the potential of a single reservoir in our

dumbbell system will be given by

V =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 +

Um
2

[
1 + erf

(√
2
r − r0

w

)]
, (3.1)

where r =
√

(x− xc)2 + (y − yc)2 is the radial coordinate relatice to the center of

the reservoir at coordinates (xc, yc), r0 is the radius of the reservoir, erf is the error

function, and ωi is the sheet trapping frequency in the ith direction.

With a known number of atoms and this form of the potential, we can nu-

merically calculate the density distribution that we should observe. By adjusting

the parameters ωx, ωy, r0, and w, we can find the best fit to what we observe in
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Figure 3.8: A plot of the model we use for the reservoir potential in the
plane, given in equation 3.1. The parameters of this model are fit by
comparing expected optical densities to what we see in experiment for
in-situ images of atoms in a reservoir. For this plot, Um = 1500 Hz.

the experiment. Doing this provides us with the best fit values ωx/2π = 9.1(9) Hz,

ωy/2π = 9.4(6) Hz, r0 = 27(2) µm, and w = 12(2) µm. We did not independently

measure the oscillation frequencies in the plant, although these values are all within

expectations of our system except for the very large value of w, which should be

closer to 3 µm given the numerical aperture of our imaging system. This large value

is likely due to aberrations which we will discuss more in the next section. This

model potential form is plotted in figure 3.8 for a sheet depth of Um = 1.5 kHz.

3.1.7.3 The Channel

If our system were only subject to diffraction limits in its imaging, we would

expect the potential in the channel region to be fairly close to hard walled, since
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the width of the channel is approximately 14 µm and the diffraction limit of our

system is about 3 µm. We observe, however, something very different from an

empty channel. As can be seen in figure 3.7, there is a depletion of density along a

ridge down the center of the channel. This is likely due to both spherical aberration

and astigmatism in our imaging system, and this same phenomenon is what causes

our surprisingly large value of w in the previous section. Bench measurements of

this imaging system, carried out since this experiment was completed, have verified

that such large aberations are present.

Since we have no good analytical model of what the potential actually is

through the channel, we are forced to approximate with a simple model using ob-

served quantities such as the observed Thomas-Fermi width of the channel, the

integrated 1D density n1D of atoms in the channel, and the cross sectional profile of

the channel. The closest description we can find using these parameters is to model

our channel potential by V ∝ y4, with the bottom of the potential having an offset

given by bUm + V0, where b = 0.15(2) and V0/h = 223(30) Hz. The bUm term is

proportional to the dumbbell potential height, and is due to the imaging aberrations

causing light to fall in the center of the channel. The V0 term is an overall offset in

the channel, likely due to a local maximum in the sheet potential where the channel

is located .

In order for this model to accurately describe our system, we also must take

into account the 2D-3D crossover. For µ− V (y = 0) < h̄ωz, we use only the ground

state of the harmonic oscillator in the z direction, and for µ− V (y = 0) > h̄ωz, we

use the full Thomas-Fermi solution in the z direction. For the example reservoir
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potential shown in figure 3.8, the offset at the center of the channel is equal to

450(75) Hz, which is a significant portion of the overall potential height.

3.2 Thermal Cold Atom Apparatus

The system used to verify the thermal resistance prediction is a 87Rb thermal

gas trapped in an ODT. This gas is created by loading a MOT from background gas

created using SAES rubidium getters, and using a variation of the temporal, dark-

spot MOT setup prior to releasing the atoms into one reservoir of the dumbbell

potential. This potential is created using a slightly blue detuned laser with the

Generalized Phase-Contrast (GPC) setup described below.

3.2.1 Vacuum System

The vacuum system for the thermal Rb experiment is centered around a Kim-

ball Physics model MCF600-SphOct-F2C8 spherical octagon chamber. This cham-

ber has concentric, spherical inner and outer surfaces. Either side is cut to have a

6” diameter Multi-CF (ConFlat compatible) flange with a 4.3” diameter bore. In

eight equally spaced places around the periphery of the 6” flange, the outer sphere

is cut down to produce a 2.75” diameter Multi-CF flange, and bored through to the

center with a diameter of 1.5”. This platform provides flexibility in design of the

system, and good optical access around the entirety of the center of the vacuum. For

our experiment, a 40 L / s ion pump (Varian VacIon Plus 40) was attached to one

of the small 2.75” flanges to keep the system under 10−8 Torr while the experiment
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Figure 3.9: Complete vacuum system used for the thermal Rb system
without magnetic coils or optical mounting elements. The main chamber
is a Kimball Physics spherical octogon with two large, non-AR coated
windows mounted on 6” CF Flanges. One of the small ports of the
chamber is connected to the ion pump keeping the system under vac-
uum. Opposite the ion pump is a 2.75” CF mounted tee, connecting the
chamber to both the electrical feedthrough to power the rubidium getter
source, as well as the valve used to connect to the rough pump system.

is running. This results in a vacuum limited trap lifetime significantly longer than

lifetimes we expect to see due to photon scattering. Opposite the pump, a standard

2.75” ConFlat tee is used to provide both a port for initial pump-down, and an

electrical feedthrough to power the Rb source. The remaining six 2.75” flanges had

optical viewports attached, which were anti-reflective (AR) coated for 532 nm and

780 nm. The two 6” flanges had uncoated optical viewports attached. The chamber

was mounted with the 6” flanges in the vertical plane. This whole setup is shown

in figure 3.9.

The only hardware inside of the chamber was the SAES Rb Alkali Metal

Dispensers (getters). There were three of these sources mounted within the 2.75”
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Figure 3.10: The vacuum chamber used in the experiment. Also shown
are the various optics used to split up and align the MOT trapping
beams. Part of the GPC setup can be seen at the bottom of the image
as well.

flange bore opposite the ion pump using the groove-grabber system provided with

the Kimball Physics chamber. Magnet wire connected the terminals of the getters

to the electrical feedthrough. During normal operation, a current of approximately

3.6 A was run through one of these sources. When heated by this current, the

compound within the source emits atomic Rb, increasing the pressure in the chamber

to the running value of about 5× 10−9 Torr.

The initial pump-down of the chamber was carried out with a turbo-molecular

pump through a UHV compatible metal valve (MDC P/N: 314002). While rough

pumping with the turbo-pump, the chamber was wrapped in heater tape and alu-

minum foil, and baked to approximately 150◦C for about 1 week. After the temper-

ature was ramped back down to ambient, the valve was closed, and pump turned
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off and removed. This produced a base pressure of approximately 10−10 Torr.

3.2.2 Laser System

The main laser system of the thermal Rb system, shown in figures 3.11 and 3.12,

is based around Toptica DL-100 laser operating at 780 nm. A small portion of this

master oscillator is sent through a single-passed AOM (all AOMs used in the ther-

mal Rb experiment are IntraAction model 1205C-804B) centered near 80 MHz, into

a SA spectroscopy setup used for frequency locking the laser. This provides us our

main control over the final frequency used in the experiment. The remaining part of

the master oscillator is sent through a double-passed AOM, the frequency of which

we can sweep from 55 MHz to 105 MHz. The output of the double-passed AOM is

used as the seed for an injection locked diode, providing us with about 100 mW of

output light at the desired frequency. The double-passed AOM allows us to tune

the final frequency of the system over a range of about 100 MHz. This allows us

to easily sweep the frequency for our polarization gradient cooling step discussed

later. The frequency of the injection locked laser is monitored using a Fabry-Pérot

interferometer. This allows us to ensure that the laser is properly injection locked,

as this is very sensitive to both temperature and laser diode current.

We increase our power further with a tapered amplifier, giving us about

500 mW at the same frequency. This amplifier was made from a re-purposed ta-

pered laser (Tiger Littrow Series). This is then sent through another single-passed

AOM, being used as a switch before the polarization-maintaining fiber that trans-
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Figure 3.11: The setup of the main laser system for the thermal rubid-
ium experiment. The main oscillator is a Toptica DL-100 diode laser.
This is locked to the the necessary frequency using a standard saturated
absorption setup with a rubidium reference cell. This beam is passed
through a double-pass AOM, set up in a cat’s-eye configuration. This
allows us to adjust the frequency of the beam with minimal change in
optical alignment. To compensate for any optical misalignment that
does get into this set up, a second diode laser is injection locked to
the frequency of this beam, and is subsequently amplified to necessary
power levels with a tapered amplifier, and launched into a single mode,
polarization-maintaining optical fiber leading to the experiment table.
Frequencies are adjusted with various AOMs throughout the setup, and
the injection lock is monitored by a Fabrey-Pérot interferometer.
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Figure 3.12: The actual laser setup used in the experiment to create the
MOT trapping beams.
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ports the light to the experiment table. After the AOM and fiber, the output is

approximately 180 mW. This light is split into four beams of approximately equal

power, which are then increased in diameter to approximately 1”. Two of these are

passed horizontally, counter-propagating through the large windows of the vacuum

chamber to act as the MOT beams along the axis of the anti-Helmholtz coils. The

other two beams are each sent up through the smaller viewports at 45◦ to the ver-

tical, and are then retro-reflected. This produces the other four beams necessary to

create the MOT. Each beam is appropriately circularly polarized prior to passing

through the chamber using quarter-wave plates.

The repump light necessary for the MOT to function is produced by a second

master oscillator (New Focus Vortex Laser), locked to a separate SA setup. This

laser is placed on the experiment table, and is free-space coupled into the region of

the MOT after passing through a single-passed AOM for switching and frequency

control.

Additional light is also needed to create the ODT used in the experiment.

This light is created with another Vortex laser, and is locked on the broad Doppler-

broadened repump transition by passing a weak probe beam directly through a Rb

cell, and observing the broadened absorption signal. The remaining light is then

amplified with another injection locked diode, similarly monitored with a Fabry-

Pérot interferometer, and fiber coupled into a 1 W New Focus tapered amplifier.

This setup is shown in figure 3.13. This light is subsequently switched with a shutter

before being used for the ODT. The poor mode quality of the tapered amplifier also

requires us to clean up the beam with a pinhole spatial filter.
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Figure 3.13: The beam used for the ODP in the thermal rubidium exper-
iment is created using a tapered amplifier. The main oscillator for this
system is a New Focus Vortex Laser, locked to the side of the Doppler
broadened absorption signal of a probe beam passing through a rubid-
ium reference cell. This is then amplified to the minimum requirements
of the tapered amplifier using another injection locked setup. This beam
is launched into a single mode, polarization-maintaining optical fiber,
which connects directly to the amplifier.
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3.2.3 Computer Control

The timing and data acquisition of the thermal Rb experiment is mainly con-

trolled using a National Instruments model PCI-6713 analog output card. The eight

outputs of the card are buffered and passed to control the amplitude and frequency

controls on the appropriate AOMs, the IGBT switch on the MOT magnetic field

coils, and the camera trigger. The necessary waveform for each channel is calculated

based on the experimental run being done, and all of the waveforms are written to

the card. The camera is set up to wait for the trigger signal, then upload images to

the camera monitor program also running on the control computer. These images

are then saved for later analysis. The relatively short run length and long minimum

time step requirements of this experiment are such that this direct waveform writing

method is more than sufficient in terms of memory limits.

3.2.4 Cooling Sequence

The full cooling sequence used in the rubidium MOT setup follows fairly stan-

dard procedure for such an experiment. First, the trapping and repump MOT lasers

are turned on with the MOT magnetic field also on. We then use a variation of the

commonly used polarization gradient cooling technique to further cool the atoms.

In this technique, the magnetic field is generally turned off, and the MOT trapping

lasers are detuned many linewidths from the trapping transition. This produces a

sample of atoms significantly below the Doppler limit. Due to the unbalanced MOT

beam powers in our system, a side effect of using retroreflection to save on needed
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laser power, we are unable to turn the magnetic field of our MOT off during this

step. As a consequence, the polarization gradient cooling will only occur near the

zero of magnetic field in the center of the trap, limiting our final temperature to

a few times what is possible in a properly balanced setup. With this method, we

obtain a sample of atoms at a temperature of 40 µK prior to loading into the dipole

trap.

The atoms are loaded into the ODP by simultaneously switching off the MOT

cooling lasers and magnetic field while switching on the ODP laser with the atom

cloud superimposed over one reservoir of the dumbbell. Since the height of our

dipole trap is on the order of the MOT temperature, we lose a significant portion of

atoms when we load into the ODP. Since these are the highest energy atoms in the

ensemble, this provides an additional level of cooling. As shown ibelow, after loading

into the ODP we end up with an ensemble of atoms with an effective temperature

of 25 µK.

3.2.5 Imaging

To image the thermal rubidium atoms during the experiment, a fluorescence

imaging technique is used to capture the spatial distribution of atoms in the trap at

various times after releasing the MOT. For this technique, the main MOT trapping

light is pulsed on for 100 µs, and a portion of the spontaneously emitted light from

the cloud is imaged directly onto a CCD. This imaging is accomplished with a

single, 1” diameter, biconvex spherical lens with focal length f = 125 mm placed
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250 mm directly above the MOT location. The CCD is placed at the focal plane

of this imaging system, 250 mm above the lens. The small numerical aperature of

approximately 0.05 suggests that the diffraction limited resolution in our system

would be 8 µm, however the system is further limited by spherical aberations due

to the use of the spherical lens for imaging. Observations in the system suggest that

our actual optical resolution is on the order of 100 µm. Our pulse length was chosen

to keep the thermal movement of our atoms to under this amount during the pulse

duration.

3.2.6 Thermal System Temperature

Since the atoms in any trap will always have a finite temperature, the velocity

distribution of atoms will always have a finite width. Because of this, the atoms will

spread out when they are released from the trap. If this spread can be measured,

the temperature of the atoms can be calculated. Fortunately, the imaging methods

mentioned above can easily accomplish this. If the time between turning off the trap

and imaging the atoms is varied, quantitative information about the spread can be

gathered. In order to make use of this information, however, we must know how the

sample should spread at a given temperature.

For a thermal sample of atoms in a harmonic trapping potential, the spatial

distribution of the atoms will have a Gaussian shape [34],

N(x, y, z; t = 0) = N0e
−
(

x2

2σ2x0
+ y2

2σ2y0
+ z2

2σ2z0

)
.

To determine the density of the sample at a point (x′, y′, z′; t) some time later, we
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need to integrate over our initial distribution, multiplied by the probability that an

atom will have the necessary velocity, (vx, vy, vz) =
(
x′−x
t
, y
′−y
t
, z
′−z
t

)
, to get from

the initial point to the final point. The probability of having a velocity (vx, vy, vz)

is obtained from the Maxwell-Boltzmann distribution,

f(vx, vy, vz) = Ae−
m(v2x+v

2
y+v

2
z)

2kT .

Thus our final density distribution is described by,
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∫ N0e
−
(

x2

2σ2x0
+ y2

2σ2y0
+ z2

2σ2z0

)
Ae−

m

((
x′−x
t

)2
+

(
y′−y
t

)2
+

(
z′−z
t

)2)
2kT

 dxdydz

= N ′0e
−
(

x2

2(σx(t))2
+ y2

2(σy(t))2
+ z2

2(σz(t))2

)
,

where (σi(t))
2 = σ2

i0 + kT
m
t2. The final distribution is still a Gaussian, but with a

variance that increases quadratically in time at a rate that depends on the temper-

ature. Using this information, we can fit our measured distributions to Gaussian

functions, and fit the measured variances as a function of time to obtain the tem-

perature of the atoms. An example of this expansion for our MOT system, which

produces atoms with a temperature of approximately 40 µK, is shown in figure 3.14.

3.2.6.1 Truncated Thermal Distribution

In our experiment, we are loading the atoms from a thermal cloud into a

trap of finite height. Because of this, the initial thermal distribution is going to be

truncated as shown in figure 3.15. Due to the rough nature of the walls of our trap,

and the presence of the channel, we expect that the system will be chaotic enough

that there are no closed orbits in the reservoirs allowing trapping of atoms above
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Figure 3.14: False color fluorescence images of the thermal expansion of
a sample of cooled
Rubidium atoms at 40 µK. The time between frames is 1 ms. By fitting
the optical density of the cloud after various TOF, we are able to deter-
mine the temperature of the atoms, which affects the rate of expansion
of the cloud.

this energy. Additionally, the mean time between collisions in our thermal system

is long compared to the lifetime of the trap, so rethermalization will not occur. We

thus need some method to approximate our system temperature.

The 2D thermal distribution for our MOT, prior to being loaded into the

dumbbell potential, is given by equation 2.21. For our atomic mass (m = 87 amu),

and temperature T = 40uK, this gives us

f2D(v) =
m

kT
ve−

mv2

2kT dv, (3.2)

after integrating over the θ coordinate. The trapping potential has a height of

approximately U = k × 60 µK. Any atom with a kinetic energy higher than this

will escape the trap. This corresponds to a velocity given by

v =

√
2k (60 µK)

m
≈ 10.7 cm/s. (3.3)
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Figure 3.15: The black curve depicts the 2D velocity distribution of
our atomic cloud at 40 µK, prior to loading into the ODT. The dotted
black line shows the average 2D velocity 〈p2D〉 /m. When the atoms
are transfered into the ODT, the atoms with a velocity greater than
some cutoff (1/2mv2 > Um) are lost from the trap. After normalizing
the velocity distribution, we are left with the red curve, along with its
associated average 2D velocity. This velocity corresponds is equal to
that of a thermal system with a temperature of 25 µK, which is what
we use as our experimental temperature when comparing to theory.
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The truncated 2D speed distribution, along with the initial MOT 2D speed distibu-

tion, are shown in figure 3.15. The truncated distribution has been normalized, due

to the atoms being lost. The dotted lines in the figures show the average 2D speed

for the two distributions, which is the quantity from the distribution that matters

for our derivation of dissipation for the thermal system. The average 2D speed

for the truncated distribution corresponds to the average 2D speed in a Maxwell-

Boltzmann distribution with a temperature of ≈ 25 µK. This is the value that we

will use when comparing our exerimental values to our derived values. We do not

compare other quantities, such as the rms speed, since the average speed is what

shows up in out equations for dissipation.

3.3 Creating a Dumbbell Potential

3.3.1 Generalized Phase-Contrast Imaging

To perform the desired experiments with the both the thermal and BEC sys-

tems, we need to be able to create dumbbell shaped, 2D ODPs. The method we

chose for this in the thermal system was to use an adaptation of the Generalized

Phase-Contrast (GPC) setup [36–38]. This system allows us to take an initial phase

pattern imprinted on a Gaussian mode beam, and convert it directly into an output

intensity pattern. It is an efficient method for spatially shaping the transverse

intensity profile of a focused laser beam. The GPC technique redirects most of the

beam intensity into the desired potential pattern, making efficient use of available

laser power. As a derivative of the Zernike phase imaging [39], it relies on a strate-
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Figure 3.16: a) Schematic of the GPC optical setup, consisting of an
input phase mask, two lenses in a 4-f configuration, and a PCF. b) A
representation of the dipole trap beam field as it passes through the
setup taken from simulations, including i) the input beam with desired
phase mask (red area represents the π phase shift imprinted onto the
input Gaussian beam), ii) a representation of the intensity in the Fourier
plane, iii) the two portions of the beam at the output plane that either
did (lower) or did not (upper) pass through the PCF (red area represents
the still π phase shifted portion of the beam), and iv) the output intensity
pattern resulting from the interference of the portions in iii). c) i) A
typical CCD camera image at the output plane of the GPC optical setup
for the example pattern from b), ii) a close-up image of this pattern,
showing the dead-space artifacts from the SLM, and iii) a fluorescence
image of thermal 85Rb atoms with an effective temperature of 25 µK,
taken 2 ms after release from the potential displayed in i). Note, the
atoms were released and imaged while initially contained on only one
side of the dumbbell shaped potential.
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SLM PCF
Lens Lens

Figure 3.17: The actual GPC setup used in the experiment. The beam
path is artificially drawn in for clarity.

gically sized and placed phase-contrast filter (PCF) to enable a one-to-one mapping

of a phase embedded across a laser beam to a high-contrast spatial intensity pro-

file. While we only show this for a binary phase pattern, the theory described by

Gluckstad et al. [36] extends fully to continuous phase patterns. At the same time,

this makes phase-contrast shaping closely related to phase-contrast imaging that has

been used to monitor atomic cloud densities in a minimally destructive way [40].

We demonstrate the approach with the setup shown in figure 3.16, which is easily

integrated into standard imaging systems used to study cold atoms. While we em-

ployed a 4-f arrangement to create the intensity pattern in our use of the technique,

other arrangements are also possible. The GPC approach requires the phase mask

to be placed in a collimated beam before the first lens and the PCF to be located

in the Fourier plane of the first lens. The desired intensity pattern appears in the

image plane of the second as shown in Figure 3.16.

In our setup, we use a computer controlled spatial light modulator (SLM) as

the phase mask. Etched phase masks could also be used for this purpose. While

they will have better resolution, they lack the flexibility that SLMs offer for real

time changes to the masks. The PCF is a simple phase mask consisting of a circular
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region that shifts the phase of low spatial frequencies by π. The diameter of the

circle depends on the input beam size and the details of the phase mask. The initial

PCF diameter is chosen to match the focal spot size of the beam in the Fourier

plane, with the phase mask removed. Typically the diameter has to be adjusted for

maximum contrast as discussed below.

The PCF splits the beam into two parts. One part contains the lowest-order

spatial frequencies that have been shifted in phase by π. The profile of this beam

will be close to Gaussian because it is nearly devoid of any higher order spatial

frequencies. The phase of the other part is unshifted. This portion contains the

initial Gaussian envelope, in addition to all of the high spatial frequency compo-

nents of the associated phase pattern. The two parts will interfere in the image

plane to produce the desired intensity profile. The sequence of events is depicted in

Figure 3.16. For optimum efficiency and contrast, the intensities of the two parts

of the beam should be equal, placing restrictions on the size of the PCF and the

particular phase pattern used as mentioned above. Due to mismatch in the sizes

of the two parts, there is typically a ring of light surrounding the desired pattern.

In our experiments we block this light with an iris. It is useful to simulate desired

patterns using numerical approximations prior to setting up the apparatus as well.

In practice, due to having a limited number of PCFs available, and the effort

required to change the beam size, we typically fix the PCF and beam sizes, and vary

the size of the phase pattern to maximize the contrast in the output plane. For this

experiment, the 1/e2 radius of the initial beam was 10 mm, and the focal length

of the lenses were 60 mm. The SLM (Hamamatsu PAL-SLM) used to produce the
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initial phase pattern was a 768-by-768 array, covering an area of 2.5-by-2.5 mm. The

PCF was created in collaboration with the Laboratory for Physical Sciences, and

consists of a fused silica window with an array of nine phase spots on a 5 mm grid,

varying from 5.5 to 6.5 µm. The phase spots were chemically etched to a depth of

d = 850 nm. The difference in index of refraction between the air (≈ 1) and fused

silica (≈ 1.45) produces a phase shift of ∆φ = 2d(n − 1)π/λ ≈ π for light with a

wavelength of 780 nm.

There are two main advantage of phase shaping over the simple amplitude

shaping used for the BEC experiment. First, the theoretical efficiency of the former,

defined as the fraction of total input power contained in the desired output pattern,

can be larger be more than a factor of 2, depending on the exact pattern used.

Experimentally, however, this is not always the case. For this experiment, the phase

spot used was extremely small (≈ 6 µm), and the spherical lenses used did not

allow diffraction limited performance down to this size. Ideally the imaging system

should be diffraction limited, with the size of the phase mask larger than the imaging

aberations. More specialized aspherical lenses or complex lens systems could be used

in future generations of the setup to make this possible and minimize this source of

loss.

The second, and more important, advantage is the flexibility this method

provides when combined with an SLM. For this experiment, the SLM was computer

controlled, and is interfaced to the computer as an external monitor. With this

setup, changing the pattern is just a matter of changing what is on that monitor.

While simulations are accurate enough to provide a good starting point for pattern
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designs, the pattern on the SLM can be fine tuned to increase efficiency once the

optical setup is complete. In addition to fine tuning individual pattern parameters,

patterns can be completely changed in a matter of seconds as well, providing quick

adjustment to experimental parameters for certain experiments. In addition, it

may also be possible to change the phase mask on a time scale commensurate with

degenerate gas dynamics.

The main limitation of the GPC technique, when implemented with an SLM, is

the cost of SLM. SLMs are also generally designed for limited ranges of wavelengths,

limiting the flexibility of the system. In addition, the technical details of how the

SLM works, namely the necessary input polarization and the inter-pixel dead-space,

can affect the resulting potential that the SLM produces. In order for the SLM

to change only the phase of the light incident upon it, the light must be linearly

polarized in a particular direction. For reflective SLMs, which are preferable due

to reduced dead-space as discussed below, this means that one of two things can

be done to separate the input light from the output. Either the light incident on

the SLM must be at a slight angle, or a 50/50 beamsplitter can be used if the light

must come in normally. The first option can be problematic if the depth of field of

the imaging system in the GPC setup is smaller than the longitudinal displacement

of the tilted SLM plane. If the second option is used to eliminate this problem,

the total power is cut down to 25% of the input. Combined with the relatively

low damage threshold for SLMs, this can be a problem for far-detuned traps. A

similar photolithographic process as for the amplitude mask (AM) described below

could be used to etch a phase mask. While this would negate all of the problems
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mentioned above, it would also result in a static mask without the versatility of the

SLM created masks.

Before ending this section, we return to the dead-space mentioned above. In

any pixelated structure, like an SLM, there will necessarily be some space between

pixels that cannot be used. In transmissive SLMs, this space contains the wires

that address each pixel, and blocks the light. While reflective SLMs can improve

significantly on this, there is still some unusable space between pixels. The reflective

SLM used in this experiment has a >90% fill factor, so this dead-space is quite small,

but is still enough to cause a noticeable effect in the output. In our phase shaping

scheme, this shows up as a slight intensity drop in the space between pixels as can

be seen in Figure 3.16 (c-ii). Using a blue detuned trap minimizes the problems this

can cause, since the atoms are trapped in areas with no light. Additionally, some

newer, reflective coated, liquid crystal on silicon (LCoS) SLMs claim to have near

100% fill-factors, however we have not tested these devices to date. Like traditional

SLMs, the LCoS SLMs can be used for both phase and amplitude shaping.

3.3.2 Direct Intensity Masking

For the BEC experiment, we used a direct intensity masking setup to create

the necessary potential. This method is considerably more lossy than the theoretical

limit of phase-contrast imaging, as it involves an opaque amplitude mask (AM) to

block part of the beam. The setup, however, is simpler than the phase-shaping setup

and the total cost is considerably lower. All that is required is an amplitude mask
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Figure 3.18: a) Schematic of the imaging setup used for the AM sys-
tem. This setup combines the AM dipole trap beam (green) with a
red-detuned (1064 nm) dipole trap beam (red) and counter-propagating
imaging beam (589 nm) (orange) using a 50/50 beamsplitter. These two
beams are separated using a dichroic plate beamsplitter. All three of
these beams are imaged through a main imaging stack suspended on a
2D translation stage above the BEC. The mask is placed on a 3-axis
translation stage to allow precise positioning. b) i) A typical CCD cam-
era image of the output plane of a AM optical setup. This example is
from a simple, 1:1 system using a single spherical lens. ii) An in situ
absorption image of a sodium BEC trapped in this potential.
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and a series of lenses to relay the shadow of the mask onto the atoms as sketched

in figure 3.18. For the blue-detuned light used in this experiment, the mask blocked

light associated with the trapping regions while transmitting the light responsible

for the dipole potential. As with phase shaping, amplitude shaping is also easily

integrated into commonly used imaging systems for cold atoms. In our experiment,

we combined the imaging for the amplitude shaping with that used for absorption

imaging diagnostics.

3.3.2.1 Construction of Intensity Masks

For our experiments designed to use the AM, 2D potential landscapes had to be

created that extended over a length of up to approximately 150 µm, with minimum

structure sizes down to approximately 10 µm. The imaging system that was used for

absorption imaging of the atoms as well as to image the two dipole traps, provided

a reduction of 2.9 between the image plane at the atoms and the object plane on

the optical table. The dimensions of the necessary masks are thus approximately

450 µm with features around 30 µm. While this is incredibly difficult to achieve

with ordinary machining techniques, it is well within the realm of possibility of even

very basic photolithographic techniques used to fabricate microelectronic circuits.

With the wide availability of fabrication labs at many universities, as well as private

facilities, the necessary masks can be created quickly with minimal training. Special

care needs to be taken, however, beyond standard procedure in these labs, as optical

quality is generally not a concern in microelectronic applications.
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The process that we use starts with a commercially produced contact mask,

which we transfer into a chromium mask on an AR coated optical window. These

are cheaply produced from design files sent to a manufacturer. These commercial

masks generally come in one of two forms; a glass plate with an opaque chromium

mask, or a plastic sheet with an opaque resin mask. Neither of these types of mask

is directly usable in our experiment for a few reasons. The mylar masks, in addition

to likely melting with high optical intensities, are not completely opaque, and will

allow some tapping light to pass, which is undesirable. The glass masks, while being

opaque enough for our application, are not AR coated and internal reflections will

produce etaloning effects in the output plane at the BEC.

For this experiment, we needed the mask to be on a 1/2” window with a broad-

band AR coating (350–700 nm). To transfer our commercial masks onto our this

window, the we first coated the window on one side with a ∼200 nm thick layer of

chromium using thermal vapor deposition. This thickness which is sufficient to pro-

duce an experimentally verifiable optical density greater than 7 for the wavelength

of light used (532 nm). The thickness was constantly monitored during deposition

with a calibrated quartz oscillator that was also exposed to the chromium. A special

rig to hold the windows in the vacuum chamber was necessary to avoid scratching

the back side of the window, and standard optical cleaning procedures were carried

out before deposition. A layer of gold can also be deposited with the same system,

although it will not stick well to the window itself, and a thin layer of chromium is

first necessary.

The chromium coated windows were then coated with a layer of photoresist
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(Shipley 1813), which is spun on using standard methods for silicon wafers. Again,

proper tools must be constructed and used to ensure the back side of the window

is not scratched during photoresist spinning, or the subsequent baking to cure the

photoresist. Since standard procedures in the lab are designed for thin (0.5 mm)

silicon wafers, the baking time was adjusted to accommodate the relatively thick

(3 mm) window. For initial tests, the time was approximately doubled to two

minutes. The roughness of the edges of the final masks produced was on the scale

of 5 µm. It is expected that this is due to improper baking since uneven adhesion

of the photoresist layer can cause these effects. Given the image magnification

and diffraction limit of the experimental setup used, however, this was more than

sufficient for our purposes. It is expected that further fine-tuning of the baking

time, which would improve photoresist adhesion, would result in smoother masks if

necessary for future experiments.

Once the photoresist is exposed to ultraviolet (UV) light, the polymer breaks

down, and can be removed by a weak developer solution that leaves unexposed

photoresist intact. In order to carry this process out selectively, and create our

desired pattern, a commercially produced mask is used with the same dimensions as

our final product. These can come in many forms, but those used in this experiment

are created on a Mylar film with an opaque resin. These are easily produced from

source files in a standard Gerber format. This mask is sufficient for exposing the

photoresist, but lacks the AR coating desired, and optical density necessary for the

experimental intensity mask.

This commercial mask is placed over the chromium and photoresist coated
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window in an apparatus known as a mask aligner. This machine combines a vac-

uum system to hold the window and mask in place, a precision translation and

rotation stage to align the two, a microscope to inspect alignment, and a timed

UV exposure system. Again, another custom holder needs to be made to hold the

window without scratching the back side, and to hold the window lower than the

typically thinner silicon wafers used. Once exposed, the mask is removed and the

window is again baked, with adjusted baking time, to finish curing the photoresist.

It is then rinsed in the developer solution for approximately 40 seconds to remove

the exposed photoresist. The result can then be examined under a microscope to

verify that the desired pattern has been transferred properly. If not, the remaining

photoresist can be stripped with acetone, and the photoresist, exposure, developing

procedure can be attempted again. In our initial runs of this process, we had success

rates of about one in every three tries. Once the proper transfer has been verified,

the window is rinsed in a chromium etchant solution for approximately 2 minutes,

or until the chromium in the exposed regions has been completely etched off of the

window. The chromium etchant used in this experiment had no noticeable effect on

the AR coating of the window. Any remaining photoresist can then be removed,

and the finished chromium intensity mask is left on the optical window, and can be

placed in the experimental setup at the object plane of the imaging system.
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Chapter 4: Experimental Details and Results

4.1 Thermal System

In order to test our theoretical treatment of the purely thermal system, we

carried out an experiment using the thermal rubidium MOT system. For this ex-

periment, a MOT was created directly over one reservoir of the dumbbell potential.

A blue detuned, sheet ODP confined the atoms from below, with gravity provid-

ing confinement from above. The potential height of this sheet was approximately

kB(500 µK), well above the temperature of the MOT. The MOT was then suddently

switched off, and fluorescent images were taken after varying times of discharge. As

described in section 3.2.6.1, due to the finite height of the dumbbell potential the

fastest atoms escape the trap, leaving a reduced number of atoms with a reduced,

effective temperature to interact with the potential. For the trap used in this ex-

periment, with a potential height of approximately 60 µK, and atoms at an initial

temperature of 40 µK after the sub-Doppler cooling step, this leaves a population

of atoms with an effective temperature of 25 µK. Due to scattering of light from

the relatively near resonance trapping beam used to create the dumbbell potential,

the resulting trap has a lifetime of τ ≈ 75 ms. This scattering will also increase

the temperature of the atom cloud, although this is not taken into account for this
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analysis.

4.1.1 Details of Parameters varied in Experiment

The dumbbell potential used has reservoirs with a diameter of 600 µm, and a

channel with a length of 150 µm. The width of the channel was set to a different

value for each experimental run, varying from 48 µm to 580 µm in 8 steps. The

first image after the MOT release was taken at 5 ms, with subsequent images being

taken at 10 ms intervals after that, to a maximum time of 75 ms. After this point,

the atoms number is so low due to light scattering losses, that useful information is

no longer able to be obtained. For each time step, 8 separate runs were done, and

the resulting atom numbers averaged together to reduce random noise in the signal.

4.1.2 Data

An example of the images obtained for one run of the experiment are shown

in figure 4.1. The atom density is shown in false color, with each frame normalized

separately. The dynamics appear qualitatively to match what one would expect,

and what our description above predicts; the atoms start mostly localized to one

reservoir, then as time evolves, they come closer to being evenly distributed between

the two reservoirs. To get a quantitative measure of the dynamics in the system, we

want to measure the normalized number difference between the reservoirs, N2−N1

N2+N1
.

We get the number of atoms in either reservoir, Ni, by counting the photons captured

in an image for the pixels over only that reservoir. The normalized number difference
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is plotted as a function of time in figures 4.2 and 4.3 for the channel widths used in

the experiment. Each of these plots includes a fit to an exponential decay in red,

which we would expect for an overdamped oscillator. The blue lines in these figures

show the lower and upper bound of the standard errors in the fitted time constants.

Again we see that it qualitatively follows what we expect, with the addition of an

oscillation that might be explained by the inductance that we have derived causing

the system to be underdamped. These oscillations are only significant for very wide

channels.

For these plots, it should be noted that the first two to three data points are

not expected to fit our description of the capacitor dynamics. At the times the

images for these data points are taken, there are a significant number of high energy

atoms still in the frame that are not bound in the potential. These are the atoms

above the cutoff in the velocity distribution that we have assumed are gone. Until

these atoms are actually gone from the trap, we do not expect the system to act as

we have described. For this reason, the first three data points are not taken into

account in the fits.

4.1.3 Comparison to Expected Values

Plugging values for our system into equations 2.41 and 2.38, we obtain values

for our atom circuit elements;

Cc =
neA

2kT
=

neA

2
(
1.38× 10−23 J

K

)
(25× 10−6 K)

= neA
(
1.45× 1027 J−1

)
, (4.1)
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Figure 4.1: After the MOT is released over one reservoir of our dumbbell
potential, fluorescence images are taken after various TOF. Here we show
a composite of these images for a channel width of 288 µm. The time
after release of the MOT is shown on each frame, and varies from 5 ms
to 60 ms. Since atom losses are significant over these time scales, one
scaling cannot be used for the entire image and each frame is individually
scaled. The scale factor for each frame is also shown.

Rc =

√
2πmkT

new
=

√
2π (1.44× 10−25 kg)

(
1.38× 10−23 J

K

)
(25× 10−6 K)

new

=
1

new

(
1.77× 10−26 kg

m

s

)
, (4.2)

and

Lc =
2ml

new
=

l

new

(
2.89× 10−25 kg

)
. (4.3)

Since our system is as damped, harmonic oscillator, one of the first parameters

that we should look at is the damping constant, or damping ratio

ζ =
Rc

2

√
Cc
Lc

=
1

new

(
8.85× 10−27 kg

m

s

)√
n2
eA
w

l
(5.02× 1051 J−1kg−1)

= 0.627

√
A

wl
. (4.4)

This unitless parameter tells us how damped the system is. For ζ < 1, the system

will be underdamped, and can be described by an oscillation with exponentially
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Figure 4.2: In each of these plots, the experimentally measured normal-
ized number difference between the two reservoirs N2−N1

N2+N1
of the thermal

dumbbell system is plotted as a function of time after release from the
MOT (black ×s). A fit of this data to an exponential decay is also
shown (red line) with decay time constant τ . Also shown are plots for
decay with τer = τ ± στ , where στ is the standard error in the fitting
parameter for the fit (blue lines). Each plot is labeled with the channel
width for that experimental run. This is the only variable adjusted in
this experiment.
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Figure 4.3: In each of these plots, the experimentally measured normal-
ized number difference between the two reservoirs N2−N1

N2+N1
of the thermal

dumbbell system is plotted as a function of time after release from the
MOT (black ×s). A fit of this data to an exponential decay is also
shown (red line) with decay time constant τ . Also shown are plots for
decay with τer = τ ± στ , where στ is the standard error in the fitting
parameter for the fit (blue lines). Each plot is labeled with the channel
width for that experimental run. This is the only variable adjusted in
this experiment.
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decaying amplitude. For ζ = 1, the system is critically damped, and will follow an

exponential decay. For ζ > 1, the system is overdamped and again will follow an

exponential decay, with the inductance value not significantly altering the dynamics.

Note that for our system, this parameter does not depend on the number of atoms

in the system, and as long as the area of either of the reservoirs is greater than about

2.5 times the area of the channel, we are in the overdamped regime. This means that

the inductance in our system does not significantly influence the dynamics except

possible for the widest channels, since our channel is short compared to the size of

the reserviors. For these wide channels, however, many of our assumtions going into

this analysis break down and this is no longer a valid description. Specifically, we

have assumed that either reservoir is in equilibrium, with the effusion into and out

of it acting as a perturbation. This is obviously not true for these large channel

widths, where we are basically seeing a simple expansion of an atomic cloud into a

larger area. Therefore, for the experimental runs that we expect to be well described

by this model, we are in the overdamped regime.

In this regime, we can describe our dynamics by a simple exponential decay,

with a decay time

τ = RC =
A

w

(
25.6

s

m

)
. (4.5)

Figure 4.4 shows the expected values for this decay time compared to fits to the

data taken from the experiment. The error bars are the standard error in the fitted

decay times, and the two blue lines indicate the margin of error in our expected

value of the time constant for a 5 µK error in the measured temperature. Given
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Figure 4.4: The experimentally measured decay time τ is plotted (black
×s) as a function of channel width. The decay times are from the fits
in figures 4.2 and 4.3, with error bars given by the standard error in the
fit (depicted as the blue lines in figures 4.2 and 4.3). Also plotted is
our expected decay times that we calculate in chapter 2 with no fitting
parameters (red line), as well as the expected values if for a temperatures
5 µK above and below our assumed temperature of the system (blue
lines). The higher (lower) temperature corresponds to the lower (upper)
blue line. The value of 5 µK is chosen as a rough guess to our certainty
in our effective temperature.
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the assumptions going into the effective temperature used for the theoretical values

because of the truncated velocity distribution, we expect a possible error of this

order. This is by far the largest contribution to error in this system.

With the exception of the extremely large channel widths, where we expect to

see departures from theory due to breaking of assumtions in the theory, it is clear

that our theoretical description is consistent with what we observe in experiment.

Both the functional form of the dissipative dependance on channel width and the

overall scaling factor are quite close to what we expect. It is important to note

here that there are no fitting parameters in this plot. This is not a fit, but rather a

calculation based only on the geometry and temperature of our system.

4.2 BEC System

For the superfluid experiment, a sample of atoms was confined vertically by

the red detuned sheet ODP. This sheet has a vertical trapping frequency of ωz/2π ≈

529(2) Hz. The sheet also confines the atoms in the horizontal plane with a trapping

frequency of ≈ 9 Hz. The number of atoms can be varied from 105 to 5×105 atoms,

corresponding to equilibrium chemical potentials of µe/h̄ ≈ 2π×(500 Hz) to µe/h̄ ≈

2π × (1000 Hz). This roughly square root scaling of chemical potential comes from

our derivation and measurement shown in section 2.2.1

The dumbbell potential, created using the direct intensity masking procedure

described above, consists of reservoirs with a diameter D = 40(3) µm, and a channel

length of l = 22(1) µm. The Thomas-Fermi width of the atoms in the channel is
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measured to be d = 6.4(2) µm, and is independant of both the total atom number

and the intensity of the beam used to create the dumbbell potential. The 1-D

density of the atoms in the channel does however vary with these parameters.

4.2.1 Details of Parameters varied in Experiment

The two parameters that were varied for the experiment are the total atom

number N , and the potential height of the dumbbell trap Um. The different atom

numbers were measured to be nominally 125(6)× 103, 229(9)× 103, 331(11)× 103,

and 472(22) × 103 atoms. Um/h was varied from approximately 2.25 kHz down to

the lowest possible value before atoms start leaking out of the trap, which is limited

by the chemical potential, and thus atoms number. Four evenly spaced points were

taken over this range, with the exception of the lowest atoms number, which only

has three data points due to this limitation in lowest possible value.

4.2.2 Data

A sequence of images taken for an atom number of 495(16)× 103 is shown in

figure 4.5. The normalized number difference between the two reservoirs is plotted

for all data runs in figures 4.6, 4.7, 4.8, and 4.9.
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Figure 4.5: After the gate beam over the channel is released, the BEC is
allowed to evolve for a variable amount of time after which we measure
the optical density. The full method for this takes approximately 8
individual experimental runs, and is described in detail in the text. Here
we plot a composite of these optical densities for a few of the evolution
times for a group of 495(16)× 103 atoms.
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Figure 4.6: The measured normalized number difference between the two
reservoirs is plotted (black ×s) as a function of time after gate release for
the system with nominally 125× 103 atoms. Each plot is for a different
value of dumbbell potential height Um, which is shown on each plot
along with the atom number for that run, which varied slightly around
the nominal value. The red curve shows a fit to our circuit model given
in equations 2.11, 2.12, and 2.13.

4.2.3 Component Values

The fits in these plots of our data are numerically calculated best fits to the

coupled set of differential equations that describe our system (equations 2.11, 2.12,

and 2.13). This model contain three independant fitting parameters, τ = RC,

ω2 = 1/LC, and Ic. Although the functional form of the current-phase relation for
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Figure 4.7: The measured normalized number difference between the two
reservoirs is plotted (black ×s) as a function of time after gate release for
the system with nominally 230× 103 atoms. Each plot is for a different
value of dumbbell potential height Um, which is shown on each plot
along with the atom number for that run, which varied slightly around
the nominal value. The red curve shows a fit to our circuit model given
in equations 2.11, 2.12, and 2.13.

our weak link is not known, we is take to be f(γ) = sinγ for mathematical simplicity.

Changing the form, however, does not significantly alter the fits as long as f(γ) is

2π-periodic, which will always be the case.

Since we have three fitting parameters in our model, and we are attempting

to compare to four calculated values (C, R, L, and Ic), we must take one of these
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Figure 4.8: The measured normalized number difference between the two
reservoirs is plotted (black ×s) as a function of time after gate release for
the system with nominally 333× 103 atoms. Each plot is for a different
value of dumbbell potential height Um, which is shown on each plot
along with the atom number for that run, which varied slightly around
the nominal value. The red curve shows a fit to our circuit model given
in equations 2.11, 2.12, and 2.13.

to be known a priori. Since we understand the chemical potential and capacitance

with the least uncertainty, we take C to be known and we pull values for R, L,

and Ic out of our fits to compare to theory. Figure 4.10 shows a comparison of our

calculated and measured conductance, giving us a comparison of R. Figure 4.11

shows a comparison of our calculated and measured inductance. Figure 4.12 shows
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Figure 4.9: The measured normalized number difference between the two
reservoirs is plotted (black ×s) as a function of time after gate release for
the system with nominally 470× 103 atoms. Each plot is for a different
value of dumbbell potential height Um, which is shown on each plot
along with the atom number for that run, which varied slightly around
the nominal value. The red curve shows a fit to our circuit model given
in equations 2.11, 2.12, and 2.13. Becuase the chemical potential of this
sample of atoms is significantly higher than the other values tested, we
were unable to lower the dumbbell potential height below the lowest
value used here due to loss of atoms from the trap. This is why there
are only three potential heights used for this atom number.

a comparison of our calculated and measured Ic.

As described previously, the conductance should be linear in n1D, and this is

found to be true, with a linear fit to the data shown in the plot. The dependance

83



of G on the dumbbell potential height and atom number is a bit more complex,

and is what we use to quantitatively compare the results to our derived Feynman

conductance. This data is also plotted in figure 4.10, with the atom number groups

distinuished by color, with a fit to our expected form of the resistance shown with

the solid lines. The only parameter in this fit is an overall scaling factor αF , such

that our measured G = αFGF , where GF is our derived conductance. The model

reasonably captures the trend, and the best fit parameter αF = 0.47(10). The value

of αF being less than unity implies that there is higher dissipation than what we

have accounted for in our theory. Since we have not taken into account any collective

excitations other than vortices, this is reasonable.

Figures 4.11 and 4.12 plot the ratio of the experimental to theoretical values of

L and Ic respectively. The mean and standard deviation of the ratios are shown by

the highlighed region in the plots as well. The value that we find for the inductance

is consistent with unity, showing agreement between the experiment and theory. On

the other hand, the value obtained for the critical current is significantly smaller

than unity. As with the fitting factor found for the dissipation in the system, the

direction of this discrpency tells us that there are excitations we are not taking into

account, and we are experiencing a higher dissipation than we are accounting for in

the theory.
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Figure 4.10: From the fits in figures 4.6, 4.7, 4.8, and 4.9, and from our
calculated capacitance value, we are able to determine the conductance
of the channel in our dumbbell for each experimental run performed.
The plot on the left shows this conductance as a function of the 1D
atom density in the channel (n1D). According to our theory, this plot
should show a linear relationship that intercepts the origin. The black
line is a fit to this model. The points are grouped in color by atom
number. The red, green, blue, and purple points correspond to total
atom numbers of nominally 125(3)×103, 230(4)×103, 333(5)×103, and
450(8) × 103 atoms. The plot on the right shows the conductance as a
function of of dumbbell potential height Um, again with the same atom
number grouping. The colored lines correspond to a fit of our Feynman
resistance model to our data for all combined runs. The individual curves
are this fit plotted at for the average atom number of each grouping, with
colors matching the experimental data groups.

4.2.4 Observation of Vortices

Since our model of dissipation in our system involves the creation of vortices

in the superfluid, we have another avenue by which to assess the model. While

our imaging resolution is not adequate to directly observe vortices in-situ in our
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Figure 4.11: From the fits in figures 4.7, 4.8, and 4.9, and from our
calculated capacitance value, we are able to determine the inductance
of the channel. Here we plot the ratio of experimental to theoretical
inductance for each experimental run. The atoms are grouped by color
similar to figure 4.10. The black line represents the weighted mean of
the values, and the shaded area shows the weighted standard deviation
of the values.

superfluid, which have core sizes on the order of 1 µm, we can image them in time-

of-flight images, as the core size increases significantly when the cloud expands.

To investigate this, we allow an initially imbalanced dumbbell system to come to

equilibrium, discharging for a time on the order of half a second. This is long enough

for the system to have damped out any difference and any oscillations. After this,

we turn off all traps completely. After a 10 ms TOF, we image the atoms. A sample

of these TOF images is shown in figure 4.13 for a system that was given 612 ms to

discharge, and excitations can very clearly be seen in the initially empty reservoir.

The excitations qualitatively resemble the structure of vortices after expan-

sion, although determining this without doubt is not possible without some sort
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Figure 4.12: From the fits in figures 4.7, 4.8, and 4.9, and from our
calculated capacitance value, we are able to determine the critical current
for vortex formation at the exit of the channel. Here we plot the ratio
of experimental to theoretical critical current for each experimental run.
The atoms are grouped by color similar to figure 4.10. The black line
represents the weighted mean of the values, and the shaded area shows
the weighted standard deviation of the values.
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Figure 4.13: Images taken after a discharged dumbbell potential is re-
leased completely from the trap and allowed to expand in TOF for 10 ms.
The system was allowed to discharge for 612 ms prior to release, which
is well past the amount of time necessary to come to equilibrium. Exci-
tations can clearly be seen in the initially empty reservoir which is what
we expect based on our model.

of velocity measurement (interferometric measurement, Raman spectroscopy, etc.).

These excitations can be seen in nearly all TOF images after atoms have at least
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partially populated both reservoirs. The fact that they nearly all exist in the ini-

tially empty reservoir is strong evidence in favor of our description of excitation

formation, namely that it occurs on the exit of flow from the channel.

4.3 Conclusions

Through the course of this experiment, we have developed two new techniques

for creating arbitrary, 2D, optical dipole potentials for use in ultracold neutral atom

research. Both of these techniques are borrowed from other fields; the GPC tech-

nique comes from microscopy and the fabrication process used to make the amplitude

masks for the direct intensity masking technique is borrowed from the manufacture

of microelectronics. Both of these techniques heavily adapt many aspects of their

predecessors in order to make them applicable to our system. Each provides its own

advantages and disadvantages, and depending on the atomic system being studied,

optical access to the cold sample, the available light sources for dipole traps, the

necessary intensities for the dipole traps, available fabrication facilities, and many

other factors, one can choose whichever method is best suited.

Using these newly adapted techniques, we have studied dissipation in the flow

of a superfluid between two reservoirs connected by a narrow channel. The model

that we use to describe this system is analogous to a superconducting circuit. The

motivation behind drawing this parallel is similar to that for other systems. Many

physical systems are described by similar differential equations. Some dynamics are

already well understood in certain systems, and if we can show that other systems
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are fundamentally similar we already have a framework for analyzing them. An

example of this is the use of conductance and circuit models to analyze vacuum

system design. Even our thermal system is different than this particular example

though, as collisions with the walls of our potential are very different in nature to

collisions with a physical vacuum chamber wall.

These parallels also provide us with insight into what might be possible with

our system. Many complex electronic circuits already exist, and if we can determine

a method to mathematically switch between the systems, we can see what devices we

might be able to create with a cold atom circuit. An example of this is the existence

of superconducting SQUID circuits. These devices make use of circuits with a ring

geometry and Josephson junctions to create an extremely sensitive magnetometer.

Drawing our parallels to the cold atom superfluid, we can conceivably create a

rotation sensor using the same principles.

Our dumbbell geometry creates an atom circuit that is analogous to a super-

conducting circuit consisting of a capacitor, an inductor, a resistor and a Josephson

Junction. A surprisingly large number of components for such a simple system. The

dissipation in the system is described by a model of vortex-like collective excitations

being produced at either side of the channel when the superfluid flows into a reser-

voir above some critical current. This description of vortex production has existed

for decades, but this is to our knowledge the first direct experimental investigation

of its applicability to a real system. We show that the dissipation we see in our

system is consistent with this description, except for an overall scaling factor. We

also directly observe vortices in the reservoirs after dissipation has occured. The

89



fact that we observe a dissipation that is greater than what would be expected for

vortices alone, and that we observe a lower than expected critical current, both

indicate that there are likely other excitations causing dissipation in our system in

addition to vortex production.

4.3.1 Future Directions

The flexibility of the experimental techniques that we have developed allow for

many future experiments following up on this work, in addition to being applicable

to many completely different systems. One possibility is to take more careful mea-

surements with smaller atom imbalances, where the current stays below the critical

current, to study the persistent oscillation in the LC system. This oscillation can

also be driven with the addition of a variable strength potential over one of the

reservoirs (such as an additional ODP). With this driving potential, careful study

of the crossover to the dissipative regime can be carried out.

The geometry of the system could also be altered to look more directly the

Feynman mechanism of vortex production. In our system, the reservoirs are far from

infinite, and the current is not constant. If a geometry with larger reservoirs were

created, one could imaging a system in which one of the reservoirs is “squeezed”

by an additional ODP to create a constant current. With high enough imaging

resolution, individual vortices may even be directly observable, and countable, in-

situ.

Our techniques can also be taken further with the use of new devices like 2D
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micro-mirror arrays. These can be used to create a sort of combination of our two

techniques, allowing computer control of a direct intensity mask. The speed of these

devices could even allow real-time manipulation of the potential, even to the point

where rapid switching may some day be able to be used to create time averaged

potentials that are individually, continuously adjustable and addressable at each

pixel. With such a system, not only could we further research the physics that we

have investigated here, but conceivably any 2D, time dependant potential system

can be created, allowing study of limitless other problems.
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Appendix A: Details of Cooling Methods

A.1 Cooling and Trapping Methods

A.1.1 Electronic Structure of the Alkali Atoms

The initial cooling stages for both the sodium and rubidium apparatus rely

on the absorption of momentum from photons to slow the atoms down. Because

the momentum of a photon (p = h/λ ≈ h/600 nm ∼ 10−27 kg m/s) is several

orders of magnitude less than the momentum of an atom at room temperature

(p = mv ≈
√
mkBT ∼ 10−23 kg m/s) which we are trying to slow down, we need

the atom to be able to continually absorb and emit photons without moving into

an internal electronic state that can no longer support this absorption. The alkali

atoms provide a convenient method of insuring this due to their relatively simple

electronic structures. The structure of the D2 spectroscopic lines for rubidium and

sodium are shown in figures A.2 [41] and A.1 [42] respectively. Due to selection

rules for a single photon, dipole transition, the total angular momentum F must

change by 0 or ±1 when a transition from the S1/2 ground state to the P3/2 excited

state. Because of this, if we tune our cooling light to use the transition from the

ground state F = 2 to the excited state F ′ = 3 angular momentum state, the only
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Figure A.1: The electronic structure of the Na D2 spectroscopic line [42].
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Figure A.2: The electronic structure of the 87Rb D2 spectroscopic line [41].
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available state for the atom to decay back down to is the F = 2 state. This gives

us our closed cycling transition to use for cooling.

In reality, the atoms will occasionally absorb an off-resonant photon, and get

excited to the F ′ = 2 state, in which case it can decay down to the F = 1 ground

state. If this happens, the atoms will be transparent to our cooling light, and will

no longer be cooled. In order to compensate for this effect, we also use a second

source of light in our cooling apparatus, called a repump beam, which is tuned to

resonance on the F = 1 to F ′ = 2 transition. This light optically pumps any atoms

that fall into the F = 1 ground state into the F = 2 ground state.

A.1.2 Zeeman Slowing

For the BEC apparatus, the source of atoms in a sodium oven. The nozzle of

the oven is kept at 320◦C, and produces a beam of atoms at roughly that temperature

that is directed toward the experimental chamber. At this temperature, the root-

mean-squared (RMS) velocity of the atoms in the beam is vrms =
√

3kT
m

= 802 m/s.

In order to slow these atoms down to the capture velocity of a standard sodium

MOT, which is approximately 100 m/s, we use what is known as a Zeeman-slower.

The idea of the slower is to direct a beam of light counterpropagating with the

atomic beam that is in resonance with the cycling transition. The atoms will absorb

photons from the beam, along with their momentum, which slows the atoms down.

Once in the excited state, the atoms will decay back down to the ground state,

emitting a photon. This photon will also give a momentum kick to the atom,
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however since this spontaneous emission is in a random direction each time, these

momentum kicks will average to zero.

The situation is somewhat complicated due to the Doppler shifted frequency

of light that the atoms actually see. In the frame of reference of the atoms exiting

the oven, the light in the slowing beam will be shifted by ∆f = ∆v
c
f0 = 802

3×108
×

510 THz = 1.4 GHz relative to the lab frame. Since this is well over the linewidth

of the transition, Γ = 2π× 9.8 MHz, some mechanism is needed to keep the light in

resonance with the transition throughout the slowing process. In the aptly named

Zeeman-slower, this mechanism is the linear Zeeman shift. A tapered solenoid is

wound around the tube through which the atoms are directed. The current flowing

through this coil produces a magnetic field that varies along the axis of propagation

in such a way that the atoms are always in resonance with the light as they are

slowed. Rather than having the magnetic field taper from some maximum, down

to zero, we choose it such that it contains a zero along the slower beam. This is

done for two reasons. First, it allows for the use of lower overall magnetic fields and

currents. Secondly, it means that the atoms exiting the slower are out of resonance

with the beam which is still passing over them. The velocity of the slowed atoms is

< 10 m/s [33]; well within the capture range of the MOT.

A.1.3 Magneto-Optical Trapping

The first stage of cooling in the thermal rubidium system, and the second

stage of cooling in the sodium BEC apparatus, is a magneto-optical trap (MOT).
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The MOT uses two counterpropagating laser beams along each axis of a coordinate

system centered at the trapping region. These beams are tuned approximately 2

natural linewidths below resonance of the cycling transition. In this setup, any atom

that is moving will be moving toward the source of light in one of the beams. The

light in this beam will be slightly closer to resonance than the light coming from

the opposite direction due to the Doppler shift. Light will thus be preferentially

absorbed from the beam opposing the motion of the atom, and the atom will be

slowed when it absorbs the momentum from the photons in this beam. As with

the Zeeman-slower, the momentum kicks from the randomly emitted photons will

average to zero. The result is that any atom with motion in any direction will be

slowed in that direction, giving a nearly linear damping to any motion of the atoms.

While the atoms will not be trapped by this so-called optical molasses, they will be

cooled to sub-milliKelvin temperatures.

In order to trap the atoms once they have been cooled by the optical molasses,

we add a quadrupole magnetic field, produced with an anti-Helmholtz coil. This

setup consists of two coils of wire in parallel planes, equally spaced from the center of

the optical molasses beams. The current in the two coils flows in opposite directions,

producing a zero-field at the center, with increasing field away from it. This produces

a Zeeman shift in the cycling transition of the atom away from the center of the

trap. If the correct circular polarization of light is chosen for each beam, this field

puts any atom away from the center into resonance with the beam toward which it

has moved, causing the atom to get a momentum kick back toward the center. The

result of this is a position dependant restoring force which, along with the damping
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of the optical molasses, gives us our MOT, closely resembling a damped harmonic

oscillator.

The standard MOT discussed here has two main limitations when it comes to

creating a BEC. First, with each photon that is absorbed to slow or trap an atom,

another photon must be emitted. This photon gives a momentum kick to the atom.

While this effect will average out over the many photons that are absorbed, it does

impose a limit on the minimum temperature achievable through the mechanism

described. For Na and 87Rb, these limits are 235 µK and 146 µK respectively.

Secondly, if the density gets too high, the emitted photons from atoms in the center

of the trap will exert a radiation pressure on the rest of the atomic cloud. This

will limit the maximum density of the MOT, and if the end goal is a BEC where

both low temperatures and high densities are required, it would be advantageous to

overcome this limit. Fortunately, both of these limitations can be reduced with the

techniques described below.

A.1.4 Dark-Spot MOT

To overcome the density limitation of the sodium MOT, we employ what is

known as a dark-spot MOT. In this setup, our repump beam is split into two separate

beams that intersect at the center of the MOT. Each of these beams has a dark mask

blocking the center of the beam on the optical table. This mask is then imaged onto

the plane of the MOT, producing a roughly spherical region centered at the MOT

where there is no repump light. The result of this is that the atoms will be optically
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pumped out of the cycling transition ground state, and will become dark to the

trapping light soon after entering this central region. Once the atoms fall back out

of the central region, they will be optically pumped back into the cycling transition

ground state, and will again be trapped. Because the atoms are dark to the cooling

light while in the center, they will not be absorbing, and more importantly emitting,

photons at the same rate as without the dark-spot setup.

A.1.5 Evaporative Cooling and Conservative Traps

A.1.5.1 Evaporative Cooling

Evaporative cooling in a dilute atomic gas is very similar to the cooling of a

cup of hot liquid left open to room temperature air. The hottest particles in the

liquid are above the threshold for evaporation, and leave the cup. These particles

have more than the average energy per particle, so the average energy of the particles

in the remaining liquid, and hence the temperature of the liquid, goes down. The

remaining particles rethermalize, and the process repeats. In our system, a sample

of atoms is held in a trap with a potential depth large enough that essentially none of

the atoms can escape. The depth is then lowered to a point where a small portion

of the atoms are moving fast enough to leave the trap. This lowers the average

energy of the sample, which then rethermalizes, and the process repeats. At some

point, the temperature will eventually drop to a point where there are very few

atoms escaping. The potential depth is then lowered again. This continues until the

sample condenses.
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At this point another advantage of the conservative traps is evident. In the

MOT, the atoms in the sample are continually absorbing and emitting photons.

Because of this, even if we were somehow able to obtain a pure quantum state, it

would not last since the spontaneous emission would destroy any coherence. In the

conservative traps used for evaporative cooling this is not the case, and the quantum

states are free to exist and be studied.

A.1.5.2 Magnetic Trapping

In order to cool below the recoil limit, we need a different kind of trap. One

trap which allows such cooling is a magnetic trap. We have already seen that energy

levels in an atom shift in the presence of a magnetic field. This can also be used to

create a trap. If we have a sample of atoms in one of its ground states, the energy

of those atoms will depend on the magnetic field that they are in. For an atom

in the |F,mF = +F 〉 state, its energy will increase with increasing magnetic field,

thus it can be trapped in the minimum of a magnetic field. For an atom in the

|F,−F 〉 state, its energy will increase with decreasing magnetic field, and it could

be trapped in the maximum of a magnetic field. Unfortunately it is impossible to

create a magnetic field with a local maximum in free space, so we are restricted to

trapping atoms in the |F,+F 〉 state. In this state, the energy of the atom can be

expressed as

E(B) = gFmFµBB. (A.1)
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This energy does not depend on the direction of the field, since as long as an atom

moves adiabatically through the field, it will stay aligned with it.

Now the problem is to create a magnetic field with a local minimum. Fortu-

nately, we already have a setup to do this. We can use the same coils that we used to

create the MOT. The anti-Helmholtz coils create a field that increases approximately

linearly in any direction away from the center

~B = (B′x,B′y,−2B′z) . (A.2)

There is a problem with this setup though. If an atom goes directly through the

center, it is going through a point of zero magnetic field. At this point, the two

spin states are degenerate, and the atom can spontaneously flip from the |F,+F 〉

to |F,−F 〉 state, and it will be lost from the trap. While this is not a significant

loss mechanism for large, warm samples, when the temperature is decreased, and

density increased, it becomes a serious problem.

A couple of solutions to this problem have been created. Some involve creating

more complex fields that have a minimum without having a zero. The method

we use is called a TOP trap [29, 34]. In this method, the anti-Helmholtz field is

supplemented by an orbiting field that rotates with a period that is short compared

to the relevant timescales of the problem. This field can be written as

~B = (B0 cosωt,B0 sinωt, 0) , (A.3)

giving a total field of

~B = (B′x+B0 cosωt,B′y +B0 sinωt,−2B′z) , (A.4)
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the magnitude of which is

B(t) =

√
(B′x+B0 cosωt)2 + (B′y +B0 sinωt)2 + (2B′z)2 (A.5)

≈ B0 +B′ (x cosωt+ y sinωt) +
B′2

2B0

[
x2 + y2 + 4z2 − (x cosωt+ y sinωt)2] .

(A.6)

The time average of this gives us our effective field, which is

〈B〉t = B0 +
B′2

4B0

(
x2 + y2 + 8z2

)
. (A.7)

Now we effectively have a local minimum that is non-zero. We have also

changed our trap into a harmonic trap that is more easily analyzed than the previous

absolute value type trap. Another advantage of this trapping setup is that we can

use the MOT to load the TOP trap since both traps are located at the zero of the

anti-Helmholtz coils. The MOT can cool the atoms either from a slowed beam or

directly from background gasses, and then the atoms can be transferred to the TOP

trap for experiments.

A.1.5.3 Evaporative Cooling in a Magnetic Trap

There are two main mechanisms for evaporatively cooling the atoms once

they are in the magnetic trap. The first method used is called RF evaporation.

When the atoms are in the magnetic trap, they experience a Zeeman shift of the

energy levels within the atoms. In particular, for the alkali atoms, the difference in

energies between the trapped and anti-trapped ground states will be separated by

∆E = 2gFmFµBB(~r). By directing RF radiation at the trap, we can couple atoms

from the trapped to the anti-trapped state when the frequency used is equal to the
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energy level splitting. Since the magnetic field is dependant on the distance from

the center of the trap, we can tune this frequency to only out-couple atoms from the

trap that are a specific distance from the center. The aim of evaporative cooling is

to get rid of the highest energy atoms, leaving the remaining lower energy atoms to

thermalize. Since only the high energy atoms will make it up the potential hill to

arrive near the edge of the cloud, if we tune our RF frequency such that atoms only

at the edge of the cloud get out-coupled, we are able to do just this. By ramping

this frequency down gradually as the atoms thermalize, and the trap shrinks, we

can significantly cool the atoms.

The other mechanism for cooling in a magnetic trap is called “circle-of-death”

evaporation, and which only applies to the TOP trap [29,34]. In the TOP trap, The

actual zero field point is circulating around the center of the trap at the TOP trap

frequency. If an atom goes through this point, it will flip spin to the anti-trapped

state, and be expelled from the trap. By adjusting the magnitude of the circulating

magnetic field, the radius of this zero-field point can be controlled. As with the RF

evaporation, if we adjust this radius to be just at the edge of the cloud of atoms

and gradually lower it as the atoms cool, we can get rid of the high energy atoms,

and effectively cool the sample.

A.1.5.4 Dipole Trapping

Another type of trap that allows sub-recoil cooling is an optical dipole trap.

When an atom is exposed to light, the electric field of that light will induce an
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oscillating dipole in the atom. If the light is below the resonant frequency of the

atom, the dipole will be in phase with the electric field, and the energy of dipole

in the electric field will be greater for greater electric field. If the light is above

resonance, the dipole with be 180◦ out of phase with the electric field, and the

energy of the dipole will be smaller for greater electric field. The result of this is

that when an atom is exposed to light, if that light is blue detuned (above resonance)

the atoms will have a higher potential energy in higher intensity regions, and will

essentially be repelled by the light. For red detuned (below resonance) light, the

opposite is true, and the atoms will be attracted to higher intensity regions. If a

full quantum description is followed, it can be shown that the potential energy of

the atoms as a function of intensity will be

U(I) =
3πc2

2ω3
0

Γ

∆
I, (A.8)

where ω0 is the resonant angular frequency and ∆ is the angular frequency detuning.

Both blue and red detuned traps have their advantages and disadvantages.

For blue detuned traps, the atoms can be trapped in regions of zero intensity. This

means that unwanted scattering of trapping light will be minimized. The down side

is that it can be quite difficult to create light intensity fields with local minima

in the shapes one might desire. Some such traps have been created using lasers

with Bessel and Laguerre-Gaussian spatial modes. Also, there needs to be some

additional trapping in the direction of propagation, since the zero persists along

this direction.

Red detuned traps can be easier to create since a simple focused Gaussian
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beams can be used to provide trapping in all three dimensions. Unfortunately, with

red detuned traps the atoms are confined to the highest intensity part of the beam,

where the scattering is the highest. The vast majority of dipole trap experiments

have used red detuned traps however, as there is a relatively simple solution to this

scattering problem.

The scattering rate of an atom exposed to light of intensity I is given by

Γsc =
3πc2

2h̄ω3
0

(
Γ

∆

)2

I. (A.9)

Since the scattering rate falls off as 1/∆2 and the potential only falls off as 1/∆, the

scattering rate will decrease for constant potential if the light is detuned farther

from resonance. Commonly used sources are in the near IR part of the spectrum

(1-2µm) for atoms with resonances around 500-800nm. This does come at the cost

of having to use quite high power beams, but modern fiber lasers are usually more

than sufficient, commonly producing 10’s of Watts at these wavelengths.

Even greater detunings have also been used, with sources near 10µm. In this

case a lot of power is necessary (∼ 100W ), but CO2 lasers at this wavelength easily

surpass this. One advantage of these long wavelength, high power traps is that

they can be quite large. This eliminates one of the major disadvantages of many

other dipole traps, which is that they are generally much smaller than most MOTs,

making it hard to efficiently load atoms from the MOT into the dipole trap.
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A.1.5.5 Evaporatively Cooling in a Dipole Trap

For a dipole trap, the mechanism used for evaporative cooling is quite simple;

the intensity of the trapping light is gradually reduced. Since the maximum poten-

tial depth of the trap is proportional to the intensity of the light, and any atoms

with higher energy than this potential height will escape, by gradually reducing the

intensity of the trapping light as the sample loses the higher energy atoms, we can

again effectively evaporatively cool the atoms. There is a big disadvantage to this

method though. As the trapping light intensity is dropped, the trapping frequencies

are also reduced. This means that the trap becomes bigger. This partially, but

not completely, offsets the increase in phase-space density that we are attempting

to achieve with the goal of producing a BEC. For this reason, in our experiments,

we generally choose to perform the majority of cooling in the magnetic trap, and

transfer to the dipole trap just prior to condensation.

A.2 Imaging

A.2.1 Fluorescence Imaging

Now that we have ultracold samples of atoms, we need to develop a method to

measure their properties. For the thermal rubidium experiment, the method used

is called fluorescence imaging. When the atoms are exposed to resonant light, they

will absorb photons from it. After a short time (∼ 25ns for Rb), each atom will emit

a photon in a random direction. If the incident light is well above the saturation
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intensity, each atom will almost immediately absorb another photon, and the process

repeats. If a portion of the emitted light is collected and imaged onto a CCD, the

density of the atomic sample can be directly measured. When this imaging method

is used in experiments, a short pulse of resonant light is directed at the atoms while

the camera is exposing a frame. In order for this to be effective, the pulse must

be short enough so that the atoms do not move appreciable during the pulse. For

rubidium atoms at 20µK, this gives us a pulse length of about 100µs if we want an

imaging resolution of 10µm. Since this limits the number of photons emitted, the

solid angle of photon collection and quantum efficiency of the CCD must be high

enough, and sources of noise low enough, to give the desired signal to noise ratio.

One advantage of this type of imaging is that all of the sources of noise are random,

allowing us to average them out over multiple images.

A.2.2 Absorption Imaging

Another method, which we use to observe the sodium BEC atoms, is ab-

sorption imaging. We take a collimated probe beam that is tuned to the cycling

transition of our atoms, and shine it over our atomic sample. The atoms absorb

some of the light, and the intensity of the light as a function of position immediately

after the atoms is given by

I(x, y) = I0(x, y)e−n(x,y)σ, (A.10)

where I0(x, y) is the original intensity profile, n(x, y) is the integrated column den-

sity, and σ is the absorption cross section. We then image this intensity profile onto
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a CCD. We can then calculate the integrated column density as

n(x, y) = ln

(
I0(x, y)

I(x, y)

)
1

σ
. (A.11)

In practice, for each calculation, three images are taken. One image has no sample

and no probe beam (Idark). One image has no sample but does have the probe

beam (I0). The final image has the sample and probe (I). We subtract the dark

image from the other two to eliminate effects of room light or stray trap light getting

into the camera. The equation used here assumes that I0 is below the saturation

intensity, and that the optical density is less than about one.

A.2.2.1 Partial Transfer Absorption Imaging

Getting an accurate measure of atom density over a large range of optical

densities is not trivial. Not only are we limited by the signal to noise ratio of our

optical system, there are a few non-linear effects that make it difficult to compensate

for this. In order to get as accurate a count of atom number in the reservoirs of

our system, we use a technique that is called partial transfer absorption imaging.

This method uses on resonant absorption imaging, but lowers the observed optical

density of the atomic cloud by transfering only a certain amount of atoms into the

ground electronic state that is used for imaging. The rest of the atoms are very

far out of resonance with the probe beam, and do not effect the measurement. We

transfer the atoms between the ground electronic states using a microwave pulse to

create Rabi flopping between the two ground states. By adjusting the microwave

frequency and pulse duration, we can accurately determine the fraction of atoms that
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we transfer. This gives us the flexibility to transfer a different fraction of atoms into

the probing state, which lets us keep the observed optical density relatively constant

for whichever reservoir we are imaging in our experiment. We are thus able to keep

our measurements in an area of maximal signal to noise, and avoid non-linear effects

in the imaging.
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