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In [1], Baldwin and Shi studied the properties of generic structures built from

certain Fräıssé classes of weighted hypergraphs equipped with a notion of strong

substructure. Here we focus on a particularly important class of such structures,

where much stronger results are possible.

We begin by fixing a finite relational language and a set of weights α. After

constructing certain weighted hypergraphs with carefully chosen properties, we use

these constructions to obtain an ∀∃-axiomatization for the theory of the generic,

denoted by Sα, and a quantifier elimination result for Sα. These results, which

extend those of Laskowski in [2] and Ikeda, Kikyo and Tsuboi in [3] are then used

to study atomic and existentially closed models of Sα, resulting in a necessary and

sufficient condition on the weights that yields the existence of atomic models of the

corresponding theory.

We then proceed to obtain the stability of Sα and a characertization of non-

forking, simplifying the proofs of some of these well known results (see [1], [4]) in the



process. We identify conditions on α that guarantee that Sα is non-trivial and prove

that Sα has the dimensional order property, a result that has only been established

under certain additional hypothesis (see [5], [2]).

Restricting ourselves to the case where the weights are all rational (excluding,

what is essentially a single exception), we characterize the countable models up

to isomorphism and show that they form an elementary chain of order type ω +

1. We also characterize the regular types of Sα and explore the corresponding

pregeometries. We answer a question of Pillay in [6] by providing examples of

pseudofinite stable theories with non-locally modular regular types.

We conclude by studying the aforementioned exception (characterized by hav-

ing trivial forking) and extending some of the results to countably infinite languages.
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Chapter 1: Introduction

The central result that provided the impetus for much of modern model the-

ory is Morley’s Categoricity Theorem (see [7]). A key ingredient found in modern

treatments of Morley’s Theorem (such as [8], [9]) are strongly minimal sets which

allow us to define and use notions such as independence, bases and dimension via

the pregeometry induced by taking (model theoretic) algebraic closures.

In a series of influential papers [10], [11], [12], Zilber explored the behavior of

strongly minimal sets in the context of totally categorical theories and the behavior

of the associated dimension function. He showed that strongly minimal sets in

totally categorical theories were either trivial or did in fact interpret a group. He

further conjectured any strongly minimal set that was non-locally modular would

interpret a field.

This conjecture was famously refuted by Hrushovski in [13] who used a variant

of Fräıssé’s construction of a highly homogeneous countable structure to create a

counterexample to Zilber’s. A technically simpler variant of the construction was

studied in depth by Baldwin and Shi in [1]. It is a generalization of these variants,

that we term Baldwin-Shi hypergraphs, that we focus in here.

Baldwin-Shi hypergraphs and their theories, while not strongly minimal, are
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nevertheless of great interest: They are stable and non-forking has alternate, useful

descriptions as found in [1], [4]. Similar to Hrushovski’s original example, they do

not interpret groups and have other interesting “geometric” properties such as CM -

triviality (see [1], [4]). By the work of Baldwin and Shelah in [14], they are related

to Zero-One laws studied by Shelah and Spencer in [15] (see also [16]). By work such

as that of Evans and Ferreira in [17] and [18], there are strong connections between

the pregeometries of Baldwin-Shi hypergraphs and variants of Hrushovski’s original

construction.

Our approach towards analyzing Baldwin-Shi hypergraphs and their theories

builds on the work of Laskowski in [2]. As in Laskowski’s work, at the center of many

results is the construction of certain finite hypergraphs, a ∀∃-axiomatization of the

theory of the generic and a certain quantifier elimination result. In this chapter

we briefly describe the setting, some definitions and the main results found herein.

More in-depth and formal discussions of the featured results can be found at the

beginning of each chapter.

Many of the results here in appear in the author’s work [19], [20].

1.1 The Setting

With the exception of Chapter 9, we work with a fixed finite relational lan-

guage L where each relation is at least binary. All structures we consider will be

hypergraphs, i.e. each relation symbol of L will be interpreted irreflexively and sym-

metrically. Fix a function α : L → (0, 1] and let δ be a rank function on the class
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of hypergraphs δ(A) = |A| −
∑

E∈L α(E)|EA|. We take Kα to be the class of finite

hypegraphs with hereditarily non-negative rank, i.e. Kα = {A : δ(A′) ≥ 0,A′ ⊆ A}.

For any two hypergraphs A,B with A ⊆ B we say that A ≤ B if δ(B′) ≤ δ(B)

for all A ⊆ B′ ⊆ B. It is easily seen that (Kα,≤) is a Fräıssé class (see Definition

2.3.5) and as such there is (up to isomorphism) a unique countable structure with

a high level of homogeneity (see Fact 2.3.7). It is this structure that we call the

Baldwin-Shi hypergraph (for α) and it is the theory of this structure that we study

throughout.

1.2 Key Results

In this section we highlight some key results from each chapter.

1.2.1 Some Key Results from Chapter 2

Chapter 2 describes the notation, delves into the setting, explores the prop-

erties of the rank δ in more detail, introduces the notion of intrinsically closed sets

and contains a review of material related to pregeometries.

1.2.2 Key Results from Chapter 3

Chapter 3 is devoted to constructing certain finite hypergraphs. These result

form the core of what is to follow. We begin this chapter by identifying essential

minimal pairs : hypergraphs A,B ∈ Kα such that A ⊆ B, δ(B) < δ(A) but for any

B′ ( B, δ(A ∩B′) ≤ δ(B′). The existence of essential minimal pairs depends on α
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not being graph like with weight one (i.e. each E ∈ L is binary and α(E) = 1 for

each in L).

One of the key results in this section is Theorem 3.2.15. In Theorem 3.2.15,

we establish that given any A ∈ Kα, with δ(A) > 0, we may construct infinitely

many B ∈ Kα such that (A,B) is an essential minimal pair and |δ(A) − δ(B)| is,

in context, as small as desired. This theorem may be viewed as the appropriate

generalization of Lemma 4.1 of [2] to the broader context here in. It plays a key

part of the quantifier elimination result of Theorem 4.3.5 and features in establishing

non-triviality of the theory of the Baldwin-Shi hypergraph in Theorem 6.3.3. It is

also used through out Chapter 7, both to construct finite structures related to back

and forth arguments and to construct those that witness various properties related

to regular types.

The other key result is in this chapter is Theorem 3.3.6. In it we show that if α

is coherent (i.e. there exists positive integers 〈mE〉E∈L such that
∑

E∈LmEα(E) ∈

Q), then for any A ∈ Kα with δ(A) = 0, there is some B ⊇ A such that B ∈ Kα

and δ(B) = 0. This result is used heavily throughout Chapter 5. Unlike the results

regarding essential minimal pairs this result also holds in case α is graph-like with

weight one. We present a proof of this result in the case that α is graph-like with

weight one in Chapter 8.
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1.2.3 Key Results from Chapter 4

In [2], Laskowski showed that if we assume that values α(E) are irrational

and that they are linearly independent over the rationals, then the theory of the

associated Baldwin-Shi hypergraph has a ∀∃-axiomatization and that theory admits

quantifier elimination down to a boolean combination of formulas that is readily un-

derstood. These results improved the work of Baldwin and Shi in [1], who used an

∀∃∀-axiomatization of the Baldwin-Shi hypergraph and Baldwin and Shelah in [14]

where quantifier elimination was studied in the context of near model completeness.

In [3], Ikeda, Kikyo and Tsuboi showed that the restrictions on α were not neces-

sary to obtaining a ∀∃-axiomatization of the theory of the generic. However their

approach did not yield the quantifier elimination results of Laskowski in the more

generalized context.

In this chapter we show that the results from [2], including the quantifier

elimination result, can be generalized. To this end, throughout most of Chapter

4, we follow the same approach taken by Laskowski in [2], sometimes with minor

modifications. We begin by defining Sα as the smallest set of sentences insuring

that, if M |= Sα, then

1. Every finite substructure of M is in Kα

2. For all A ≤ B from Kα, every (isomorphic) embedding f : A→M extends to

an embedding g : B→M

The key result is Theorem 4.3.5. It states that Sα admits quantifier elimination
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down to boolean combination of chain minimal formulas (see Definition 4.0.4). The

proof makes use of many technical results, of which Proposition 4.1.1, Theorem 4.2.1

and Theorem 4.3.4 bears special mention. Theorem 4.2.1 is specially interesting. Its

proof in the case that α is not graph-like with weight makes heavy use of the existence

of essential minimal pairs with extra properties. Nevertheless, in case the α is graph-

like with weight one, we can still establish Theorem 4.2.1 without appealing to the

existence of essential minimal pairs. As Proposition 4.1.1 and Theorem 4.3.4 does

not take into account the nature of α in their proofs, it emerges that Theorem 4.2.1

may be viewed as providing a key technical property that enables the quantifier

elimination result. This distinction between the structures provided for by Theorem

3.2.15 and those provided by Theorem 4.2.1 is not observable in [2] as the case that

α is graph-like with weight one is not studied there in.

Other important results include the various consequences of quantifier elim-

ination result gathered in Chapter 4.4. They are used throughout the rest of the

work in crucial ways.

1.2.4 Key Results from Chapter 5

In this section we study the atomic and existentially closed models of Sα (see

Definition 5.0.1). A key idea that runs throughout this chapter is the use of unions

of chains of the universal sentences of Sα to build new models of Sα, a technique

applicable in the current setting because of the nature of Sα.

We begin by defining the function dN on the finite substructures of N |= Sα.
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Let dN = inf{δ(B) : A ⊆ B ⊆ N, B is finite}. We begin with Theorem 5.0.4. This

Theorem, essentially due to Laskowski in [2], classifies the existentially closed models

as those models N of Sα for which dN(A) = 0 for all finite A ⊆ N.

The next key result is Theorem 5.1.7, which characterizes the atomic models of

Sα in several equivalent ways. One of the equivalences, that M is atomic if and only

if for every finite A ⊆M, there is some finite A ⊆ B ⊆ N, δ(B) = 0 is particularly

useful. We use this result to derive theorem 5.2.9, which identifies the coherence of

α as a necessary and sufficient condition for Sα to have atomic models.

We conclude with Theorem 5.2.19, in which we show that α being rational (i.e.

if α(E) is rational for all E ∈ L, in some sense the most natural form of coherence)

is equivalent to each model of Sα being embeddable in an atomic model.

1.2.5 Key Results from Chapter 6

This chapter is devoted to the exploring some stability theoretic related to Sα.

Most results in this chapter are well known.

The first key result is of this chapter is Theorem 6.1.16, that states that Sα

is stable and ω-stable if Sα is rational. This result is originally due to Baldwin and

Shi in [1] (see also [4]). The main novelty is bypassing the technical conditions on

amalgamation found therein via the use of Lemma 4.4.3.

The second key result is Theorem 6.2.25, which characterizes non-forking in

a manner that is more intrinsic to Sα. This characterization will be particularly

useful for obtaining the results in Chapter 7. Another key result is Lemma 6.2.27
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which shows that Sα has a form of weak elimination of imaginaries (i.e. types over

algebraically closed sets are stationary). While a stronger form of weak elimination

of imaginaries is possible (see [1] or [4]), the form found here turns out to be par-

ticularly useful for analyzing regular types in Chapter 7. In Theorem 6.3.3 we show

that if α is not graph-like with weight one, then Sα is non-trivial, to which we will

establish the converse in Theorem 8.3.1.

In Chapter 6.4, following Laskowski, we show that if α is not rational then Sα

is strictly stable and make some observations about the spectrum (i.e. the number of

non-isomorphic models) of Sα. We conclude by showing that Sα has the dimensional

order property, a result known for only special cases by the work of Baldwin and

Shelah in [5] and Laskowski in [2].

1.2.6 Key Results from Chapter 7

In this chapter we focus our attention on the behavior of Sα in the case α

is rational but not graph-like with weight one. Two key results of this chapter,

Theorem 7.1.5 and Theorem 7.1.8. state that each countable model of Sα is highly

homogeneous and that the countable models of Sα (up to isomorphism) form an

elementary chain M0 4M1 4 . . . 4M∞ of order type ω+ 1 with M0 being atomic

and M∞ being the Baldwin-Shi hypergraph.

We then turn our attention towards to the study of regular types. We begin

by arguing that in order to understand regular types it suffices to understand types

over finite algebraically closed sets. We fix a model M and a finite algebraically
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closed set A ⊆ M and let c denote the least common multiple of the denominators

of α(E) (expressed in lowest terms). Given a type p ∈ S(A), we define d(p/A) by

dM(Ab) − dM(A) for any b |= p and introduce the notion of nugget-like types (see

Definition 7.2.7).

In Theorem 7.2.10 we begin by showing that if p is nugget-like with d(p/A) =

0, 1/c, then p is regular (see Definition 7.2.2). We follow with Theorem 7.2.11, that

any two 1/c-nugget like types are non-orthogonal. We finish Chapter 7.2.1 with

Theorem 7.2.13 that shows that if d(p/A) ≥ 2/c, then p is not regular.

Chapter 7.2.2 is devoted to the geometric properties of the regular types. We

begin with Theorem 7.2.16 that shows that the pregeometries associated with 0

nugget like types are trivial. We follow this up with Theorem 7.2.19 that shows that

the pregeometries assumed with a 1/c nugget like types are not locally modular (i.e.

behaves like transcendental dimension over algebraically closed fields).

We conclude the Chapter with Theorem 7.2.23. In this theorem we use results

from [21] and Theorem 7.2.19 to exhibit a stable pseudofinite theory with a non-

locally modular type. This answers a question of Pillay in [6] who noted that the

statement fails if we replace “stable” with “strongly minimal”.

1.2.7 Key Results from Chapter 8

This section is devoted to a discussion of the case α is graph-like with weight

one. After setting up some terminology and initial lemmas, we provide ad hoc ar-

guments that have been promised throughout the rest of the chapters. We conclude
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with Theorem 8.3.1 that provides a converse for Theorem 6.3.3.

1.2.8 Key Results from Chapter 9

In this chapter we relax the condition that L be finite and instead allow for

the possibility that L be countable. After defining a corresponding version of Kα,

we establish a strong connection between the reducts of the (Kα,≤) generic Mα to

finite sub-language L0 ⊆ L and the Baldwin-Shi hypergraphs that we have studied

thus far in Theorem 9.2.1. We then use this connection to obtain the stability of

Mα.
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Chapter 2: Preliminaries

This section is devoted to introducing notation, definitions and some facts

about the rank function δ (see Definition 2.1.5) that will be useful throughout. The

results in this section are well known or follow from routine calculations involving

δ. We work (barring in Chapter 9) with a finite relational language L where each

relation symbol E ∈ L is at least binary. Let ar : L → {n : n ∈ ω and n ≥ 2} be a

function that takes each relation symbol to its arity.

2.1 Some general notions

We begin with some notation.

Notation 2.1.1. Fraktur letters will denote L-structures. Their Latin counterparts

will, as we shall see, denote either the structure or the underlying set. Let Z be

an L-structure and let X, Y ⊆ Z. We will adapt the practice of writing XY for

X ∪ Y . Since we are in a finite relational language X, Y,XY will have a natural

L-structures associated with them, i.e. the L-structures with universe X, Y,XY

that are substructures of Z, respectively. By a slight abuse of notation we write

X, Y,XY for these L-structures. It will be clear by context what the notation refers

to. We write X ⊆Fin Z, X ⊆Fin Z to indicate that |X| is finite.
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Notation 2.1.2. We will use ∅ to denote the unique L-structure with no elements.

Further given L-structures X,Y, there is a uniquely determined L-structure whose

universe is X ∩ Y . We denote this structure by X ∩Y.

Notation 2.1.3. We let KL denote the class of all finite L structures A (including

the empty structure), where each E ∈ L is interpreted symmetrically and irrelexively

in A: i.e. A ∈ KL if and only if for every E ∈ L, if A |= E(a), then a has no

repetitions and A |= E(π(a)) for every permutation π of {0, . . . , n− 1}. We let KL

denote the class of L-structures whose finite substructures lie in elements of KL, i.e.

KL = {M : M an L− structure and if A ⊆Fin M, then A ∈ KL}

Notation 2.1.4. Fix any E ∈ L. Given A ∈ KL, NE(A) will denote the number

of distinct subsets of A on which E holds positively inside of A. The set of such

subsets will be denoted by EA. Consider an L-structure whose finite substructures

are all in KL and let A,B,C ⊆ Z be finite. Now NE(A,B) will denote the number

of distinct subsets of AB on which E holds with at least one element from A and

at least one element from B inside of AB. We further let NE(A,B,C) denote the

number of distinct subsets of A∪B ∪C on which E holds with at least one element

from A and at least one element from C.

We now introduce the class Kα as a subclass of KL.

Definition 2.1.5. Fix a function α : L → (0, 1]. Define a function δ : KL → R

by δ(A) = |A| −
∑

E∈L α(E)NE(A) for each A ∈ KL. We let Kα = {A|δ(A′) ≥

0 for all A′ ⊆ A}.
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We adopt the convention ∅ ∈ KL and hence ∅ ∈ Kα as δ(∅) = 0. It is easily

observed that Kα is closed under substructure. Further the rank function δ allows

us to view both KL and Kα as collections of weighted hypergraphs. We proceed to

use the rank function to define a notion of strong substructure ≤.

Definition 2.1.6. Given A,B ∈ KL with A ⊆ B, we say that A is strong in B

(or alternatively A is a strong substructure of B) if and only if δ(A) ≤ δ(A′) for all

A ⊆ A′ ⊆ B. We denote this by A ≤ B

Remark 2.1.7. Given some fixed K ⊆ KL, K inherits a notion of strong substruc-

ture from KL as follows: Let A,B ∈ K with A ⊆ B. Now A is strong in B if and

only if A ≤ B when A,B are viewed as elements of KL. We denote K with this

inherited notion of strong substructure relation by (K,≤).

Typically the notion of ≤ is defined on Kα×Kα by letting A ≤ B if and only

if δ(A) ≤ δ(A′) for all A ⊆ A′ ⊆ B for A,B ∈ Kα with A ⊆ B (see for example [1]).

However, we define the concept on the broader class KL ×KL. This will allow us

to make the exposition significantly simpler via Remark 2.3.2. It is easily seen that

the notion of strong substructure inherited by Kα in this setting is the same as the

notion of strong substructure studied in existing literature such as [1].

2.2 Joins and some basic properties of the rank function

We introduce the notion of joins and free joins and explore the rank function

δ in more detail. The properties of the rank function introduced here will be useful

throughout.
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Definition 2.2.1. Let n be a positive integer. A set {Bi : i < n} of elements of

Kα is disjoint over A if A ⊆ Bi for each i < n and Bi ∩ Bj = A for i < j < n.

If {Bi : i < n} is disjoint over A, then D is a join of {Bi : i < n} if the universe

D =
⋃
{Bi : i < n} and Bi ⊆ D for all i. A join is called the free join, which we

denote by ⊕i<nBi if there are no additional relations, i.e. ED =
⋃
{EBi : i < n}

for all E ∈ L. In the case n = 2 we will use the notation B0 ⊕A B1 for ⊕i<2Bi.

We note that there are obvious extension of these notions to KL, KL, Kα and to

infinitely many structures {Xi : i < κ} being disjoint/joined/freely joined over some

fixed Y ⊆ Xi for each i < κ.

Definition 2.2.2. Let Z ∈ KL and let A,B ⊆Fin Z. Now δ(B/A) = δ(BA)− δ(A).

We will call δ(B/A), the relative rank of B over A. When B and A are understood

in context we will just say relative rank.

Remark 2.2.3. Let A,B ∈ KL with. Note that A ≤ B if and only if for all

A ⊆ B′ ⊆ B, δ(B′/A) ≥ 0.

We introduce some notation:

Notation 2.2.4. For readability, we will often write αE in place of α(E). Given

Z ∈ KL and A,B,C ⊆Fin Z, we write e(A) for
∑

E∈L αENE(A), e(A,B) for∑
E∈L αENE(A,B) and e(A,B,C) for

∑
E∈L αENE(A,B,C) where NE is defined

as in 2.1.4.

The following collects some useful facts about the behavior of the rank function

δ.
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Fact 2.2.5. Let Z ∈ KL and let A,B,C,Bi ⊆Fin Z.

1. δ(B/A) = δ(B)−δ(A ∩B)−e(A−B,A ∩B,B − A) and hence if either A or

B is in Kα, δ(B/A) ≤ δ(B)− e(A−B,A ∩B,B − A). Further if A,B are

disjoint then δ(B/A) = δ(B)− e(A,B).

2. Let A′ = A∩B. Now δ(B/A′) ≥ δ(B/A) = δ(AB/A), while δ(AB/A) +αE =

δ(B/A) + αE ≤ δ(B/A′) whenever EAB 6= EA ∪ EB. Further if B,C are

disjoint and freely joined over A, then δ(B/AC) = δ(B/A)

3. Assume that BC ∩ A = ∅, A ≤ AB and A ≤ AC. Then δ(BC/A) ≤ δ(B/A)+

δ(C/A).

4. If {Bi : i < n} is disjoint over A and Z = ⊕i<nBi is their free join over A,

then δ(Z/A) =
∑

i<n δ(Bi/A). In particular, if A ≤ Bi for each i < n, then

A ≤ ⊕i<nBi.

5. δ(B1B2 . . . Bk/A) = δ(B1/A) +
∑k

i=2 δ(Bi/AB1 . . . Bi−1)

6. Assume that A ≤ B and δ(B/A) > 0. Then there exists b ∈ B − A such that

for all B′ with bA ⊆ B′, δ(B′/A) > 0.

Proof. (1):

δ(B/A) = δ(AB)− δ(A)

= |AB| − e(AB)− (|A| − e(A))

= |A|+ |B| − |A ∩B| − (e(B) + e(A)− e(A,B) + e(A−B,A ∩B,

B − A)− |A|+ e(A)

= δ(B)− δ(A ∩B)− e(A−B,A ∩B,B − A)
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If either A or B is in Kα, we obtain that δ(A ∩ B) ≥ 0 as A ∩ B ∈ Kα and hence

δ(B/A) ≤ δ(B)−e(A−B,A∩B,B−A). As δ(A∩B) = 0 and e(A−B,A∩B,B−A) =

e(A,B) if A,B are disjoint the rest of the claim follows.

(2): First note that δ(B − A′/A) = δ(B/A) and that B − A′ and A are disjoint.

Now using (1) we obtain that δ(B/A) = δ(B − A′) − e(B − A′, A). However as

e(B−A′, A′) ≤ e(B−A′, A) we obtain that δ(B−A′)− e(B−A′, A) ≤ δ(B−A′)−

e(B − A′, A′). Since A′, B − A′ are also disjoint δ(B/A) ≤ δ(B/A′) now follows.

Now note that if EAB 6= EA ∪EB, then we have that A′ 6= A,B. Further under the

given conditions we have that e(B−A′, A′) +αE ≤ e(B−A′, A) and the result now

follows similarly.

For the last part of the claim, note that δ(B/AC) = δ(B−AC)−e(B−AC,AC)

by (1). But under the given conditions B − AC = B − A and e(B − AC,AC) =

e(B −A,A). Hence we obtain that δ(B/AC) = δ(B −A)− e(B −A,A) = δ(B/A).

(3): First note that δ(BC/A) = δ(BC)− e(BC,A). But δ(BC) = |BC| − e(BC) ≤

|B| + |C| − e(B) − e(C) = δ(B) + δ(C). Further e(BC,A) ≥ e(B,A) + e(C,A).

Thus we obtain that δ(BC/A) ≤ δ(B) + δ(C)− e(B,A)− e(C,A). An application

of (1) now yields that δ(BC/A) ≤ δ(B/A) + δ(C/A)

(4): First consider the case of {B1, B2}. Given A ⊆ B′1 ⊆ B1 and A ⊆ B′2 ⊆ B2,

we obtain that δ(B′1B
′
2/A) = δ(B′1B

′
2 − A/A) = δ(B′1B

′
2 − A) − e(B′1B

′
2 − A,A).

Note that B′1B
′
2 −A = (B′1 −A)(B′2 −A). As B′1 −A,B′2 −A are freely joined over
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A, it follows that e(B′1B
′
2 − A,A) = e(B′1 − A,A) + e(B′2 − A,A). Further an easy

calculation shows that δ(B′1B
′
2−A) = δ(B′1−A) + δ(B′2−A). Thus we obtain that

δ(B′1B
′
2/A) = δ(B′1−A)+δ(B′2−A)−e(B′1−A,A)−e(B′2−A,A). An application of

(1) now yields that δ(B′1B
′
2/A) = δ(B′1/A)+δ(B′2/A). The rest of the statement now

follows easily. For {B1, B2, . . . , Bn} the result can be obtained by an easy induction

argument.

(5): Note that δ(B1B2/A) = δ(B1B2A)−δ(B1A)+δ(B1A)−δ(A). Thus δ(B1B2/A) =

δ(B1/A) + δ(B2/B1A). The required result now follows by induction.

(6): Assume not. Then for each b ∈ B − A, there is some B′b with Ab ⊆ B′b ⊆ B

and δ(B′b/A) ≤ 0. Now δ(B/A) ≤
∑

b∈B−A δ(Bb/A) ≤ 0, a contradiction that yields

the required result.

2.3 Towards building the Baldwin-Shi hypergraph

We now work towards defining Baldwin-Shi hypergraphs. Along the way we

observe several useful properties of KL and Kα that will be useful throughout.

Remark 2.3.1. The relation ≤ on KL × KL is reflexive, transitive and has the

property that given A,B,C ∈ KL, if A ≤ C, B ⊆ C then A ∩B ≤ B: Suppose not

and let A ∩B ⊆ D ⊆ B be a ⊆ minimal witness for A ∩B � B. An application of

(2) of Fact 2.2.5 yields that δ(D/A) ≤ δ(D/A ∩B) < 0 which contradicts A ≤ C.

The same statement holds true if we replace KL by Kα in the above. Further for

any given A ∈ Kα, ∅ ≤ A.

17



Remark 2.3.2. Let A ∈ Kα, B ∈ KL with A ⊆ B. We claim that if A ≤ B,

then B ∈ Kα: Let B′ ⊆ B. Then δ(B′/A ∩B′) ≥ δ(B′/A) by (2) of 2.2.5. But

δ(B′/A) = δ(AB′/A) ≥ 0 which yields our claim. Thus if we have some B ∈ KL

and we show that there is some A ⊆ B with A ∈ Kα we can immediately conclude

that B ∈ Kα

The following definition extends the notion of strong substructure to structures

in KL:

Definition 2.3.3. Let X ∈ KL. For A ⊆Fin X, A is strong in X, denoted by A ≤ X,

if A ≤ B for all A ⊆ B ⊆Fin Z. Given A′ ∈ KL an embedding f : A′ → X is called

a strong embedding if f(A′) is strong in X.

Fact 2.3.4. If B,C ∈ Kα, A = B ∩ C, and A ≤ B, then B⊕A C ∈ Kα and

C ≤ B⊕A C.

Proof. Let D = B⊕A C. Due to Remark 2.3.2, it suffices to establish C ≤ D. Let

C ⊆ D′ ⊆ D. Take B′ = B ∩ D′. Now δ(D′/C) = δ(D′ − C/C) = δ(D′ − C) −

e(D′ − C,C). Note that D′ − C = B′ − A and as B,C are freely joined over A,

e(D′ − C,C) = e(B′ − A,A). Thus δ(D′/C) = δ(B′/A). As A ≤ B, it follows that

C ≤ D.

We now turn our attention towards generic structures. As all generic structures

of interest will be built from subclasses of Kα, our definitions will be tailored to this

context.

Definition 2.3.5. Let K ⊆ Kα be closed under isomorphism and consider (K,≤).

We say that (K,≤) is a Fräıssé class if
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1. (K,≤) has the amalgamation property : For any A,B,C ∈ K and given strong

embeddings f1 : A→ B, g1 : A→ C, there exists D ∈ K and strong embed-

dings f2 : B→ D, g2 : C→ D such that f2 ◦ f1(A) = g2 ◦ g1(A).

2. (K,≤) has the joint embedding property : For any given B,C ∈ K there exists

D ∈ K and strong embeddings f : B→ D, g : C→ D.

Note that we do not require that K be closed under substructure. This is

reflected in the fact that we require M ∈ Kα (as opposed M ∈ K which does not

make sense as K is not well defined unless K is closed under substructure).

Definition 2.3.6. Let K ⊆ Kα. A countable structure M ∈ Kα is said to be a

generic for (K,≤) if

1. M is the union of an ω-chain A0 ≤ A1 ≤ . . . with each Ai ∈ K.

2. If A,B ∈ K with A ≤ B and A ≤M, then there is B′ ≤M such that

B ∼=A B′.

3. If A ∈ K, then there is some embedding f : A→M such that f(A) ≤M.

Fact 2.3.7. Let K ⊆ Kα be such that (K,≤) be a Fräıssé class. Then a (K,≤)

generic exists and is unique up to isomorphism. In particular (Kα,≤) is a Fräıssé

class. Thus a generic structure for (Kα,≤) exists and is unique up to isomorphism.

Proof. The fact that a generic for (K,≤) exists and is unique up to isomorphism is

essentially the same as Fräıssé’s original proof in [22] (see also Chapter 7.1 of [23]

for more details).
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Clearly Kα is closed under isomorphisms. The fact that (Kα,≤) has amal-

gamation follows from Fact 2.3.4. Joint embedding is immediate for (Kα,≤) as

∅ ∈ Kα. Thus the rest of the claim follows.

This justifies the following definition:

Definition 2.3.8. For a fixed α we call the generic for (Kα,≤) the Baldwin-Shi

hypergraph for α.

2.4 Closed sets

In this section we generalize the notion of strong substructure to substructures

of arbitrary size by introducing the notion of a closed set. This will provide us with

a useful tool for analyzing the various theories of Baldwin-Shi hypergraphs.

Definition 2.4.1. Let A,B ∈ KL. Now (A,B) is a minimal pair if and only if

A ⊆ B, A ≤ C for all A ⊆ C ⊂ B but A � B.

Note that (A,B) is a minimal pair if and only if A ⊆ B, δ(A) ≤ δ(C) for all

A ⊆ C ⊂ B but δ(B) < δ(A).

Definition 2.4.2. Let Z ∈ KL and X ⊆ Z. We say X is closed in Z if and only if

for all A ⊆Fin X, if (A,B) is a minimal pair with B ⊆ Z, then B ⊆ X.

Remark 2.4.3. As any A,B,C ∈ KL with A ≤ C and B ⊆ C satisfies A ∩B ≤ B

(see Remark 2.3.1) an easy argument yields that given Z ∈ KL and A ⊆Fin Z, A ≤ Z

if and only if A is closed in Z.
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It is immediate from the above definition that any Z ∈ KL, Z is closed in

Z and that the intersection of a family of closed sets of Z is again closed. These

observations justify the following definition:

Definition 2.4.4. Let Z ∈ KL and X ⊆ Z. The intrinsic closure of X in Z, denoted

by iclZ(X) is the smallest set X ′ such that X ⊆ X ′ ⊆ Z and X ′ is closed in Z.

Remark 2.4.5. Fix Z in KL. We note that taking the map iclZ : P(Z) → P(Z)

that takes a subset of Z to its intrinsic closure is a finitary closure operation; i.e.

for X, Y ⊆ Z, it satisfies X ⊆ icl(X), icl(icl(X)) = icl(X), if X ⊆ Y , then icl(X) ⊂

icl(Y ) and icl(X) =
⋃
X0⊆FinX

icl(X0) (we have dropped the index Z as it is the only

structure with respect to which intrinsic closures are taken).

We show that icl(X) =
⋃
Xi⊆FinX

icl(Xi). The fact that
⋃
Xi⊆FinX

icl(Xi) ⊆

icl(X) is clear. Thus it suffices to show that X ⊆
⋃
Xi⊆FinX

icl(Xi) and that⋃
Xi⊆FinX

icl(Xi) is closed. The first requirement is clear. To see that the second

requirement is satisfied, let A ⊆Fin

⋃
Xi⊆FinX

icl(X)i. Thus there exists Ai1 , . . . , Aik

such that each Aij is finite and A ⊆
⋃
Aij with Aij ⊆ icl(Xij) where {Xi}i∈I is a

fixed indexing of the finite subsets of X. Let X ′ be the union of the Xij whose in-

dexes appear above. Now X ′ is finite and it is clear that
⋃

icl(Xij) ⊆ icl(X ′). Thus

A ⊆
⋃
Aij ⊆

⋃
icl(Xij) ⊆ icl(X ′). Thus if (A,B) is a minimal pair with B ⊆ Z,

then B ⊆ icl(X ′) ⊆
⋃
Xi⊆FinX

icl(Xi), i.e.
⋃
Xi⊆FinX

icl(Xi) is closed from which our

claim follows.

It should be noted that we may construct the closure of a finite A ⊆ Z as
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follows. Let;

I0(A) = A ∪
⋃
{B : A ⊆ B ⊆ Z, and (A,B) is a minimal pair}

For each n < ω, let In+1(A) be given by

A ∪
⋃
{B : B ⊆ Z, and there is an A′ ⊆ In(A) such that(A′, B) is a minimal pair}

Now by construction we have that
⋃
n<ω In(A) is closed and that it contains

A. A routine argument shows that
⋃
n<ω In(A) is in fact the closure of A. From

this it follows that the definition of a closed set in [1] and [4] and the notion here

correspond.

2.5 Pregeometries

In this section, we briefly mention some details regarding pregeometries. As

can be seen form the details below, pregeometries allows one to have a well defined

notion of dimension. Detailed discussions regarding pregeometries can be found in

Chapter 8 of [8] and Chapter 3 of [24].

Definition 2.5.1. A pregeometry (X, cl) is a set X with a closure operator cl :

P(X)→ P(X), (where P(X) denotes the power set of X) such that for all A,B ⊆ X

and a, b ∈ X

1. (Reflexivity) A ⊆ cl(A).

2. (Monotonocity) If A ⊆ B, then cl(A) ⊆ cl(B).

3. (Finite character) cl(A) is the union of all cl(A∗), where the A∗ range over all

finite subsets of A.
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4. (Transitivity) cl(cl(A)) = cl(A).

5. (Exchange) a ∈ cl(Ab)− cl(A) implies that b ∈ cl(Aa).

We say that A is closed if A = cl(A)

Pregeometries allow us to introduce a notion of independence as follows:

Definition 2.5.2. Let (X, cl) be a pregeometry and let A,B, S ⊆ X.

1. We say that A is independent over B if a /∈ cl(B ∪ (A− {a})) for all a ∈ A.

2. We say that A is a basis for S over B if A is a maximal subset of cl(S ∪ B)

that is independent over B.

In the case that B = ∅, we simply say that A is independent and A is a basis for S.

The following remark allows us to introduce a notion of dimension.

Remark 2.5.3. Let (X, cl) be a pregeometry and let A,B,C, S ⊆ X. If A,C are

bases for S over B, then |A| = |C|.

Definition 2.5.4. Let (X, cl) be a pregeometry and let A,B, S ⊆ X.. If A is a

basis for S over B, then we call |A| the dimension of S over B and denote this by

dimcl(S/B). If B = ∅ then we call the cardinality of a basis of S the dimension of

S and denote this by dimcl(S)

The following remark shows that dimcl satisfies a certain subadditivity prop-

erty.

Remark 2.5.5. Let (X, cl) be a pregeometry and let A,B ⊆ X be closed. Then

dimcl(cl(A ∪B)) + dimcl(A ∩B) ≤ dimcl(A) + dimcl(B).
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Definition 2.5.6. Let (X, cl) be a pregeometry and let A,B ⊆ X, we can consider

the localization to B given by clB(A) = cl(A ∪B).

Remark 2.5.7. If (X, cl) is a pregeometry, then (X, clA) is a pregeometry.

Definition 2.5.8. Let (X, cl) be a pregeometry.

1. We say that (X, cl) is trivial if cl(A) =
⋃
a∈A cl({a}) for any A ⊆ X.

2. We say that (X, cl) is modular if for any finite-dimensional closed A,B ⊆ X,

dimcl(cl(A ∪B)) = dimcl(A) + dimcl(B)− dimcl(A ∩B).

3. We say that (X, cl) is locally modular if (X, cla) is modular for some a ∈ X.
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Chapter 3: Existence theorems

The results of this chapter, which consists of constructing certain finite weighted

hypergraphs, forms the core of the results that follow. We use them throughout to

construct various other finite structures satisfying carefully chosen properties. Such

structures, in addition to giving us the ability to generalize the arguments of [2],

allow us to explore the atomic models, non-forking, regular types, etc of the theory

of the (Kα,≤) generic when combined with the results in Chapter 3. The results in

this chapter are inspired by Lemma 4.1 of [2] by Laskowski. Laskowski himself was

using a variant of a construction found in [25] by Ikeda.

We begin with the following:

Definition 3.0.1. We say that α is rational if αE is rational for all E ∈ L.

Definition 3.0.2. If α(E) = 1 for all E in L and each E ∈ L has arity 2, then we

say that α is graph-like with weight one.

Definition 3.0.3. Let B ∈ Kα with δ(B) > 0. We call D ∈ Kα with B ⊆ D an es-

sential minimal pair if (B,D) is a minimal pair and for any D′ ( D, δ(D′/D′ ∩B) ≥

0.

Definition 3.0.4. We use ar(L) to denote max{ar(E) : E ∈ L}.
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One of the main results of Section 3 is Theorem 3.2.15. It states that given

B ∈ Kα with δ(B) > 0, there exists infinitely many non-isomorphic D ∈ Kα where

(B,D) is an essential minimal pair that satisfies −ε ≤ δ(D/B) < 0 where ε is,

in context, arbitrarily small. The overall proof of this theorem has the following

structure:

1. We begin by introducing the notion of an L-collection. An L-collection r will

be a multiset, i.e. a set with repeated elements, where each element is an

element of L. For any E in L, we let r(E) be the number of times E is

repeated in r.

2. Next we introduce the notion of a template. A template, will be a triple

〈n, r, t〉. Here n is a positive integer and r = 〈r1 . . . , rn〉 will index a collection

L-collections. Further each ri will have the property that for each E ∈ L,

ri(E) < mpt, where mpt is a fixed positive integer that we will introduce

shortly. Finally t = {E1, . . . , En−1} is an indexed L-collection. The idea is

that the extension D ⊇ B will have universe D − B = {d1, . . . , dn}. Further,

for each E ∈ L, it will have r(j)(E) many relations involving only subsets of

B and dj. Also there will be precisely one relation involving t(j), {dj, dj+1}

and a subset of B and no other relations (besides the ones already in B) will

hold.

3. A moments’ reflection shows that under the above conditions above, not all

B ∈ Kα will have extensions by templates (for example L might contain only

one relation symbol whose arity ar(E) is much larger than |B|). We identify
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crude bounds such as mpt and on |B| that will make the construction of an

extension by a template feasible. Let ar(L) = max{ar(E) : E ∈ L} The bound

on |B| will be picked so that there are at least mptar(L) disjoint subsets of B.

4. With these technical details aside, we isolate the notions of acceptable and

good templates for a fixed B ∈ Kα with positive rank. A good template

Θ is set up in such a way that guarantees that an extension D of B using

Θ will be an essential minimal pair. Thus we are left with generating good

templates, which we carry out with the help of some number theoretic results

(see Appendix A). The notion of acceptable, which is weaker than the notion

of good, is isolated as it plays a part in the second main result of this section,

i.e. Theorem 3.3.6.

5. We prove Lemma 3.2.13, which states: Given B ∈ Kα with |B| sufficiently

large and δ(B) > 0 that there are here exists infinitely many non-isomorphic

D ∈ Kα where (B,D) is an essential minimal pair that satisfies−ε ≤ δ(D/B) <

0. Here again, ε is, in context, arbitrarily small. Finally in Theorem 3.2.15 we

establish the desired result.

We now introduce some of the notions that we alluded to above:

Definition 3.0.5. We define mpt be the least positive integer m ∈ ω such that

1−mptαE < 0 for all E ∈ L. We let msuff be the product mptar(L).

Remark 3.0.6. Note that if B ∈ KL and D ∈ KL is a one point extension of B and

δ(D/B) ≥ 0, then the number of relations that include the single point in D − B
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and B is less than mpt. It can be seen that given an essential minimal pair (A,C)

and c ∈ C − A, then N(c, A) < mpt. Now msuff gives a crude lower bound over

the size of B ∈ Kα over which we can construct essential minimal pairs. Here msuff

stands for sufficient.

The other main result in this section, Theorem 3.3.6, is concerned with building

D ∈ Kα such that δ(D) = 0 that extend B ∈ Kα with δ(B) > 0. We will see that

the existence of such structures can be characterized by the notion of coherence.

Definition 3.0.7. We say that α is coherent if there exists 〈mE : E ∈ L,mE ∈

ω,mE > 0〉 such that
∑

E∈LmEαE ∈ Q.

Remark 3.0.8. Clearly if α is rational, then α is coherent. We now give an example

of a coherent α that is not rational: Fix 0 < β < 1/2 irrational. If α(E1) = β for

some E1 ∈ L and α(E2) = 1 − β for some E2 ∈ L and α(E) ∈ {β, 1 − β} for all

E ∈ L, then α is coherent but not rational.

In Section 5, we use these structures to classify the α for which the correspond-

ing theory of the Baldwin-Shi hypergraph has atomic models. The construction of

the required D will again be done with the help of templates and will reuse the ideas

developed in the constructions of essential minimal pairs with some caveats.

3.1 Templates and Extensions

Throughout the rest of this section we work under the assumption that α is not

graph-like with weight one.

We begin by defining a template.
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Definition 3.1.1. A multiset r where the elements of r are relation symbols from

L will be called an L-collection. Given E ∈ L, r(E) will denote the number of times

that E is repeated in r. Further we let |r| =
∑

E∈L r(E). Given a L-collections r

and r′, we say that r′ is a sub-collection of L if r′ ⊆ r.

Notation 3.1.2. Throughout the rest of Section 3, we will use the letters r, s (with

or without various subscripts) to denote L-collections.

Definition 3.1.3. Let n ≥ 3 be a fixed positive integer. Let r = 〈r1, . . . rn〉 where

each ri is an L-collection. Further let t be an indexed L-collection with |t| = n− 1,

i.e. there is a fixed enumeration E1, . . . , En−1 of the elements of t. We call a triple

Θ = 〈n, r, t〉 an n-template if for each 1 ≤ i ≤ n, E ∈ L we have that ri(E) < mpt.

Given a template and B ∈ KL, we use the template to create an extension D

of B. As noted previously The constructions of interest are the ones where given

B ∈ Kα and we can create D extending B such that D ∈ Kα and D satisfies other

desirable properties. We now make precise the notion of an extension by a template

that was somewhat loosely described at the beginning of Section 3.

Definition 3.1.4. Let B ∈ KL such that |B| ≥ msuff. Let Θ be an n-template. An

extension of B by Θ is some D in KL that satisfies

1. B ⊆ D

2. The universe of D−B is {d1, . . . , dn}, i.e. it consists of n-points.

3. For each 1 ≤ i ≤ n− 1, there is a subset Q ⊆ B of size ar(Ei) − 2 such that

{di, di+1} ∪Q ∈ ED
i (where Q is possibly empty).
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4. If ri(E) > 0 for some E ∈ L, there are precisely ri(E) distinct subsets

Q1, . . . , Qri(E) ofB of size ar(E)−1 such that {di}∪Qj ∈ ED for 1 ≤ j ≤ ri(E).

5. There are no further relations in D than the ones that were originally in B

and the ones that are described above.

In the case for any b ∈ B, there exists some dj, Q
′ ⊆ D, E ∈ L such that {b, dj}∪Q′ ∈

ED, we say that D covers B.

Lemma 3.1.5. Let B ∈ KL such that |B| ≥ msuff. Let Θ be an n-template. There is

an an extension D ⊇ B of B by Θ. Moreover if
∑n

i=1 |ri| ≥ |B| or if
∑

ar(E)≥3(t(E)+∑n
i=1 ri(E)) ≥ |B| there exists D that covers B.

Proof. Take D0 = {d1, . . . , dn} and consider the L structure D0 with universe D0

and no relations in D0. Now D will be a structure with universe B ∪D0.

First note that since |B| ≥ msuff, B has at least mpt distinct subsets of size

ar(E) − 1 for each E ∈ L. For each 1 ≤ i ≤ n − 1 we may fix some subset Q ⊆ B

and add a relation so that {di, di+1} ∪ Q ∈ ED
i . Here Q is possibly empty: in fact

Q is empty if and only if Ei is a binary relation symbol.

Now fix 1 ≤ i ≤ n. For each E ∈ L we have ri(E) < mpt. Thus for fixed

E ∈ L, as |B| ≥ msuff, we may choose ri(E) distinct subsets Qj as 1 ≤ j ≤ ri(E),

of B where each Qj is of size ar(E) − 1. Add relations so that {di} ∪ Qj ∈ E ′D

for 1 ≤ j ≤ ri(E). Do this for each relation symbol E ∈ L. Now assume that

this process of adding relations has been carried out for each 1 ≤ i ≤ n. Let the

resulting structure be D. Note that the relations that hold on D are precisely the
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ones that turn B to B and the relations described so far. It is now clear that the

resulting structure satisfies the properties required of D.

If
∑n

i=1 |ri| ≥ |B| we may insist that the choice of Qj, as E ranges through L,

be made so that their union is B. If
∑

ar(E)≥3(t(E) +
∑n

i=1 ri(E)) ≥ |B|, then we

may insist that the choice of the various Q and Qj be made so that the union is B.

In either case the statement that for any b ∈ B, there exists some dj, Q
′ ⊆ D such

that {b, dj} ∪Q′ ∈ ED for some E ∈ L holds.

Remark 3.1.6. Note that an extension by Θ need not be unique up to isomorphism

over B. However given two non-isomorphic extensions D,D′ of B by Θ their relative

ranks are identical: δ(D/B) = δ(D′/B). Hence δ(D) = δ(D′).

Notation 3.1.7. Let Θ = 〈n, r, t〉 be an n-template. Fix 1 ≤ j ≤ n. Let B ∈ KL

such that |B| ≥ msuff and let D be an extension by Θ of B. Under the natural

enumeration of D − B = {d1, . . . , dn} used to construct the extension; we let Dj

denote the substructure of D with universe B ∪ {d1, . . . , dj} for 1 ≤ j ≤ n and we

let Dj,k denote the substructure of D with = B ∪{dj, . . . dk} for any 1 ≤ j ≤ k ≤ n.

We now define the acceptable and good templates. As noted previously, good

templates are defined with the construction of essential minimal pairs in mind.

Acceptable templates capture a weaker notion that is common to both the essential

minimal pairs and the rank zero extensions that are dealt with in Section 3.3.

When dealing with templates it will often be convenient to focus on the sub-

language of the symbols that occur in Θ. We make the following somewhat broader

definition.
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Definition 3.1.8. Given a triple Θ = 〈n, r, t〉, the localization of L to Θ, denoted

by LΘ is the subset of L such that E ∈ LΘ if and only if E occurs positively in Θ,

i.e. rj(E) > 0 for some 1 ≤ j ≤ n or E = Ej for some 1 ≤ j ≤ n − 1. Further we

let GrΘ(2) denote the least positive value of
∑

E∈LΘ α(E)nE − 1 for non-negative

integers nE.

Remark 3.1.9. The reason behind using the notation GrΘ(2) will become clear in

Section 3.2.

Definition 3.1.10. Let B ∈ Kα be such that |B| ≥ msuff and δ(B) > 0. Let Θ be

a n-template and let D be an extension of B by Θ. We say that Θ is acceptable for

B if and only if

1. 0 < −δ(D/B) ≤ min{δ(B), GrΘ(2)}.

2. δ(Dj/B) ≥ 0 for 1 ≤ j ≤ n− 1.

3. α(Ej)− δ(Dj/B) > 0 for 1 ≤ j ≤ n− 1.

We say that Θ is good for B if

1. Θ is acceptable for B.

2. α(Ej)− δ(Dj/B) + δ(D/B) ≥ 0 for 1 ≤ j ≤ n− 1.

3. We may in addition assume that D can be chosen so that it covers B.

The following lemma captures the key properties of extensions by acceptable

and good templates.
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Lemma 3.1.11. Let B ∈ Kα be such that |B| ≥ msuff and δ(B) > 0. Let Θ be

an n-template and let w = n − (
∑n−1

i=1 αEi +
∑n

i=1

∑
E∈L αEri(E)). Let D be an

extension by Θ of B

1. If Θ is acceptable, then

1.a For any B ⊆ D′ ( D such that dn /∈ D′, δ(D′/B) ≥ 0

1.b For any D′ ( D such that dn /∈ D′, δ(D′/D′ ∩B) ≥ 0

1.c For any B ⊆ D′ ⊆ D, δ(D′/B) ≥ w

2. If Θ is good for B, we may choose D so that D covers B and then

2.a D ∈ Kα

2.b For any proper B ⊆ D′ ( D, δ(D′/B) ≥ 0

2.c For any D′ ( D, δ(D′/B ∩D′) ≥ 0

i.e. (B,D) is an essential minimal pair with δ(D/B) = w.

Proof. We begin with (1): For (1.a), the case D′ = Dj for some 1 ≤ j ≤ n − 1 is

immediate. Consider the case that D′ = Dk+1,j where 1 ≤ k < j ≤ n− 1. As there

is only a single relation, namely Ek, that contains the points dk, dk+1, it follows that

δ(Dk+1,j/B) = δ(Dj/Dk) + α(Ek). Further δ(Dk+1,j/B) = δ(Dj/B) − δ(Dk/B) +

α(Ek). But α(Ek) − δ(Dk/B) + δ(Dj/B) ≥ 0 by using conditions 2 and 3 of Θ

being acceptable. Since an arbitrary B ⊆ D′ ( D with dn /∈ D can be written as

the free join different Dk,j over B, it follows that for B ⊆ D′ ( D′, δ(D′/B) ≥ 0.

Now consider an arbitrary D′ ⊆ D such that dn /∈ D′ and B 6⊆ D′. By (2) of Fact
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2.2.5 δ(D′/B ∩D′) ≥ δ(BD′/B). But the above shows that δ(BD′/B) ≥ 0 and

thus (1.b) follows.

For (1.c), note that for 1 ≤ j ≤ n, δ(Dj/B) < 0 if and only if j = n if and only

if δ(Dj/B) = w. As δ(Dk+1,j/B) = δ(Dj/B) +α(Ek)− δ(Dk/B) for 1 ≤ k < j ≤ n

and since D′ can be written as the free join of several Dk,j and over B and at most

one of the Dk,j satisfies 0 > δ(Dk,j/B) ≥ w, it follows that δ(D′/B) ≥ w.

Now consider (2): We are assuming D covers B. As δ(D/B) = w by construc-

tion both (2.a) and the statement regarding (B,D) being an essential minimal pair

follows from (2.b) and (2.c). For the proof of 2.b, first consider D′ = Dj+1,n for

1 ≤ j ≤ n − 1. By arguing as above we obtain that δ(Dj+1,n/B) = α(Ej) −

δ(Dj/B) + δ(D/B). By using condition (2) of good, it follows that α(Ej) −

δ(Dj/B)+ δ(D/B) ≥ 0. As Θ is good, it is also acceptable and thus δ(Dk,j/B) ≥ 0

for 1 ≤ k ≤ j ≤ n−1. Since an arbitrary B ⊆ D′ ( D can be written as the free join

different Dk,j over B it follows that for B ⊆ D′ ( D′, δ(D′/B) ≥ 0. δ(D′/B) ≥ 0.

It remains to show that for a general substructure D′ ( D, we have that

δ(D′/B ∩D′) ≥ 0. If D′ − B 6= D − B, then this follows easily by (2.b) and

(2) of Fact 2.2.5. So assume that D′ − B = D − B. Since D′ ( D, it follows

that D′ ∩B 6= B. Fix a relation E ∈ L such that it holds with a point from

D′ − B and at least one point from B − B′. By using (2) of Fact 2.2.5 we see

that δ(D′/D′ ∩B) ≥ δ(D/B) + α(E). Since −GrΘ(2) ≤ δ(D/B), it follows that

0 ≤ GrΘ(2) + αE ≤ δ(D/B) + αE. Thus (2.c) follows.
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3.2 Generating Templates

In this section we introduce the notions of acceptable pairs and good pairs. We

will show how to construct a good/acceptable template by using a good/acceptable

pair. The acceptable and good pairs are easily obtained by the well known number

theoretic results that can be found in the Appendix. This allows us to establish that

the constructions in Section 3.1 can indeed be carried out. We finish this section

with Lemma 3.2.8 and Theorem 3.2.15 which generalize results in [2]. We begin by

introducing the notion of granularity.

Definition 3.2.1. Given a positive integer m ∈ ω and L0 ⊆ L, we define GrL0(m),

the granularity m relative to L0, to be the smallest positive value
∑

E∈L0
αEnE − k

where k is an integer satisfying 0 < k < m and each nE ∈ ω. In case L = L0 we call

GrL(m) the granularity of m and denote it by Gr(m).

Remark 3.2.2. Note that given a triple Θ = 〈n, r, t〉, GrΘ(2) = GrLΘ(2). Further

if Gr(2) =
∑

E∈L nEαE − 1, then
∑

E∈L nE < mpt

The following are immediate from the definition of granularity.

Lemma 3.2.3. For all E ∈ L, Gr(2) ≤ αE.

Lemma 3.2.4. Suppose D ∈ Kα and A,B,C are finite substructures of D, satisfying

(A,B) is a minimal pair, |B − A| < m, A ⊆ C, but B * C. Then δ(D′/C) ≤

−Gr(m), where D′ is the substructure of D with universe B ∪ C.

Proof. Let B∗ be the substructure of D with universe B ∩ C. Then A ≤ B∗ ⊆ B

and B,C are disjoint over B∗, so D′ , the substructure of D with universe B ∪ C,
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is a join of B,C. Then δ(D′/C) ≤ δ(B/B∗) ≤ −Gr(m). where the first inequality

follows from (1) of Fact 2.2.5 and the second follows from (A,B) being a minimal

pair and granularity.

We now turn our attention to good pairs and acceptable pairs. The goal will

be to use good/acceptable pairs to generate good/acceptable templates, which we

proceed to do in Lemma 3.2.7.

Definition 3.2.5. Given a non-negative integer n and an L-collection r, we let the

weighted sum n−
∑

E∈L αEr(E) be denoted by w(n, r).

Definition 3.2.6. Let B ∈ Kα with δ(B) > 0. Let n ∈ ω and let s be an L-

collection. Let L0 ⊆ L be such that E ∈ L0 if and only if s(E) > 0. We say that

〈n, s〉 is an acceptable pair for B, if

1. min{δ(B), GrL0(2)} ≥ −w(n, s) > 0

2. |s| ≥ n

We say that 〈n, s〉 is a good pair for B

1. 〈n, s〉 is acceptable

2. |s| ≥ |B|+ (n− 1) or
∑

ar(E)≥3(t(E) +
∑n

i=1 ri(E)) ≥ |B|

3. For allm ≤ n and sub-collections s′ of s, w(m, s′) not in the interval (w(n, s), 0).

Often we will not mention B as it will be clear from context.
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Lemma 3.2.7. Let B ∈ Kα with δ(B) > 0, |B| ≥ msuff. If 〈n, s〉 is an acceptable

pair for B, then there exists an acceptable n-template Θ = 〈n, r, t〉. If 〈n, s〉 is good,

then Θ will be good for B.

Proof. We begin with the observation that if u is a sub-collection of s, then s − u

is the residual multiset with (s − u)(E) = s(E) − u(E). Our first goal is to de-

fine the triple Θ = 〈n, r, t〉. We do this in Step 1. We do this using a “greedy

algorithm”. In Step 2, we establish that the triple Θ we have constructed is indeed

a template and it is acceptable/good based on the corresponding properties of (n, s).

Step 1 : We first define t. For 1 ≤ j ≤ n − 1 inductively define Ej so that Ej

is in the residual multiset s − {E1, . . . , Ej−1} and α(Ej) = max{α(E) : E ∈ s −

{E1, . . . , Ej−1}}. If there is E ∈ L with arity at least 3 such that s(E) ≥ n−1 ≥ |B|

and α(E) ≥ α(E∗) for all E∗ ∈ L, then we insist that the above Ej satisfy Ej = E.

Let t be the ordered L-collection 〈E1 . . . , En−1〉. Let s1 be the residual multiset

s − {E1, . . . , En−1}. For 1 ≤ j ≤ n define the potential relative rank Rel(j) =∑j
i=1w(1, ri)−

∑j−1
i=1 α(Ei).

First let r1 ⊆ s1 be an L-collection such that Rel(1) = w(1, r1) achieves the

least possible non-negative value. Assume that for 1 ≤ j ≤ n − 1 that rj, sj have

been defined and take sj+1 to be the residual multiset sj − rj. For 1 ≤ j < n − 1

pick rj+1 ⊆ sj+1 such that Rel(j+ 1) = Rel(j) +w(1, rj+1)−α(Ej) attains the least

possible non-negative value and let rn = sn. Let r = 〈r1, . . . , rn〉 and let Θ be the

triple 〈n, r, t〉.
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Step 2 : We first show that Θ is indeed an n-template. We begin with the following

claims.

Claim 1 : For 1 ≤ j < n, sj+1 is non-empty : We begin by noting that as |s| ≥ n, s1

is non-empty. Now assume to the contrary that sj+1 is empty for some 1 ≤ j < n

and let j0 be the least positive integer for which sj0+1 is empty. Then for all

j′ ≥ j0 + 1, s′j, w(1, rj′) = 1. Now it follows that 0 > w(n, s) = Rel(n) =

Rel(j0) + (n − j0) −
∑n−1

i=j0
α(Ei). By construction Rel(j0) ≥ 0. Further as for

each E ∈ L, α(E) ≤ 1 implies that (n − j0) −
∑n−1

i=j0
α(Ei) ≥ 0. But this yields a

contradiction that proves the claim.

Claim 2 : For 1 ≤ j < n, Rel(j) < α(Ej): If not, Rel(j) ≥ α(Ej) for some

1 ≤ j < n. From Claim 1 it follows that there is some E ∈ LΘ such that sj+1(E) > 0.

By our choice of the Ei, it follows that α(Ej) ≥ α(E). However this shows that

Rel(j)− α(E) ≥ α(Ej)− α(E) ≥ 0 which contradicts our choice of rj.

Note that to show that Θ is an n-template it suffices to show that for 1 ≤ j ≤ n,

w(1, rj) ≥ 0. Now for all 1 ≤ j < n−1, Rel(j+1) ≥ 0 andRel(j) < α(Ej) yields that

w(1, rj+1) = Rel(j + 1) +α(Ej)−Rel(j) ≥ 0. Now assume that w(1, rn) < 0. Then

w(1, rn) ≤ −GrΘ(2). Now Rel(n) = w(1, rn) + Rel(n − 1) − α(En−1) < −GrΘ(2)

which contradicts −Rel(n) ≥ GrΘ(2). Thus it follows that w(1, rn) ≥ 0. Hence Θ

is indeed a n-template.
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Let D be an extension of B by Θ as given by Lemma 3.1.5. Observe that

δ(Dj/B) = Rel(j) for 1 ≤ j ≤ n. It immediately follows that if 〈n, s〉 is acceptable,

then Θ is also acceptable. Now assume that 〈n, s〉 is good. We claim that Θ is good.

By construction |s| = |t| +
∑n

i=1 |ri|. Recall condition (2) of good. If |s| ≥ |B| +

(n−1), then
∑n

i=1 |ri| ≥ |B|. Else we have that
∑

ar(E)≥3(t(E)+
∑n

i=1 ri(E)) ≥ |B|.

Now Lemma 3.1.5 shows that D can be constructed in a manner covers B. Thus in

order to establish that Θ is good it suffices to show α(Ej)− δ(Dj/B) + δ(D/B) ≥ 0

for 1 ≤ j ≤ n−1. Suppose to the contrary that a = α(Ej)−δ(Dj/B)+δ(D/B) < 0

for some 1 ≤ j ≤ n− 1. Thus we may write a = w(m, s′) for some m ≤ n and some

sub-collection s′ of s. Now by clause (3) of goodness and the fact that 〈n, s〉 is good,

it follows that a ≤ w(n, s). But w(n, s) = δ(D/B) and hence α(Ej)−δ(Dj/B) ≤ 0,

a contradiction to Claim 2. Thus Θ is good.

Corollary 3.2.8. Let B ∈ Kα with δ(B) > 0, |B| ≥ msuff and 〈n, s〉 a good pair

with n ≥ 3. Then there is an D ∈ Kα such that (B,D) is an essential minimal pair

with w(n, s) = δ(D/B) < 0.

Proof. This follows directly from Lemma 3.1.11 and 3.2.7.

As it turns out, granularity offers us a very convenient way of establishing a

connection between acceptable/good pairs and the number theoretic facts in the

Appendix (See Lemma 3.2.11 and Theorem 3.2.15 below). Thus granularity takes

on two separate roles: it’s original role in [2], (given by Lemma 3.2.4) and the one

just mentioned (replacing the role played by local optimality, in Section 4 of [2]).

We now turn our attention towards using the number theoretic results in the
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Appendix to construct good pairs.

Lemma 3.2.9. The sequence given by 〈Gr(m) : m ∈ ω〉 is a monotonic decreasing

sequence. If α is not rational, then 〈Gr(m) : m ∈ ω〉 converges to 0. If α is rational,

then Gr(m) is eventually constant with Gr(m) = 1/c for sufficiently large m.

Proof. If α is not rational then there is some E ∈ L such that αE is irrational. Now

the required result follows from Remark A.0.2. If α is rational, then the required

result follows from Remark A.0.1.

Notation 3.2.10. We fix some notation: Whenever the assumption that α is ra-

tional is in effect, we assume that αE = pE
qE

in reduced form and that c = lcm(qE).

Lemma 3.2.11. Let n ∈ ω with n ≥ 3 and s be an L-collection. For 1 ≤ m ≤ n

and any sub-collection s′ of s, w(m, s′) is not in the interval (−Gr(n+ 1), 0).

Proof. Let n, s,m, s′ be as above. As granularity is monotonically decreasing, Gr(n+

1) ≥ Gr(m + 1). Assume to the contrary that w(m, s′) ∈ (−Gr(n + 1), 0). This

yields that Gr(n+1) > w(m, s′) > 0. But w(m, s′) ≥ Gr(m+1) > 0, a contradiction

which established the claim.

Lemma 3.2.12. Let B ∈ Kα with δ(B) > 0 and |B| ≥ msuff.

1. Let ε > 0 and assume that α is not rational. Then for any E ∈ L such that

αE is irrational, there are infinitely many good pairs (n, s) for B such that

0 < −w(n, s) < ε and s is such that s(E∗) > 0 if and only if E∗ = E for all

E ∈ L.
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2. If α is rational, then we may obtain infinitely many good pairs (n, s) for B

such that −w(n, s) = 1/c.

Proof. (1): Let E ∈ L be such that α(E) is irrational. Let L′ = {E} and let

α = α(E). Note that we may as well assume that ε ≤ min{δ(B), GrL′(2)}. As

limnGrL′(n) = 0, there is an infinite set A of positive integers such thatGrL′(n+1) <

GrL′(k) for all 2 ≤ k ≤ n. For each n ∈ A, let ln be such that GrL′(n+1) = lnα−n.

Since ε, |B| are fixed and α < 1, all but finitely many n ∈ A satisfy 0 < lnα−n < ε

and ln ≥ |B| + (n − 1). Given such n, let s be the L-collection that contains ln

many E relation symbols and no other relation symbols. It is immediate that by

our choice of n and s that (n, s) is a good pair with 0 < −w(n, s) < ε and that s

satisfies the other properties given in (1).

(2) : Assume that α is rational. The proof now splits off into two cases depending

on the value of c.

First consider the case c > 1: Then Gr(n′) = 1/c < 1 for all sufficiently

large n′. Note that δ(B) = k/c for some k ∈ ω, k 6= 0 and thus δ(B) ≥ 1/c.

Let L′ = {L ∈ E : αE < 1}. Using Remark A.0.1 of the Appendix, there is an

infinite set A of positive integers n such that GrL′(n + 1) = 1/c. For each n ∈ A,

let ln : L′ → ω be a function such that GrL′(n + 1) =
∑

E∈L′ ln(E)αE − n. Since

|B| is fixed and αE < 1 for each E ∈ L′, all but finitely many n ∈ A satisfy∑
E∈L′ αEln(E) − n = 1/c and

∑
E∈L′ ln(E) ≥ |B| + (n − 1). Given such n, let s

be the L-collection that contains exactly ln(E) many E relation symbols for E ∈ L′
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and no other relation symbols. Now by our choice of n, s it is immediate that (n, s)

is a good pair with −w(n, s) = 1/c.

Now consider the case c = 1: Now for each E ∈ L, α(E) = 1, Gr(m) = 1

for all m ≥ 2 and all finite structures have integer rank. Note that there is some

E ∈ L that has arity at least 3 as α(E) = 1 for each E ∈ L implies that arity of

each relation symbol cannot be 2. Fix such an E ∈ L and let L′ = {E}. Then for

any n ≥ |B|+ 1 take s to be the L-collection with n many E relations and no other

relations. A routine verification shows that 〈n, s〉 is a good pair.

We now put the previous results together to establish:

Lemma 3.2.13. Let B ∈ Kα with δ(B) > 0 and |B| ≥ msuff.

1. Let ε > 0 and assume that α is not rational. Now given any E ∈ L such that

αE is irrational, we can construct infinitely many non-isomorphic D ∈ Kα

such that (B,D) is an essential minimal pair that satisfies −min{ε, δ(B)} <

δ(D/B) < 0 where the new relations that appear in D that were not in B are

E relations.

2. If α is rational, then we can construct infinitely many non-isomorphic D ∈ Kα

such that (B,D) is an essential minimal pair that satisfies δ(D/B) = −1/c.

Proof. Use Lemma 3.2.12 to obtain a good pair (n, s) for B that satisfies 0 <

−w(n, s) ≤ Gr(m). Now use Corollary 3.2.8 to construct an essential minimal pair

(B,D) with w(n, s) = δ(D/B) < 0. As (n, s) is a good pair, D ∈ Kα. We can

obtain infinitely many D as required by varying our choice of good pairs. Further
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(1), (2) can be obtained by choosing suitable good pairs using (1), (2) (respectively)

of Lemma 3.2.12.

The two clauses of the following lemma illustrate some routine argument pat-

terns that can be used in constructing new structures by taking free joins. It will

also yield a substantial part of Theorem 3.2.15 and Lemma 4.2.1.

Lemma 3.2.14. Let A,B ∈ Kα with A ≤ B. Assume that (B,C) is an essential

minimal pair and let γ = −δ(C/B). Then

1. We can construct D ∈ Kα such that B ⊆ D, A ≤ D and 0 ≤ δ(D/A) < γ.

Further if (B,G) is a minimal pair with |G| < |C|, then G does not embed

into D over B.

2. Assume that δ(A) ≥ γ. Then we can construct D ∈ Kα such that B ⊆ D,

(A,D) is an essential minimal pair that satisfies 0 > δ(D/A) ≥ −γ

Proof. Note that there is some non-negative integer k such that kγ ≤ δ(B/A) <

(k + 1)γ. Let D be the free join of k-copies of C over B and enumerate the copies

of C in B by {Ci : 1 ≤ i ≤ k} (with B = D if k = 0). We now show that D has

the required properties. We begin by establishing some notation: Let D′ ⊆ D be a

nonempty substructure of D and let C′i = Ci ∩D′ and B′ = D′ ∩B.

Clearly B ⊆ D and D ∈ KL. By Remark 2.3.2, D ∈ Kα follows if you show

that A ≤ D. This is equivalent to establishing δ(D′/A) ≥ 0 in the case that A ⊆ D′.

So we will assume that A ⊆ D′. Since A ≤ B, if D′ ⊆ B, we have the required

result. So consider D′ * B. We may view D′ as the free join of D′i over B′. Note
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that δ(D′/B′) =
∑k

i=1 δ(C
′
i/B

′) by (4) of Fact 2.2.5. Since (B,C) are essential

minimal pairs, it follows that if B′ 6= B, then δ(C′i/B
′) ≥ 0. Further if B′ = B,

then δ(D′/B) ≥ −kγ with equality holding if and only if D′ = D.

Assume that A ⊆ D′ ⊆ D. We need to establish that δ(D′/A) ≥ 0. First con-

sider the case where B′ 6= B. Now δ(D′/B′) ≥ 0. Further δ(D′/A) = δ(D′/B′) +

δ(B′/A). Since A ≤ B and A ⊆ B′ ⊆ B, we have that δ(B′/A) ≥ 0. Thus δ(D′/A) ≥

0. Now consider the case B′ = B. In this case we have that δ(D′/A) = δ(D′/B) +

δ(B/A) ≥ −kγ + δ(B/A) ≥ 0. Hence A ≤ D.

A simple calculation yields δ(D/A) = −kγ + δ(B/A) < γ. We now show that

no G such that (B,G) is a minimal pair with |G| < |C| embeds into D over B.

Assume such a minimal pair did embed into D over B and let its image be D′. Now

δ(D′/B) =
∑k

i=1 δ(C
′
i/B). But each δ(C′i/B) ≥ 0 unless C′i = C. Thus |D′| ≥ |C|,

a contradiction.

(2) Note that there is some non-negative integer k such that kγ ≤ δ(B/A) < (k+1)γ.

Consider the structure D which is the free join of k+1-copies of C over B. Enumerate

these copies of C as C1 . . .Ck+1. Let D′ ⊆ D be non-empty, B′ = B ∩D′ and

C′i = C ∩D′

We begin by showing that D ∈ Kα. We need to show that δ(D′) ≥ 0. As this

is immediate when D′ ⊆ B, we may as well assume that this is not the case. Now as

in (1), δ(D′/B′) =
∑k+1

i=1 δ(C
′
i/B

′). As (B,C) is an essential minimal pair we need

only consider B′ = B (the other case follows easily as in (1)). Then δ(D′/B) ≥

−(k + 1)γ. But by our choice of k and using the assumption δ(A) ≥ γ, we see that
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δ(B) ≥ (k + 1)γ and hence δ(D′). Thus D′ ∈ Kα.

Now we show that (A,D) is an essential minimal pair with 0 > δ(D/A) ≥ −γ.

So assume that A ⊆ D′ ( D∗. If B′ 6= B, then δ(D′/A) = δ(D′/B′) + δ(B′/A) ≥

0. So assume that B′ = B. Thus δ(D′/A) ≥ δ(D′/B) + kγ. Since each (B,Ci)

is an essential minimal pair, it follows that δ(D′/B) ≥ −kγ unless D′ = D and

δ(D′/B) = −(k+1)γ if and only if D′ = D. Thus (A,D) forms an essential minimal

pair with the required properties.

Finally we are in a position to prove one of the key result of this section:

Theorem 3.2.15. Let A ∈ Kα with δ(A) > 0.

1. If α is not rational, then for any ε > 0, we can construct infinitely many non-

isomorphic D ∈ Kα such that (A,D) is an essential minimal pair that satisfies

−ε < δ(D/A) < 0. Further if α(E0) is irrational for some fixed E0 in L, then

we may assume that the only relations that hold in D that did not hold in A

are E0 relations.

2. If α is rational, then we can construct infinitely many non-isomorphic D ∈ Kα

such that (A,D) is an essential minimal pair that satisfies δ(D/A) = −1/c.

(Recall that c denotes the least common multiple of the denominators of the

αE).

Proof. For |A| ≥ msuff, the required results are immediate from Lemma 3.2.13. So

assume that |A| < msuff. Let A0 be an L-structure with msuff many points such that

no relations hold on A0 and take B = A ⊕ A0. Clearly A ≤ B. Using Theorem
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3.2.13 fix a C such that (B,C) is an essential minimal pair C ∈ Kα. Note that if αE0

is irrational for some E0 ∈ L and ε > 0, then we may assume that −min{ε, δ(A)} <

δ(C/B) < 0 and if α is rational, then we may assume δ(C/B) = −1/c. By using

(2) of Lemma 3.2.14, we obtain a required structure D. We observe that the non-

isomorphic D may be obtained by varying our choice of C and leave it to the reader

to verify that in the case α is rational, we have δ(D/A) = −1/c as claimed.

3.3 Coherence and rank 0 structures

This section is dedicated to building finite extensions of rank 0. Our goal is

to show that if α is coherent, then for any B ∈ Kα with δ(B) > 0, there is some

D ∈ Kα with B ⊆ D such that δ(D) = 0. If α is rational, this is easily achieved by

repeated use of (2) of Theorem 3.2.15. Thus we focus on the case that α is coherent

but not rational.

Definition 3.3.1. Let α be coherent but not rational. Let β(α) = min{δ(A), Gr(2) :

A ∈ Kα, δ(A) > 0 and |A| < msuff}.

Remark 3.3.2. Note that β(α) > 0. Further if B ∈ Kα is such that 0 < δ(B) <

β(α), then |B| ≥ msuff.

Proposition 3.3.3. Let B ∈ Kα. Then there is some Z ⊆ B such that δ(Z) = 0

and if C ⊆ B is such that δ(C) = 0, then C ⊆ Z.

Proof. Let B ∈ Kα and let A,C ⊆ B with δ(A) = δ(C) = 0. Let D be the join of

A,C in B. Now 0 ≤ δ(D) ≤ δ(A) + δ(C) = 0 by (3) of Fact 2.2.5. Thus there is a

unique maximal (with respect to ⊆) Z ⊆ B such that δ(Z) = 0.
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Definition 3.3.4. Let B ∈ Kα. The unique maximal (with respect to ⊆) Z ⊆ B

such that δ(Z) = 0 will be called the zero set of B and we denote Z by ZB. We will

let ZB denote the universe of ZB.

Lemma 3.3.5. Let α be coherent and assume that α is not rational. Let A ∈ Kα

with β(α) > δ(A) > 0. Then there exists A∗ ∈ Kα such that A∗ ⊇ A, 0 ≤ δ(A∗) <

β(α) and |A∗ − ZA∗| < |A− ZA|.

Proof. Choose B ⊆ A such that ZA ( B ⊆ A and γ := δ(B) is least possible.

Clearly γ > 0 as ZA ( B, B ≤ A as the rank of B is minimal and |B| ≥ msuff as

γ ≤ δ(A) < β(α). Further using (2) of Fact 2.2.5, it follows that for any B′ ⊆ B,

either B′ ⊆ ZA or δ(B′) ≥ γ. We construct A∗ by taking a free join of A over B

with a suitably constructed structure D ∈ Kα with B ⊆ D.

Now as α is coherent there are infinitely many positive integers 〈n′,m′E〉E∈L

such that n′ −
∑

E∈Lm
′
EαE = 0. Using the fact that γ = δ(C), we obtain that

δ(C) = n0 −
∑

E∈Lm0(E)αE for some non-negative integers 〈n0,m0(E)〉E∈L. Hence

we now obtain that there are infinitely many positive integers 〈n′′,m′′E〉E∈L such

that n′′ −
∑

E∈Lm
′′
EαE = −γ. Thus we can construct acceptable 〈n, s〉 such that

w(n, s) = −γ. Use Lemma 3.2.7 to construct an n-template Θ that corresponds to

〈n, s〉.

Fix any b∗ ∈ B − ZA. Let D be an extension of B by Θ with the additional

property that there is some relation E and Q ∈ ED with {b∗, dn} ⊆ Q where dn is

as described in Notation 3.1.7. As δ(D/B) = −γ we have that δ(D) = 0. We claim

that D ∈ Kα.
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First note that if B ⊆ D′ ⊆ D, then δ(D′/B) ≥ −γ by (1.c) of Lemma

3.1.11. Hence we obtain that δ(D′) ≥ 0. Now choose D′ ⊆ D arbitrary and and let

B′ = B ∩D′. There are now three possibilities. First consider the case dn /∈ D′.

By (1.b) of Lemma 3.1.11 we obtain that δ(D′/B′) ≥ 0 and hence we obtain that

δ(D′) ≥ 0 as B′ ∈ Kα. Now consider the case b∗ ∈ D′. Then we have that

b∗ ∈ B′ and hence δ(B′) ≥ γ. As δ(D′/B′) ≥ δ(BD′/B) by (2) of Fact 2.2.5 and

δ(BD′/B) ≥ −γ, we conclude that δ(D′) ≥ 0. Finally consider the case dn ∈ D′

but b∗ /∈ D′. Then we have that Q /∈ ED′ . So δ(D′/B′) ≥ δ(BD′/B) + α(E) ≥ 0.

As δ(B′) ≥ 0, δ(D′) ≥ 0.

Let A∗ be the free join D⊕B A. As B ≤ A and D ∈ Kα, by Fact 2.3.4, we

obtain that A∗ ∈ Kα. Now δ(A∗/B) = δ(A/B) + δ(D/B) = δ(A/B)− γ and hence

0 ≤ δ(A∗) < β(α).

Finally note that the universe of A∗ is A ∪ D. As δ(D) = 0, we have that

B ⊆ D ⊆ ZA∗ . As b∗ ∈ B − ZA, we conclude that |A∗ − ZA∗| < |A− ZA|.

Theorem 3.3.6. Let α be coherent. Then given any A ∈ Kα with δ(A) > 0 there

is D ∈ Kα such that D ⊇ A and δ(D) = 0.

Proof. Case 1 : Assume that α is not rational. Now there is some E ∈ L such that

αE is irrational. If 0 ≤ δ(A) < β(α), then we are done. So assume that δ(A) ≥ β(α).

Since αE is irrational, we can find a minimal pair (A,B) with δ(B/A) as small as

we like using Theorem 3.2.15. Now fixing a minimal pair such that δ(B/A) < β(α)

and taking sufficiently many isomorphic copies of B freely joined over A, we can

find a A∗ ⊇ A such that A∗ ∈ Kα and 0 < δ(A∗) < β(α). Let l = |A∗ − ZA∗|. By
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iterating Lemma 3.3.5 at most l times, we may construct D ⊇ A∗ with D ∈ Kα such

that |D − ZD| = 0, i.e. δ(D) = 0.

Case 2 : Assume that α is rational. Then δ(A) = k/c for some positive integer

k, where c is the least common multiple the qE where αE = pE/qE (in reduced

form). If α is not graph-like with weight one, as noted in Theorem 3.2.15 we may

create a minimal pair B over A such that δ(B/A) = −1/c and for all B′ ( B,

δ(B′/A ∩B′) ≥ 0. Let D = ⊕1≤i≤kBi/A, the free join of k isomorphic copies of B

over A. A routine argument now shows that δ(D) = 0 and that D ∈ Kα.

In the case that α is graph-like with weight one, we may producing the required

D by constructing a chain of minimal pairs (using Theorem 8.2.4) A = D0 =⊆

D1 . . . ⊆ Dk = D with δ(Di+1/Di) = −1.

We note that the approach in the case α is graph-like with weight one can be

used in the case that α is rational eliminating the need to consider whether α is

graph-like with weight one or not separately.

Remark 3.3.7. We note that we may construct infinitely many such non-isomorphic

D by varying our choice of A∗ or B accordingly.

49



Chapter 4: Quantifier elimination and the completeness of Sα

Quantifier Elimination for the theory of the (Kα,≤) generic is briefly explored

by Baldwin and Shelah in Section 1 of [14]. They establish that the theory of the

(Kα,≤) generic is near model complete (i.e. each formula is equivalent to a boolean

combination of existentials), using a ∀∃∀-axiomatization of the theory of the generic.

In [2], under the additional assumption that the values of α(E) are irrational and

linearly independent over the rationals obtained the quantifier elimination result

and a ∀∃-axiomatization of the theory of the generic. He utilized the quantifier

elimination result to explore the existentially closed models of the theory of the

generic. Further work by Ikeda, Kikyo and Tsuboi extended the ∀∃-axiomatization

to arbitratry α : L→ (0, 1]. However the consequences of the quantifier elimination

in this setting were not explored.

In this section we begin by introducing a collection of ∀∃-axioms that we

denote by Sα (see Definition 4.0.1). In Theorem 4.3.5 we observe that Sα admits

quantifier elimination down to the level of chain minimal extension formulas (see

Definition 4.0.4) by generalizing the arguments of Laskowski in [2]. In Theorem

4.4.1 we collect useful results about Sα including the fact that Sα is the theory for

the Baldwin-Shi hypergraph for α. Lemma 4.4.2 gathers useful consequences of the
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quantifier elimination.

Definition 4.0.1. The theory Sα is the smallest set of sentences insuring that if

M |= Sα, then

1. M ∈ Kα, i.e. every finite substructure of M is in Kα

2. For all A ≤ B from Kα, every (isomorphic) embedding f : A→M extends to

an embedding g : B→M

Remark 4.0.2. We note that Sα is a collection of ∀∃-sentences. Further since ∅ ≤ A

for each A ∈ Kα it follows that M |= ∃y∆A(x)

Notation 4.0.3. Let N ∈ KL. Given A ∈ KL with a fixed enumeration a of A, we

write ∆A(x) for the atomic diagram of A. Also for A,B,C ∈ KL with A ⊆ B ⊆ C

and fixed enumerations a, b, c respectively with a an initial segment of b and b an

initial segment of c; we let ∆A,B(x, y) the atomic diagram of B with the universe

of A enumerated first according to the enumeration a. Similarly ∆A,B,C(x, y, z) will

denote the atomic diagram of C with the universe of A enumerated first by x, the

remainder B − A by y and then C −B by z according to the enumerations a, b, c.

Definition 4.0.4. Let A,B ∈ K and assume A ⊆ B. Let ΨA,B(x) = ∆A(x) ∧

∃y∆(A,B)(x, y). Such formulas are collectively called extension formulas (over A).

A chain minimal extension formula is an extension formula ΨA,B where B us the

union of a minimal chain over A.
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4.1 Some Finiteness Results

This results in this section are due to Laskowski and can be found in Section 3

of [2]. We follow his development exactly. This section is devoted to setting notation

and obtaining two finiteness results which will be used throughout the paper. Both

of these are achieved by combining the notion of granularity with the definition

of Kα. The first, Proposition 3.1, asserts that any sufficiently large collection of

substructures of an element of Kα contains an arbitrarily large free join. We freely

use the ∆-System Lemma (see, for example, Lemma III.2.6 of [26]), König’s Lemma

(see Lemma III.5.6 of [26]) and Ramsey’s Theorem (see Theorem 5.1.1 of [8]) in its

proof.

Proposition 4.1.1. Fix m ∈ ω and D ∈ Kα . For any infinite set {Bi : i ∈ ω} of

m-element substructures of D there is an infinite subset Y ⊆ ω and a finite A ⊆ D

such that

1. {Bi : i ∈ ω} is a free join over A and are pairwise isomorphic over A;

and

2. A ≤ Bi for every i ∈ Y .

Moreover, for any m, s ∈ ω there is an integer N(m, s) large enough such that for

any set {Bi : i < N(m, s)} of substructures, each of size at most m, of any D ∈ Kα,

there is a subset Y ⊆ N(m, s) and an A such that {Bi : i ∈ Y } is a free join over

A and A ≤ Bi for all i ∈ Y .

52



Proof. Fix a set {Bi : i ∈ ω} of m-element substructures of a fixed D ∈ Kα. By

replacing ω by an infinite subset of itself, it follows from the finite ∆-system lemma

that we may assume that there is a fixed A such that Bi ∩Bj = A for all i < j < ω.

Fix an enumeration a of A and enumerations bi of each bi extending a. Recall

that ar(L) denote the maximum arity of the relations E ∈ L. Since L is finite and

|Bi| = m for all i, there are only finitely many possibilities for the quantifier-free type

qftp(bii , . . . , biar(L)
/A) over A among all possible sequences i1 < . . . < iar(L) < ω.

Thus, by Ramsey’s theorem there is an infinite Y ⊆ ω so that the quantifier-free type

qftp(bii , . . . , biar(L)
/A) over A is constant among all sequences i1 < . . . < iar(L) < ω

from Y . Since Bi∩Bj = A for all distinct i, j from Y , {Bi : i ∈ Y } is clearly a join

over A. That they are pairwise isomorphic over A is immediate since qftp(bi/A)

is constant. Assume by way of contradiction that it is not a free join. Then there

are E ∈ L, 2 ≤ t ≤ ar(L) , and X(i1,...,it) ⊆ EBi1∪...∪Bit −
⋃
{EBil : 1 ≤ l ≤ t} for

every increasing sequence i1 < . . . < it from Y . For every integer N , let YN be

the first N elements of Y and let CN be the finite substructure of D with universe⋃
{Bi : i ∈ YN}. Now |CN | grows linearly in N , while (since t ≥ 2) the number of

subsets of CN satisfying E grows at least quadratically. So, if N is large enough,

δ(CN) would be negative, contradicting D ∈ Kα. Thus {Bi : i ∈ Y } is a free join

over A. Arguing similarly, if A � Bi for some (equivalently for every) i ∈ ω , then

choose Ai such that A ⊆ Ai ⊆ Bi and δ(Ai/A) < 0. Since |Ai − A| < m, it follows

from granularity that δ(Ai/A) ≤ −Gr(m). So, for any integer N if we let CN be

the substructure of D with universe {Aj : j ∈ YN} (where Aj is the substructure

of Bj corresponding to Aj) then by (5) of Fact 2.2.5, δ(CN/A) ≤ NGr(m). Thus,
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δ(CN) < 0 whenever N is sufficiently large, which again contradicts D ∈ Kα.

The “Moreover” clause follows from the infinitary version by the standard

König’s Lemma argument.

Definition 4.1.2. Fix m ∈ ω and A ∈ Kα . An m-minimal chain over A is a

sequence {Ai : i ≤ j} of structures from Kα such that A0 = A, |Ai+1 − Ai| < m,

and (Ai,Ai+1) is a minimal pair for all i < j.

The following is almost immediate:

Lemma 4.1.3. Fix m ∈ ω and A ∈ Kα . Every m-minimal chain {Ai : i ≤ j} over

A has length j ≤ δ(A)/Gr(m).

Proof. Since |Ai+1 − Ai| < m and δ(Ai+1/Ai) < 0, it follows immediately from the

definition of Gr(m) that δ(Ai+1/Ai) ≤ −Gr(m). Thus, for each i ≤ j, 0 ≤ δ(Ai) ≤

δ(A)− iGr(m), so j ≤ δ(A)/Gr(m).

Lemma 4.1.4. Let D ∈ Kα and let {Ai : i ≤ j} be an m-minimal chain over A of

substructures of D, and suppose that B ⊆ D is finite, A ⊆ B, but Aj * B. Then

δ(Dj/B) ≤ −Gr(m), where Dj is the substructure of Aj with universe Aj ∪B.

Proof. For each i ≤ j, let Di denote the substructure of D with universe Ai∪B. Note

that D0 = B. By iterating Lemma 3.2.4 δ(Di+1/Di) ≤ 0 for all i < j, with equality

holding when Di+1 = Di and δ(Di+1/Di) ≤ Gr(m) otherwise. Since Aj * B,

Di+1 6= Di for at least one i, so δ(Dj/B) = δ(Dj/D0) =
∑j−1

i=0 δ(Di+1/Di) ≤

−Gr(m).
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Definition 4.1.5. Fix m ∈ ω and D ∈ Kα. A finite B ⊆ D is m-strong in D if

B ≤ C for all C satisfying |C −B| < m and B ⊆ C ⊆ D.

Lemma 4.1.6. Fix m ∈ ω, D ∈ Kα , and a finite A ⊆ D. Let {Ai : i ≤ j} be a

maximal m-chain over A in D. Then Aj is m-strong and Aj ⊆ B for any m-strong

B satisfying A ⊆ B ⊆ D. In particular, Aj = A′k whenever {A′i : i ≤ k} is any

maximal m-chain over A in D.

Proof. We first argue that Aj is m-strong in D. By way of contradiction, assume

there were B satisfying Aj ⊆ B ⊆ D, |B − Aj| < m, and δ(B/Aj) < 0. Let C be

⊆-minimal such that Aj ⊆ C ⊆ B and δ(C/Aj) < 0. Then (Aj,C) is a minimal pair,

contradicting the maximality of the m-chain. So Aj is m-strong in D.

Now suppose that A ⊆ B ⊆ D and that B is m-strong in D. We argue that

Aj ⊆ B. If this were not the case, then choose the largest i < j such that Ai ⊆ B.

Let C be the substructure of D with universe Ai+1∪B. Then δ(C/B) < 0 by Lemma

4.1.4, contradicting B being m-strong in D.

Remark 4.1.7. As a special case of Lemma 4.1.6, suppose that A ⊆ B are from

Kα. Let m = |B| and let {Ai : i ≤ j} be a maximal m-chain over A of substructures

of B. Then Aj ≤ B. As well, it is easily checked that δ(Aj) is minimal among all

C satisfying A ⊆ C ⊆ B.
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4.2 Towards Quantifier Elimination: The existence of even more par-

ticular finite structures

This Section contains several Lemmas that will be needed in the proof of the

quantifier elimination result of 4.3.5. We begin by generalizing Proposition 4.2 of [2].

Recall that if α is not rational, then limnGr(n) = 0. Thus in the case α is not ratio-

nal we may replace clause (1) of the following lemma with 0 ≤ δ(D∗/A) < µ where

µ > 0. The new statement thus obtained is precisely Proposition 4.2 of [2].

Throughout the rest of this section we work under the assumption that α is not

graph-like with weight one.

Lemma 4.2.1. Suppose that A ≤ B ∈ Kα and Φ ⊆Fin Kα are given such that

B ⊆ C with B � C for all C ∈ Φ. Let m ∈ ω. Then there is a D∗ ⊇ B, D∗ ∈ Kα

such that

1. 0 ≤ δ(D∗/A) < Gr(m)

2. A ≤ D∗

3. No C ∈ Φ isomorphically embeds into D∗ over B

If α is rational then we can always find D∗ such that δ(D∗/A) = 0.

Proof. Fix A,B and Φ as above. Note that we may replace each C ∈ Φ by

B ⊆ C′ ⊆ C that is minimal and thus we may as well assume that (B,C) is a mini-

mal pair for any given C ∈ Φ. Now if δ(A) = δ(B), then take D∗ = B. So we may

56



assume that δ(A) < δ(B). There are now two possibilities.

Case 1: α is not graph-like with weight one. Let u be a positive integer such that

u > |C| for each C ∈ Φ. Now using Theorem 3.2.15, fix a D ∈ Kα such that |D−B| >

u and (B,D) is an essential minimal pair that satisfies −min{Gr(m), δ(B/A)} ≤

δ(D/B) < 0. Using (1) of Lemma 3.2.14, we may obtain D∗ with the required

properties.

Case 2: α is graph-like with weight one. We refer the reader to Lemma 8.2.6

Definition 4.2.2. Let B ∈ Kα and let Φ ⊆Fin Kα such that each C ∈ Φ extends

B. For any M |= Sα, an embedding g : B → M omits Φ if there is no embedding

h : C→M extending g for any C ∈ Φ.

The following is a Proposition 4.4 of [2]. It’s proof follows along the same lines

there in with obvious modifications made to allow for the existence of structures

D ∈ Kα such that δ(D) = 0 in the case that α is coherent.

Theorem 4.2.3. Suppose that A ≤ B are from Kα and Φ is a finite subset of Kα

such that for each C ∈ Φ, A ≤ C, B ⊆ C but B � C. Then for any M |= Sα, for any

embedding f : A→M there are infinitely many embeddings gi : B→M extending

f such that each gi omits Φ and {gi(B) : i ∈ ω} is disjoint over f(A).

Proof. If δ(B) = 0 (which is possible only if α is coherent), then there are no C ∈ Kα

such that B � C and thus the statement follows vacuously. So we may assume that

δ(B) > 0. To ease notation we may assume f = id, i.e., A ⊆M. By replacing each

C ∈ Φ by a ⊆-minimal C′ satisfying B ⊆ C′ ⊆ C and δ(C′/B) < 0, we may assume

that (B,C) is a minimal pair for all C ∈ Φ. Choose an integer m so that |C−A| < m
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for all C ∈ Φ. Using Lemma 4.2.1, choose D ∈ Kα such that A ≤ D, B ⊆ D, but

δ(D/A) < Gr(m). Choose a disjoint family {Di : i ∈ ω} over A and isomorphisms

ki : D → Di over A for each i. Since i < n ⊕i<nDi ≤ ⊕i≤nDi for each n and since

M |= Sα , one can inductively construct an embedding j : ⊕i∈ωDi →M extending

f . As notation, for each i ∈ ω let gi = j ◦ ki , let B′i = gi(B), and let D′i = gi(D).

So A ⊆ B′i ⊆ D′i ⊆M for each i and {D′i : i ∈ ω} is disjoint over A.

We complete the proof by showing that the set Z = {i ∈ ω : gi does not omit Φ}

is finite. Assume by way of contradiction that Z were infinite. For each i ∈ Z, choose

Ci ∈ Φ and an embedding hi : Ci → M extending gi|B. For each such i, let Hi be

the substructure of M with universe D′i ∪ hi(Ci). Note that |Hi| < |D| + m for

each i ∈ Z. By Proposition 4.1.1 there is an F and an infinite Y ⊆ Z such that

{Hi : i ∈ Y } is disjoint over F and F ≤ Hi for each i ∈ Y . Fix any i(∗) ∈ Y .

Since {D′i : i ∈ Y } are disjoint over A, A ⊆ F ⊆ hi(Ci(∗)). Since A ≤ Ci(∗) by

hypothesis, this implies A ≤ F, hence A ≤ Hi(∗) by transitivity. But this is impos-

sible, since δ(Hi(∗)/D
′
i(∗)) < 0 (hence ≤ −Gr(m)), while δ(D′i(∗)/A) < Gr(m) and

δ(Hi(∗)/A) = δ(Hi(∗)/D
′
i(∗)) + δ(D′i(∗)/A).

Corollary 4.2.4. Suppose that A,B ∈ Kα and A ≤ B and f : A→M∗ is strong

where M∗ |= Sα is ℵ0-saturated. Then there is a strong embedding g : B→M∗

extending f . In particular, every B ∈ Kα embeds strongly into M∗.

Proof. First, note that if C ∈ Kα extends B, but A � C, then since f is strong, any

embedding g : B → M∗ omits C. So let Φ be the (infinite) set of all isomorphism

types (over B) of C ∈ Kα such that B ⊆ C,A ≤ C, but B � C. By Proposition
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4.2.3, for every finite Φ0 ⊆ Φ there is an embedding g : B→M∗ extending f . Since

M∗ ℵ0-saturated there is g : B→M∗ extending f that omits all of Φ. Combining

this with the note above, g omits every extension C ⊇ B such that B � C. Thus g

is a strong embedding. The final sentence follows immediately since ∅ ≤ B for any

B ∈ Kα .

4.3 Quantifier elimination for Sα

In this section we give a description of how to genaralize the results of [2]

mentioned at the beginning of this section. The arguments are originally due to

Laskowski and we follow the development closely. They are included here for com-

pleteness.

Definition 4.3.1. For each A ∈ Kα and m ∈ ω, we say B ∈ Kα is constructed

by an m-chain over A if there is an m-chain 〈Ai : i ≤ j〉 over A, B = Aj. Let

Xm(A) be a set of representatives of isomorphism types of Kα that are constructed

by m-chains over A.

Clearly A ∈ Xm(A), every A′ ∈ Xm(A) extends A and by 4.1.3, Xm(A) is

finite.

Definition 4.3.2. For A′,A′′ ∈ Xm(A), write A′ @ A′′ if there is an embedding

g : A→ A′′ over A such that g(A′) 6= A′′ . If M |= Sα and A→M is an embedding, a

structure A∗ ∈ Xm(A) is maximally embeddable in M over f if there is an embedding

f ′ : A∗ →M extending f , but for any A′ such that A∗ @ A′, there is no embedding

g : A′ →M that extends f .
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Remark 4.3.3. Fix A ∈ Kα, m ∈ ω, M |= Sα and an embedding f : A→M. Since

A ∈ Xm(A) and Xm(A) is finite, a maximally embeddable A∗ ∈ Xm(A) in M over f

exists. For any such A∗ , if f : A∗ →M is an embedding extending f , then f ′(A∗) is

m-strong. Conversely, if 〈Ai : i ≤ j〉 is a maximal m-chain in M over f(A), then by

Lemma 4.1.6 Aj is isomorphic (over f) to some A∗ that is maximally embeddable

in M over f .

Fix A,B ∈ Kα , Φ a finite subset of Kα and m ∈ ω such that A ⊆ B and for

each C ∈ Φ, C ⊇ B and |C − A| < m. For each such quadruple, let Y (A,B,Φ,m)

denote the (finite) set of all A∗ ∈ Xm(A) such that there is D ∈ Kα and an embed-

ding g : B→ D over A such that A∗ ≤ D, D = A∗ ∪ g(B), and it is NOT the case

that there are H ∈ Kα, C ∈ Φ, and h : C→ H extending g such that D ≤ H.

The following Theorem forms the crux of our quantifier elimination. The

significance is that the existence of an extension g omitting Φ is described in terms

of extensions (and nonextensions) of f itself.

Theorem 4.3.4. Fix any A,B ∈ Kα, Φ a finite subset of Kα , and m ∈ ω such

that A ⊆ B,B ⊆ C, and |C − A| < m for all C ∈ Φ. As well, fix M |= Sα and an

embedding f : A→M.There is an embedding g : B→M extending f and omitting

Φ if and only if there is A∗ ∈ Y (A,B,Φ,m) that is maximally embeddable in M

over f .

Proof. First suppose that there is g : B→M extending f and omitting Φ. Let

〈A′i : i ≤ j〉 be a maximal m-chain of minimal pairs in M over f(A). By Remark

4.3.3 there is A∗ ∈ Xm(A) that is maximally embeddable in M over f via an
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isomorphism f ′ : A∗ → A′j extending f . Also, by Lemma 4.1.6, A′j is m-strong in

M.

It suffices to show that A∗ ∈ Y (A,B,Φ,m). Let D′ be the substructure of

M with universe A′j ∪ g(B). Let D ⊇ A∗ be isomorphic to D′ via an isomorphism

j : D→ D′ that extends f ′ . Since A′j is m-strong in M, A′j ≤ D′ , hence A∗ ≤ D.

Put g∗ := j−1 ◦ g. Then g : B→ D and D = A∗ ∪ g∗(B). To finish this direction,

assume by way of contradiction that there is H ≥ D, C ∈ Φ and h : C→ H extending

g∗ . Since M |= Sα and D ≤ H, the embedding j : D→M extends to an embedding

j∗ : H→M. But then j∗ ◦ h : C→M extends g, contradicting the fact that g

omitted Φ.

Conversely, suppose that A∗ ∈ Y (A,B,Φ,m) and that A∗ is maximally em-

beddable in M over f . Choose an embedding f ′ : A→M extending f . By Remark

4.3.3, f ′(A∗) is m-strong in M.

Choose D ∈ Kα and g : B→ D over A witnessing A∗ ∈ Y (A,B,Φ,m). Fix

Φ∗, a (finite) set of representatives of all isomorphism types over D of all H ∈ Kα

that satisfy A∗ ≤ H, |H −A∗| < m, D ⊆ H, but D � H. By Proposition 4.2.3 there

is an embedding j : D→M extending f ′ that omits every H ∈ Φ∗ . We argue that

g′ : B→M omits every C ∈ Φ, where g′ := j ◦ g.

By way of contradiction, suppose that there were C ∈ Φ and h : C→M

extending g′. Let H′ be the substructure of M with universe j(D) ∪ h(C). There

are two cases. On one hand, if j(D) � H′ then we would contradict j omitting Φ∗.

On the other hand, if j(D) ≤ H then we would contradict D being a witness to

A∗ ∈ Y (A,B,Φ,m).
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Suppose that A ⊆ B are from Kα. Let C be the union of a maximal mini-

mal chain of minimal pairs over A in B. Then clearly C ≤ B. Since the sentence

∀x[∆C(x)→ ∃y∆(C,B)(x, y)] is an axiom Sα, the extension formula ΨA,B is Sα equiv-

alent to the chain-minimal extension formula ΨA,C, i.e. every extension formula is

Sα equivalent to a chain minimal extension formula.

Theorem 4.3.5. Every L-formula is Sα-equivalent to a boolean combination of

chain-minimal extension formulas.

Proof. It suffices to show that every L-formula is Sα-equivalent to a boolean com-

bination of extension formulas. By taking A = B, every ∆-formula describing the

isomorphism type of any A is equivalent to an extension formula. It is easily seen

that every atomic formula ϕ(x) is equivalent to a disjunction of ∆A -formulas for

which ϕ holds. Thus, every quantifier-free formula is equivalent to a boolean com-

bination of extension formulas.

It suffices to show that if θ(x, y) is a boolean combination of extension for-

mulas, then ∃yθ(x, y) is Sα-equivalent to a boolean combination of extension for-

mulas. Since existential quantification commutes with disjunction we may assume

that θ(x, y) ` ∆A(x) ∧ ∆A,B(x, y) for some A ⊆ B and that θ is a conjunction of

extension formulas and negations of extension formulas over B. We must show that

∃yθ(x, y) is Sα-equivalent to a boolean combination of extension formulas over A.

Fix such a θ, let Γ be the set of C such that ΨB,C occurs positively in θ, and

Φ be the set of C for which ¬ΨB,C occurs as a conjunct of θ. Let m =
∑

C∈Γ∪Φ |C|.

Call a D ∈ Kα a candidate if B ⊆ D, |D| < m, for every C ∈ Γ there is h : C→ D,
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while for each C ∈ Φ, there is NO h : C→ D. For each candidate D, let Φ∗D

consist of representatives of all isomorphism types of F ∈ Kα such that D ⊆ F,

|F − D| < max{|C| : C ∈ Φ}, and there is an embedding h : C→ F over B. Let

Z consist of a representative of every isomorphism type over B of candidates. We

claim that ∃yθ(x, y) is Sα-equivalent to:

χ(x) :=
∨
D∈Z

∨
A∗∈Y (A,D,ΦD∗,m)

ΨA,A∗(x) ∧
∧

A′∈Xm(A),A′wA∗
¬ΨA,A′(x)


To see this, fix M |= Sα and a from M . Let A be the substructure of M with

universe a. First assume that M |= ∃yθ(x, y). Fix a tuple b from M realizing θ(a, y)

and let B be the substructure of M with universe a ∪ b For each C ∈ Γ choose an

embedding gC : C→M over B. Let D =
⋃
{gC(C) : C ∈ Γ} ⊆M. Since each C ∈ Φ

is omitted over B, D is a candidate. Moreover, the identity map id : D→M omits

Φ∗D , so M |= χ(x) by Theorem 4.3.4.

Conversely, suppose that M |= χ(x). Choose a candidate D witnessing this.

By Theorem 4.3.4 again, there is an embedding g : D→M over A omitting Ψ∗D.

Let b enumerate the image of the restriction g|B. It is easily checked that M |=

θ(a, b).

4.4 Some immediate consequences of the quantifier elimination

Of the following results, (1) and (2) of Theorem 4.4.1 was first proved (in near

full generality) in [3] by Ikeda, Kikyo and Tsuboi. However their proof does not

yield the quantifier elimination result of Theorem 4.3.5. The proofs we present here

are due to Laskowski [2].
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Theorem 4.4.1. 1. The theory Sα is complete.

2. Sα is the theory of the (Kα,≤)-generic Mα.

3. Fix M |= Sα and X ⊆M. The following are equivalent:

(a) X is algebraically closed

(b) For any minimal pair (B,C) with C ⊆M, if B ⊆ X, then C ⊆ X.

(c) For any finite B ⊆M , B ∩X ≤ B

Proof. Claim 1: Since the empty structure is an element of Kα and since ∅ ≤ A

for all A ∈ Kα, Sα decides every extension sentence (i.e., extension formula with no

free variables). Thus, Sα decides every L-sentence by Theorem 4.3.5.

Claim 2: Since Sα is complete, it suffices to show that M |= Sα where M is the

(Kα,≤) generic. Say M =
⋃
{An : n ∈ ω}, where each An ∈ Kα, An ≤ An+1, and as

a result An is a strong substructure of M. First, let B be any finite substructure of

M. Choose n such that B ⊆ An. Since membership in Kα is hereditary, it follows

that B ∈ Kα.

Second, suppose that B ≤ C and f : B→M is given. Choose n such that

f(B) ⊆ An . Let f : C→ C′ be any isomorphism extending f such that {An,C
′}

are disjoint over f(B). (We do NOT require that C′ ⊆M.) Let D be the free join

of {An,C
′} over f(B). Since f(B) ≤ C′, Fact 2.3.4 implies that An ≤ D. Since M

is (Kα,≤)-generic, choose an embedding g : D′ →M over An . Then h = g ◦ f ′ is

an embedding of C into M extending f .
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Claim 3: a) =⇒ b) Assume X is algebraically closed and fix B ⊆ X and a minimal

pair (B,C) with C ⊆M. Then, letting b be an enumeration of B, ∆C(x, b) is an

algebraic formula in M, hence C ⊇ X.

b) =⇒ c) Choose any finite B ⊆M. If B ∩ X � B then let C be minimal such

that B ∩ X ⊆ C ⊆ B and B ∩ X � C. Then C ⊆ X, so B ∩ X = C, contradiction

. c) =⇒ a) Assume that (c) holds. Let b ∈ M −X and let ϕ(x, a) be any L(X)-

formula such that M |= ϕ(b, a). We argue that ϕ(x, a) is not algebraic. Let B

denote the substructure of M with universe ab. By Theorem 4.3.5, we may assume

that ϕ is a boolean combination of chain-minimal extension formulas. By writing ϕ

in Disjunctive Normal Form it suffices to assume that ϕ(x, a) has the form

∧
C∈Γ

∃z∆C(x, a, z) ∧
∧
C∈Φ

¬∃z∆C(x, a, z)

for finite sets Γ,Φ of chain-minimal extensions of B. Choose m large (at least

|B| +
∑

C∈Γ∪Φ |C|). Recall that by Lemma 4.1.6, for every finite A ⊆M and every

n ∈ ω, there is a unique smallest m-strong B satisfying A ⊆ B ⊆M. Denote this

B by clm(B) and set B∗ = clm(B). Let A0 = B ∩ A, and let Φ∗ be a (finite) set

of isomorphism types of all D ⊇ B∗ with |D − B| < m. Clearly Φ ⊆ Φ∗ By (3)

A0 ≤ B, so by Proposition 4.2.3 there are infinitely many embeddings gi : B∗ →M,

each omitting Φ, such that {gi(B∗) : i ∈ ω} is disjoint over A0. It is easily checked

that M |= ϕ(gi(b), a) for each i ∈ ω.

The following lemma, will be useful in both Section 5. It is an immediate

consequence of the quantifier elimination:
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Lemma 4.4.2. Let M |= Sα and A be a finite closed set of M. Suppose that π is a

consistent partial type over A any realization of π has the same quantifier free type

over A. Then

1. If M is ℵ0-saturated and any realization b of π in M has the property that bA

is closed in M, then π has a unique completion to a complete type p over A.

2. If any realization b of the quantifier free type of π (over A) has the property

δ(b/A) = 0, then π has a unique completion p over A and further p is isolated

by the formula ∆A,Ab(a, x).

Proof. (1): Note that by Theorem 4.3.5 it suffices to show that all chain mini-

mal formulas over A are determined by the given conditions. Let b |= π. Fix

bA ⊆ D ∈ Kα and let φD(x) = ∆a,ab(a, x) ∧ ∃y∆a,ab,D−ab(a, x, y) be the correspond-

ing extension formula. Suppose that bA ≤ D. Now as bA ≤ M and M |= Sα, we

obtain that M |= φD(b). Thus it follows that p ` φD. Now suppose that bA � D.

If π∗ = π ∪ ¬φD(x) is consistent, then there is some realization of π∗ in M by ℵ0-

saturation. Clearly no realization of π∗ can be strong in M, and hence π ` ¬φD(x).

Thus π determines all extension formulas including the chain minimal formulas over

A and thus is complete. So simply take p = π to obtain the required complete type.

(2): Consider a partial type given as above. We may as well assume that ∆A,Ab(a, x) ∈

π. Arguing as in part (1), we see that if bA ≤ D, then φD(x) ∈ π. So assume that

bA � D and that ¬φD(x) is consistent with π. As M is a model, there is some b′

realizing φD(x). But then, there is some C ⊆ M such that (bA, bAC) is a minimal
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pair. Now δ(bAC/A) = δ(bAC/bA) + δ(bA/A) < 0. But this contradicts A ≤ M .

Thus the required result follows.

The following lemma shows that isomorphisms between closed sets are in fact

elementary.

Lemma 4.4.3. Let M |= Sα and assume that X,X ′ ⊆ M are intrinsically (or

equivalently algebraically), closed. If there is an isomorphism from X to X ′, i.e. the

quantifier free types of X,X ′ are the same, then tpM(X) = tpM(X ′).

Proof. Let M, X,X ′ be above. Note that we are not assuming that X,X ′ are finite.

Assume that there is an isomorphism from X to X ′. Denote this isomorphism f .

We claim that tpM(X) = tpM(X ′). Thus we need to establish that given an L

formula φ(x) and a finite tuple a of elements from X with the corresponding length,

M |= ϕ(a) if and only if M |= ϕ(f(a)).

Since any formula is equivalent to a boolean combination of chain minimal for-

mulas, the result follows if we establish the above result for chain minimal formulas.

Let ∆B(x) be the atomic diagram of a. Assume that ϕ(x) = ∆B(x)∧∃y∆B,C(x, y) is

a chain minimal extension formula and that B = B0 ⊆ ... ⊆ Bn = C with (Bi, Bi+1)

a minimal pair. Assume that M |= φ(a). Since X is intrinsically closed, it fol-

lows that if M |= ∆B,C(a, c), then c ⊆ X. By using the fact that f preserves the

quantifier free formulas, it follows that M |= ∆B,C(f(a)) and M |= ∆B,C(f(a), f(c))

and thus M |= ϕ(f(a)). The reverse direction is immediate by a similar argument.

Hence we obtain that tpM(X) = tpM(X ′).

Theorem 4.4.4. Let M,N |= Sα. If M ≤ N , then M 4 N.
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Proof. Let ψ(x, y) be an L formula. Let a ∈ M lg(x). Assume that N |= ∃yψ(a, y).

But ψ(x, y) is equivalent to the boolean combination of chain minimal formulas, say

Sα ` ∀(x)(∃ψ(x, y) ↔
∧
i<n ϕi(x, y)) where each ϕ(x, y) is either a chain minimal

formula or the negation of a chain minimal formula. Suppose that b ∈ N lg(y) is such

that N |= ψ(a, b). If ϕi is a chain minimal formula then it follows that b ∈ M lg(y)

as M is a closed set. So assume that each ϕi is the negation of a chain minimal

formula. Note that we may split b = b1b2 where b1 is formed via a minimal chain

and Ab1 ≤ N . As above, it follows that b1 ⊆∈ M lg(y)−lg(b1). But as M |= Sα, it

follows that there exists a b′2 ∈ M lg(y)−lg(b1) that is isomorphic to b2 over Ab1. It is

now easily seen that the b1b′2 ∈ M lg(y) and N |= ϕi(a, b1b′2) for each i. Thus N is

an elementary extension of M.
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Chapter 5: Atomic Models of Sα

In this section we study the atomic models of the theories of Baldwin-Shi

hypergraphs. Our main results begin with Theorem 5.1.7, in which we characterize

the atomic models as the existentially closed models of Sα with finite closures (see

Definition 5.1.1) or equivalently those with finite closures where the closed finite

substructures are those with rank 0. This immediately yields coherence of α as a

necessary condition for the existence of atomic models for Sα. We then proceed to

combine the results in Section 3.3 and chain arguments to obtain Theorem 5.2.9

which establishes coherence of α is also sufficient for the existence of atomic models.

We also explore the effect that rationality of α, arguably the most natural form of

coherence, has on atomic models of Sα. Our exploration leads to Theorem 5.2.19

which allows us to categorize rational α as precisely the coherent α with theories of

Baldwin-Shi hypergraphs whose models isomorphically embed into an atomic model

of the same cardinality. We begin with the following definitions.

Definition 5.0.1. Let M |= Sα. We say that M

1. is atomic if any finite tuple a ⊆Mn of length n, tp(a) is isolated.

2. is existentially closed if for all N such that M ⊆ N any quantifier free formula

ϕ(x, y) any b ∈M lg(y), if N |= ∃xϕ(x, b), then M |= ∃xϕ(x, b).
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Remark 5.0.2. We note that since Sα is a collection of ∀∃-sentences any model of

Sα embeds into a existentially closed model of Sα (see for example Theorem 8.2.1

of [23]).

Definition 5.0.3. Let M |= S∀α. By dM we denote the function dM : {A : A ⊆Fin

M} :→ R such dM(A) = inf{δ(B) : A ⊆ B,B finite and B ⊆M}.

Our starting point is the following theorem due to Laskowski (Theorem 6.5

of [2]). Its proof only uses the quantifier elimination result of Theorem 4.3.5 and

thus holds in our generalized context.

Theorem 5.0.4. Let M |= Sα. Now dM(A) = 0 for all finite A ⊆M if and only if

M is an existentially closed model.

Proof. Fix M |= Sα. By virtue of Theorem 4.3.5 M is an existentially closed model

of Sα if and only if for every extension formula ΨA.B(x) and every a from M, if

N |= ΨA.B(a) for some N ⊇M modelling Sα, then M |= ΨA.B(a).

Now assume that every finite A ⊆M satisfies dM(A) = 0. By way of con-

tradiction, assume that M is not an existentially closed model of Sα. Then there

are triples (A,B,N) such that A ⊆ B ⊆ N, N ⊇M is a model of Sα , A ⊆M, but

there is no embedding of B into M over A. Among all such triples, choose (A,B,N)

such that |B − A| is as small as possible. Note that this minimality implies that

B ∩M = A.

We claim that A ≤ B. To see this, assume by way of contradiction that

δ(B′/A) < 0 for some B′ satisfying A ⊆ B′ ⊆ B. Since dM(A) = 0 there is a

substructure C such that A ⊆ C ⊆M with δ(C) < −δ(B′/A). It follows from our
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minimality condition that B′ ∩ C = A. Thus, taking D to be the substructure of N

with universe B′ ∪ C, D is a join of {B′,C} over A. Applying Lemma 2.2.5 yields

δ(D/C) ≤ δ(B′/A). But then δ(D) = δ(C) + δ(D/C) ≤ δ(C) + δ(B′/A) < 0 which

contradicts N |= Sα. But now, since A ≤ B and A ⊆M, there is an embedding of

B into M over A since M |= Sα.

For the converse, suppose that M is an existentially closed model of Sα , A is

a finite substructure of M, and ε > 0 (in case α is rational, we assume that ε = 1
c
).

In order to show that dM(A) = 0 it suffices to find a finite substructure D′ such that

δ and δ(D′) < ε. Since ∅ ≤ A we can apply Proposition 4.2.1 to get D ∈ Kα such

that A ⊆ D and δ(D) ≤ ε. By replacing D by an isomorphic copy we may assume

that D ∩M = A.

The free join X = M ⊕A D is a model of S∀α, so there is a model N of Sα

containing X. Without loss, we may assume that N ⊇M. Now A ⊆ D ⊆ N, A ⊆M,

and M is an existentially closed model of Sα, so there is an embedding g : D→M

over A. Then g(D) is as desired.

5.1 Atomic Models

Our goal in this section is to prove Theorem 5.1.7. We begin with the following:

Definition 5.1.1. Given M |= S∀α, we say that M has finite closures if for any finite

A ⊆M, there is some finite B ⊇ A with B ≤M. We say an L theory T ⊇ S∀α has

finite closures if every model of T has finite closures.

Remark 5.1.2. Given a countable model M |= Sα, M has finite closures if and
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only if M is the union of a strong chain 〈Ai : i ∈ ω〉 of elements of Kα.

Remark 5.1.3. Let A ∈ Kα with δ(A) > 0. We note that there are infinitely

many non-isomorphic minimal pairs (A,C) over A. Indeed if α is not graph-like

with weight one, then this is immediate from Theorem 3.2.15. In the case that α

is graph-like with weight one, then this is an immediate consequence of Theorem

8.2.4.

Lemma 5.1.4. Let M |= Sα and A ⊆Fin M with δ(A) = 0. Let a be a fixed enu-

meration of A. Then A ≤M and ∆A(x) isolates the tp(a) in M.

Proof. This follows from an application of Lemma 4.4.2, by noting that ∅ ≤M and

δ(A/∅) = 0.

Lemma 5.1.5. Let M |= Sα be atomic.

1. Let A ⊆Fin M . Now A ≤M if and only if δ(A) = 0.

2. M has finite closures.

Proof. Claim 1: Let A,M be as stated above. Clearly if δ(A) = 0, then A ≤M. For

the converse assume that A ≤ M. Assume by way of contradiction that δ(A) > 0

but there is a formula ϕ(x) that isolates tp(A/∅). We may as well assume that ϕ

is a boolean combination of chain minimal formulas over A (using Theorem 4.3.5).

Note that as A ≤ M, it follows that there are no minimal pairs over A realized in

M . Thus ϕ contains entirely of negations of chain minimal formulas. Fix an integer

m larger than
∑

C∈Φ |C| where Φ is a finite set that contains the isomorphism types

of finite structures that appear in the formula ϕ(x). By Remark 5.1.3 there are
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infinitely many non-isomorphic C ∈ Kα with (A,C) a minimal pair. Thus there is

some C ∈ Kα with |C| > m and take ψ(x) := ∆A(x)∧∃y∆A,C(x, y). As ϕ(x) isolates

tp(A/∅), we obtain that Sα ` ∀x(ϕ(x)→ ¬ψ(x)).

There exists an isomorphic copy of C inside of the (Kα,≤) generic M∗ (which

by an abuse of notation we denote by C) such that C ≤M∗. Now since (A,C) is a

minimal pair, there is a copy of A inside of C ((which by an abuse of notation we

denote by C) and an enumeration of a of the isomorphic copy such that C |= ϕ(a).

We claim that M∗ |= ϕ(a) ∧ ψ(a). It is clear that M∗ |= ψ(a). So we show that

M∗ |= ϕ(a). Note that as C ≤M∗, i.e. C is closed. Thus any minimal pair over A

that lies inside M∗ lies inside of C (see Definition 2.4.2 and Remark 2.4.3). By our

choice of C, it is immediate that M∗ |= ϕ(a). Hence we have that M∗ |= ϕ(a)∧ψ(a).

But this contradicts Sα ` ∀x(ϕ(x)→ ¬ψ(x)), which establishes our claim.

Claim 2: We claim that M has finite closures. Assume to the contrary that M does

not have finite closures. Let A ⊆Fin M be such that there is no finite C ≤M such

that A ⊆M. It now follows that there is a ⊆ increasing sequence {Ai : i ∈ ω,Ai ⊆

M such that A0 = A and each (Ai,Ai+1) is a minimal pair}. Using the downward

Lowenhiem Skolem Theorem, we may construct a countable M′ 4M such that⋃
i<ω Ai ⊆ M ′. Note that M ′ is a countable, atomic and hence prime model of Sα.

We may as well assume that M′ 4M∗ for notational convenience where M∗ is the

(Kα,≤) generic. Recall that M∗ has finite closure and let A ⊆ C ≤M∗ where |C|

is finite. Let i be the least integer such that Ai * C. Clearly i ≥ 1 and C 6= Ai−1

(for if Ai−1 = C, then Ai is a minimal pair over C, which contradicts C ≤ M∗).
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Now C ≤ CAi as C ≤ M∗ and Ai ⊆ CAi. By using Fact 2.3.1 we obtain that

C ∩ Ai ≤ Ai. Further Ai−1 ⊆ C ∩ Ai ( Ai as Ai 6⊆ C. But then Ai−1 ≤ C ∩ Ai as

(Ai, Ai+1) is a minimal pair. By the transitivity of ≤ we then obtain Ai−1 ≤ Ai, a

contradiction that shows M has finite closures.

Lemma 5.1.6. Let M |= Sα. Assume that dM(A) = 0 for all finite A ⊆M and that

M has finite closures. Then M is atomic.

Proof. Let A ⊆M. We begin by fixing an enumeration a of A. Let iclM(A) = C. As

M has finite closures, it follows that C is finite. It is clear that dM(A) = dM(C) =

δ(C) = 0. Note that if A = C then we have already established the result by 5.1.4

and that if A 6= C, then there is no A ⊆ B ( C such that δ(B) = 0. We claim that

the formula ΨA,C(x) = ∆A(x)∧∃y∆A,C(x, y) isolates tp(a). Now it suffices to show

that ΨA,C(x) decides the chain minimal extension formulas.

Let M′ |= Sα and assume that A′ ⊆M′. Let a′ be a fixed enumeration of A′

and assume that M′ |= ΨA,C(a′). Let A′ ⊆ C′ ⊆ M′ and c′ be an enumeration of

C ′−A′ such that M′ |= ∆A(a′)∧∆A,C(a′, c′). Note that C ′ ≤M ′ as δ(C′) = 0. Now

given a chain of minimal pairs A′ = B0 ⊆ . . . ⊆ Bn ⊆M′, we have that Bn ⊆ C′ as

C′ is closed in M′. Thus ΨA,C(x) decides all chain minimal extension formulas thus

isolates the type of A.

We now obtain the following theorem:

Theorem 5.1.7. Let M |= Sα. The following are equivalent

1. M is atomic
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2. dM(A) = 0 for all finite A ⊆M and M has finite closures.

3. M is existentially closed and has finite closures.

4. For any A ⊆M finite, there is B ⊇ A such that B ⊆M, B is finite and

δ(B) = 0

Proof. The equivalence of (1) and (2) is immediate from Lemma 5.1.5 and Lemma

5.1.6. The equivalence of (2) and (3) is immediate from Theorem 5.0.4. We now

show the equivalence of (2) and (4):

Assume (2). Then take icl(A) = B. Since M has finite closures, it follows that

B is finite. Since dM(A) = 0 it follows that dM(A) = δ(B) = 0 and thus (4) follows.

Now assume (4) holds. Since any B with δ(B) = 0 is strong in M. Now pick a B′

such that A ⊆ B′ ⊆M and B′ is finite, ⊆ minimal and δ(B′) = 0.

5.2 Existence of atomic models

We begin this section by developing tools to prove Theorem 5.2.9 which es-

tablishes that coherence is necessary and sufficient for the existence of atomic mod-

els. The proof of sufficiency will involve several steps. The idea is to use the

∀∃-axiomatization of Sα to construct atomic models as the union of a chain under

⊆. However, as dictated by Theorem 5.1.7, atomic models of Sα must have finite

closures. This introduces the need to carefully keep track of how closures change as

you go up along the chain.

We then proceed to prove Theorem 5.2.19 which establishes that for coherent

α, the rationality of α is equivalent to every model of Sα being isomorphically
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embeddable in an atomic model of Sα. A key step in the proof is Lemma 5.2.18,

which constructs a model that does not embed into any atomic model by exploiting

the fact that there is no decreasing sequence of real numbers of order type ω1.

Definition 5.2.1. We use S∀α to denote the set of universal sentences of Sα. Note

that an L-structure M models S∀α if and only if M ∈ Kα, i.e. for any finite A ⊆M,

A ∈ Kα.

Definition 5.2.2. Let M,N |= S∀α with M ⊆ N. We say that N preserves closures

for M if X ⊆M is closed in M , then X is closed in N .

Lemma 5.2.3. Let M |= S∀α and A,B ∈ Kα. Assume that B ∩M = A and let

N = M⊕A B.

1. If A ≤ B or A ≤M, then N |= S∀α.

2. If A ≤ B, then N preserves closures for M

3. If A ≤M, then B ≤ N

4. If A ≤ B or A ≤M and M has finite closures, then so does N.

Proof. (1): Assume that A ≤ B or A ≤M. We show that N |= S∀α. Note that if

not, there is some A ⊆ C ⊆Fin M such that for some B′ ⊆ B, A′ ⊆ A and C′ ⊆ C,

B′ ⊕A′ C
′ /∈ Kα. But if this were the case then B⊕A C /∈ Kα. However we have

that A ≤ C or A ≤ B by our assumption and hence B⊕A C ∈ Kα by Fact 2.3.4. A

contradiction that establishes the our claim.
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(2): Assume that A ≤ B. Let X ⊆ M be closed in M. By way of contradiction

assume that X is not closed in N. Thus there is some D ⊆Fin X, E ⊆Fin N , (D,E)

is a minimal pair but E 6⊆ X. Let A′ = E ∩ A, B′ = E ∩ (B − A) and D′ =

E ∩ (D − A). Now note that 0 > δ(E/D) = δ(B′/D′A′) = δ(B′) − e(B′, D′A′) ≥

δ(B′) − e(B′, D′A) = δ(B′)− e(B′, A) ≥ 0 using (1) of Fact 2.2.5. Thus it follows

that N preserves closures for M.

For the proof of (3), (4), first note that if B ⊆ F ⊆Fin N , then we may write

F = B ⊕A F ′ with F ′ ⊆ M . Further if F ⊆ G ⊆ N with G = B ⊕A G′, then

δ(G/F ) = δ(G′/F ′). Also to show that F ⊆Fin N is strong in N , it suffices to show

that δ(G/F ) ≥ 0 for all finite F ⊆ G ⊆Fin N .

(3): Assume that A ≤M. Given B ⊆ G ⊆Fin N . Take F = B ⊕A A = B and

G = B ⊕A G′ where G′ = G ∩M . Now it follows that δ(G/F ) = δ(G′/A). Since

A ≤M, it follows that δ(G′/A) ≥ 0. Thus B ≤ N.

(4): Assume that M has finite closures. We wish to show that N has finite closures.

Let X ⊆Fin N . Since intrinsic closures are monotonic with respect to ⊆, we may as

well assume that B ⊆ X. Let F = iclM(X ∩M). Note that F ′ is finite because M

has finite closures. Take F = B ⊕A F ′ and note that X ⊆ F . Fix F ⊆ G ⊆Fin N

with G = B ⊕A G′ where G′ = G ∩ N . Now δ(G/F ) = δ(G′/F ′) from which the

result follows as δ(G′/F ′) ≥ 0 as F ′ ≤M .
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Lemma 5.2.4. Let 〈Mβ〉β<κ be a ⊆-chain of models of S∀α with Mγ =
⋃
β<γ Mβ

for limit γ. Assume that Mβ+1 preserves closures for Mβ for each β < κ. Then

M =
⋃
β<κMβ preserves closures for each Mβ, β < κ. Further if Mβ has finite

closures for each β < κ, then so does M

Proof. Let M be as above and let X ⊆Mβ be closed. We claim that if X is closed

in M, then it is closed in N. By way of contradiction, suppose not. Then there

is some minimal pair (A,B) with B ⊆M,A ⊆ X and B ( X that witnesses this.

Let γ > β be the least ordinal such that B ⊆ Mγ. As closures are preserved for

successor ordinals, it follows that γ is not a successor ordinal. Thus γ must be a

limit ordinal. But Mγ =
⋃
β<γ Mβ which implies B ⊆ Mγ′ for some γ′ < γ. But

then X is not closed in Mγ′ , which contradicts the minimality of γ. Thus the first

claim is true. The second claim follows by a similar argument.

We now illustrate how to extend a model of the universal sentences of Sα to a

model of Sα, while preserving closures, a key step towards building atomic models.

Lemma 5.2.5. Let M |= S∀α be infinite. There exists N |= Sα such that M ⊆ N,

|M | = |N |, N preserves closures for M. Further if M has finite closures, then N

has finite closures too.

Proof. Let M |= S∀α. Fix a finite A ⊆M. A routine chain argument using Lemma

5.2.3 allows us to create M′ with the following properties:

1. M′ preserves closures for M and |M ′| = |M |

2. If B ∈ Kα with A ≤ B, there is some g that embeds B into N over A.
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3. If B1,B2 ∈ Kα with A ≤ B1,B2 and B1,B2 are not isomorphic over A,

then there are embeddings g1, g2 of B1,B2 over A such that g1(B1), g2(B2)

are freely joined over A.

Note that A, when considered as a substructure of M′, satisfies the extension

formulas required by Sα. Further, by an application of Lemma 5.2.4, it follows that

if M has finite closures, then so does M′. Iterating this process and using a routine

chain argument, we can construct N as required. The fact that N has finite closures

if M does follows from an application of Lemma 5.2.4.

We now introduce the class K0. It contains all the finite structures of Kα that

may sit strongly inside an atomic model of Sα.

Definition 5.2.6. We let K0 = {A : A ∈ Kα and δ(A) = 0}. Further we let K0 =

{X : X |= S∀α and for any A ⊆Fin Y there exists B ⊆Fin X with A ⊆ B and δ(B) =

0}.

Remark 5.2.7. Let D ∈ Kα, and X |= S∀α with D ⊆ X. Note that if δ(D) = 0,

then D ≤ X. Thus it follows that if X ∈ K0, then X has finite closures.

We are now in a position to show that coherence of α is a sufficient condition

for the existence of atomic models.

Lemma 5.2.8. Let α be coherent. Suppose M ∈ K0 with |M | = κ. Then we can

construct N |= Sα such that N ⊇ M, N is atomic and |M | = |N |. Thus for any κ

there is an atomic model of Sα of size κ.
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Proof. Assume that |M | = κ. Enumerate the finite substructures of M0 = M by

{B0, . . .}. Let {Bn
0 : n < ω} enumerate, up to isomorphism F ∈ Kα such that

B0 ≤ F. Now consider C0 = iclM0(B0) which is finite and has rank 0 as M ∈ K0.

Let C′1 = C0 ⊕B0 B
0
0. Since B0 ≤ B0

0 we have that C′1 ∈ Kα. As α is coherent, we

can fix D0 ∈ Kα such that C′1 ⊆ D0 and δ(D0) = 0. Now consider M1 = M0⊕C0 D0.

Note that as δ(C0) = 0, C0 ≤ D0. By (1) of Lemma 5.2.3, M1 |= S∀α and by (2) of

M1 preserves closures for M.

We claim that M1 ∈ K0. From (4) of Lemma 5.2.3 we obtain that M1 has finite

closures. Let H = G1F1 be a finite substructure of M1 with G1 ⊆M0 and F1 ⊆ D1.

Now let G′ = iclM0(G1). Since M ∈ K0, G′ is finite and δ(G′) = δ(iclM(G1)) = 0.

Thus it follows that iclM1(G1) = G′ as well. Now δ(G′D1) ≤ δ(G′) + δ(D1)− e(G′−

D1, D1 − G′) = −e(G′ − D1, D1 − G′) ≤ 0 by using (1) of Fact 2.2.5. But as we

have already established that M1 |= S∀α, it follows that δ(GD1) = 0. Thus any

finite substructure of M1 is contained in a finite substructure with rank 0. Hence

M1 ∈ K0.

Now as noted above iclM1(B0) = C0. Thus we may recursively form a chain

〈Mi〉i<ω such that Mn+1 = Mn ⊕Cn Dn so that δ(Dn) = 0, Bn
0 ⊆ Dn, Mn+1 ∈ K0

and iclMn+1(B0) = Cn+1 = C0. Now consider M1 =
⋃
i<ωMn. Now since Mn ∈ K0

for each n, it follows immediately that M1 ∈ K0. Note that M1 satisfies all the

extension formulas demanded by Sα for B0. It is clear that, by using the ideas

behind the above construction of M1 and taking unions at limit ordinals, we can

build a chain Mβ ∈ K0, β < κ such that each Mβ ∈ K0 and for all γ < β, Mβ

contains all finite extensions of Bγ needed to satisfy the extensions dictated by Sα.
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Now clearly Mκ ∈ K0 and all finite substructures of M have the extensions needed

to satisfy the extensions dictated by Sα in Mκ = N0. Now repeating this procedure

we may form a ⊆-chain 〈Nβ〉 (taking unions at limit stages) where N =
⋃
β<κNβ

satisfies N ∈ K0 and N |= Sα.

Since there are M ∈ K0 with |M | = κ0 for all infinite cardinals κ (for example,

the free join over ∅ of all the elements of K0 up to isomorphism, each repeated κ

many times in the free join) there are atomic models of size κ.

We now obtain the following:

Theorem 5.2.9. There exists atomic models of the theory Sα if and only if α is

coherent.

Proof. We begin by showing that if Sα has atomic models, then α is coherent. To

see this for each E ∈ L, fix a finite L structure AE such that at E holds on at least

one subset of AE and no other relation holds on AE. Let A = ⊕E∈LAE be the free

join of the AE over ∅. Let M |= Sα be atomic with A ⊆ M . Thus there is some

B ⊇ A with B ⊆Fin M and δ(B) = 0. It follows that δ(B) = 0 = n−
∑

E∈LmEαE.

Thus α is coherent.

The converse is immediate by Lemma 5.2.8.

Remark 5.2.10. The Shelah-Spencer almost sure theories do not have atomic mod-

els.

In the case that α is rational, an even stronger result than Theorem 5.2.9 is

possible. In this case the models of Sα displays similar behavior to that of classical
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Fräıssé limits (i.e. theories of generics built from Fräıssé classes where ≤ corresponds

to ⊆).

Lemma 5.2.11. Assume that α is rational. Let M |= Sα. Now M is atomic if

and only if M is an existentially closed model. Hence every model of Sα embeds

isomorphically into an atomic model of Sα.

Proof. Assume that α is rational and as a result Sα has finite closures. Let M |= Sα.

By Theorem 5.1.7 we immediately obtain that M is atomic if and only if M is an

existentially closed model. By Remark 5.0.2, there is some N |= Sα such that N is

atomic and M ⊆ N.

Remark 5.2.12. Assume that α is rational. It is easily seen that any X |= S∀α

has finite closures. Thus it follows from Lemma 5.2.5 that any X |= S∀α embeds

isomorphically into some N |= Sα (taking the free join of ℵ0 many non-isomorphic

copies of X over ∅ if X is finite). Thus from Lemma 5.2.11, it follows that X embeds

into an atomic N′ |= Sα.

We will now explore the behavior of atomic models when α is coherent but

α is not rational. We begin by showing that any countable X |= S∀α with finite

closures embeds isomorphically into the countable atomic model of Sα mimicking

the behavior of Remark 5.2.12. Recall that if X ∈ K0, then X has finite closures.

Lemma 5.2.13. Let α be coherent and let M |= S∀α be countable with finite closures.

Then

1. There exists a countable M∗ ∈ K0 with M∗ ⊇M.
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2. There exists a countable atomic N |= Sα such that M ⊆ N.

Proof. (1): Since M has finite closures, we may write M =
⋃
i<ω Ai where Ai ≤ Ai+1

for each i < ω. We will now construct M∗ as the union of a countable ⊆-chain

M0 ⊆ M1 ⊆ ... with M = M0 and |Mn −M0| finite for all n < ω as follows: Let

M0 = M and given Mn, let A∗n = iclMn(An ∪ (Mn −M0)). Using Theorem 3.3.6

choose Bn ∈ Kα with A∗n ⊆ B∗n and δ(Bn) = 0. Let Mn+1 = Mn ⊕A∗n Bn. As

A∗n ≤ M∗, it follows from Lemma 5.2.3 that each Mn |= S∀α. Clearly |Mn −M0|

is finite as claimed. As each Mn |= S∀α, M∗ |= S∀α where M∗ =
⋃
i<ωMn. Note

that given any finite set of A ⊆ M∗, there is some n < ω such that A ⊆ Mn. By

construction, it follows that there is some k < ω such that A ⊆ B ⊆Mn+k with B

finite and δ(B) = 0. Thus it follows that M∗ ∈ K0.

(2): We now do an alternating chain argument: We let M∗
0 = M. Thus M∗

0 has

finite closures. We build M∗
2n+1 |= Sα with M∗

2n ⊆ M∗
2n+1 such that M∗

2n+1 has

finite closures, preserves closures for M∗
2n and is countable by use of Lemma 5.2.5.

We let M∗
2n+2 be such that M∗

2n+1 ⊆ M∗
2n+2 and M∗

2n+2 ∈ K0 which exists by use

of (1). We let N =
⋃
n<ωM

∗
n. Let B ⊆Fin N. Now as B ⊆ M∗

2n0+1 for some n0, a

routine argument shows that N |= Sα. As B ⊆ M∗
2n0+1 ⊆ M∗

2n0+2 it follows that

D = iclM2n0+2(B) is finite and δ(D) = 0. Thus it follows that iclM2n0+2(B) = iclN(B)

and hence N ∈ K0. Thus N is (up to isomorphism), the unique countable atomic

model of Sα by Theorem 5.1.7.

We now proceed to show that this behavior may fail for uncountable X |= S∀α.
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Definition 5.2.14. Call a structure N |= S∀α tent-like over M if

1. M is a set of points with no relations between them

2. For all pairs {a, b} of distinct elements from M , there is a unique minimal pair

({a, b},Fa,b) in N.

3. N =
⋃
a,b∈A,a 6=b F(a,b)

(a) For distinct a, b, b′ ∈M , Fa,b,Fa,b′ are freely joined over a

(b) For distinct a, a′, b, b′ ∈M , Fa,b,Fa,b′ are freely joined over ∅

4. iclN({a}) = {a} for each a ∈M

We will refer to M as the base of the tent N over M.

Remark 5.2.15. Note that given a finite subset A0 = {an1 , . . . , ank} of M we have

that A′ =
⋃

Fa,b ⊆ iclN(A0) where (a, b) ranges through distinct pairs from A0.

We claim that this set is closed. Assume to the contrary that there is a minimal

pair (D,DG) where D ⊆ A′ and G is disjoint from A′. Note δ(G/D) ≥ δ(G/A′)

using (2) of Fact 2.2.5. Since N is tent-like over M, δ(G/A′) = δ(G/A0). From the

tent-likeness of N over M and our choice of A′ and G, it follows that δ(G/A0) =∑
(a,b)/∈A0×A0,a6=b δ(G ∩ Fa,b/A0). Thus δ(G ∩ Fa,b/A0) for (a, b) /∈ A0 × A0, a 6= b

reduces to either δ(G ∩ Fa,b) or δ(G ∩ Fa,b/c) where c = a or c = b. But since each

a′ ∈ A is its own closure in N it follows that the δ(G ∩ Fa,b/c) ≥ 0. Thus it follows

that A′ is closed. Now by noting that each finite subset lies in finitely many of the

Fa,b it follows that N has finite closures.
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Remark 5.2.16. Note that if N |= S∀α is tent like over M, then N /∈ K0 as

δ(icl(a)) = 1 for each a ∈M .

Lemma 5.2.17. Let α be coherent but not rational. Suppose N |= S∀α tent-like

over M where M is countable. Then there is an extension N∗ of N over M∗ where

M ⊆M∗ and M∗ has universe M{a∗}, where a∗ is a single new point such that N∗

is tent-like over M∗. Thus there is some N′ where the corresponding base M′ has

|M ′| = ℵ1.

Proof. Enumerate M = {an : n ∈ ω}. Fix E ∈ L such that αE is irrational. Now for

each n ∈ ω we may choose an essential minimal pair F(an,a∗) over {an, a∗} such that

−1/2n+1 < δ(F(an,a∗)/{an, a∗}) < 0 using Theorem 3.2.15. Let D′ ⊆ Fan,a∗ . Now if

D′∩{an, a∗} contains exactly one element, then δ(D′/D∩{an, a∗}) ≥ 0. So suppose

that D′ ∩ {an, a∗} = {an, a∗}. Since δ({an, a∗}/{a∗}) = δ({an, a∗}/{an}) = 1 and

δ(D′/{c}) = δ(D′/{an, a∗}) + δ({an, a∗}/c) ≥ −1/2n+1 + 1 ≥ 0 where c = an or

c = a∗ it follows that {an}, {a∗} ≤ Fan,a∗ . Now consider the structure N∗ with

universe N ∪ {a∗} ∪
⋃
an∈A Fa∗,an with

1. For distinct a, b, b′ ∈Ma∗, Fa,b,Fa,b′ are freely joined over a

2. For distinct a, a′, b, b′ ∈Ma∗, Fa,b,Fa,b′ are freely joined over ∅

Clearly M{a∗} is a set of points with no relations between them. Note that

we have shown that {a∗}, {an} ≤ Fan,a∗ . Let G ⊆Fin N∗. Suppose that the G ∩

M{a∗} = ∅. Then because of the conditions regarding free joins we see that δ(G) =∑
δ(Fa,b ∩ G) ≥ 0. Now consider the case G ∩M{a∗} 6= ∅. Put G′ = G ∩ A{a∗}.
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Now δ(G/G′) = δ((N ∩G)/G′) + δ((N∗ −N) ∩G/G′) = δ((N ∩G)/N ∩G′) +

δ((N∗ −N) ∩G/G′) where δ((N ∩G)/G′) = δ((N ∩G)/N ∩G′) follows by con-

sidering the fact that the underlying finite structures are freely joined. Now δ(G) =

δ(G′) + δ((N ∩G)/N ∩G′) + δ((N∗ −N) ∩G/G′). Suppose that a∗ /∈ G′. Then

δ(G′) + δ((N ∩G)/N ∩G′) = δ((N ∩G)) and δ((N∗ −N) ∩G/G′) ≥ 0 by us-

ing an argument similar to that in Remark 5.2.15. So assume that a∗ ∈ G′.

Now δ(G) = δ(G′ ∩N) + δ((N ∩G)/N ∩G′) + δ(a∗) + δ((N∗ −N) ∩G/G′). It

follows that δ(G′ ∩N) + δ((N ∩G)/N ∩G′) ≥ 0 by an argument similar to the

above. But by construction of the new minimal pairs δ(a∗)+δ((N∗ −N) ∩G/G′) ≥

1−
∑

1/2n+1 ≥ 0. Thus N∗ |= S∀α.

Now each pair of points {a, b} from M{a∗} has a minimal pair over it; i.e.

(ab,Fa,b) is a minimal pair. Now consider Fa,b. Note that since a ≤ Fa,b′ and

b ≤ Fb,b′ and using the various properties regarding how the Fc,d are freely joined

and arguing in a similar manner to Remark 5.2.15 yields that Fa,b is closed in N∗

which establishes that there is a unique minimal pair over ab. Now it also follows

that for any a ∈M{a∗} the closure of a is itself. Thus N∗ is also tent-like.

By iterating this ω1 many times we obtain a tent-like structure where the

corresponding N′ over M′ where |M ′| = ℵ1.

Lemma 5.2.18. Let α be coherent but not rational. Then there is X |= S∀α of size

ℵ1 such that X has finite closures but there is no atomic model N of Sα such that

N ⊇ X. Thus there is M |= Sα such that M does not embed isomorphically into any

atomic model of Sα.
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Proof. Let X |= S∀α be tent-like over Y where Y = {ai : i < ω1}. We claim that

there is no N ⊇ X such that N is an atomic model of Sα.

Assume to the contrary that there is such a N. Now for any aβ, iclN({aβ})

would be finite and δ(iclN({aβ})) = 0 by use of Theorem 5.1.7. Note that for β, γ

distinct, Fβ,γ ⊆ iclN({aβ, aγ}). Now either (Fβ,γ − {aβ, aγ}) ∩ iclN({aβ}) 6= ∅ or

(Fβ,γ − {aβaγ}) ∩ iclN({aβ}) 6= ∅. For if not

δ(iclN({aβ})iclN({aγ})) = δ(iclN({aβ})) + δ(iclN({aγ}))− δ(iclN({aβ}) ∩ iclN({aγ}))

−e(iclN({aβ})− iclN({aγ}), iclN({aγ})− iclN({aβ}))

by use of (1) of Fact 2.2.5). This implies that δ(iclN({aβ})iclN({aγ})) = 0.

But then iclN({aβ})iclN({aγ}) is closed. Thus we obtain that, (F{aβ ,aγ}−{aβaγ}) (

iclN({aβaγ}) ⊆ iclN({aβ})iclN({aγ}), a contradiction.

Now for each β, iclN({aβ}) is finite. Thus there is some β∗ > β such that

iclN({aβ}) ∩ (F{aβ ,aγ} − {aβ, aγ}) = ∅

for all γ > β∗. But now by doing a standard catch your tail argument, we can

find β′ < ω1 such that for all β < β′, if iclN({aβ}) ∩ (F{aβ ,aγ} − {aβ, aγ}) 6= ∅, then

γ < β′. Choose γ > β′. For all β < β′, iclN({aβ})∩ (F{aβ ,aγ} − {aβ, aγ}) = ∅. Hence

iclN({aγ})∩(F{aβ ,aγ} − {aβ, aγ}) 6= ∅. But this is contradictory as iclN({aγ}) is finite

and the F{aβ ,aγ} − {aβaγ} are distinct non-empty sets.

We can do an easy chain argument argument to show that there is some X ⊆M

and M |= Sα. Clearly no such M embeds into an atomic model as otherwise, X

would too. This finishes the proof.

We finally finish with Theorem 5.2.19, which shows that when α is coher-
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ent, αE being rational for all E ∈ L can be characterized in terms of isomorphic

embeddability into atomic models.

Theorem 5.2.19. Let α be coherent. The following are equivalent

1. α is rational

2. Every M |= Sα embeds isomorphically into an atomic model of Sα

Proof. The proof of this statement is immediate from Lemma 5.2.11 and Lemma

5.2.18.
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Chapter 6: Stability and related matters

We begin this chapter with a proof that Sα is stable. This well known result

appears in several places, including Baldwin and Shi’s original work in [1] (see

also [27] for a treatment of the case α is rational, an easier case to study as Sα has

finite closures). However as noted in [4], one of the key lemmas in [1] (Lemma 3.26)

is incorrect. An alternate proof, in the spirit of Baldwin and Shi’s original arguments

was given by Verbovskiy and Yoneda in [4]. We offer a proof, combining ideas in [4]

and making use of the quantifier elimination. It is possible to obtain the stability of

Sα based solely on the quantifier elimination result using the exact same arguments

of Laskowski in [2]. We also offer a proof of the well known characterization of

non-forking by bringing together the work and ideas found in [4] and [2].

We then show that Sα is non-trivial if α is not graph-like with weight one Sα.

We show that the converse to this statement holds in Chapter 8. The converse seems

to be a known result, though the author is unable to find any written account. The

final result of this chapter, that Sα has the dimensional order property (without

placing any additional constraints on L or α, see [5] and [2]) is new. However the

arguments used are not, as it is essentially the same argument given by Laskowski

in [2]. We will also make some observations about the spectrum of Sα.

89



We work with in a monster model M of Sα. For this chapter only, we adopt

the practice of writing B for the intrinsic closure (equivalently algebraic closure)

of a set B ⊆ M except in places that would cause confusion (i.e. in cases where

we have both (algebraic) closures sets and parameters involved in the discussion).

We do this to improve redability. A line over lowercase letters a, b etc. will denote

parameters as is customary. We assume that the reader is familiar with the basic

stability theory (such as definitions and basic facts related to non-forking) as found

in [28] (or alternatively [29] and [30]).

6.1 Stability of Sα

In this section we provide a proof of the fact that Sα is stable. The arguments

from existing literature establishes that the generic is full (see Definition 4.4 of

[1]) and uses this to establish that Sα satisfies amalgamation over closed sets (see

Definition 2.20 of [1]) which is at the heart of the stability argument. We replace the

use of fullness by (1) of Lemma 4.4.3 which shows that the Sα has amalgamation

over closed sets directly using the quantifier elimination results. The rest of the

argument basically follows that by Verbovskiy and Yoneda in [4].

We begin by extending the notion of relative rank. Recall our definition of

e(A,B) from 2.2.4.

Definition 6.1.1. Let A,X ⊆ M with A finite. Let P = {e(A,X1) : X1 ⊆Fin X}.

We define e(A,X) = supP where we allow for the possibility that the supremum

may be ∞.
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Remark 6.1.2. Note that given X0 ⊆ X1 ⊆Fin X we have that e(A,X0) ≤ e(A,X1)

Thus it follows that the notion agrees for finite A,X. Further there is some countable

X0 ⊆ X such that e(A,X0) = e(A,X).

We now extend the relative rank as follows:

Definition 6.1.3. Let A,X ⊆M with A finite. We extend the definition of δ(A/X)

by letting δ(A/X) = δ(A−X)− e(A−X,X). Further we say that (X,AX) is an

intrinsic minimal pair if −∞ < δ(A/X) < 0 but for all A′ ( A, δ(A′/X) ≥ 0.

Now we extend the notion of closed sets to that of almost closed sets:

Definition 6.1.4. Let X ⊆M. We say that X is almost closed if there is a positive

real γ such that e(B,X) ≤ δ(B) + γ for every finite B ⊆ M disjoint from X,

or alternatively −γ ≤ δ(B)− e(B,X) = δ(B/X). The infimum of such γ will be

denoted by tX .

Remark 6.1.5. Let A,B ⊆M be disjoint and finite. Now

0 ≤ δ(AB) = |A|+ |B| − e(A)− e(B)− e(B,A) = δ(A) + δ(B)− (e(B,A))

Hence e(B,A) ≤ δ(A) + δ(B). Thus every finite set is almost closed.

Remark 6.1.6. Let X ⊆ M. Note that X is closed if and only if for any finite

A ⊆M, δ(A/X) ≥ 0.

Remark 6.1.7. Suppose X, Y ⊆M with Y finite. Let Y ′ ⊆ Y Now δ(Y ′/X∩Y ′) ≥

δ(Y ′/X). This property will be referred to as the monotonicity of δ.
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Definition 6.1.8. We call a chain 〈Xn〉n<ω an intrinsic chain if Xi ⊆ Xi+1 and if

either

1. There is some k such that for all i < k, (Xi, (Xi+1 − Xi)Xi) is an intrinsic

minimal pair and for all i ≥ k, Xi = Xk

or

2. For all i, (Xi, (Xi+1 −Xi)Xi) is an intrinsic minimal pair.

We say that 〈Bn〉n<ω is a minimal intrinsic chain, if for all i, (Xi, (Xi+1 −Xi)Xi) is

an intrinsic minimal pair.

Next we show that certain properties of e(A,B) that hold for finite A,B,C

can be extended.

Lemma 6.1.9. Let X,B,C ⊆M, B,C finite and assume that X,B,C are pairwise

disjoint. Now e(BC,X) = e(B,XC) + e(C,X)− e(B,C).

Proof. Let X0 ⊆Fin X be arbitrary. Now e(BC,X0) = e(B,X0C) + e(C,X0) −

e(B,C). Thus we obtain that e(BC,X) ≥ e(B,X0C) + e(C,X0)− e(B,C). Fur-

ther for any X0 ⊆ X1 ⊆Fin X we have e(B,X0C) ≤ e(B,X1C). Thus we obtain

e(BC,X) ≥ e(B,XC) + e(C,X0)− e(B,C) and hence we obtain that e(BC,X) ≥

e(B,XC) + e(C,X)− e(B,C). Further from, e(BC,X0) = e(B,X0C) + e(C,X0)−

e(B,C) it follows that e(BC,X0) ≤ e(B,XC) + e(C,X)− e(B,C) as e(B,X0C) ≤

e(B,XC) and e(C,X0) ≤ e(C,X). Thus we obtain that

e(BC,X) ≤ e(B,XC) + e(C,X)− e(B,C)

which establishes the result.
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Lemma 6.1.10. Let X,B,C ⊆ M be pairwise disjoint. Suppose that δ(BC/X) >

−∞. Then we have that δ(BC/X) = δ(B/XC) + δ(C/X). Further if δ(B/XC),

δ(C/X) > −∞ then δ(BC/X) > −∞.

Proof. Note that δ(BC/X) = δ(BC)− e(BC,X). Since δ(BC/X) > −∞ it follows

that e(BC,X) must be finite. Thus, using Lemma 6.1.9 we see that e(B,XC) and

e(C,X) must be finite. Now

δ(BC/X) = δ(BC)− e(BC,X)

= δ(B) + δ(C)− e(B,C)− (e(B,XC) + e(C,X)− e(B,C))

= δ(B)− e(B,XC) + δ(C)− e(C,X)

= δ(B/XC) + δ(C/X)

For the second claim note that the finiteness of δ(B/XC) and δ(C/X) implies that

e(B,XC) and e(C,X) must be finite. Thus the above calculation may be repeated

to obtain the result.

The following is based on Lemma 3.4 of [4].

Lemma 6.1.11. Suppose that X ⊆ M, C ⊆Fin M with X,C disjoint and X is

almost closed. Then −tX + e(X,C) ≤ δ(C) and XC is almost closed in M. If

X ≤M. then e(X,C) ≤ δ(C).

Proof. For any X0 ⊆Fin X we have that −tX ≤ δ(C/X0) = δ(C) − e(C,X0). So

it follows that −tX + e(C,X0) ≤ δ(C) and hence −tX + e(X,C) ≤ δ(C). Now

in order to show that XC is almost closed consider B ⊆ M disjoint from XC.

Now e(B,C) = δ(B) + δ(C) − δ(BC). Further arguing as above we have that
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−tX + e(BC,X) ≤ δ(BC). Now since −tX + e(BC,X) ≤ δ(BC) and e(B,C) is

finite (if not 0 ≤ δ(BC) = δ(B) + δ(C)− e(B,C) leads to a contradiction), we have

that

e(B,XC) = e(BC,X) + e(B,C)− e(C,X)

≤ δ(BC) + tX + δ(B) + δ(C)− δ(BC)

≤ δ(B) + (δ(C) + tX)

Since δ(C) + tX is fixed it follows that XC is almost closed. The other half of

the claim follows by noting that tX = 0 if X is closed.

The following terminology is borrowed form [4].

Definition 6.1.12. Let X, Y ⊆ M. Assume that X is almost closed. Y is said to

be calculable over X if 〈Xn〉n<ω is an intrinsic chain such that X ⊆ X0, |X0 −X| is

finite and Y =
⋃
nXn. We define δ(Y/X) = limn δ(Yn/X).

Remark 6.1.13. Lemma 6.2.3 tells us that δ(Y/X) is finite and the value doesn’t

depend on the intrinsic chain used. We have postponed its proof to the next section

as it is somewhat lengthy and distracts from the key ingredients of the proof.

Remark 6.1.14. Note that if X ⊆ M be closed and Y calculable over X, then

δ(Y/X) ≥ 0. For if not we can find a finite B ⊆ Y , B * X with δ(B/X) < 0, which

in turn implies that there is some finite A ⊆ X with δ(B/A) < 0 and hence that X

is not closed.

The following is Lemma 3.9 of [4]. The proof proceeds similarly. Recall that

δ(X/Y ) = δ(X − Y/Y ) when X − Y is finite and if (X, Y ) is an intrinsic minimal

pair, then |Y −X| < ℵ0.
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Lemma 6.1.15. Let X ⊆M be possibly infinite and almost closed. Then acl(X) is

calculable over X. In particular |acl(X) − X| ≤ ℵ0. Further if α is rational, then

|acl(X)−X| < ℵ0.

Proof. First note that as X is almost closed, given C,D such that they are finite,

disjoint from X, (X,XC) an intrinsic minimal pair and C 6⊆ D, then

δ(C/XD) ≤ δ(C/X(D ∩ C)) = δ(C/X)− δ(D ∩ C/X) ≤ δ(C/X)

Next, suppose that there is a sequence of finite 〈Ci〉 such that (X,XCi) is a minimal

intrinsic extension of X with δ(Ci/X) ≤ −1/n and Ci 6⊆ X ∪
⋃
j<iCj. Choose

k > ntX . Then

δ(
⋃
i<k

Ci/X) =
∑
i<k

δ(Ci/(X ∪
⋃
j<i

Cj)) ≤
∑
i<k

δ(Ci/X) ≤ −k/n < −tX

a contradiction. Hence there are only finitely many minimal intrinsic extensions C

with δ(C/X) ≤ −1/n.

It follows that we can recursively construct an intrinsic chain X = X0 ⊆ X1 ⊆

. . . such that δ(Xn+1/Xn) is minimum possible given Xn. First note that in such

a chain Xn is almost closed being a finite extension of Xn−1 which is also almost

closed. Now given Xn we pick Xn+1 as follows: if Xn is not closed look at all possible

intrinsic minimal extensions B of Xn and choose one such that δ(B/Xn) has the

least possible value, i.e. −δ(B/Xn) is as large as possible. This value is finite by the

fact that Xn is almost closed and as there are only finitely many minimal intrinsic

extensions B with δ(B/Xn) ≤ −1/k for some fixed k and the existence of such a k

is guaranteed by the fact that Xn is not closed for all n < ω. If at some stage Xi is
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closed put Xi = Xj for all j > i. Take X ′ =
⋃
n<ωXn. Then clearly X ′ is calculable

over X. Now δ(Xn+1/X0) =
∑n

i=0 δ(Xi+1/Xi). Note that as X0 is almost closed, it

follows that for any n, −tX0 ≤ δ(Xn+1/X0) =
∑n

i=0 δ(Xi+1/Xi). Further it is easily

seen that 〈
∑n

i=0 δ(Xi+1/Xi)〉n<ω is monotonic decreasing. Hence
∑∞

i=0 δ(Xi+1/Xi)

is convergent and as a result limn δ(Xn+1/Xn) = 0.

Suppose that C ⊆Fin M is finite and disjoint from X. Now if δ(C/X) < 0

there is some finite X0 ⊆ X such that δ(C/X0) < 0. Thus using δ(Xn+1/X0) =∑n
i=0 δ(Xi+1/Xi) it follows that X ⊆ X ′ ⊆ iclX = acl(X). Now suppose that X ′

is not closed. Then there is some C disjoint from X ′ with (X ′, X ′C) an intrinsic

minimal pair. Since 0 > δ(C/X ′) = δ(C) − e(C,X ′) = δ(C) − lim e(C,Xn) =

lim δ(C/Xn) there is k < ω with δ(C/Xk) < 0. Thus from monotonicity, it follows

that δ(C/Xn) ≤ δ(C/Xk) for all n ≥ k. Since (X ′, X ′C) is an intrinsic minimal pair

and Xn ⊆ X ′, it follows that (Xn, XnC) is a minimal pair: For if there is some non

empty C ′ ( C such that (Xn, XnC
′) forms an intrinsic minimal pair, it follows that

(X ′, X ′C ′) forms a minimal pair. Now as δ(Xn+1/Xn) ≤ δ(C/Xn) ≤ δ(C/Xk) by

our choice of the Xi we obtain that lim δ(Xn+1/Xn) 6= 0, a contradiction.

For the second half of the claim, assume that α is rational. Recall our notation

of c for the least common multiple of the denominators of the αE. Note that for

any intrinsic minimal pair (X,XC), δ(C/X) ≤ −1/c. Thus there is some Xi such

that Xi = X ′ (as lim δ(Xn+1/Xn) = 0 fails otherwise). Thus the required statement

follows.

We are finally in a position to give a proof of the stability of Sα.
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Theorem 6.1.16. Sα is stable. Further if α is rational, then Sα is ω-stable.

Proof. Recall that we are working within a monster model M of Sα. Fix an infinite

cardinal κ ≥ ℵ0. Fix a positive integer n. We prove the stability of Sα by counting

n-types over a fixed algebraically closed set X where |X| = κ. Let a, b ∈ Mn with

a, b /∈ Xn.

We claim that tp(a/X) = tp(b/X) if and only if there is a partial isomorphism

f : acl(Xa) → acl(Xb) where f(a) = b and f is the identity on X. In order

to establish the claim, first note that if tp(a/X) = tp(b/X), then there exists an

elementary map f with the required properties, So assume that there is a partial

isomorphism f : acl(Xa)→ acl(Xb) where f(a) = b and f is the identity on X. By

Lemma 4.4.3, tp(acl(Xa)) = tp(acl(Xb)). Thus we obtain that tp(a/X) = tp(b/X)

establishing the claim.

Note that Xa is almost closed as X is closed. Now by Lemma 6.1.15, we

have that |acl(Xa)−Xa| ≤ ℵ0. Define an equivalence relation ∼ on the one point

extensions of X by setting a ∼ b if and only if there is a partial isomorphism f :

acl(Xa)→ acl(Xb) where f(a) = b and f is the identity on X. Now combining this

with |acl(Xa)−Xa| ≤ ℵ0 we see that |{[a] : a ∼ b}| ≤ κℵ0 . As tp(a/X) = tp(b/X)

if and only if there is a partial isomorphism f : acl(Xa)→ acl(Xb) where f(a) = b

and f is the identity on X, it follows that |Sn(X)| ≤ κℵ0 . For κ that satisfy κ = κℵ0 ,

we have that |Sn(X)| = κ, Thus it follows that S(X) = κ for all κ such that κℵ0 = κ

and hence Sα is stable.

Now assume that α is rational. By Lemma 6.1.15, we have that |acl(Xa) −
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Xa| < ℵ0. An argument similar to the above yields that |Sn(X)| ≤ κ<ℵ0 = κ for

any infinite cardinal κ. Thus we obtain that |S(X)| = κ for any infinite κ and hence

Sα is ω-stable.

6.2 Characterizing non-forking

We now work towards characterizing non-forking. The characterizations we

present are well known, going back to the original work of Baldwin and Shi in [1].

We offer a proof that incorporates proofs from [4] and [2] (some of the ideas used

by Laskowski in [2] also appear in [5]). We would like to note that the results in [4]

and [1] attempts to incorporate a broader context and are crouched in technical

details related to amalgamation properties.

6.2.1 Further properties of d

This section is devoted to obtaining various properties of d that we will use

throughout. Our first goal is to show that d(A) for finite A ⊆M captures what the

rank δ of A ought to be (see Lemma 6.2.7). This generalizes a similar result that is

much more easily obtained in the α is rational. We closely follow the development

of Verbovskiy and Yoneda in [4]. Recall that we are working M, a monster model

of Sα. All sets, not otherwise mentioned, will be assumed to be small subsets of M.

Lemma 6.2.1. Let 〈Bn〉n<ω be an intrinsic chain. Then δ(Bn/B0) is finite for all

n.

Proof. We show this by induction on n. The statement is clearly true for n = 0 by
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the definition of a minimal intrinsic extension. Assume that the statement holds

for n < ω. Now we look at δ(Bn+1/B0). Now |Bi+1 − Bi| is finite for each i.

Further (Bn+1 − Bn)(Bn − B0) = Bn+1 − B0. Now e((Bn+1 − Bn)(Bn − B0), B0) =

e((Bn+1 − Bn), Bn) + e(Bn − B0, B0) − e(Bn+1 − Bn, Bn − B0) by Lemma 6.1.9.

Since δ(Bn/B0) is finite by the induction hypothesis, we have that e(Bn − B0, B0)

is finite. Further (Bn, Bn+1) is an either a intrinsic minimal pair or Bn+1 = Bn

and it follows that e(Bn+1 − Bn, B0) is finite. Then by Lemma 6.1.10 we have that

δ(Bn+1/B0) = δ(Bn+1/Bn) + δ(Bn/B0) and the result follows.

The following is a modified form of Lemma 3.5 of [4].

Lemma 6.2.2. Let 〈Bn〉n<ω be an intrinsic chain. Let F ⊆Fin

⋃
Bn. Then there

exists an n0 such that δ(F/B0) ≥ δ(Bn0/B0).

Proof. We show by induction on m that δ(F ∩ Bm/B0) ≥ δ(Bm/B0). As there is

an n0 such that F ⊆ Bn0 this establishes the claim. For m = 0, the assertion is

trivial. Suppose that the induction hypothesis holds for m < ω. By Lemma 6.2.1,

δ(Bm+1/B0) = −∞ is impossible. Thus δ(Bm+1/B0) > −∞ and hence

δ(Bm+1/B0) = δ(Bm+1/Bm) + δ(Bm/B0)

≤ δ(Bm+1 ∩ F/Bm) + δ(Bm ∩ F/B0)

≤ δ(Bm+1 ∩ F/B0(Bm ∩ F )) + δ(Bm ∩ F/B0)

= δ(Bm+1 ∩ F/B0)

where the first inequality holds because (Bm, Bm+1) is an intrinsic minimal pair or

Bm+1 = Bm and by the inductive hypothesis while the second inequality holds by

monotonicity.
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The following is a modified form of Lemma 3.6 of [4].

Lemma 6.2.3. Let A be an almost closed subset of M. Let 〈Bn〉n<ω be an intrinsic

chain such that A ⊆ B0 and |B0 − A| is finite. Let B :=
⋃
n<ω Bn. Then

1. limn δ(Bn/A) exists and is finite.

2. B is almost closed.

3. limn δ(Bn/A) = δ(Bk/A) + limn δ(Bn/Bk) = δ(Bk/A) +
∑∞

n=k δ(Bn+1/Bn) for

any k < ω; in particular, limn δ(Bn+1/Bn) = 0.

4. If 〈B′n〉n<ω is another intrinsic chain such that B =
⋃
n<ω B

′
n then limn δ(Bn/A) =

limn δ(B
′
n/A).

Proof. We note that clause (1) can not hold simultaneously with clause (2) in the

definition of an intrinsic chain (see definition 6.1.8). Thus if 〈Bn〉n<ω is eventually

constant (i.e. satisfies clause (1)), then B−A is finite and any other intrinsic chain

that yields B =
⋃
B′n is also eventually constant.

First we prove (1). Since 〈Bn〉n<ω is an intrinsic chain it follows that −∞ <

δ(Bn+1/Bn) ≤ 0. Since A is almost closed we have that −tA ≤ δ(Bn+1/A) =

δ(Bn+1/Bn) + δ(Bn/A) ≤ δ(Bn/A). Thus the sequence 〈δ(Bn/A)〉n<ω is decreasing

and bounded and hence the limit exists and is finite.

Next we prove (2). Consider a finite C disjoint from B. Now δ(C/Bn+1) ≤

δ(C/Bn) by monotonicity. So limn δ(C/Bn) exists. Further as A is almost closed

δ(BnC/A) > −∞. Using Lemma 6.1.10 we obtain that δ(BnC/A) = δ(C/Bn) +

δ(Bn/A) ≥ −tA. Now e(C,Bn) ≤ e(C,Bn+1) ≤ e(C,B) is clear as Bn ⊆ Bn+1 ⊆ B
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and thus limn e(C,Bn) ≤ e(B,C). Also any finite subset B′ of B is a finite subset

of some Bn0 , it follows that e(C,B) ≤ limn e(C,Bn) Hence it now follows that

δ(C/B) = δ(C)− e(C,B)

= δ(C)− limn e(C,Bn)

= limn δ(C/Bn)

≥ −tA − limn δ(Bn/A)

Thus B is almost closed.

Now we prove (3). Fix k ∈ N. Note that Lemma 6.1.10 and A being closed

tells us that for n > k, δ(Bn/A) = δ(Bn/Bk) + δ(Bk/A). Letting n tend to infinity

we obtain that limn δ(Bn/A) = δ(Bk/A) + limn δ(Bn/Bk) Further an induction ar-

gument and the use of Lemma 6.1.10 shows us that δ(Bn/Bk) =
∑n−1

i=k δ(Bi+1/Bi).

This shows us that δ(Bn/A) − δ(Bk/A) =
∑n−1

i=k δ(Bi+1/Bi). Since limn δ(Bn/A)

exists, it follows that limn δ(Bn/A) − δ(Bk/A) = limn

∑n−1
i=k δ(Bi+1/Bi) and hence

limn δ(Bn/A) = δ(Bk/A) + limn

∑n−1
i=k δ(Bi+1/Bi) = δ(Bk/A) +

∑∞
n=k δ(Bn+1/Bn).

Finally we prove (4). As in (1), limn δ(B
′
n/A) exists. Now using Lemma 6.2.2

for any k there is some n0 such that δ(Bk/A) ≥ δ(B′n0
/A) ≥ limn δ(B

′
n/A). The

reverse inequality follows by symmetry.

Remark 6.2.4. Note that any finite extension B of an almost closed set A

1. is calculable over A since we can take Bn = B for each n to be the intrinsic

chain witnessing calculability of B over A.

2. is almost closed by a (2) of Lemma 6.2.3.

The following is a modified version of Lemma 3.8 of [4].
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Lemma 6.2.5. Let A be almost closed and B calculable over A. Let C be calculable

over B, which is almost closed by Lemma 6.2.3. Then C is calculable over A and

δ(C/A) = δ(C/B) + δ(B/A). In particular if B is calculable over A and A is

calculable over ∅, then δ(B/A) = δ(BA)− δ(A).

Proof. Let 〈Bn〉n<ω and 〈Cn〉n<ω be corresponding intrinsic chains over A and B

respectively that witness the calculability of B over A and C over B. Note that if

C − A is finite then C is calculable over A by remark 6.2.4. Further if B − A is

finite then since C − B we have that C − A is finite and thus we see that 〈Cn〉n<ω

witnesses the calculability of C over A. Thus we may assume that B−A is infinite.

Hence each (Bi, Bi+1) forms an intrinsic minimal pair. Put C ′n = Cn −B. Now

0 ≥ δ(Cn+1/Cn)

= δ(Cn+1 − Cn)− e(Cn+1 − Cn, Cn)

= δ(C ′n+1 − C ′n)− limk e(C
′
n+1 − C ′n, BkC

′
n)

= limk δ(C
′
n+1/BkC

′
n)

Thus there is τ(n) < ω such that δ(C ′n/Bτ(n)C
′
n) ≤ 0. We may assume that this τ

is an increasing function.

Claim: We may choose τ(n) < ω such that for all n < ω

0 ≤ δ(C ′n/Bτ(n))− δ(C ′n/B) < 1/n

Proof of Claim: The first inequality follows from monotonicity regardless of

the value of τ(n). For the second inequality note that

δ(C ′n/Bk)− δ(C ′n/B) = e(C ′n, B)− e(C ′n, Bk)
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Note that e(C ′n, B) is finite by the fact that B is almost closed. Further 0 ≤

e(C ′n, Bk) ≤ e(C ′n, B). Thus the difference above is finite. As limk e(C
′
n, Bk) =

e(Cn, B) we may choose τ(n) such that the required inequality holds. Further

e(C ′n, Bk) ≤ e(C ′n, Bk+1). So we may assume that τ(n+ 1)− τ(n) > 3.

There are now two possibilities:

Case 1: Suppose that C is calculable over B and the sequence 〈Cn〉n<ω is

such that for each i, (Ci, Ci+1) is an intrinsic minimal pair. Now

0 > δ(Cn+1/Cn)

= δ(Cn+1 − Cn)− e(Cn+1 − Cn, Cn)

= δ(C ′n+1 − C ′n)− limk e(C
′
n+1 − C ′n, BkC

′
n)

= limk δ(C
′
n+1/BkC

′
n)

Thus it also follows that δ(C ′n/Bτ(n)C
′
n) < 0. Now we consider the increasing (with

respect to ⊆) sequence given by D0 = Bτ(1)C
′
1. D1 = Bτ(1)+1C

′
1. For n ≥ 2, suppose

that Dn = Bτ(i)+lC
′
k is given. Now

Dn+1 =



Bτ(i)+l+1C
′
k if τ(i) + l + 1 = τ(i+ 1)

Bτ(i)+lC
′
k+1 if l = 0 and Dn−1 = Bτ(i)−1C

′
k

Bτ(i)+l+1C
′
k if l = 0 and Dn−1 6= Bτ(i)−1C

′
k

Bτ(i)+l+1C
′
k if l > 0 and τ(i) + l + 1 < τ(i+ 1)

Since each of the Bi, C
′
i are distinct and τ(n+1)−τ(n) > 3 this is well defined.

Clearly Bτ(0)C
′
1 − A is finite, as is the difference between two successive sets in the

sequence. Note that the sequence 〈Dn〉 is increasing and the union of this sequence
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is C.

Claim: The sequence 〈Dn〉 can be refined to an increasing minimal intrinsic

chain that shows C is calculable over A.

Proof of Claim: First consider Bτ(i)+lC
′
k and Bτ(i)+l+1C

′
k. Note that

Bτ(i)+l+1C
′
k −Bτ(i)+lC

′
k = Bτ(i)+l+1 −Bτ(i)+l = Bτ(i)+l+1 −Bτ(i)+lC

′
k

. Hence it follows that:

δ
(
Bτ(i)+l+1C

′
k

Bτ(i)+lC
′
k

)
= δ(Bτ(i)+l+1C

′
k −Bτ(i)+lC

′
k)− e(Bτ(i)+l+1C

′
k −Bτ(i)+lC

′
k, Bτ(i)+lC

′
k)

= δ(Bτ(i)+l+1 −Bτ(i)+lC
′
k)− e(Bτ(i)+l+1 −Bτ(i)+lC

′
k, Bτ(i)+lC

′
k)

By monotonicity δ(Bτ(i)+l+1/Bτ(i)+lC
′
k) ≤ δ(Bτ(i)+l+1/Bτ(i)+l) < 0. This indicates

the existence of a minimal pair. If we consider a set D such that Bτ(i)+lC
′
k ⊆

D ( Bτ(i)+l+1C
′
k, we may write D = B′C ′k with Bτ(i)+l ⊆ B′ ( Bτ(i)+l+1. Argu-

ing as above we see that δ(Bτ(i)+lC
′
k/B

′C ′k) = δ(Bτ(i)+l/B
′C ′k) ≤ δ(Bn+1/B

′) < 0.

Thus we may refine Bτ(i)+lC
′
k, Bτ(i)+l+1C

′
k into a finite sequence D′1, . . . D

′
k such that

D′0 = Bτ(i)+lC
′
k and D′k = Bτ(i)+lC

′
k and (Di, Di+1) is an intrinsic minimal pair.

Now consider Bτ(i)C
′
k and Bτ(i)C

′
k+1. Now given Bτ(i)C

′
k ⊆ D′ ⊆ Bτ(i)C

′
k+1. If

D′ 6= Bτ(i)C
′
k+1, then we may write D′ = C ′Bτ(i) where C ′k ⊆ C ′ ( C ′k+1. Now by

the monotonicity of δ it follows that δ(C ′/Bτ(n)C
′
k) ≥ δ(C ′/BC ′k) = δ(C ′/Ck) ≥ 0

as Ck = BC ′k. Further note that all sets in the sequence are almost closed by

the second clause of remark 6.2.4. Thus δ(C ′n+1/Bτ(n)C
′) = δ(C ′n+1/Bτ(n)C

′
n) −

δ(C ′/Bτ(n)C
′
n) follows by the use of Lemma 6.1.10. But then δ(C ′n+1/Bτ(n)C

′) < 0
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as δ(C ′n+1/Bτ(n)C
′
n) < 0 and δ(C ′/Bτ(n)C

′
n) ≥ 0. Setting C ′ = C ′k we see that

(Bτ(i)C
′
k, Bτ(i)C

′
k+1) is an intrinsic minimal pair. This establishes the claim

Case 2: |C − B| is finite. We may as well assume that Ci = C0 for each

i. Consider the increasing sequence 〈Dn〉n<ω with D0 = Bτ(1)C
′
0 and given Dn =

Bτ(1)+nC
′
0 = Bτ(i)+nC

′
l where l is any positive integer. The proof now proceeds as

the initial part of case 1 above since (Bi, Bi+1) is an intrinsic minimal pair.

Thus we have established that C is calculable over A. Now it remains to

show that the additivity properties of δ extends to calculable sets as found in the

statement of the theorem. To this end note that if C − A is finite this is just the

content of Lemma 6.1.10. Now if B − A is finite, and C − B is infinite then under

our hypothesis we may write δ(C/A) = limn δ(Cn/A) = limn δ(Cn/B) + δ(B/A) =

δ(C/B) + δ(B/A). Thus we may assume that B − A is infinite. Note now that

for j < k, δ(Bk) < δ(Bj). Now for any subsequence 〈Bnk〉nk<ω it follows that

limn δ(Bn/A) = limk δ(Bnk/A). Similar comments hold about limn δ(Cn/B) and

limn δ(Dn/A).

Now an induction argument shows that 〈Bτ(n)C′n〉 is a subsequence of 〈Dn〉 in

case 1 above. It is clear for case 2 since the C ′i are constant. Thus

δ(BC/A) = limn δ(Bτ(n)C
′
n/A)

= limn δ(C
′
n/Bτ(n)) + δ(Bτ(n)/A)

Note that limn δ(Bτ(n)/A) = δ(B/A). Thus if we show that limn δ(C
′
n/Bτ(n)) =

δ(C/B), then the result follows. But by our choice of τ(n) is such that 0 ≤
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δ(C ′n/Bτ(n)) − δ(C ′n/B) < 1/n. Since limn δ(C
′
n/B) = δ(C/B), an application

of the squeeze lemma yields that limn δ(C
′
n/Bτ(n)) = δ(C/B). This shows that

δ(BC/A) = δ(C/B) + δ(B/A)

It now follows that we can define δ(B) for finite B ⊆M as follows (recall that

B denotes the intrinsic, equivalently algebraic, closure of B):

Definition 6.2.6. Let B ⊆ M. We define δ(B) = limn(δ(Bn/B)) + δ(B) where

〈Bn〉n<ω is some (equivalently any) intrinsic chain with B0 = B and union B.

The following is Lemma 3.10 of [4].

Lemma 6.2.7. Let B be a finite subset of M. Then d(B) = δ(B)

Proof. Let 〈Bn〉 be an intrinsic chain such that B0 = B and B =
⋃
n<ω δ(Bn). Then

δ(Bn) ≥ d(B) for each n < ω. Thus δ(B) = limn δ(Bn) ≥ d(B).

Take an arbitrary finite F ⊇ B. Since B is closed, it follows that δ(F ∩B) ≤

δ(F ). By Lemma 6.2.2, there exists an n such that δ(Bn) ≤ δ(F ∩ Bn). Now

δ(B) ≤ δ(Bn) < d(B) + 1/m. from which the above follows.

Definition 6.2.8. Let A,B ⊆ M be finite. We let d(A/B) = d(AB) − d(B). For

infinite X we take d(A/X) = inf{d(A/X0) : X0 ⊆Fin X}.

Remark 6.2.9. In light of Lemma 6.2.11, we see that for A,X ⊆ M with A finite

d(A/X) = inf{d(A/X0) : X0 ⊆Fin X}. This establishes the compatibility of the

definitions.

We prove a couple of useful technical lemmas before we begin characterizing

non-forking. The following is Remark 3.11 of [4].
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Remark 6.2.10. Let A,B ⊆ M be finite. By Lemma 6.2.7 and the definition of

d(A/B), we obtain that for d(A/B) = d(BA) − d(B) = δ(BA) − δ(B). Further,

as BA = AB and A,B is finite, we obtain that B is calculable over ∅ and AB

is calculable over B (by using intrinsic chains 〈Bn〉n<ω, 〈An〉n<ω with A0 = BA

and B0 = B respectively). Thus by Lemma 6.2.5 we obtain that δ(AB/B) =

δ(AB)− δ(B). Thus for finite A,B ⊆M we have that d(A/B) = δ(AB/B).

The following is Lemma 3.12 of [4].

Lemma 6.2.11. Let A,B,C ⊆ M with A finite and B ⊆ C. Then d(A/B) ≥

d(A/C).

Proof. First assume that C (and hence B) are finite. Let (Bn)n<ω be an intrinsic

chain with union AB, B0 = AB and let (Cn)n<ω be a chain with union AC, C0 =

AC. Now

δ(Bn/B) = δ(Bn/B(C ∩Bn)) + δ((C ∩Bn)/B) by Lemma 6.2.5

≥ δ(Bn/B(C ∩Bn) as B is closed

≥ δ(Bn/C) by monotonocity of δ

= δ(Bn − C/C) by definition

= δ(Bn − C/C0) + δ(C0/C) by Lemma 6.2.5

≥ δ(Ck/C0) + δ(C0/C) by Lemma 6.2.2 for sufficiently large k < ω

= δ(Ck/C) by Lemma 6.2.5

≥ limk δ(Ck/C) as Lemma 6.2.3 tells us the sequence is decreasing

≥ δ(AC/(C)) by definition

= d(A/C) by Remark 6.2.10
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Therefore d(A/B) = d(AB) − d(B) = δ(AB) − δ(B). Further δ(AB/B) =

limn(Bn/B) ≥ d(A/C) as claimed for finite A,B. Now let C be arbitrary. Then

d(A/B) = infB0⊆B d(A/B0) where B0 is finite. But as d(A/C) = infC0⊆B d(A/C0)

where C0 is finite, it easily follows that d(A/B) ≥ d(A/C).

6.2.2 d-independence and Free Joins of Algebraically Closed Sets

We now begin characterizing non-forking. Our goal is to describe non-forking

in two unique ways. One involves the notion of |d^, a notion that has been highly

useful in studying theories if structures constructed with a rank (or alternatively

pre-dimension) function (see [1], [4], [27] and [13] for example). The second notion

in terms of closed sets and free joins. We begin by introducing the notion of |d^.

Definition 6.2.12. Let A,B be finite. We say that A,B are d-independent over Z

and write A |d^
Z

B if

1. d(A/Z) = d(A/ZB)

2. AZ ∩BZ ⊆ Z

For arbitrary X, Y, Z, we say that X and Y are d-independent over Z if for any

X0 ⊆Fin X, Y0 ⊆Fin Y , X0 |d^
Z

Y0. We denote this by X |d^
Z

Y .

We note some easy consequences of this definition in the remarks and the

lemma below.

Remark 6.2.13. Let A,XY ⊆M with A finite. Note that as d(A/X) ≥ d(A/XY )

and the union o two finite sets is again finite, we may calculate d(A/X) by calculating
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inf{d(A/X ′X0) : X0 ⊆Fin X} where

Remark 6.2.14. Fix X0 ⊆Fin X and assume that X |d^
Z

Y . Given any X1 ⊆Fin X0,

Y0 ⊆Fin Y , we have that X1 |d^
Z

Y0. Thus it follows that X0 |d^Z
Y .

The following lemma appears is Lemma 3.13 of [4]

Lemma 6.2.15. Let A,B ⊆ M with B finite. Then d(B/A) = δ(AB/A). In

particular d(B/A) = d(B − A/A) = d(B/A).

Proof. We begin by showing d(B/A) ≤ δ(AB/A). Fix an intrinsic chain 〈Bn〉n<ω

with B0 = AB and
⋃
n<ω Bn = AB. Put B′n = Bn − A, a finite set. Note that

δ(Bn/A) = δ(B′n) − e(B′n − A,A). Given an n ∈ ω, we may pick a An ⊆Fin A

sufficiently large so that e(B′n, A
′) > e(B′n, A) − 1/n. As B′n − An = B′n − A, it

follows that δ(B′n/An) < δ(B′n/A) + 1/n.

Now d(B/A) ≤ d(B/An) = δ(BAn/An) by Remark 6.2.10. Further note that

AnB ⊆ AnB
′
n and hence AnB = AnB ⊆ AnB′n = AnB′n. As AnB′n is calculable over

AnB
′
n and A′nB

′
n is calculable over AnB, we obtain that AnB′n is calculable over

AnB. Since AnB is closed, we obtain that δ(AnB′n/AnB) ≥ 0. Now using Lemma

6.2.5 we obtain that δ(A′nB
′
n/An) = δ(AnB′n/AnB)+δ(AnB/An). As AnB is closed,

we obtain that δ(AnB′n/AnB) ≥ 0. Hence we have that δ(A′nB
′
n/An) ≥ δ(AnB/An).

Note that there is an intrinsic chain 〈Dk〉k<ω such that D0 = AnB
′
n and

⋃
k<ωDk =

A′nBn. Hence it follows that δ(AnB′n/An) ≤ δ(D0/An) = δ(AnB
′
n/An) = δ(B′n/An)

and thus δ(d(B/A)) ≤ δ(B′n/An). By our choice of An it now follows that d(B/A) <

δ(Bn/A) + 1/n.Taking limits we see that d(B/A) ≤ δ(AB/A).
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We now show that δ(AB/A) ≤ d(B/A). The crux of the argument is similar

to that of 6.2.11 and we will be terser with the details here. Consider a finite A′ ⊆ A

and let 〈Cn〉 be an intrinsic chain with C0 = A′B and
⋃
n<ω Cn = A′B = A′B. Then

δ(C − n/A′) = δ(Cn/A′(A ∩ Cn)) + δ(A′ ∩ Cn/A) by Lemma 6.2.5

≥ δ(Cn/A′(A ∩ Cn)) since A′ is closed

≥ δ(Cn/A) by monotonocity of δ

≥ δ(Bk/A) for sufficiently large k by Lemma 6.2.2, Lemma 6.2.3

and an argument similar to that of Lemma 6.2.11

≥ δ(AB/A)

Since d(B/A) = inf{d(B/A′) : A′ ⊆Fin A} = inf{δ(A′B/A′) : A′ ⊆Fin A}, we

obtain that d(B/A) ≥ δ(AB/A).

The last assertion follows as BA = (B − A)A.

We now show that |d^ of algebraically closed sets is equivalent to a statement

regarding algebraic closedness of their free join. We begin by extending the notion

of e(A,B,C)

Definition 6.2.16. Let X, Y, Z ⊆M. We let e(X, Y, Z) = sup{e(X, Y, Z) : X0 ⊆Fin

X, Y0 ⊆Fin Y, Z0 ⊆Fin Z} allowing for the possibility that e(X, Y, Z) =∞. Since for

X0 ⊆ X1 ⊆Fin X, Y0 ⊆ Y1 ⊆Fin Y, Z0 ⊆ Z1 ⊆Fin Z we have that e(X0, Y0, Z0) ≤

e(A,X1, Y1, Z0), the definition agrees for the finite case.

Remark 6.2.17. We may also extend the definition e(X, Y ) = sup{e(X0, Y0) :

X0 ⊆Fin X, Y0 ⊆Fin Y }.

The following is a modified form of Theorem 3.14 of [4].
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Theorem 6.2.18. Let A,B,C ⊆M with A,B where A,B are finite. The following

statements are equivalent

1. A |d^
C

B

2. AC, BC are freely joined over C and AB ∪BC is closed in M

Proof. Note that both statements imply AC ∩ BC = C and hence we can assume

this equality. Further if AC ⊆ BC, then either AC ⊆ C or AC * C. In the case

AC ⊆ C, we obtain that AC = A and the two statements hold vacuously: By

definition, C is freely joined with BC over C and 0 = d(A/C) ≥ d(A/BC) ≥ 0. In

the case AC * C, we obtain that C ( AC ∩ BC, a contradiction. Thus we may

assume that AC * BC.

Claim: AC is calculable over BC and δ(AC/BC) = δ(AC/C)−e(ACC,C,BC−C).

Proof of Claim: Since AC is calculable over C, there is some intrinsic chain 〈An〉nω

with A0 = AC and
⋃
n<ω An = AC. Note that (An, An+1) is a minimal pair. Put

A′n = An ∪ BC. For any A′n+1, A
′
n and A′ such that A′n ⊆ A′ ( A′n+1 we have that

A′n+1−A′ = An+1−A′. Now δ(A′n+1/A
′) = δ(An/A

′). By the monotonocity of δ and

the fact that An+1−An is finite, we obtain that δ(An/A
′) ≤ δ(An+1/An(An+1∩A′)).

But we may write δ(An+1/An) = δ(An+1/An(An+1∩A′))+δ(An(An+1∩A′)/An) using

Theorem 6.2.5 and thus δ(An+1/An)−δ(An(An+1∩A′)/An) = δ(An+1/An(An+1∩A′)).

Note that δ(An+1/An) < 0 and δ(An(An+1 ∩A′)/An) ≥ 0. Thus δ(A′n+1/A
′) < 0. In

particular δ(A′n+1/A
′
n) < 0.

On the other hand we may write δ(A′/A′n) = δ(A′′ ∪ BC/An ∪ BC) for some

An ⊆ A′′ ( An+1. As AC * BC, for sufficiently large n, An * BC. Note that
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A′′ ∪BC − (An ∪BC) = A′′ − (An ∪BC). Now

δ(A′/A′n) = δ(A′′ ∪BC − (An ∪BC))− e(A′′ ∪BC − (A′n ∪BC), An ∪BC)

≥ δ(A′′ − (An ∪BC))− e(A′′ − (An ∪BC), An)

= δ(A′′ − (An ∪BC)/An) as A′′ ∪BC − (An ∪BC) is finite,

this is defined

= δ(A′′ − (An ∪BC)An/An)

≥ 0 as An ⊆ A′′ − (An ∪BC)An ( An+1

Thus for any A′n, A
′
n+1 with A′n ( A′n+1, (A′n, A

′
n+1) is a minimal pair. Further

there is some N such that for all n ≥ N , An′ − BC is nonempty. Thus after

suppressing the elements of A′n+1 = A′n we may extract an intrinsic chain 〈A′nk〉k<ω,

A′′0 = ABC and
⋃
n<ω A

′′
n = AC ∪ BC. Thus AC is calculable over BC. Moreover,

as AC ∩BC, it follows that An −BC = An − C. Then

δ(AC/BC) = limn δ(A
′
n/BC)

= limn δ(An/BC)

= limn δ(An −BC)− e(An −BC,BC)

= limn δ(An − C)− e(An − C,BC)

= limn δ(An − C)− [e(An − C,C) + e(An − C,C,BC − C)]

= limn δ(An/C)− e(An − C,C,BC − C)

= limn δ(An/C)− limn e(An − C,C,BC − C) the limit can be split as

δ(AC/BC) is finite as BC is calculable over AC

= δ(AC/C)

Now as AC∪BC is almost closed by (2) of Lemma 6.2.3 since AC is calculable

over BC. As ABC = AC ∪BC, ABC is calculable by Lemma 6.1.15. Now by
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Lemma 6.2.5 and Lemma 6.2.15.

d(A/BC) = δ(ABC/BC)

= δ(AC/BC) + δ(ABC/AC ∪BC)

= δ(AC/C)− e(AC − C,C,BC − C) + δ(ABC/AC ∪BC)

= d(AC/C)− e(AC − C,C,BC − C) + δ(ABC/AC ∪BC)

Note that e(AC−C,C,BC−C) ≥ 0 and that AC∪BC ⊆ AC ∪BC = ABC.

As we can calculate δ(AC ∪BC/AC ∪BC) using an intrinsic chain Dn with D0 =

AC ∪BC, it follows that δ(ABC/AC ∪BC) ≤ 0.

Thus d(A/BC) = d(A/C) if and only if e(AC − C,C,BC − C) = 0 =

δ(ABC/AC ∪ BC). But e(AC − C,C,BC − C) = 0 = δ(ABC/AC ∪ BC) if

and only if AC,BC is freely joined over AC ∪ BC = ABC is strong in M (Note

that we may construct ABC with a intrinsic chain 〈Dn〉n<ω with D0 = AC ∪ BC

as AC ∪ BC ⊆ AC ∪BC = ABC and hence δ(ABC/AC ∪ BC) = 0 implies that

AC ∪BC = ABC).

The following is a pared down version Corollary 3.15 of [4].

Theorem 6.2.19. Let X, Y ⊆ M be closed and let Z = X ∩ Y . The following are

equivalent

1. X |d^
Z

Y

2. XY is closed and X, Y are freely joined over Z

Proof. First assume that X |d^
Z

Y . Then for any finite X0 ⊆ X, Y0 ⊆ Y we have that

X0 |d^
Z

Y0 and hence X0, Y0 are freely joined over Z and X0Z ∪ Y0Z is closed in M.

The required result now follows as (algebraic) closure is finitary.
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For the converse assume that XY is closed and X, Y are freely joined over Z.

Given any finite X0 ⊆ X, Y0 ⊆ Y , we immediately obtain that X0Z, Y0Z are freely

joined over Z. Thus we need to show that X0Z ∩ Y0Z is closed. Assume to the

contrary that it is not. Then there is some finite F ⊆ X0Y0Z with δ(F/δ(X0Z ∪

Y0Z)) < 0. Since XY is closed, we obtain that F ⊆ XY . Take FX = F ∩XZ and

FY = F ∩ Y Z. Since X, Y are freely joined over Z, we have that

δ(F/δ(X0Z ∪ Y0Z)) = δ(FX/δ(X0Z ∪ Y0Z)) + δ(FY/δ(X0Z ∪ Y0Z))

= δ(FX/δ(X0Z) + δ(FY/δ(X0Z)

≥ 0

which yields a contradiction.

6.2.3 Non-forking and Free joins of Algebraically Closed Sets

We begin by exploring some consequences of non-forking. Recall that al-

gebraically closed sets and intrinsically closed sets correspond. The following is

Lemma 7.2 of [2]

Lemma 6.2.20. For any cardinal κ, every algebraically closed set B, and every c,

there is a set {Ci : i ∈ κ} of algebraically closed extensions of B that are pairwise

isomorphic over B, C0 = acl(Bc), and satisfy {Ci : i ∈ κ} freely joined over B and

{Ci : i ∈ κ} is algebraically closed. In particular, {Ci : i ∈ κ} is fully indiscernible

over B. Moreover, if A is any set disjoint from C0, then we may additionally assume

that A ∩ Ci = ∅ for each i.

Proof. By compactness it suffices to show that for any finite B0 ⊆ B and any
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n,m ∈ ω there are finite sets B′0 and C∗ =
⋃
{Ci : i < n} such that B0 ⊆ B′0 ⊆ B,

C0 = clm(B′0c), C
∗ is the free join of n copies of C0 over B0 and C∗ is m-closed.

So fix B0, n,m as above. Let C0 = clm(B0c) and let B′0 = C0 ∩ B. Since

B is algebraically closed, B′0 ≤ C0 (considered as finite structures in Kα). Let

C∗ = ⊕i<nCi be the free join of n copies of C0 over B0. By 4 of Fact 2.2.5 we have

B′0 ≤ C∗, so Corollary 4.2.4 gives a strong embedding of C∗ over M. It follows from

(3) of Theorem 4.2.4 that the image of C∗ is algebraically closed, hence m-closed in

M.

The following describes properties of non-forking in a manner that is more

intrinsic to Sα. The proof we give here is due to Laskowski in [2] (see Proposition

7.3 of [2])

Lemma 6.2.21. Let X, Y, Z ⊆ M be closed sets with Z = X ∩ Y and X, Y freely

joined over Z. If X |̂
Z
Y , then X, Y are freely joined over Z and XY is closed.

Proof. We begin by showing that if {X, Y } is not a free join over Z, then tp(X/Y )

contains a formula that divides over Z. Suppose that there are a ⊆ X − Z, b ⊆ Z,

c ⊆ Y − Z, and E ∈ L such that E(a, b, c) with a, c non-empty. By Lemma 6.2.20

choose {Ci : i ∈ ω} freely joined and indiscernible over Z with C0 = acl(Ba) and

{Ci : i ∈ ω} algebraically closed. For each i ∈ ω fix an isomorphism fi : C0 → Ci

over B and let ci = f(c). Fix m > |a| and let Cm
i denote the m-closure of bci in Ci.

We wish to show that ϕ(x, b, c) := E(x, b, c)∧j xj /∈ Cm
0 divides over Z. Clearly the

ci all realize tp(c/Z). If {ϕ(x, b, ci) : i ∈ ω} is not k-inconsistent for all k ∈ ω, then

{ϕ(x, b, ci) : i ∈ ω} (where ϕ(x, b, ci) = E(x, b, ci) ∧j xj /∈ Cm
i ) would be consistent.
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Assume that some a′ from realizes {ϕ(x, b, ci) : i ∈ ω}. Choose n large enough such

that nαE > |a′| and let Dn =
⋃
{Cm

i : i < n}. Since E(a′, b, ci) holds for all i < n,

δ(Dnci/Dn)|a′| − nα < 0, which contradicts Dn being m-closed.

Finally, assume that X, Y are freely joined over Z, but XY is not algebraically

closed. Choose a ⊆ X − Z, b ⊆ Z, c ⊆ Y − Z and d disjoint from XY , so that

letting D be the substructure with universe abcd, (abc,D) is a minimal pair. Since

X is closed, we may assume that for at least one E ∈ L, at least one element of ED

contains at least one element of c. Let m > |D|, choose n such that nGr(m) > |a|,

and let m > n|D|. By Lemma 6.2.20 choose {Xi : i ∈ ω} to be fully indiscernible and

freely joined over Z with {Ci : i ∈ ω} algebraically closed with C0 = acl(Xc). Let

Cm∗
0 = clm∗(bc) and let Cm∗

i = fi(C
m∗
0 ), where fi : C0 → Ci is an isomorphism over

Z. Let Dn =
⋃
{Cm∗

i : i < n}. We argue that ϕ(x, b, c) := ∃z[∆G(x, b, c, z)∧
∧
j xj /∈

Cm∗
0 ] divides over Z. Clearly the ci realize tp(c/A). If {ϕ(x, b, ci) : i ∈ ω} is not

k-inconsistent for all k ∈ ω, then {ϕ(x, b, ci) : i ∈ ω} is consistent. Assume that

{ϕ(x, b, ci) : i ∈ ω} is not k-inconsistent for all k ∈ ω . There is some a′ such that

ϕ(a′, b, ci) holds for all i ∈ ω. Now for each i ∈ ω we may choose di such that

∆G(a′, b, ci, di). Apply the -system lemma to {di : i ∈ ω}. There are now two cases:

Case 1 : For infinitely many i, di = d
∗
for some fixed d∗. In this case, arguing

as above we can show that δ(a′d∗Dn/Dn) < 0, contradicting the fact that Dn is

m-strong in M.

Case 2 : For infinitely many i, di = d∗
_
ei for some d∗ and some pairwise disjoint

{ei : i ∈ ω}. For each l ≤ n, let Fl denote the substructure with universe Dna′∪{di :

i < l}. Since (abc,D) is a minimal pair and the ei are pairwise disjoint, it follows
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from Lemma 4.1.4 that δ(Dl+1/δ(l)) ≤ Gr(m) for each l < n, so δ(Fn/Dn) ≤

|a′|nGr(m) < 0, contradicting the fact that Dn was m-strong in M.

We now work towards establishing a converse for the above lemma.

Lemma 6.2.22. Let X, Y, Z ⊆ M be closed sets with Z = X ∩ Y and X, Y freely

joined over Z. For any automorphism of M that fixes Z such that f(X)Y is closed

and f(X), Y are freely joined over Z, tp(XY/Y ) = tp(f(X)Y/Y ).

Proof. Note that under the given conditions XY and f(X)Y have the same quanti-

fier free type. From Lemma 4.4.3, we obtain that tp(f(X)Y ) = tp(XY ). The result

now follows.

Lemma 6.2.23. Let X, Y, Z ⊆ M be closed sets with Z = X ∩ Y and X, Y freely

joined over Z. Then X |̂
Z
Y

Proof. By general properties of nonforking (see for example [28]), there is some

auotmorphism of f fixing Z such that f(X) |̂
Z
Y . By Lemma 6.2.21 we obtain that

f(X), Y is freely joined over Z and f(X)Y is closed. Further by Lemma 6.2.22, we

have that tp(XY/Y ) = tp(f(X)Y/Y ). Since nonforking is automorphism invariant

it follows that X |̂
Z
Y .

We collect the results to obtain:

Theorem 6.2.24. Let X, Y ⊆ M be closed and let Z = X ∩ Y . The following are

equivalent

1. X |̂
Z
Y
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2. XY is closed and X, Y are freely joined over Z

Proof. The proof is immediate from the lemmas 6.2.21, 6.2.23.

6.2.4 Characterization of non-forking and weak elimination of imag-

inaries

We now come to one of the main results for this section. It characterizes

non-forking in terms of d-independence and free joins of algebraically closed sets.

It should be noted that different a proof of the following, bypassing the quantifier

elimination result and using various amalgamation properties is possible (it may be

viewed as an amalgamation of Corollary 3.22, Fact 5.1 of [4] and Lemma 4.4 of [1]).

Theorem 6.2.25. Let X, Y and hence Z = X ∩ Y be closed. Then the following

are equivalent:

1. X |̂
Z
Y

2. X |d^Z
Y

3. X, Y are freely joined over Z and XY is closed.

Proof. This follows by Theorem 6.2.19 and Theorem 6.2.24.

The following result appears in [2]. A stronger form of this result is possible

(see Proposition 4.2 of [4]).

Definition 6.2.26. Recall that a type p ∈ S(X) is stationary if it has a unique

non-forking extension (to an ideal type, i.e. a type over M). Given a stationary type
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p and Y ⊆M, we let p|Y denotes the unique nonforking extension of p restricted to

Y .

Lemma 6.2.27. The theory Sα has weak elimination of imaginaries, i.e. every

complete type over an algebraically closed set in the home sort is stationary.

Proof. Fix an algebraically closed X and a type p ∈ S(X). To prove that p is

stationary, it suffices to show that it has a unique nonforking extension to any

algebraically closed Y ⊇ X. Fix such a Y and choose a, a′ realizing p such that

neither tp(a/Y ) and tp(a′/Y ) fork over X. Let X ′ = acl(Xa) and X ′′ = acl(Xa′).

Since tp(a/X) = tp(a′/X), Lemma 4.4.3 gives an isomorphism f : X ′ → X ′′ over

Z such that f(a) = a′ . Since neither tp(X ′/Y ) and tp(X ′′/Y ) fork over X, it

follows from Lemma 6.2.21 that X ′Y ,X ′′Y are algebraically closed over and {X ′, Y },

{X ′′, Y }. Now Lemma 6.2.22 yields that tp(X ′Y ) = tp(X ′′Y ) and hence tp(X ′Y ) =

tp(X ′′Y ).

We make the following useful observation:

Remark 6.2.28. Let A ≤ M and let p ∈ S(A). Suppose that for some k ∈ ω,

d(p/A) = k/c. Let A ⊆ X ≤M. Suppose that q ∈ S(X) extends p. If d(q/X) <

d(p/A), then q is a forking extension of p follows easily by theorem 6.2.25. Further

p, q are stationary.

6.3 Non-triviality

In this section we establish that in the case α is not graph-like with weight

one, Sα is trivial. We refer the reader to [31] for a discussion of triviality.
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Definition 6.3.1. A stable theory T is said to be trivial if for any given A,B,C,X ⊆

M′ (where M′ is a monster model of T ), with A |̂
X
B, A |̂

X
C and B |̂

X
C we

have that A |̂
X
BC.

We begin with the following lemma:

Lemma 6.3.2. Assume the α is not graph-like with weight one. Let A,C1 . . .Cn ∈

Kα be such that A ≤ Ci and δ(Ci/A) > 0 for each 1 ≤ i ≤ n. Let γ = min{δ(Ci/A) :

1 ≤ i ≤ n} and let C = ⊕Ci be the free join of the Ci over A. Then there is an

essential minimal pair C,D such that A,C1 . . .Cn ≤ D and −γ ≤ δ(D/C) < 0.

Proof. Note that under the given conditions, we can apply Theorem 3.2.15 to obtain

a D ∈ Kα with (C,D) an essential minimal pair satisfying −γ ≤ δ(D/C) < 0.

We claim that for any Φ0 ( {1, . . . , n}, CΦ0 = ⊕i∈Φ0Ci ≤ D. If Φ0 = ∅,

then C∅ = A and the claim will follow if we establish this result for even one

Φ0 6= ∅ as ≤ is transitive. So assume that Φ0 6= ∅. Consider CΦ0 ⊆ D′ ⊆ D.

Now δ(D′/CΦ0) = δ(D′/D′ ∩ C) + δ(D′ ∩ C/CΦ0
). But δ(D′ ∩ C/CΦ0

) ≥ 0 as the

Ci are freely joined over A. Thus we need to consider δ(D′/D′ ∩ C) < 0. Now

δ(D′/D′ ∩ C) < 0 if and only if D′ = D as (C,D) is an essential minimal pair with

−γ ≤ δ(D/C) < 0. But then δ(D/CΦ0) = δ(D/C) + δ(C/CΦ0
). But δ(C/CΦ0

) ≥ γ

and δ(D/C) ≥ −γ and hence it follows that δ(D/CΦ0) ≥ 0 from which our claim

follows.

Theorem 6.3.3. Assume the α is not graph-like with weight one. Then Sα is not

trivial.
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Proof. Take A = ∅ and Ci ∈ Kα such that δ(Ci) > 0 for i = 1, 2, 3. Note that

∅ ≤ Ci. Let D be an essential minimal pair obtained by the use of Lemma 6.3.2.

Let f : D → M be a strong embedding. Now as the Ci are freely joined

over ∅ and for a fixed Φ0 ( {1, 2, 3}, f(⊕i∈Φ0Ci) ≤ M (using the transitivity of ≤

and ⊕i∈Φ0Ci ≤ D) it follows from the characterization of forking in Theorem 6.2.25

that f(Ci) |̂ ∅ f(Cj). However f(C1C2) ��|̂ ∅ f(C3) as δ(f(D)/f(⊕i∈ΦCi)) < 0 which

establishes that Sα is not trivial.

6.4 Strict stability for non-rational α and the Dimensional Order

Property

In this section we give a proof of the fact that Sα is superstable for non-rational

α. We also take this opportunity to give a proof of the fact that Sα has Dimensional

Order Property (DOP, see [30], or [29] for a definition) for α not graph-like with

weight one. In Chapter 8 we will extend the result to the case that α is graph-like

with weight one, thus establishing the (long expected) result for all α. The result

has been known for special cases. In [5], Baldwin and Shelah gave a proof that Sα

has DOP assuming that L has a binary relation. In Corollary 7.10 of [2], Laskowski

gave a proof of DOP by explicitly constructing a type that witnesses the DOP. He

did not assume that L contained a binary symbol, however he did assume α satisfied

certain properties. Finally we show that for non-rational α, |S(∅)| = 2ℵ0 .

Before we prove the results mentioned above, we observe the following conse-

quence of the stated results as it relates to the spectrum of Sα.
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Definition 6.4.1. Let I(κ) denote the number of non-isomorphic models of Sα of

size κ. The function I is called the spectrum of Sα,

Remark 6.4.2. Note that DOP implies that I(κ) = 2κ for any κ ≥ ℵ1 (see [30]

or [29]). In the case that α is not rational, the fact that S(∅) = 2ℵ0 will yield that

I(κ) = 2κ for all infnite κ. The case where α is rational is discussed in Chapter 7

(for the case α is rational but not graph-like with weight one) and Chapter 8 (for

the case α is graph-like with weight one).

6.4.1 Strict Stability of Sα for non-rational α

We now start proving the results mentioned at the beginning of the section.

The following argument is essentially due to Laskowski (see Proposition 7.6 of [2],

which has the same result). He states that the proof is based on ideas from Ikeda

in [25].

Theorem 6.4.3. If α is not rational, then Sα is strictly stable, i.e. Sα is stable but

not superstable

Proof. Choose a ∈ M such that acl({a}) = {a}, let B0 = ∅ and let D0 = {a}. We

will produce a nested sequence 〈Bn : n ∈ ω〉 of finite substructures of M such that

a ��|̂ Bn Bn+1 for all n ∈ ω using the fact that if α is not rational, then there is some

E ∈ L for which α(E) is irrational.

To accomplish this, we also construct an ancillary sequence 〈Dn〉 of finite

substructures of M such that:
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1. {a} ∪
⋃
{Bn : n ∈ ω} is discrete (i.e., no E ′-relations hold among any subset

for any E ′ ∈ L).

2. δ(Bn) < δ(Dn)

3. Bn ≤ Bn+1, Dn ≤ Dn+1 and Bn ≤ Dn.

4. Bn = acl(Bn), Dn = acl({a}Bn), but Dn+1 6= Dn ∪Bn+1

It follows from the characterization of forking given in Theorem 6.2.25 that

these conditions imply a ��|̂ Bn Bn+1 for each n ∈ ω, so it suffices to perform the

construction.

Assume that Bn and Dn have been defined and satisfy the conditions. Choose

Bn+1 ∈ Kα (not necessarily in M but is isomorphic to Bn) such that Bn+1 = Bn ∪

{bn}, Bn+1 is discrete, and Bn+1,Dn are disjoint over Bn (here Dn is isomorphic to

Dn). Let F denote the free join of and Bn+1,Dn over Bn. We apply (1) of Theorem

3.2.15 (with the relation symbol E) to obtain Dn+1 for F and ε = δ(Dn/Bn),

i.e. (F,Dn+1) is an essential minimal pair with −ε < δ(Dn+1/F) < 0. Clearly

Dn ≤ Dn+1 and Bn ≤ Bn+1. Further as {a} ≤ D1, it follows that {a} ≤ Dn+1 by

the transitivity of ≤.

We now have to show that Bn+1 ≤ Dn+1 and that δ(Dn+1/Bn+1) > 0. Let

Bn+1 ⊆ B′ ⊆ Dn+1. Note that as Bn+1,Dn are freely joined over Bn, Bn+1 ≤ F.

Now δ(B′/Bn+1) = δ(B′/F ∩B′) + δ(F ∩B′/Bn+1). As (F,Dn+1) is an essential

minimal pair and Bn+1 ≤ F, δ(B′/F ∩B′), δ(F ∩B′/Bn+1) > 0 for B′ 6= Dn+1.

Further if B′ = Dn+1, then δ(B′/F) + δ(F/Bn+1) > 0 by our choice of Dn+1. Note
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that the inequalities are strict as the only relation symbol that appears in Dn+1 is

E (and hence α(E) is irrational).

Now apply Corollary 4.2.4 to get a strong embedding g : Dn+1 →M over Dn.

The rest now follows.

6.4.2 The Dimensional Order Property

We now turn our attention towards showing that Sα has the Dimensional

Order Property (DOP). Our approach will be to combine a sufficient condition for

Sα to have the DOP given by Baldwin and Shelah in [5] with a generalization of

an argument given by Laskowski in [2] to obtain the required result. We refer the

reader to Chapter XV I of [30] for the definition of DOP and related facts. We begin

by extending the function d to the space of types.

Definition 6.4.4. Let X ⊆ M and let p ∈ S(X). We let d(p/X) = d(b/X) for

some (equivalently any) realization b of p.

We begin by showing that partial types whose realizations have a d-value of 0

are complete.

Lemma 6.4.5. Let A ≤ M and π be a partial type over A. Suppose that any

realization of π has the same quantifier free type over A. If for any b |= π, d(b/A) =

0, then π is complete.

Proof. Let b |= π. Since d(b/A) = 0, π implies that there is an intrinsic minimal

chain 〈Dn : n < ω〉 with D0 = Ab such that limn δ(Dn/A) = 0. Let X =
⋃
n<ωDn

(note that X may not be finite). We claim that X is algebraically closed. Suppose
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to the contrary that it is not. Then there is some finite C, disjoint from X, such

that δ(C/X) < 0. Now consider D′n = CDn. Note that for sufficiently large

D′n, δ(D′n/A) = δ(D′n/Dn) + δ(Dn/A) < 0 which contradicts that A is closed. As

δ(Dn) < δ(Dn+1), it follows that X is the smallest algebraically closed set that

contains Ab. Thus π fully determines the algebraic closure of any of its realizations

and thus π is complete.

In [5] Baldwin and Shelah gave the sufficient condition below to show that Sα

has the DOP (see Theorem 2.8 of [5] for details).

Lemma 6.4.6. If there are independent points a, b in M and some p ∈ S({a, b})

such that d(p/{a, b}) = 0 but d(p/{a}) > 0 and d(p/{b}) > 0, then Sα has the DOP.

Following Laskowski’s approach in [2], we now construct a type that will wit-

nesses the DOP. The following lemma (Proposition 7.8 of [2]) shows that types of

dimension 0 occur in abundance.

Lemma 6.4.7. For any A ≤ B from Kα with δ(A) 6= δ(B) there is an isomorphic

embedding f of B into M such that, taking A′ = f(A) and an enumeration e of

f(B)− f(A), d(p/A′) = 0, where p = tp(e/A′).

Proof. There are two cases to consider. First assume that α is not graph-like with

weight one. Under the given conditions we can repeatedly apply Lemma 4.2.1 to

obtain a sequence 〈Dn : n ∈ ω〉 of elements of Kα such that

1. D0 = B

2. Dn ⊆ Dn+1 for all n ∈ ω

125



3. A ≤ Dn for all n ∈ ω

4. δ(Dn/A) < 1/n for all n ≥ 1

Note that if α is not rational, we may strengthen condition (4) to 0 < δ(Dn/A) <

1/n for all n ≥ 1. Now, given such a sequence, let X =
⋃
{Dn : n ∈ ω}, there is an

embedding f : X →M such that acl(X) = X.

Let A′ = f(A), e enumerate f(B)− f(A), and let p = tp(e/A′). Note that by

definition it is immediate that for any A∗ ⊆Fin A
′, d(e/A∗) ≥ 0. Thus it follows that

d(e/A′) ≥ 0 and hence d(p/A′) ≥ 0. Since δ(f(Dn)/A′) < 1/n for each n, it follows

that d(p/A) < 1/n for all integers n ≥ 1. It follows that d(p/A) = 0.

The proof in case that α is graph-like with weight one is similar. However we

need to use Lemma 8.2.6 to obtain the sequence 〈Dm : n < ω〉.

Note that in the case that α is rational, there is some N ∈ ω such that

δ(Dn) = δ(Dm) for all m, k ≥ N and as such implies that the associated type is

isolated by (2) of Lemma 4.4.2.

We now establish that Sα has the DOP. It follows the argument given by

Laskowski in [2]

Theorem 6.4.8. Sα has the DOP.

Proof. Since the notion of DOP is invariant under the addition of finitely many

constants to the language, we may do so and reduce to the case where we have

some distinguished relation symbol E of arity 2. To simplify notation let α = α(E).

Let B be the L-structure whose universe has four points {a, b, x, y}, with the sets
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{a, x}, {b, y} ∈ EB and no other relations, and let A be the substructure of B

with universe A = {a, b}. It is easily seen that A ≤ B. Apply Lemma 6.4.7 and

get an embedding f of A into M (as notation let A′ = {a′, b′} = {f(a), f(b)})

and a type p(x, y) ∈ S(A′) such that {e1, e2} ∪ A′ ∼= B over A′ and d(e/A′) = 0

for any e = (e1, e2) realizing p. Since extensions of nonnegative dimension occur

in abundance, p is nonalgebraic (this follows from Lemma 6.2.20). Now fix any

e = (e1, e2) realizing p. We will finish the proof by showing that d(e/a′) ≥ α (the

argument for showing that d(e/b′) > 0 is symmetric). Choose any finite F ⊆ M

such that ea′ ⊆ F . Since δ({a′}) = 1, it suffices to show that δ(F ) ≥ 1 + α. To

accomplish this, consider the substructure with universe Fb′ . On one hand, since

{e2, b
′} ∈ E, δ(Fb′/F ) ≤ 1−α. On the other hand, since Fb′ ⊇ eA′ and d(p/A′) ≥ 0,

(Fb/A′) ≥ 0. As δ(A) = 2, this implies δ(Fb) ≥ 2. Since δ(Fb′) = δ(Fb/F ) + δ(F )

we obtain that δ(F ) = (Fb′)− δ(Fb′/F ) ≥ 2− (1− α) = 1 + α and we finish.

The following is Remark 7.9 of [2]. It is a consequence of Lemma 6.4.7 and it

shows that |S(∅)| = 2ℵ0 when α is not rational.

Remark 6.4.9. Assume that α is not rational. The reader should note that by

choosing appropriate finite sets Φ in our application of Lemma 4.2.1 in the proof of

Lemma 6.4.7, we can inductively construct a perfect tree of types of dimension zero.

More precisely, for any A ∈ Kα there is a family {fη : η ∈ ω2} of isomorphisms taking

A into M and a family {pη ∈ S(fη(A)) : η ∈ ω2} of complete types of dimension

zero over their base, both indexed by a perfect tree, that are not conjugate, i.e.,

fη(f
−1
µ (pµ)) 6= pη for η 6= µ. Note that the condition α is not rational is required:
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If α is rational then for sufficiently large n, δ(A) = δ(Dn) and as such implies that

the associated type is isolated by (2) of Lemma 4.4.2.
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Chapter 7: Rational α and the corresponding Sα

In this chapter we study Sα when α is rational focusing on the case that α

is not graph-like with weight one. We start by studying the countable models of

Sα, the spectrum already being determined for uncountable κ by the DOP and the

countable models in the case that α is not rational by the work of Laskowski (see

Remark 6.4.2). We begin by defining a notion of dimension for (countable) models.

We then show that this notion of dimension is able to categorize countable models up

to both isomorphism and elementary embeddability. We then focus our attention on

the regular types that occur in relation to these theories and classify large classes of

types as either regular or non-regular. We end this chapter by answering a question

of Pillay’s (see [6]) in the negative by providing examples of a pseudofinite ω-stable

theories with non-locally modular regular types.

Recall that c is the least common multiple of the denominators of the αE (in

reduced form) and note that Sα has finite closures.

Lemma 7.0.1. Let k ∈ ω. Given any B ∈ Kα, there is some D ∈ Kα such that

D ⊇ B, δ(D) = k/c and for any A ≤ B with δ(A) ≤ k/c, A ≤ D.

Proof. Given B take D0 to be the free join of B with a structure with k + 1 many

points with no relations among them over ∅. Note that B ≤ D0. Let l = cδ(D0)−k.
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Consider a sequence D0 ⊆ . . . ⊆ Dl where each (Di,Di+1) is an essential minimal

pair with δ(Di+1/D1) = −1/c. We claim that D = Dl is as required. Fix any

A ≤ B with δ(A) ≤ k/c. We show by induction on i < l that if A ≤ Di, then

A ≤ Di+1. Clearly A ≤ D0 as A ≤ B ≤ D0. Fix i < l and consider any F such that

A ⊆ F ⊆ Di+1. If F = Di+1 then δ(F) ≥ k/c ≥ δ(A) and so δ(F/A) ≥ 0. On the

other hand, if F 6= Di+1, then, δ(F/Di+1 ∩ F) since (Di,Di+1) is an essential minimal

pair and δ(Di∩F/A) ≥ 0 as A ≤ Di. Thus δ(F/A) = δ(F/Di∩F)+δ(F∩Di/A) ≥ 0

as required.

7.1 The Number of Countable Models

Definition 7.1.1. Let M |= Sα. Let A ≤M. We let dim(M/A) = max{δ(B/A) :

A ≤ B ≤M}. If there is no maximum, i.e. given any z > 0, there will be some

B ≤M with δ(B/A) > z, we let dim(M/A) =∞. We write dim(M) for dim(M/∅).

Definition 7.1.2. Fix an integer k ≥ 0 and let Kk/c = {A : A ∈ Kα and δ(A) =

k/c}. Let (Kk/c,≤) be such that ≤ is inherited by Kα i.e. A ≤ B for A,B ∈ Kk/c

if and only if for all A ⊆ B′ ⊆ B with B′ ∈ Kα, A ≤ B′

We begin with the following technical lemma:

Lemma 7.1.3. Let A,B,C,D ∈ Kα with A ≤ B,C; δ(C/A) ≥ δ(B/A) and D =

B⊕ C the free join of B,C over A. We can construct H ∈ Kα such that A,B,C ≤ H,

D ⊆ H and δ(H/C) = 0. Further if δ(B/A) = δ(C/A), the H that was constructed

has the property δ(H/B) = 0.

Proof. This follows from an easy application of Lemma 7.0.1 on D.
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We now work towards showing that certain countable models of Sα can be

built as Fräıssé limits (Kk/c,≤). In Theorem 7.1.7 we show that these are in fact,

all of the countable models up to isomorphism.

Lemma 7.1.4. For any fixed integer k ≥ 0, (Kk/c,≤), where ≤ is inherited from

Kα is a Fräıssé class.

Proof. Fix an integer k ≥ 0 and consider Kk/c. Let A,B,C ∈ Kk/c. Note that

for the purposes of proving amalgamation, we may as well assume B,C are freely

joined over A and that A ≤ B,C. Note that δ(B/A) = δ(C/A) = 0. The required

statement follows by a simple application of Lemma 7.1.3 on B⊕A C. For joint

embedding consider ∅ ≤ B,C. Note that δ(B/∅) = δ(C/∅) = k/c. Apply Lemma

7.1.3 on B⊕∅ C, the free join of B,C over ∅.

We now prove the following theorem. Note that unlike the class Kα, the class

Kk/c is not closed under substructure, however as (Kk/c,≤) generic still exists as it

satisfies amalgamation and joint embedding.

Theorem 7.1.5. Let k be a fixed integer with k ≥ 0. Let Mk/c be the generic for

the Fräıssé class (Kk/c,≤) where ≤ is inherited from Kα. Now Mk/c |= Sα and

dim(Mk/c) = k/c.

Proof. Fix an integer k ≥ 0. From Lemma 7.1.4, it follows that (Kk/c,≤) where ≤

is inherited from Kα is a Fräıssé class. Let Mk/c be the (Kk/c,≤) generic. Note that

given B ∈ Kα, there is some D ∈ Kk/c such that D ⊇ B by Lemma 7.0.1. Thus it

suffices to show that Mk/c satisfies the extension formulas in Sα.
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Let A,B ∈ Kα with A ≤ B and assume that A ⊆Fin Mk/c. As Mk/c is the

(Kk/c,≤) generic, there is some C ≤Mk/c with A ⊆ C and δ(C) = k/c. By Fact

2.3.4, we have that D = B ⊕ C, the free join of B,C over A is in Kα and that

C ≤ D. Now using Lemma 7.0.1, we can find G ∈ Kk/c such that D ⊆ G and

C ≤ G. But as Mk/c is the (Kk/c,≤) generic we can find a strong embedding of

G into Mk/c over C. Thus it follows that Mk/c |= ∀x∃y(∆A(x) =⇒ ∆A,B(x, y)).

Hence it follows that Mk/c |= Sα. Further as noted above, given any A ⊆Fin Mk/c,

there is some C ≤Mk/c with A ⊆ C and δ(C) = k/c. Hence dim(Mk/c) = k/c.

We now work towards classifying the countable models of Sα up to isomorphism

using our notion of dimension.

Lemma 7.1.6. Let M |= Sα and A ≤M be finite. Let D ∈ Kα be such that A ≤ D.

Then dim(M/A) ≥ δ(D/A) if and only if there is some g such that g strongly embeds

D into M over A.

Proof. The statement that if there is some g such that g strongly embeds D into

M over A, then dim(M/A) ≥ δ(D/A) is immediate from the definition. Thus we

prove the converse. Let A ≤M be finite. Let D ∈ Kα be such that A ≤ D.

First assume that δ(D/A) = 0. Now as Sα |= ∀x∃y(∆A(x) =⇒ ∆A,D(x, y)).

Thus there is some A ⊆ D′ ⊆M such that D ∼=A D′. Further as δ(D′/A) = 0,

from (2) of Lemma 4.4.2, D′ ≤M. Thus regardless of the value of dim(M/A), if

δ(D/A) = 0 then there is some g such that g strongly embeds D into M over A.

Now assume that m/c = δ(D/A) ≤ dim(M/A) with m ≥ 1 and further assume

that dim(M/A) ≥ k/c with k ≥ m. Let A ≤ F ≤ M be such that δ(F/A) = k/c.
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Let G = D⊕ F, the free join of D,F over A. By Lemma 7.1.3, there exists H ∈ Kα

with G ⊆ H and A,D,F ≤ H and δ(H/F) = 0. Since F ≤M and δ(H/F) = 0 we are

in the setting above. So take a strong embedding g of H into M over F. Clearly g

fixes A and D has the property that g(D) ≤ F ≤M and thus g(D) ≤M.

We now obtain:

Theorem 7.1.7. Let M,N |= Sα be countable. Now M ∼= N if and only if

dim(M) = dim(N) and dim(M) = ∞ if and only if M is the generic for Kα.

Thus there are precisely ℵ0 many non-isomorphic models of Sα of size ℵ0. Further

each countable model of Sα can be built up from a subclass of (Kα,≤).

Proof. Since δ is invariant under isomorphism, it immediately follows that if M ∼= N,

then dim(M) = dim(N). Now from Theorem 7.1.5, it follows that the number of

non-isomorphic countable models is at least ℵ0.

Case 1 : dim(M) = dim(N) = k/c for some k ∈ ω. Fix enumerations for M,N . Let

A ≤M with dim(M/A) = 0. Thus δ(A) = dim(M) = dim(N). Assume that we

have constructed a strong embedding g : A→ N. Pick b ∈ N− g(A), where b in the

enumeration corresponds to the element of N with least index not in g(A). Consider

iclN({b} ∪ g(A)) = B ≤ N. Now B is finite. Since g(A) ≤ N and g(A) = dim(N),

it follows that δ(B/g(A)) = 0 and g(A) ≤ B. Now as A ∼= g(A) by Lemma 7.1.6,

there exists a strong embedding g′ : B→M and g′|g(A) = g−1. Clearly this allows

us to form a back and forth system between M,N.

Thus all that remains to be shown is that we can find a strong embedding
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of A ≤M where δ(A) = dim(M). To see this first note that ∅ ≤ N. Further

dim(N/∅) = δ(A/∅). Thus there exists some strong embedding of A over ∅ into N

by an application of Lemma 7.1.6 as required.

Case 2 : M |= Sα and dim(M) = ∞. We claim that in this case M is isomorphic

to the generic. Clearly M has finite closures and hence condition (1) of the generic

is satisfied. Note that if we show that dim(M) = ∞ implies that for any A ≤M,

dim(M/A) = ∞, then condition (2) follows immediately from Lemma 7.1.6. We

claim that this is indeed the case. By way of contradiction, assume that there is

some A ≤M such that dim (M/A) is finite. Now there is some A ≤ D ≤M such

that dim(M/A) = δ(D/A). It is immediate from the definition that dim(M/D) = 0.

As dim(M) = ∞, fix a B ≤M with δ(B) > δ(D). Consider G, the closure of BD

in M . Now G is finite and since B,D ≤ M , B,D ≤ G. Further δ(G/D) = 0

as dim(M/D) = 0. So δ(G) = δ(D). But B ≤ M , so δ(G/B) ≥ 0 and hence

δ(G) ≥ δ(B). Thus δ(B) ≤ δ(D), a contradiction to our choice of B that establishes

the claim. Hence it follows that the number of non-isomorphic countable models of

Sα is ℵ0.

From Theorem 7.1.5, it follows that we can construct a countable model of

a fixed dimension (the dim(M) = ∞ case being the generic as seen above) as the

generic of a subclass of (Kα,≤). But as the dimension determines the countable

model up to isomorphism, we obtain the result.

We now use our notion of dimension to characterize elementary embedability.
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Theorem 7.1.8. Let M,N be countable models of Sα. If dim(M) ≤ dimN, then

there is some elementary embedding f : M→ N. Thus there is an elementary chain

M0 4 . . . 4 Mn . . . 4 Mω of countable models of Sα with each countable model

isomorphic to some element of the chain.

Proof. Let M,N be countable models of Sα with dim(M) ≤ dim(N). Note that if

dim(M) = dim(N), then by Theorem 7.1.7, M ∼= N. So assume that dim(M) <

dim(N) and fix an enumeration {mi : i ∈ ω}. Now we have that dim(M) <∞. Let

A ≤M be such that δ(A) = dim(M). Now by Lemma 7.1.6, there exists a strong

embedding f1 of A into N. Let B ≤M be such that A{mi} ⊆ B where i is the least

index such that mi /∈ A. Note that as δ(A) = dim(M), δ(B) = δ(A). Again using

Lemma 7.1.6, we can extend f1 to f2 so that f2 is a strong embedding of B into N

over A.

Proceeding iteratively we can find a ≤ chain {Ai : i ∈ ω} such that M =⋃
i<ω Ai and f : M→ N such that f(Ai) ≤ N for each i ∈ ω. It is easily seen

that f is an isomorphic embedding. We claim that f is actually an elementary

embedding of M into N. Note that given C ≤M with C finite, there is some Ai

with C ≤ Ai ≤ M. Using the transitivity of ≤, it easily follows that f(C) ≤ N.

In particular f(M) is (algebraically) closed in N. Now Theorem 4.4.4 yields that

f(M) 4 N.

Now given an elementary chain M0 4 . . . 4 Mn with dim(Mk) = k/c for all

k ≤ n of models of Sα we may construct Mn+1 such that M1 4 . . . 4Mn 4Mn+1

and dim(Mn+1) = (n + 1)/c. Given an elementary chain M0 4 . . . 4Mn . . . 4 set
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Mω =
⋃
n<ωMn. As elementary embeddings preserve closed sets it is easily seen

that dim(Mω) =∞. The rest of the claim now follows from Theorem 7.1.7.

7.2 Regular Types

In Section 7.2 we turn our attention towards the study of regular types. We

fix a monster model M of Sα. Now, due to ω-stability and weak elimination of imag-

inaries (see Theorem 6.1.16 and Lemma 6.2.27), it suffices to restrict our attention

to non-algebraic types over finite algebraically closed sets in the home sort for the

study of regular types. So fix some finite A ≤ M (recall that algebraically closed

sets are precisely the intrinsically closed ones). In what follows we assume that the

user is familiar with notions such as regular types, orthogonality, modular types etc.

and facts about them. We will give the salient definitions and facts regarding the

a fore mentioned, but we will be brief. The reader may find an in depth discussion

of the relevant definitions and results in [32] (for non-geometric matters the reader

may also see [30], [29] or [28]).

Remark 7.2.1. Let A ≤M be finite and b be finite such that b ∩ A = ∅. Now let

A ⊆ C also be finite. Note that b |̂
A
C if and only if acl(bA) |̂

acl(A)
acl(C). Since

Sα has finite closures it follows that acl(bA), acl(C) are both finite. Thus in order

to understand non-forking, it suffices to look at types p ∈ S(A) such that x 6= a ∈ p

for all a ∈ A such that for any b |= p, bA ≤ M. Note that this information, along

with the atomic diagram of some (of any) realization of p is sufficient to determine

p uniquely as noted in (1) of Lemma 4.4.2. Also such a type p is non-algebraic and
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stationary as A is algebraically closed.

Definition 7.2.2. Let X ⊆M, p, q ∈ S(X)

1. p, q are orthogonal to each other if for any Y ⊇ X, and non-forking extensions

p′, q′ of p, q respectively, any a |= p′, b |= q′, we have that a |̂
Y
b. We denote

this with p ⊥ q.

2. p is regular if it is non-algebraic, stationary and orthogonal to any forking

extension of it self.

3. If p, q are stationary, then we say that they are parallel if they have the same

nonforking type (i.e. same non-forking extension as a type over M).

It is easily seen that parallelism is an equivalence relation on the space of

types. Combining this with our comments at the beginning of Section 7.2 and

Remark 7.2.1, it suffices to study basic types over finite sets in order to understand

regular types (i.e. we can choose a basic type to represent the required parallelism

class ).

Definition 7.2.3. Let A ≤M be finite and p ∈ S(A), we say that p is a basic type

if x 6= a ∈ p for all a ∈ A and for some (equivalently any) b |= p, bA ≤M.

Remark 7.2.4. Note that if A,B ∈ KL with A ∈ Kα and A ≤ B, then B ∈ Kα.

Lemma 7.2.5. Let A ∈ Kα. Then there exists B ∈ Kα such that A ≤ B and

δ(B/A) = 1/c.

Proof. Consider the structure given by A∗ = A ⊕ A0 where A0 ∈ Kα consists of a

single point. Now an application of Lemma 7.0.1 to A∗ yields the required result.
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We begin by studying basic types such that d(p/A) = 0, 1/c where A ≤M is

finite. The choice to restrict our attention to such types will be justified by Theorem

7.2.13, where we show any type p with d(p/A) ≥ 2/c cannot be regular. We begin

our analysis of types that can be regular types by defining nuggets and nugget-like

types.

Definition 7.2.6. Let A,D ∈ Kα with A ( D with D = AB. Let k ∈ ω. We say

that B is a k/c-nugget over A if A ∩ B = ∅, δ(B/A) = k/c and δ(B′/A) > k/c for

all A ( AB′ ( AB.

Definition 7.2.7. Let A ≤ M be finite. We say that a basic type p ∈ S(A) is

nugget-like over A, if given B where B realizes the quantifier free type of p over A,

then B is a k/c-nugget over A for some k ∈ ω.

Lemma 7.2.8. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Let A ⊆ X

with X closed. For any b |= p, either b ∩X = ∅ or b ⊆ X .

Proof. Assume that b ∩ X 6= ∅. Let b
′

= b ∩ X assume that b
′ 6= b. Then as

δ(b
′
/A) > δ(b/A), it follows that there is some minimal pair (Ab

′
, D) with D ⊆ Ab

but D * X. But this contradicts that X is closed. Hence b ⊆ X.

We now explore how the behavior of the d function interacts with nugget-like

types.

Lemma 7.2.9. Let A ≤M be finite and let p ∈ S(A) is nugget-like. Let A ⊆ Y ⊆M

with Y closed. Let q be an extension of p to Y . Now q is a forking extension of p if

and only if d(q/Y ) < d(p/A) or given b |= q, b ⊆ Y .
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Proof. If d(q/Y ) < d(p/A), then Remark 6.2.28 tells us that q is a forking extension

of p. Further Y is algebraically closed. So if for any b |= q, b ⊆ Y , it follows that b

is an algebraic type over Y . Since p is not an algebraic type over A, it follows that

q is a forking extension of p.

For the converse assume that q is a forking extension of p and that d(q/Y ) =

d(p/A). As q is a forking extension of p, it follows from Theorem 6.2.25 that icl(bA)∩

icl(Y ) ) icl(A). But icl(A) = A, icl(Y ) = Y and as b realizes p over A, icl(bA) = bA.

Thus b ∩ Y 6= ∅. Now by Lemma 7.2.8, b ⊆ Y .

7.2.1 Identifying Regular and Non-regular types

We now present some results towards identifying regular and non-regular types.

The following theorem allows us to identify certain regular types. Further it estab-

lishes that 0-nuggets are, in some sense, orthogonal to almost all other types.

Theorem 7.2.10. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Now if

d(p/A) = 0 or d(p/A) = 1/c, then p is regular. Further if d(p/A) = 0, then p is

orthogonal to any other nugget-like type over A.

Proof. Under the given conditions p is clearly non-algebraic and stationary. We

directly establish that it will be orthogonal to any forking extension of itself. Let

A ⊆ X ⊆M with X closed. Since Sα is ω-stable and has finite closures we may as

well assume that X is finite, i.e. if q ∈ S(X) with q ⊇ p a forking extension, there

is some finite closed X0 ⊆ X such that q �X0 is a forking extension. Let b |= p. We

have that b |̂
A
X. As Ab, X are closed and Ab ∩ X = A, from an application of
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Theorem 6.2.25, we obtain that Xb is closed.

First assume that d(p/A) = 0. Let p′ be a forking extension of p to X and

letf |= p′. It follows easily from Lemma 6.2.28, that d(f/A) ≥ d(f/X). As d(f/A) =

0 and d(f/X) ≥ 0, it now follows that d(f/X) = 0. Thus by Lemma 7.2.9, we have

that f ⊆ X and hence b |̂
X
f as b |̂

A
X.

So assume that d(p/A) = 1/c. Let p′, f be as above. By Lemma 7.2.9,

d(p′/X) = 0 or f ⊆ X. As above f ⊆ X yields that b |̂
X
f . So assume that

f * X and note that by Lemma 7.2.8 we have that f ∩X = ∅. Now by Theorem

6.2.25 it suffice to show that Xb ∩ acl(Xf) = X to establish that b |̂
X
f . Con-

sider d(acl(Xf) b/X). On the one hand we have that d(acl(Xf) b/X) ≥ d(b/X) =

1/c (see Lemma 6.2.15). On the other hand d(acl(Xf) b/X) = d(b/acl(Xf)) +

d(acl(Xf)/X). As d(acl(Xf)/X) = d(f/X) = 0, we obtain that d(b/acl(Xf)) ≥

1/c. In particular b * acl(Xf). But then by Lemma 7.2.8, b ∩ acl(Xf) = ∅ and

thus Xb ∩ acl(Xf) = ∅ as required.

For the second half of the claim, assume that d(p/A) = 0. Let q ∈ S(A) be

nugget-like and distinct from p. Now d(p/A) = d(p|X/X) and d(q/A) = d(q|X/X).

Let f |= q|X . Note that f |̂
A
X implies that Xf is closed. Now using Lemma

7.2.8, we can easily show that bX ∩ fX 6= X, then b = f . But this contradicts

p 6= q. Thus it follows that bX ∩ fX = X. Further 0 = d(b/X) ≥ d(b/Xf) ≥ 0.

Again by Theorem 6.2.25, we obtain that b |̂
X
f and thus p, q are orthogonal.

The following theorem shows that while there are many regular types with

d(p/A) = 1/c, all such types are non-orthogonal. Thus up to non-orthogonality,
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there is only one regular type with d(p/A) = 1/c. This is in contrast to distinct

0-nuggets, any two of which are orthogonal to each other. We also show that the

number of independent realizations of a 1/c nugget determines the dimension of a

model.

Theorem 7.2.11. Let A be closed and finite and let p, q ∈ S(A) be distinct basic

types and satisfy d(p/A) = d(q/A) = 1/c. Then p, q are non-orthogonal. Hence any

two regular types over p′, q′ ∈ S(X) where X is closed and d(p′/X) = d(q′/X) = 1/c

are non-orthogonal. Further if we take A = ∅ and let M 4M. The dimension of M

is determined by the number of independent realizations of p in M. Thus a single

regular type determines the dimension of M.

Proof. Let A be as given. Consider A as a finite structure that lives in Kα. Now

consider the finite structures AB,AC where B,C realize the quantifier free types of

p, q respectively. Consider D, the free join of AB,AC over A. Apply Lemma 7.0.1

to obtain a finite G with δ(G/D) = −1/c and A,AB,AC ≤ G. Let f be a strong

embedding of G into M where f is the identity on A. From (1) of Lemma 4.4.2 and

the transitivity of ≤ it follows that f(B) |= p and f(C) |= q. Now from Theorem

6.2.25, it follows that f(B) ��|̂ A f(C) and thus p 6⊥ q. Now given p′, q′ ∈ S(X),

there exists a finite closed set, which by an abuse of notation we call A, such that

p′, q′ are based and stationary over A. Since regularity is parallelism invariant both

p|A and q|A are regular. Arguing as above we see that p′|A 6⊥ q′|A and thus they are

non-orthogonal.

Let M 4 M and assume that A = ∅. Given n ∈ ω, consider the finite struc-
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ture Cn that is the free join of n-copies of the quantifier free type of p over ∅. If

dim(M) ≥ n/c, by Lemma 7.1.6, there is a strong embedding of Cn into M. It is

easily checked that the strong embedding witnesses n-independent realizations of p.

The rest follows easily.

The following result shows that a broad class of types cannot be regular types

and justifies the choice to study types p ∈ S(A) with d(p/A) = 0, 1/c in our study

of regular types. We begin with the following fact regarding regular types. It is

an immediate consequence of the well known fact that regular types have weight

one (here weight is in the sense of stability theory, see for example Definition D.1

of [28]).

Fact 7.2.12. Let A ⊆ M and p ∈ S(A) be regular. If b |= p, then there is no

C1, C2 ⊆M such that C1 |̂ A C2 but b ��|̂ A Ci for i = 1, 2.

Theorem 7.2.13. Let A be finite and closed in M. Let p ∈ S(A) be a basic type

such that d(p/A) ≥ 2/c. Then p is not regular.

Proof. Our strategy is similar to the one used in Theorem 7.2.11: we consider A as

living inside of Kα. We then construct a finite structure G over the finite structure

A that we then embed strongly into M over A using saturation. Finally we argue

that the strong embedding witnesses that there are C1, C2 such that C1 |̂ A C2 but

b ��|̂ A Ci for i = 1, 2, where b |= p.

Consider A as a finite structure that lives in Kα. By Lemma 7.2.5 we may

construct D ∈ Kα such that the D = AC, A ∩ C = ∅ (as sets) and A ≤ D with

δ(D/A) = δ(C/A) = 1/c. Let AB be such that B realizes the quantifier free type of p
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over A. Consider the finite structures Fi, i = 1, 2 where each Fi is the free join of AB

and an isomorphic copy of D over A and F1 ∩ F2 = AB. We label the isomorphic

copies of D as AC1, AC2 and thus Fi = ABCi, the free join of AB,ACi over A.

Apply Theorem 3.2.15 to obtain Gi for i = 1, 2 such that (Fi, Gi) is an essential

minimal pair and δ(Gi/Fi) = −1/c. It is easily verified that A,AB,ACi ≤ Gi. Let

G be the free join of G1, G2 over AB. Note that G ∈ KL and that we may now

regard the finite structures A,AB,AC1 etc. as substructures of G.

We claim that G ∈ Kα, A,AB,AC1, AC2, AC1C2 ≤ G but F1, F2, is not strong

in G. Using Remark 2.3.2 and the transitivity of ≤, we obtain that it suffices to

show that AB,AC1C2 ≤ G along with F1, F2 � G to obtain the claim.

First, as AB ≤ Gi and G is the free join of G1, G2 over AB, we obtain AB ≤

G by an application of (4) of Fact 2.2.5. We now show that AC1C2 ≤ G. Let

AC1C2 ⊆ G′ ⊆ G and let B′ = B ∩G′, G′i = Gi − ACi. Now δ(G′/AC1C2) =

δ((G′1 − B′)(G′2 − B′)/AC1C2B
′) + δ(B′/AC1C2) using (5) of Fact 2.2.5. Further,

since AB,AC1C2 is freely joined over A δ(B′/AC1C2) = δ(B′/A) follows from (2) of

Fact 2.2.5. Arguing similarly we obtain that δ(G′i −B′/AC1C2B
′) = δ(G′i/AB

′Ci).

Thus it follows that δ(G′/AC1C2) = δ(G′1/AC1B
′) + δ(G′2/AC2B

′) + δ(B′/A). Now

as A ≤ AB, it follows that δ(B′/A) ≥ 0. The claim now follows by considering

the cases B′ 6= B and B′ = B using that fact that (ABCi, Gi) forms an essential

minimal pair. Finally, and easy calculation shows that δ(G/F1F2) = −2/c. Now

δ(G/Fi) = δ(G/F1F2) + δ(F1F2/Fi) = −2/c+ 1/c = −1/c for i = 1, 2.

Fix a strong embedding of f of G into M over A, which we assume to be the

identity on A to simplify notation. Arguing as we did in Theorem 7.2.11, we obtain
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that f(B) |= p. Further using Theorem 6.2.25, f(C1) |̂
A
f(C2) as AC1, AC2 ≤ G

but f(B) ��|̂ A f(Ci) as Fi � G for i = 1, 2. Assume that p is regular. Now the above

argument contradicts Fact 7.2.12 and thus p is not regular.

Remark 7.2.14. In the above proof, we have shown that the pre-weight of p is at

least two and hence the weight of p is at least two. This yields a contradiction with

the fact that p is regular as regular types have weight one.

7.2.2 Some Geometric Matters

In this section we study geometric properties of the regular types. We estab-

lish that 0-nuggets have a trivial pregeometry. We also show that the pregeometry

associated to a 1/c-nugget is not locally modular. Finally, we draw on some known

results to prove that there are pseudofinite ω-stable theories with non-locally mod-

ular regular types. This answers a question of Pillay’s in [6] regarding whether

pseudofinite stable theories always have locally modular regular types. We assume

that the reader is familiar with basic facts about pseudofinite theories.

The following fact is well known. For example, see the Comment before The-

orem D.8 of [28].

Fact 7.2.15. Let A ⊆M and p ∈ S(A) be regular. Let pM be the set of realizations

of p in M. For B ⊆ pM, let clp(B) = {c ∈ pM : c ��|̂ A B}. Then (pM, cl) is a

pregeometry.

We begin by studying the pregeometry associated with 0-nugget like types.
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Theorem 7.2.16. The pregeometry induced by forking closure on the realizations

of a 0-nugget-like type p (over some finite A ≤M), is trivial

Proof. Assume to the contrary that it is not. Then there exists a, b, c |= p that

is pairwise independent over A but dependent over A, say a ��|̂ A bc. Note that

repeated applications of (3) of Fact 2.2.5 yields that δ(abc/A) ≤ δ(a/A) + δ(b/A) +

δ(a/A) = 0. Since A is strong in M, we have δ(abc/A) ≥ 0 and thus δ(abc/A) = 0.

Assume that abcA is not closed. Then there is some D such that δ(D/abcA) < 0.

But as δ(D/A) = δ(D/abcA) + δ(abcA/A), this yields a contradiction (recall that

δ(abcA/A) = δ(abc/A)). Thus abcA is closed.

Thus it now suffices to show that a, bc is not freely joined over A. Arguing

as above, we easily obtain that δ(bc/A) = 0. Assume towards a contradiction that

there is some relation E that holds on abcA. Clearly this relation cannot be binary,

as pairwise freely joined structures would be freely joined in this case. So we may

assume that E is ternary.

We now give an argument similar to that used to establish (3) of Fact 2.2.5.

There are two possibilities: First assume that E holds with at least one element

each from a, b, c, A. Now note that δ(abc/A) = δ(abc) − e(abc, A). But δ(abc) ≤

|a| + |b c| − e(a) − e(bc) = δ(a) + δ(bc) and e(abc, A) ≥ e(a,A) + e(bc, A) + α(E).

Thus it follows that δ(abc/A) ≤ δ(a/A) + δ(bc/A)− α(E) < 0, a contradiction that

yields that a, bc is freely joined over A. So assume that the relation E holds with

at least one point each a, b, c but no points from A. Now note that δ(abc/A) =

δ(abc)−e(abc, A). But δ(abc) ≤ |a|+ |bc|−e(a)−e(bc)−α(E) = δ(a)+δ(bc)−α(E).

145



Using the same inequalities involving e(abc, A), we again obtain that δ(abc/A) ≤

δ(a/A) + δ(bc/A)− α(E) < 0, a contradiction that yields that a, bc is freely joined

over A.

Thus we obtain that a |̂
A
bc and hence p is a trivial type.

We now turn our attention towards showing that 1/c nugget-like types are not

locally modular. We begin by discussing flatness.

Definition 7.2.17. We say that an L-structure N is flat if for any finite number

of finite closed sets {Di}i∈I in N , we have that
∑

S⊆I(−1)|S|d(DS) ≤ 0 where D∅ =⋃
i∈I Di and DS =

⋂
i∈S Di.

Lemma 7.2.18. Any model of Sα is flat.

Proof. Fix N |= Sα. Let {Di}i∈I be a finite collection of closed finite sets in N . We

begin by estimating δ(D∅). By using the inclusion-exclusion principle to count the

points in D∅ we obtain that

|D∅| =
∑
{i}⊆I |Di| −

∑
{i,j}⊆I |Di ∩Dj|+

∑
{i,j,k}⊆I |Di ∩Dj ∩Dk| − . . .

+(−1)|I|−1|
⋂
i∈I Di|

Similarly for any relation E ∈ L we obtain that

NE(D∅) =
∑
{i}⊆I NE(Di)−

∑
{i,j}NE(Di ∩Dj) +

∑
{i,j,k}⊆I NE(Di ∩Dj ∩Dk)

− . . .+ (−1)|I|−1NE(
⋂
i∈I Di)

Hence we obtain that

δ(D∅) =
∑
{i}⊆I δ(Di)−

∑
{i,j} δ(Di ∩Dj) +

∑
{i,j,k}⊆I δ(Di ∩Dj ∩Dk)

− . . .+ (−1)|I|−1δ(
⋂
i∈I Di)
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Note that for S 6= ∅, we have that d(DS) = δ(DS). Hence it follows that∑
S⊆I(−1)|S|d(DS) = d(D∅)+

∑
S⊆I,S 6=∅(−1)|S|δ(DS) = d(D∅)−δ(D∅). But d(D∅) ≤

δ(D∅). Thus we obtain that
∑

S⊆I(−1)|S|d(DS) ≤ 0.

The following shows that 1/c nugget-like types are not locally modular.

Theorem 7.2.19. Let A ≤ M be finite and let p ∈ S(A) be a nugget-like with

d(p/A) = 1/c. Then p is not locally modular, in particular it is non-trivial.

Proof. Recall that given a regular type p, the realizations of p form a pregeometry

with respect to forking closure. In order to simplify the presentation, we will let

A = ∅. We let pM denote the realizations of p in M, clp denote the forking closure

(or p-closure) of pM and dimp (p-dimension) denote the associated dimension.

We begin with a proof that p is non-trivial. Let B1, B2, B3 be three finite

structures that has the same quantifier free type as p and are disjoint over ∅. Con-

sider C = ⊕Bi, the free join of the Bi over ∅. Using Lemma 7.0.1 we obtain a

finite structure D ∈ Kα with δ(D) = 2/c, Bi ≤ C and Bi ⊕ Bj ≤ C for any i 6= j.

Note that C � D as δ(C) > δ(D). Let g be a strong embedding of C into M. An

argument similar to that found in Theorem 7.2.11 shows that g(B1), g(B2), g(B3)

are pairwise independent but dependent realizations of p and thus p is non-trivial.

We will now establish that p is not modular. To show that p is not locally

modular, we can simply choose a realization h of p independent from the config-

uration used in the following argument and relativize the argument over h. Fix

realizations a, b, c |= p such that they are pairwise independent but are depen-

dent. As Sα is stable we can find b′ , c′ |= p such that b′ c′ ≡a b c and b′ c′ |̂
a
b c.
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Let X = clp({c′, b}), Y = clp({c, b′}). Let Z = clp(X ∪ Y ). We will show that

dimp(clp(Z)) + dimp(X ∩ Y ) < dimp(X) + dimp(Y ). As dimp(X) = 2 = dimp(Y )

and dimp(Z) = 3, it suffices to show that X ∩ Y ∩ pM is empty.

Suppose to the contrary that there is some e ∈ X ∩ Y ∩ pM. We obtain the

following configuration:

a

b′b

c c′

e

with every single (labeled) point having p-dimension 1, any three (labeled) colinear

points (as found in the configuration) having p-dimension 2 and any three (labeled)

non-colinear points having p-dimension 3 (a discussion on calculating the dimensions

can be found in Appendix B).

Let C∗ = acl(a b cb′ c′ e). We will obtain a contradiction by estimating d(C∗) in

two different ways. On the one hand, as {a, b, b′} is independent and acl(a b b′) ⊆ C∗,

it follows that d(C∗) ≥ 3/c (recall that d(C∗/acl(a b b′)) ≥ 0). On the other hand

acl(C1C2C3C4) = C∗ where C1 = acl(c e b′), C2 = acl(b e c′), C3 = acl(a b c) and

C4 = acl(a b′ c′). We estimate d(C1C2C3C4) using flatness.

We begin by showing d(C1) = 2/c. Note that as b |̂ c′, by Theorem 6.2.25 we

obtain that b c′ is closed. As e ��|̂ c′ b another application of Theorem 6.2.25 tells us

that e∩ b c′ is non-empty or that d(e/∅) > d(e/b c′). An application of Lemma 7.2.8

easily shows that e ∩ b c′ is empty and hence d(e/∅) > d(e/b c′). But as d(e/∅) =

d(e) = 1/c we obtain that d(e/b c′) = 0. But then d(C1) = d(e b c′) = d(b c′) = 2/c

148



as b c′ is closed. Similar arguments show that d(Ci) = 2/c for i = 2, 3, 4.

We now claim that d(Ci∩Cj) = 1/c for each 1 ≤ i < j ≤ 4. Fix 1 ≤ i < j ≤ 4.

Note that as Ci∩Cj contains a realization of p, and hence d(Ci∩Cj) ≥ 1/c. Further

Ci ∪ Cj contains three independent realizations of p and hence d(CiCj) ≥ 3/c.

Using flatness on I ′ = {i, j}, we obtain that d(CiCj) ≤ d(Ci) + d(Cj) − d(Ci ∩ Cj)

and the claim follows. A similar argument shows that d(Ci ∩ Cj ∩ Ck) = 0 for

1 ≤ i < j < k ≤ 4. Now as C1∩C2∩C3∩C4 ⊆ C1∩C2∩C3 and d(C1∩C2∩C3) = 0,

it follows that d(C1 ∩ C2 ∩ C3 ∩ C4) = 0.

Hence we obtain that 3/c ≤ d(C1C2C3C4) ≤ 4(2/c)− 6(1/c)− 4(0) + 0 = 2/c,

a contradiction which shows that X ∩ Y ∩ pM is empty. Thus p is not modular.

Hence p is not locally modular.

Remark 7.2.20. We sketch an alternate proof of Theorem 7.2.19 that uses only the

non-triviality of p: Well known results of Hrushovski in [33] state that any stable

theory with a non-trivial locally modular regular type interprets a group. As these

structures do not interpret groups (see [27] by Wagner) the result now follows.

The above proof can be viewed as an explicit manifestation of ideas. We

assume that a group configuration exists (which by the work of Hrushovski in [33]

implies that the theory interprets a group) and derive a contradiction. One should

also note that flatness is a key element in the proof that Sα does not interpret

groups.

In [6], Pillay asked the question whether every regular type in a stable pseud-

ofinite theory is locally modular, a statement that holds true if we replace stable with
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strongly minimal. In the following we show that Sα is a pseudofinite ω-stable theory

with a non-locally modular regular type, answering Pillay’s question in the negative.

At the time of writing these are the only known examples with this property.

Definition 7.2.21. A complete L theory T in a countable language is pseudofinite

if for any θ ∈ T , there is some finite L structure A such that A |= θ. We call an

L-structure M pseudofinite if Th(M) is pseudofinite.

Fact 7.2.22. Let 〈Mi〉i∈ω be a sequence of L structures that are pseudofinite. Let

U be an ultrafilter on ω. Then ΠUMi, the ultraproduct of 〈Mi〉i∈ω (with respect to

U), is also pseudofinite.

Theorem 7.2.23. There is a pseudofinite ω-stable theory with a non-locally modular

regular type.

Proof. Consider the case where L = {E} contains only one relation symbol (of

arity at least 2) and let α ∈ (0, 1) be rational. We claim that Sα has the required

properties.

Let {αn} be an increasing sequence of irrationals in (0, 1) that converge to

α. By the results of [14], it follows that Th(Mαn) can be obtained as a almost

sure theory with respect to a certain probability measure. Thus, in particular,

each theory Th(Mαn) is pseudofinite. Now by Theorem 4.2 of [21], it follows that

Sα = Th(ΠUMαn) where U is a non-principal ultrafilter on ω. Since taking the

ultraproduct of structures with pseudofinite theories results in a structure with a

pseudofinite theory, it follows that Sα is pseudofinite. Further as we have shown in

Theorem 7.2.19 that 1/c-nuggets are non-locally modular and the result follows.
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Remark 7.2.24. Assume that L has just one reation symbol whose arity we denote

by r. We observe here that the pseudofiniteness of Sα has a curious property, namely

that given θ ∈ Sα, it is not necessary that any finite B such that B |= θ is in Kα.

In order to see this we first describe a k-fan over some fixed point a. Fix a

point a and some positive integer k. Let A be an L structure with exactly r points,

a ∈ A and E hods on A. A k-fan over a, is simply the free join of k-copies of A over

{a}.Clearly any k fan lies in Kα.

Fix k > r/α. Now take θk to be the sentence saying, that there is at least

two elements, and every element has a k-fan over it. Clearly Sα |= θk. Now assume

that there is some B ∈ Kα such that B |= θk. Now δ(B) = |B| − α|EB|. But

|EB| ≥ |B|k/r. Thus we obtain that δ(B) < 0, a contradiction which establishes

our claim.
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Chapter 8: Wrapping things up: Graph-like with weight one

In this chapter we study the case in which each relation E ∈ L is binary and

α(E) = 1 for each E ∈ L. This case, which we denote by α is graph-like with

weight one, shares many of the results of their counterparts such as the quantifier

elimination, number of countable models, regularity of types etc. However Theorem

3.2.15 does not hold in this context and as such we must use ad hoc arguments to

establish the various results. It should be noted that the faliure of Theorem 3.2.15

is reflected in the forking properties of the corresponding Sα (see Chapter 8.3).

8.1 Some Prelimanaries

This section is devoted to setting up terminology and results that will allow

us to study the case that α is graph-like with weigh one in depth.

Definition 8.1.1. Let F ∈ Kα and a, b ∈ F . We say that there is a path between a

and b if there is k ≥ 1, distinct a0, . . . , ak ∈ F with 〈Ei : 1 ≤ i ≤ k − 1〉 such that

(ai, ai+1) ∈ EF
i . We say that a, b are connected if there is a path between a and b.

By definition {a} is always connected, i.e. a is connected to a.

Definition 8.1.2. Let A ∈ Kα and let a ∈ A. The connected component of a (in A)

is the substructure of A which contains all the points of A that is path connected to
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a. We say that A is connected if for some (alternatively for all) a ∈ A, the connected

component of a is A.

Definition 8.1.3. Let A ∈ Kα and let a, b ∈ A. The distance from a to b in A;

denoted by dis(a, b) is min{n : 〈En : En ∈ L〉 is a path from a to b} when a 6= b.

dis(a, a) = 0 and if there is no path between a, b when a 6= b we let dis(a, b) =∞.

Remark 8.1.4. Recall that by definition a point is always connected to itself. So

if a ∈ A such that there is no path to a b ∈ A distinct from a, then the connected

component of a in A is {a}. It is also clear the the different path components of A

will be freely joined over the ∅.

Proposition 8.1.5. Let A ∈ Kα be connected. Then δ(A) ≤ 1. Further if δ(A) = 1,

then for all ∅ 6= A′ ⊆ A, δ(A′) ≥ 1.

Proof. We prove the first half of the claim by induction on the size of the structure.

If |A| = 1, then the result follows. Assume that the statement holds true for all

connected structures of size up to and including n. Let A be a connected structure

of size n+1. Fix a point a ∈ A. Consider A′ = A−{a}. There are two possibilities:

If A′ is connected, then δ(A′) ≤ 1. Since A is connected this means there has to be

some E ∈ L such that (a, b) ∈ EA for some b ∈ A′. Now δ(a/A′) ≤ 1− 1 and hence

it follows that δ(A) ≤ δ(A′). So suppose that A′ is disconnected. Thus it splits up

into at most k ≤ n connected components A′1, . . . , A
′
k, each of size < n. Since A

is connected it follows that for each 1 ≤ i ≤ k, there must be at least one relation

symbol Ek ∈ L, ak ∈ A′k such that (a, a′k) ∈ EA
k . Now δ(a/A′) = 1 − e(a,A′). So
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δ(aA′) = 1 − e(a,A′) + δ(A′) = 1 − e(a,A′) +
∑k

i=1 δ(Ai). Now e(a,A′) ≥ k and∑k
i=1 δ(Ai) ≤ k. Thus δ(A) ≤ 1 and the result holds.

For the second half of the claim, let A ∈ Kα be connected and assume that

∅ 6= A′ ⊆ A. By the above, the statement holds if A′ = A. So assume that A′ ( A.

We can view A′ as the free join of connected components A′1, . . . , A
′
k for some k ∈ N.

Now δ(A′) =
∑k

i=1 δ(A
′
i). Assume that δ(A′i) = 0 for each 1 ≤ i ≤ k and further

assume that k ≥ 2. Now since A is connected, there is some path (in A) between

some point a1 ∈ A′1 and a2 ∈ A′2. Picking a a1, a2 such that they will be a minimal

distance apart and calculating δ(A1A2P ) where P contains the rest of the points in

the path from a1 to a2, we see that δ(A1A2P ) ≤ δ(A1) + δ(A2) + |P |− (|P |+ 1) < 0,

a contradiction. So assume that k = 1 and thus A′ = A′1 and A′ is connected.

We claim that δ(A′1) = 1. Suppose to the contrary that δ(A′1) = 0. Note that

A− A′1 also decomposes into connected components, say A′′1, . . . , A
′′
k′ . If δ(A′′i0) = 0

for some 1 ≤ i0 ≤ k′, then a path of minimal length connecting a point a ∈ A′1

and b ∈ A′′i0 yields a contradiction as above. Thus δ(A′′i ) ≥ 1 for each 1 ≤ i ≤ k′.

But as the A′′i are connected, this implies that δ(A′′i ) = 1 for each i. Pick points

a0 ∈ A′1, b0 ∈ A− A′1 such that it witnesses a path between A′1 and A− A′1 of least

distance. It is clear that such a path satisfies dis(a0, b0) = 1. Now this connects up

with some A′′i . But δ(A′1A
′′
i ) ≤ δ(A′1) + δ(A′′i ) − 1 = 0. Thus δ(A′1A

′′
i ) = 0. Now

δ(A′1A
′′
1) = 0. An easy induction argument using the existence of a minimal path

yields that δ(A′1A
′′
1 . . . A

′′
i ) = 0 for each 1 ≤ i ≤ k′. But as A = A′1A

′′
1 . . . A

′′
k′ we see

that δ(A) = 0 which contradicts δ(A) = 1 and establishes our claim.
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Definition 8.1.6. Let A,D ∈ Kα with A ≤ D. Let k be a positive integer. We call

a partition D = AD1D2H1...Hk (with A,D1, D2 possibly empty) a decomposition of

D over A of length k if AD1 is the connected component of A (in D), H1, . . . Hk are

connected components with δ(Hi/A) = 1, δ(Di/A) = 0 and no point in D2 connects

to any point in A

Remark 8.1.7. Given a decomposition of D over A of length k, it is immediate

that D1, D2, H1 . . . Hk ⊆ D − A and that D1, D2, H1 . . . Hk are freely joined over A

with no relations between AD1 and any of D2, H1 . . . Hk.

The following allows us to decompose a given structure.

Proposition 8.1.8. Suppose that α is graph-like with weight one. Let A,D ∈ Kα

with A ≤ D and δ(D/A) = k > 0. There exists {d1, . . . dk} ⊆ D−A such that their

connected components Hd1 , . . . Hdk along with A,D1, D2 forms a decomposition of D

of length k.

Proof. First assume that the statement “there is at least k points in D − A ⊇

{d1, . . . dk} such that for any 1 ≤ i ≤ k, a ∈ A, a is not connected to di” fails. Then

the number of points in D−A not connected to a point in A is less than k. Further,

note that if d ∈ D −A is connected to some point a ∈ A by some path of length n,

then 0 = n− 1− (n− 1) ≥ δ(d/A). Let D1 ⊆ D−A be the (possibly empty) set of

points in D − A that is connected to some point in A. Let C = (D − A)−D1, i.e.

the set of points in D − A that is not connected to any point in A.

Note that C,D1 are freely joined over A. Now δ(D/A) = δ(CD1/A) =

δ(C/A) + δ(D1/A). But δ(D1/A) ≤
∑

d∈D1
δ(d/A) = 0 by Fact 2.2.5. Further
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δ(C/A) = δ(C) − e(C,A) = |C| − e(C) − e(C,A) = |C| − e(C) = δ(C). Thus it

follows that |C| ≥ k which establishes the weaker claim that there is at least k points

in D−A ⊇ {d1, . . . dk} such that for any 1 ≤ i ≤ k, a ∈ A, a is not connected to di.

This further shows that δ(D/A) = δ(C/A) as A ≤ D implies that δ(D1/A) = 0.

Let c ∈ C and let Hc be the set of points in D − A that is connected to c.

Note that δ(Hc/A) = δ(Hc) ≤ 1 by Proposition 8.1.5. Let D2 ⊆ C be such that

d ∈ D2 if and only if δ(Hd) = 0. Fix C ′ ⊆ C such that for each c ∈ C −D2, there is

precisely one c′ ∈ C ′ such that Hc′ = Hc. An easy argument shows that |C ′| = k and

that an enumeration of C ′ provides the required points d1, . . . , dk with the required

properties. That d1, . . . , dk, D1, D2 are as required follows easily.

Definition 8.1.9. Let E ∈ L be binary and let B ∈ Kα. We say that B is an n-cycle

(in E) if there exists an enumeration {b1, . . . , bn} of B such that {bi, bi+1} ∈ EB for

each 1 ≤ i ≤ n−1, {bn, b1} ∈ EB and for any other pair bi, bj; {bi, bj} /∈ EB. Abusing

notation we say that B is a cycle if there is a sequence 〈Ei : 1 ≤ i ≤ n〉 of binary

relations from L such that {bi, bi+1} ∈ EB
i for each 1 ≤ i ≤ n− 1, {bn, b1} ∈ EB

n

We end the section with the following:

Proposition 8.1.10. Let A ∈ Kα be connected. Now δ(A) = 0 if and only if A

contains a cycle.

Proof. Note that if B ∈ Kα is a cycle, a simple calculation shows that δ(B) = 0.

Thus if A contains a cycle B, then A has a non-trivial substructure with rank zero

and hence Proposition 8.1.5 yields the required result.
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We prove the opposite direction by induction. Note that the statement holds

true for |A| ≤ 3 by an examination of the possibilities for A. Assume that the

statement holds true for all structures with at most n elements. Let A be such that

|A| = n + 1. Fix a point a ∈ A and let A′ = A − a. If A′ contains a cycle then

we are done. So assume that it does not. Then by the induction hypothesis and

Proposition 8.1.5 we see that δ(A′) ≥ 1. Now δ(A) = δ(A′a) = δ(A′) + |1| − e(a,A′)

which in turn yields that e(a,A′) = δ(A′) + 1. In particular e(a,A′) ≥ 2. We claim

this implies that there is a cycle that contains a.

To see this, first assume that there is a path in A′ between two distinct points

which witness e(a,A′) ≥ 2. Then clearly there is a cycle. So assume this fails. Then

A′ splits into k connected components for some k. By the induction assumption this

implies that for each component A′i, δ(A
′
i) = 1. Thus e(a,A′) = k + 1. Using the

fact that the A′i are freely joined over ∅, we obtain that e(a,A′) =
∑k

i=1 e(a,A
′
i).

A simple application of the pigeonhole principle yields that there must be some

connected component A′i0 for which e(a,A′i0) ≥ 2, a contradiction.

8.2 Shared Results

In the previous chapters we have obtained a number of results regarding the

case α is graph-like with weight one, often postponing the proof of technical results.

In this section, we prove such technical results. We also show how the proof of

theorems regarding countable models and DOP can be extended to cover the case

that α is rational. Note that under the current condition that c, the least common
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multiple of the denominators of the weights is 1 and that Gr(m) = 1 for all positive

integers m ≥ 2.

8.2.1 Quantifier Elimination and Atomic Models

We begin this section by constructing various finite structures in the spirit of

Chapter 3. Our first goal is to obtain the quantifier elimination result.

Definition 8.2.1. Let B ∈ KL be non-empty and let n ≥ 3 be a positive integer.

Given b ∈ B we say that D ∈ KL is obtained by attaching an n-cycle (of type E ∈ L)

to b if

1. B ⊆ D

2. The set D −B = {d1, . . . , dn−1}

3. {b, d1, . . . , dn−1} is an n-cycle in E

4. The only new relations that hold in D are the E relation symbols just de-

scribed.

Remark 8.2.2. Given non-empty B ∈ KL, n ∈ N be such that n ≥ 3 and b ∈ B

we see that we can attach an n-cycle (of type E ∈ L) to b.

Lemma 8.2.3. Let A ∈ Kα be such that δ(A) > 0. Then there exists an a ∈ A such

that if we attach any n-cycle to a, the resulting structure B will be in Kα such that

A ⊆ B, δ(B/A) = −1.

Proof. Using Fact 2.2.5 with ∅ ≤ A, fix some point a ∈ A such that if a ∈ A′ ⊆ A,

then δ(A′) > 0. Let n ≥ 3 be a positive integer. We claim that the structure B
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obtained by attaching an n-cycle to a satisfies the required properties. it is clear

by construction that δ(B/A) = −1 so it remains to establish that B ∈ Kα. Let

B′ ⊆ B. Let B∗ = (B− A) ∩ B′ and let A∗ = A ∩ B′. There are two cases to

consider: If a /∈ A∗ then δ(B∗/A∗) ≥ δ(B∗/A) ≥ k − (k − 1) for some k If a ∈ A∗,

then δ(B∗/A∗) ≥ δ(B∗/A) ≥ −1 and hence δ(B∗A∗) = δ(B′) = −1+δ(A∗) ≥ 0.

With this lemma in hand, we obtain the following weak version of Theorem

3.2.15 that encompasses the case that α is graph-like with weight zero:

Theorem 8.2.4. Let A ∈ Kα with δ(A) > 0. we can construct infinitely many non-

isomorphic D ∈ Kα such that (A,D) is a minimal pair that satisfies δ(D/A) = −1.

Proof. The required structure can be obtained by attaching an n-cycle as in Lemma

8.2.3. Varying the value of n yields the non-isomorphic minimal pairs.

Remark 8.2.5. It should be noted that (A,D), in general, will not be an essential

minimal pair. Further we are able to build rank 0 extension of finite structures with

positive rank.

We now extend Lemma 4.2.1 in the following manner:

Lemma 8.2.6. Suppose that A ≤ B ∈ Kα and Φ ⊆Fin Kα are given such that

B ⊆ C with B � C for all C ∈ Φ. Let m ∈ N. Then there is a D∗ ⊇ B, D∗ ∈ Kα

such that

1. 0 = δ(D∗/A)

2. A ≤ D∗
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3. No C ∈ Φ isomorphically embeds into D∗ over B

Proof. Fix A,B and Φ as above. Note that we may replace each C ∈ Φ by

B ⊆ C′ ⊆ C that is minimal and thus we may as well assume that (B,C) is a mini-

mal pair for any given C ∈ Φ. Now if δ(A) = δ(B), then take D∗ = B. So we may

assume that δ(A) < δ(B). Let u be a positive integer such that u > |C| for each

C ∈ Φ.

We construct D∗ in two steps. First we chow that certain extension of B by

n-cycles have certain desired properties. Then we iterate this process as required.

Using (6) of Fact 2.2.5, fix b ∈ B − A such that for all B′ ⊆ B with aA ⊆ B′,

δ(B′/A) > 0. Also fix a positive integer n > u+3 and a relation symbol E. Consider

the structure D obtained by attaching an n-cycle to b. We claim that δ(D/B) = −1,

D ∈ Kα and A ≤ D.

It is clear by construction that δ(D/B) = −1. In order to establish the remain-

ing claims, we set up some notation: Let D′ ⊆ D, B′ = D′ ∩B and A′ = D′ ∩ A.

If we establish that δ(D′/A′) ≥ 0 both our claims follow: δ(D′) ≥ δ(A′) ≥ 0 yields

D ∈ Kα and the case that A′ = A yields A ≤ D. Note that δ(D′/A′) = δ(D′/B′) +

δ(B′/A′). Further δ(B′/A′) ≥ δ(AB′/A) ≥ 0 and δ(D′/B′) ≥ δ(BD′/B). Now

there are two cases to consider. First assume that b /∈ B′. Now δ(BD′/B) ≥ 1 by

construction and δ(AB′/A) ≥ 0 as A ≤ B. Thus we obtain the required result. So

assume that b ∈ B′. Now δ(BD′/B) ≥ −1 by construction and δ(Ab′/A) ≥ 1 by

our choice of b. Hence the required result again follows.

We now construct D∗. If δ(D/A) = 0, then setting D∗ = D yields a D∗ with
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the required properties. So assume that δ(D/A) > 0. Now note that b does not have

the property that for all bA ⊆ D′ ⊆ D, δ(D′/A) > 0. However using Fact 2.2.5 we

may fix d ∈ D − A (necessarily d 6= b), such that for all dA ⊆ D′ ⊆ D′ δ(D′/A) > 0.

Attaching an n-cycle to d yields a structure D1 with A ≤ Dk, δ(D1/B) = −2 and

δ(A) ≤ δ(D1) = δ(B) − 2. It is now clear that iterating this process sufficiently

many times we can obtain a structure D∗ = Dk with A ≤ D∗, δ(D∗/B) = −k

and δ(A) = δ(D∗) = δ(B) − k. Note that D∗ may be viewed as being obtained by

attaching k many n-cycles to a specially selected set of k points in B − A. Now

if B ⊆ D′D∗ is such that δ(D′/B) < 0, then D′ must contain one of the newly

attached n-cycles. Thus it follows that |D′ − B| ≥ n > u + 3 and hence no C ∈ Φ

embeds into Dk

Remark 8.2.7. The above lemma is the key to establishing the quantifier elimi-

nation result Theorem 4.3.5 by allowing us to prove Lemma 4.2.1. As a result, the

results of Section 4.4 hold when α is graph-like with weight one.

Further the above lemma also allows us to prove Theorem 3.3.6. Note that the

the results of Chapter 5 depends only the quantifier elimination result and Theorem

3.3.6. Thus the above Lemma is the key to obtaining these results in the case α is

graph-like with weight one.

8.2.2 Countable Models, DOP and Regular Types

In this section, we extend our results regarding countable models and the DOP

to the case that α is graph-like with weight one.
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We now establish that Lemma 7.1.3 holds in the case that α is graph-like with

weight one.

Lemma 8.2.8. Let A,B,C,D ∈ Kα with A ≤ B,C; δ(C/A) ≥ δ(B/A) and D =

B⊕A C the free join of B,C over A. We can construct H ∈ Kα such that A,B,C ≤

H, D ⊆ H and δ(H/C) = 0. Further if δ(B/A) = δ(C/A), the H that was constructed

has the property δ(H/B) = 0.

Proof. Clearly A,B,C ≤ D and D ∈ Kα. Let δ(B/A) = m/c and δ(C/A) = k/c. It

is easily seen that δ(D/A) = (m + k)/c; A,B,C ≤ D; δ(D/A) = δ(D/C) + δ(C/A)

and that δ(D/A) = δ(D/B) + δ(B/A). Assume that δ(B/A) = 0. Take H = D.

Now a routine verification using δ(D/A) = δ(C/A) + δ(B/A) yields δ(D/C) = 0

and hence the required result. So suppose that δ(B/A) = m with m ≥ 1.

Using Proposition 8.1.8, we may decompose C−A,B−A asHd1 , . . . , Hdk , D1, D2;

Hd′1
, . . . , Hd′m D′1, D

′
2 respectively. Fix some E ∈ L. Consider the structure H with

the underlying set D, A,B,C ⊆ H and m new edges (di, d
′
i) ∈ EH for 1 ≤ i ≤ m.

Let H′ ⊆ H, A′ = H′ ∩ A, B′ = H′ ∩B and C′ = H′ ∩ C.

We first show B ≤ H. This establishes H ∈ Kα and A ≤ H as A ≤ B. So

assume that B ⊆ H′ and hence B′ = B. Now δ(H′/B) = δ((H ′ ∩ C)/B). Note

that H ′ ∩ C = (Hd1 ∩ C ′) . . . (Hdk ∩ C ′)(D2 ∩ C ′)(D1 ∩ C ′) and the structures that

appear here are pairwise freely joined over B. By Proposition 8.1.5, it follows that

no non-empty substructure G of Hi (or H′i) has rank zero. Thus it follows that

δ((Hdj ∩ C ′)/B) ≥ 1 − 1 = 0. Hence δ(H′/B) =
∑k

i=1 δ(Hdi ∩ C ′/B) + δ(D1/B) +

δ(D2/B). But δ(Di/B) = δ(Di/A) and the claim follows.
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The proof C ≤ H is similar. Further δ(H/C) = 0 follows as we have added

exactly m new edges. Note that unlike when α was graph-like with weight one

D 6⊆ H.

The following is Lemma 7.1.6 for the case that α is graph-like with weight one.

Lemma 8.2.9. Let M |= Sα and A ≤M be finite. Let D ∈ Kα be such that A ≤ D.

Then dim(M/A) ≥ δ(D/A) if and only if there is some g such that g strongly embeds

D into M over A.

Proof. The statement that if there is some g such that g strongly embeds D into

M over A, then dim(M/A) ≥ δ(D/A) is immediate from the definition. Thus we

prove the converse. Let A ≤M be finite. Let D ∈ Kα be such that A ≤ D.

First assume that δ(D/A) = 0. Now as Sα |= ∀x∃y(∆A(x) =⇒ ∆A,D(x, y)).

Thus there is some A ⊆ D′ ⊆M such that D ∼=A D′. Further as δ(D′/A) = 0,

from (2) of Lemma 4.4.2, D′ ≤M. Thus regardless of the value of dim(M/A), if

δ(D/A) = 0 then there is some g such that g strongly embeds D into M over A.

Assume that α is graph-like with weight one. Now using Proposition 8.1.8 we

can decompose D − A into the free join of k ≤ i ≤ k + 2 non-empty substructures

over A: Hd1 , . . . , Hdk , D2, D1 (note that D2 or D1 might be empty). Now δ(D/A) =∑k
j=1 δ(Hdj/A)+δ(D1D2/A) =

∑k
j=1 δ(Hdj/A). By (2) of Lemma 4.4.2 it suffices to

show that AHd1 . . . AHdk embeds strongly into M over A. Note that δ(M/A) ≥ k

means there are at least k distinct connected components H ′i that do not contain

cycles (by a simple argument using Proposition 8.1.10). An exploration of the axioms

shows that any two such components are isomorphic. It also follows that the Hbi are
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isomorphic to substructures of those components. Fix an isomorphism that fixes A

and each distinct Hbi is mapped on to a distinct isomorphic substructure of H ′i. We

claim that this embedding is strong. To see this simply note that the existence of a

minimal pair implies the existence of some cycle in H ′i or that the H ′i are not freely

joined over A, a contradiction.

The following theorems are now immediate.

Theorem 8.2.10. Let α be graph-like with weight one. Let M,N |= Sα be countable.

Now M ∼= N if and only if dim(M) = dim(N). Thus there are precisely ℵ0 many

non-isomorphic models of Sα of size ℵ0. Further each countable model of Sα can be

built up from a subclass of (Kα,≤).

Proof. Is the same as the proof of Theorem 7.1.7.

We now give a proof that Sα has the DOP.

Theorem 8.2.11. Sα has the DOP

Proof. The proof is the same as the proof of Theorem 6.4.8 (as noted therein).

However the proof would utilize Lemma 8.2.6 instead of Lemma 4.2.1 in the proof.

We will finish this section with some results on regular types. As in the case

that α is rational but not graph-like with weight one, 0 and 1 nugget-like types will

regular.
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Theorem 8.2.12. Let A ≤ M be finite and let p ∈ S(A) be nugget-like. Now if

d(p/A) = 0 or d(p/A) = 1, then p is regular. Further if d(p/A) = 0, then p is

orthogonal to any other nugget-like type over A.

Proof. Note that a single point consists of a 1-nugget over ∅ while any l-cycle will

form a 0-nugget for l ≥ 3 over ∅. It is easy to see that this extends to nuggets over

some fixed B ∈ Kα. The rest of the proof is the same as that of 7.2.10.

As in the case that α is rational but not graph-like with weight one distinct

types p, q with d(p/A) = d(q/A) = 1 are non-orthogonal.

Theorem 8.2.13. Let A be closed and finite and let p, q ∈ S(A) be distinct and

satisfy d(p/A) = d(q/A) = 1. Then they are non-orthogonal. Hence any two regular

types over p′, q′ ∈ S(X) where X is closed and d(p′/X) = d(q′/X) = 1 are non-

orthogonal. Further if we take A = ∅ and let M 4M. The dimension of M is

determined by the number of independent realizations of p in M. Thus a single

regular type determines the dimension of M.

Proof. Let A be as given. As in Theorem 7.2.13, consider A as a finite structure that

lives in Kα. Consider the finite structures AB,AC where B,C realize the quantifier

free types of p, q respectively.

By Proposition 8.1.8 there exists d1 ∈ B such that d1 is not connected to any

a ∈ A and δ(Hd1/A) = 1. Now similar comments hold with d′1 ∈ C. Fix E ∈ L.

Consider the structure D with universe ABCd where d /∈ ABC. The structure

D contains ABC as a substructure, (d1, d), (d′1, d) ∈ ED and no other relations.
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Routine arguments now yield that D ∈ Kα, AB,AC ≤ D but ABC � D. The rest

of claim now follows as in Case 1 above.

For the second half of the claim note that given p′, q′ ∈ S(X), there exists A′

finite and closed such that p′ is based and stationary over A′ and B′ such that q is

based and stationary over B′. Let X ′ be the closure of A′B′ and consider p|X′ , q|X′ .

Since regularity is parallelism invariant both p|X′ and q|X′ are regular. Arguing as

above we see that p′|X′ 6⊥ q′|X′ . Thus the first half of the result now follows.

Let M 4 M and assume that A = ∅. Given n ∈ ω, consider the finite struc-

ture Cn that is the free join of n-copies of the quantifier free type of p over ∅. If

dim(M) ≥ n, by Lemma 8.2.9, there is a strong embedding of Cn into M. It is

easily checked that the strong embedding witnesses n-independent realizations of p.

The rest follows easily.

The result that any basic type p with d(p) ≥ 2 cannot be be regular also holds.

Theorem 8.2.14. Let A be finite and closed in M. Let p ∈ S(A) be a basic type

such that d(p/A) ≥ 2. Then p is not regular.

Proof. Our strategy is the same as that in the proof of Theorem 7.2.13: we consider

A as living inside of Kα, i.e. as a finite structure. We then construct a finite

structure G over the finite structure A that we then embed strongly into M over

A using saturation. Finally we argue that the strong embedding witnesses the fact

that p is not regular.

Let p ∈ S(A) be a basic type such that d(p/A) ≥ 2. Consider A as a finite

structure that lives in Kα. Let D ∈ Kα be such that D = AB with A ∩ B = ∅
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and B realizes the quantifier free type of p over A. Now using Proposition 8.1.8, fix

d1, . . . , dp such that di is not connected to any point in A, di, dj are not connected

for i 6= j and δ(Hbi/A) = δ(Hbj/A) = 1 where Hbi is the set of points connected

to bi. Fix E ∈ L. Consider the finite structure G where the underlying domain is

AB∪{c1, c2} where AB ⊆ G, c1, c2 two points not in AB. Assume that G is endowed

with the structure given by considering AB as a substructure of G, (di, ci) ∈ EG

and no other relations hold in G.

We will show that given A ⊆ G′ ⊆ G δ(G′/A) ≥ 0. Note that by Proposi-

tion 8.1.8, we can decompose B∗ = (G− A) ∩B into Hd1 , . . . Hdk , D1, D2 that are

freely joined over A. Now δ(B ∩ G′/A) =
∑k

j=1 δ(Hdj ∩ G′/A) + δ(D2 ∩G′/A) +

δ(D1 ∩G′/A). Thus it follows that δ(B∩G′/A) =
∑k

j=1 δ(Hdj∩G′)+δ(D2 ∩G′/A)+

δ(D1 ∩G′/A).

Now observe that B∗c1c2 and A are freely joined over ∅. The argument reduces

to showing δ(B∗c1c2 ∩ G′) ≥ 0. Note that Hd1 , Hd2 , the connected components

in AB to which d1 and d2 belongs (respectively) has the property that for any

∅ 6= H ′di ⊆ H ′di , δ(H
′
di

) ≥ 1. This allows us to establish that Hdici ∈ Kα for i = 1, 2.

Now showing δ(B∗c1c2 ∩ G′) ≥ 0 reduces to a simple argument that utilizes the

connected components of G ∩B′1 are Hd1c1, Hd2c2 and Hdi for 3 ≤ i ≤ p where the

Hdi are the connected components in B′1.

Now routine arguments will show that AB ≤ G, Aci ≤ G and Ac1c2 ≤ G. Let

f be a strong embedding G toM such that it is the identity on A. As in the previous

argument this yields that f(B) realizes p over A. Now f(B) ��|̂ A f(ci) as B and ci

is not freely joined over A. But Aci ≤ G, Ac1c2 ≤ G and c1, c2 is freely joined over
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A which implies f(c1) |̂
A
f(c2). As in Theorem 7.2.13, this configuration witnesses

the fact that p cannot be regular.

8.3 Where Graph-like with weight one differs

In this section, we show that if α is graph-like with weight one, then Sα is

trivial. Recall that in the case that α is not graph-like with weight one, then Sα

is non-trivial by Theorem 6.3.3. This allows us to characterize the trivial Sα as

precisely those where α is graph-like with weight one.

Theorem 8.3.1. Sα is trivial if and only if α is graph-like with weight one.

Proof. In Theorem 6.3.3 we have established that if α is not graph-like with weight

one, then Sα is non-trivial. We now show that if α is graph-like with weight one,

then Sα is trivial.

So assume that α is graph-like with weight one but Sα is not trivial. Note

that Sα has finite closures and that algebraic and intrinsic closures correspond. As

Sα is not trivial, there exists W,X, Y closed in M whose pairwise intersection is Z

such that W |̂
Z
X,W |̂

Z
Y ,X |̂

Z
Y but W ��|̂ Z XY . By the characterization

of forking in Theorem 6.2.25, W,X, Y are freely joined over Z and WX,WY,WZ

are closed in M. Note that it follows that W,XY are freely joined over Z. Thus

another application of Theorem 6.2.25, yields that WXY is not closed in M. Thus

there is W0 ⊆Fin W , X0 ⊆Fin X and Y0 ⊆Fin Y such that the closure of W0X0Y0

is not contained in WXY . Replace W0 by its closure, which clearly lies in W and

is finite as Sα has finite closures. By an abuse of notation we will call this set W0.
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Further replace X0 by acl(X0Y0)∩X and Y0 by acl(X0Y0)∩ Y and call them X0, Y0

by a similar abuse of notation. Note that X0, Y0 are also closed and finite. Let

F = acl(W0X0Y0). Now F 6⊆ WXY . Let (W0X0Y0, D) be a minimal pair with D

(where D ⊆M).

We claim that there is some a ∈ W0, b ∈ X0Y0 such that there is a path

between a, b in D − WXY . Suppose not. For any a ∈ W0, let Ha be the set of

points in D that lie in a path that starts at a. Let H =
⋃
a∈W0

Ha. Note that no

point in H is connected to any point in X0Y0 for if it were, then there would be a path

between a point in W0 and a point in X0Y0. Note that this implies that H,D−H are

freely joined over Z. Now δ(D/W0X0Y0) = δ(H/W0X0Y0) + δ(D −H/W0X0Y0) =

δ(H/W0) + δ(D − H/X0Y0) ≥ 0 as W0, X0Y0 is closed in M. But this contradicts

(W0X0Y0, D) is not a minimal pair. Thus it follows (from picking a path with

minimum distance) that there is a path between some a ∈ W0 and b ∈ X0Y0 where

except for a, b the other points all lie in D−W0X0Y0. We may as well assume that

b ∈ X. And let P denote the set of points in the path that lie in D −W0X0Y0.

Now, 0 > |P |− (|P +1|) ≥ δ(P/ab) ≥ δ(P/W0X0). However this contradicts WX is

closed in M as there is some minimal pair (W0X0,W0X0P ). Thus Sα is trivial.

Remark 8.3.2. This result shows that every regular type of Sα is trivial when α is

graph-like with weight one.
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Chapter 9: Infinite relational languages

In this chapter we explore the analogues of Baldwin-Shi hypergraphs in the

setting of countably infinite languages. Let L is a countably infinite relational

language with no unary relation symbols. As we did earlier, we focus on KL, the

class of finite L-structures where the relation symbols are interpreted irreflexively

and symmetrically and we let α : L → (0, 1] and δ(A) = |A| −
∑

E∈L α(E)|AE|.

By an abuse of notation, let Kα = {A : δ(A′) ≥ 0 for all A′ ⊆ A and the set of E ∈

L such that |AE| 6= 0 is finite}. For any A,B ∈ KL, we say that A ≤ B if and only

if A ⊆ B and δ(A′) ≥ δ(A) for all A ⊆ A′ ⊆ B. The class Kα inherits the notion of

strong substructure from KL as in Chapter 2. Unlike in Chapter 2 however, there

may be finite structures A ∈ KL with infinitely many relation symbols holding on

them (i.e.
∑

E∈L |EA| = ∞) and even with δ(A) = −∞. We note that we may

extend the notation e(A), e(A,B), e(A,B,C) and the notion of closed sets, minimal

pairs, etc to this setting.

Remark 9.0.1. Note that the contents of Remark 2.3.1 holds true in this setting

as does Fact 2.3.4.

Using the fact that the set of isomorphism types of Kα is countable along with

Remark 9.0.1, we obtain that a (Kα,≤) generic exists. In this chapter we discuss
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some of the properties of this generic and its theory. It should be noted that if

M is a model of the theory of the (Kα,≤) generic and A ⊆M is finite, then it is

not necessary for A to be in Kα though A �L′∈ Kα for any finite L′ ⊆ L. Further

given any such A we obtain that δ(A) ≥ 0, for else we can find a finite L′ such that

δ(A �L′) < 0 which is easily seen to be ruled out by the universal sentences of the

theory of the generic. In the same manner, if A ⊆ B ⊆M are finite and (A,B) is

a minimal pair (as evaluated in KL), then there is some finite L′ ⊆ L such that

(A �L′ ,B �L′) is a minimal pair.

Our main result is Theorem 9.2.1, which establishes a link between the reducts

of the (Kα,≤) generics and the Baldwin-Shi hypergraphs. We end with Theorem

9.2.2, which establishes the stability of the (Kα,≤) generic.

9.1 The reducts of Kα

Definition 9.1.1. Let L′ ⊆ L. Then K ′ is the class of structures that contain the

reducts of the structures in Kα in the language L′; i.e. K ′ = {A�L′ |A ∈ Kα}.

It is clear that K ′, like Kα, is closed under substructure and that K ′ ⊆ Kα.

The class K ′ has a natural candidate for the notion of induced strong substructure

≤′ on K ′ ×K ′ given by the following:

Definition 9.1.2. Fix L′ ⊆ L. Given A,B ∈ K ′, we have A ≤′ B if and only if

A ⊆ B and δ′(B′) ≥ δ′(A) for any B′ such that A ⊆ B′ ⊆ B. Here δ′ = δ �L′ i.e.

δ′(C) = |C| −
∑

E∈L′ α(E)|EC | for any C ∈ KL.
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Lemma 9.1.3. Let A,B ∈ KL and let L′ ⊆ L. If A ≤ B, then A′ ≤′ B′ where

A′,B′ are the L′ reducts of A,B respectively.

Proof. Let C be such that A ⊆ C ⊆ B. Now 0 ≤ δ(C/A) .

δ(C/A) = |C| − |A| −
∑

E∈L α(E)|(CE| − |AE|)

Now note that 0 ≤ |CE| − |AE| for each E ∈ L. Thus we obtain;

δ(C/A) ≤ |C| − |A| −
∑

E∈L′ α(E)|(CE| − |AE|)

= δ′(C′/A′)

Thus A′ ≤′ B′.

Remark 9.1.4. Fix a finite L′ ⊆ L, and the corresponding K ′ ⊆ K. We easily see

that (K ′,≤′) may be used to construct a Baldwin-Shi hypergraph.

9.2 The theory of the generic for (Kα,≤)

Here we explore the interplay between the generic for (Kα,≤) and the generic

for (K ′,≤′) for some L′ ⊆ L. This approach towards establishing stability for the

theory of the generic for (Kα,≤) appears to be new. Given an L-structure X and

some L′ ⊆ L, we follow the convention that X′ denotes X �L′ .

Theorem 9.2.1. Let L′ ⊆ L. If M is the generic for (Kα,≤), then M′ is the

generic for (K ′,≤′). Further if L′ is finite, then M′ is a Baldwin-Shi hypergraph.

Proof. We know that M =
⋃
An is the union of a strong chain of (An)n∈ω of elements

in Kα. Now from Lemma 9.1.3 it follows that (A′n)n∈ω is a strong chain of elements
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from K ′. Since M′ is a reduct of M, we obtain that M′ = (
⋃
n<ω An)′ =

⋃
n<ω A

′
n

and thus M′ is the union of a strong chain of elements from (K ′,≤′).

Note that any element of K ′ is a reduct of a element in Kα. Thus in order

to show that M′ is the (K ′,≤′) generic, it suffices to show for A′,B′ ∈ K ′ with

A′ ≤′ B′, if f : A′→M′ is a strong embedding in the sense of L′ then there exists g

extending f such that g : B′→M′ is strong in the sense of L′. Now f(A′) generates

a substructure of A∗ of M with universe f(A′). Since M is L-generic, there is a

C ∈ Kα such that C ≤M and A∗ ⊆ C. Note that as A∗,C ⊆M only finitely many

relations hold on A∗,C.

We begin by showing that a suitably chosen copy of B′ embeds strongly into

M over A∗. Towards this consider the following B∗ ∈ KL that satisfies

1. A∗ ⊆ B∗.

2. There is a bijection h : B′ → B∗ such that h �A′= f .

3. For any E ∈ L, G1 ⊆ B′ − A′, G2 ⊆ A′ with G1 non-empty, G1 ∪G2 ∈ EB′ if

and only if h(G1 ∪G2) ∈ EB∗

4. For any E ∈ L− L′, G1 ⊆ B∗ − A∗, G2 ⊆ A∗ with G1 non-empty G1 ∪ G2 /∈

EB∗ .

We claim that B∗ ∈ Kα and A∗ ≤ B∗. As noted above A∗ has only finitely

many relations that hold positively on it and hence it follows that B∗ has only

finitely many relations that hold positively on it. Let L′′ ⊆ L be the collection of

relation symbols that appear positively on B∗ and note that L′′ is finite. Let K ′′
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be the collection of finite L′′ structures with hereditarily non-negative rank δ′′ (note

that the notation here corresponds to that in Definition 9.1.2). Let A′′ = A∗ �L′′

and B′′ = B∗ �L′′ . Note that as L′′ contains all the relations that occur positively

in B∗, establishing A′′ ≤′′ B′′, is equivalent to establishing A∗ ≤ B∗. Further if we

show that A′′ ≤′′ B′′, we obtain that B′′ ∈ K ′′ by Remark 2.3.2. Again using the

fact that all of the relations that appear positively on B∗ lie in L′′ we can conclude

that B∗ ∈ Kα. Thus let A′′ ⊆ D ⊆ B′′. Now it is easily seen that δ′′(D/A′′) =

δ′′(D − A′′)− e′′(D − A′′, A′′) where the e′′ denotes the fact that only the relations

in L′′ are taken into account when calculating the relevant weighted sum. But

D − A′′ = D − A′ and A′′ = A′ (i.e. underlying universes are equal) and the only

relations that hold on D − A′′ and between D − A′′ and A′′ all lie in L′. Thus

we obtain that δ′′(D/A′′) = δ′(D′/A′) where D′ is the reduct of D to L′. But

δ′(D′/A′) ≥ 0 as A′ ≤′ B′. Hence our claim follows.

Thus we may form H = B∗⊗A∗C (taking an isomorphic copy of B∗ if B∗∩C )

A). It is easily verified that H ∈ Kα and that C ≤ H. By the genericity of M, there

is a strong embedding j : H→M over C. Let H′ be the L′-reduct of H. Consider j

as a map from the set H to the set M . Using Lemma 9.1.3 and the definition of a

strong embedding we obtain that j(H′) ≤′ M′. Extend f to g by taking g = j �B′ .

By construction f(A′) = g(A′) ≤′ g(B′). Further f(A′) ≤′ C′ as f is a strong

embedding of A′ into M′. Since j(H′) ≤′ M′, it suffices to show that g(B′) ≤′ j(H′).

But D′ = B′ ⊗f(A′) C
′ and f(A′) ≤′ C′ which implies that B′ ≤′ D′ from which our

claim follows. Thus M′ is isomorphic to the generic for (K ′,≤′).

If L′ is finite, it is clear from the definition of (K ′,≤′) that the (K ′,≤′)-generic
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is a Baldwin-Shi hypergraph. Thus the latter part of the claim follows.

With the above result at hand and with another abuse of notation, we let

Sα denote the theory of (Kα,≤) generic. The following argument shows that Sα is

stable.

Theorem 9.2.2. Sα is stable.

Proof. Note that if Sα is unstable, there exists some formula ϕ(x, y), that has the

order property. Let L′ be the language consisting of exactly the relation symbols

that appear in ϕ. Let M be the (Kα,≤) generic. For each n ∈ ω there are (ai, bi),

i < n, such that M |= ϕ(ai, bj) for all i < j ≤ n and M |= ¬ϕ(ai, bj) for all

j ≤ i ≤ n. Now Th(M′) is stable by Theorem 9.2.1 and Theorem 6.1.16. Since M′

is a reduct of M, it follows that M′ |= ϕ(ai, bj) for all i < j ≤ n and hence Th(M′)

is unstable. This contradiction establishes the claim.
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Appendix A: Some Relevant Number Theoretic Facts

The number theoretic results concerning Diophantine equations can be found

in Chapter 5 of [34] and the number theoretic results concerning continued fractions

can be found in Chapter 7 therein. We use standard notation for the greatest

common divisor, divides, etc in what follows.

Remark A.0.1. We will show that in the case all the αE are rational the equation

n−
∑

E∈L αEmE = −1
c

has infinitely many positive integer solutions, i.e. solutions

where n and all of the mE are positive integers. Note that multiplying through by

c, we obtain a linear Diophantine equation whose solutions will yield the required

n,mE. Our proof of the existence of infinitely many suitable solutions will use the

following fact regarding linear Diophantine equations: Given a linear Diophantine

equation a1x1 + a2x2 + . . . anxn = d, the equation has a solution if and only if

gcd(a1, . . . , an)|d.

Note that if |L| = 1, then the associated Diophantine equation becomes

qEn− pEmE = −1. As pE, qE are relatively prime, we obtain that gcd(pE, qE)| − 1

and hence the required result follows. So we may as well assume that |L| ≥ 2.

Fix an enumeration p1

q1
, . . . , pn

qn
of the values of α(E), where |L| = n. Note that

c = lcm(q1, . . . , qn). Using the fact that lcm(a, b) = ab
gcd(a,b)

and lcm(a1, . . . , an) =
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lcm(a1, lcm(a2, . . . , an)) repeatedly, we obtain that

c =

∏
1≤i≤n qi∏

1≤i<n gcd(qi, lcm(qi+1, . . . , qn))

Further note that given a different enumeration
p′1
q′1
,
p′2
q′2
, . . . , p

′
n

q′n
of the values of α(E),

using the fact that c = lcm(q1, . . . , qn) = lcm(q′1, . . . q
′
n), we obtain

∏
1≤i<n

gcd(qi, lcm(qi+1, . . . , qn)) =
∏

1≤i<n

gcd(q′i, lcm(q′i+1, . . . , q
′
n))

Let d =
∏

1≤i<n gcd(qi, lcm(qi+1, . . . , qn))

We now need to show that

n
( ∏

1≤i≤n

qi
)
−
∑

1≤i≤n

pimi

( ∏
1≤j≤n,i6=j

qj
)

= −
∏

1≤i<n

gcd(qi, lcm(qi+1, . . . , qn))

.

In order to show that the above equation has solutions, we need to show that

s|d where s = gcd(
∏

1≤i≤n qi, p1

∏
2≤j≤n, qj, . . . , pi

∏
1≤j≤n,j 6=i qj, . . . , pn

∏
1≤j≤n−1 qj)

using the following facts

1. gcd(ab, af) = a gcd(b, f)

2. gcd(a1, . . . , an) = gcd(gcd(a1, a2), . . . an)

3. For relatively prime b, f gcd(b, af) = gcd(b, a).

Note that s = gcd(gcd(
∏

1≤i≤n qi, p1

∏
2≤j≤n, qj), . . . , pn

∏
1≤j≤n−1 qj). But as we

know that gcd
(∏

1≤i≤n qi, p1

∏
2≤j≤n, qj

)
=
(∏

2≤i,≤n qi
)

gcd(q1, p1). As p1, q1 are

relatively prime, we obtain that gcd(q1, p1) = 1 = gcd(q1, 1) and hence we ob-

tain that gcd
(∏

1≤i≤n qi, p1

∏
2≤j≤n, qj

)
= gcd

(∏
1≤i≤n qi,

∏
2≤j≤n, qj

)
. Thus s =
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gcd(
∏

1≤i≤n qi,
∏

2≤j≤n, qj, . . . , pn
∏

1≤j≤n−1 qj). Proceeding in a similar manner we

obtain that s = gcd(
∏

1≤i≤n qi,
∏

2≤j≤n, qj, . . . ,
∏

1≤j≤n,i6=j qj, . . . ,
∏

1≤j≤n−1 qj). But

then it follows that s = gcd(
∏

2≤j≤n, qj, . . . ,
∏

1≤j≤n,i6=j qj, . . . ,
∏

1≤j≤n−1 qj). We

note that given a different enumeration
p′1
q′1
,
p′2
q′2
, . . . , p

′
n

q′n
of the values of α(E), we have

that s = gcd(
∏

2≤j≤n, q
′
j, . . . ,

∏
1≤j≤n,i6=j q

′
j, . . . ,

∏
1≤j≤n−1 q

′
j).

We have to show that s|d. If s = 1, then there is nothing to prove. So let p be

some prime such that p|d. By choosing a different enumeration of α if necessary, we

may assume that r1 ≤ r2 ≤, . . . ≤ rn where ri is the largest integer for which pri|qi.

It now follows easily that p
∑

1≤i≤n−1 ri |s but p(
∑

1≤i≤n−1 ri)+1 6 |s. We have to show that

p
∑

1≤i≤n−1 ri |d. Note that by our choice of enumeration pri | gcd(qi, lcm(qi+1, . . . qn))

for all 1 ≤ i < n. But then it is immediate that p
∑

1≤i≤n−1 ri |d. From this it easily

follows that s|d.

Thus the equation n−
∑

E∈L αEmE = −1
c

has infinitely many positive integer

solutions (using general facts about Diophantine equations).

Remark A.0.2. Let 0 < β < 1 be irrational. We claim that for any ε > 0, there

are infinitely many positive m,n such that −ε < n−mβ < 0.

We begin by noting that β has a simple continued fraction form [0 : a1, a2, . . .] =

0 + 1 1
a1+ 1

a2+···
where ai ∈ ω is positive for i ≥ 1. Let pk/qk = [0 : a1, . . . , ak] be the

simple continued fraction approximation restricted to k-terms. Now:

1. pk, qk are increasing sequences (and hence pk, qk →∞)

2. 〈p2k/q2k : k ∈ ω〉 is a strictly increasing sequence that converges to β

3. For even k, 1
qk(qk+qk+1)

< β − pk
qk
< 1

qkqk+1
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Now it follows that − 1
q2k

< p2k − q2kβ < − 1
q2k+q2k+1

. This easily yields that

limk p2k − q2kβ = 0. Taking ni = p2k,mi = q2k for sufficiently large values of k now

yields the required result.
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Appendix B: More on the Group Configuaration

The configuration found in Theorem 7.2.19. is the celebrated group configura-

tion (originally due to Zilber). In this appendix we provide some details regarding

the calculation of dimensions that was omitted from Theorem 7.2.19. Recall that

we are working with, pM, the set of realizations of a regular type p in a monster

model M of Sα and that (pM, clp) is a pregeometry. The configuration in question

can be represented visually by

a

b′b

c c′

e

where a, b, c |= p are such that they are pairwise independent but are de-

pendent, b′ , c′ |= p such that b′ c′ ≡a b c, b′ c′ |̂ a b c and e ∈ X ∩ Y ∩ pM where

X = clp(b c′), Y = clp(cb′). Let Z = clp(X ∪ Y ). Recall our claims regrading the

dimensions from Theorem 7.2.19.

Clearly the dimension of every single point is 1. Note that by our choice of

a, b, b′, we obtain that b |̂ a and b |̂
a
ab′. So by transitivity of non-forking we

obtain that b |̂ ab′. Further as b′ |̂
a
c and b′ |̂ a transitivity again yields b′ |̂ c.

Thus it follows that dimp({a, b, b′}) = 3 and dimp(X) = 2. Similar arguments yield
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that (the closure of) any three non-colinear points that don’t include e has dimension

3 and any two points that don’t include e has dimension 2

Consider the set {a, b, b′, c, c′, e}. We claim that if x, y ∈ {a, b, b′, c, c′, e} are

distinct then x /∈ clp(y). Note that if x, y ∈ {a, b, b′, c, c′} this follows by our choice

of {a, b, b′, c, c′} using the properties of non-forking as above. So assume that either

x or y is e. Since (pM, clp) satisfies exchange, we may as well assume that y = e and

x ∈ clp(y). By way of contradiction assume that x ∈ clp(e). We will consider the

case x = b′, the other cases will be handled similarly. Note that b, e, c′ ∈ X and thus

b′, c′ ∈ X. But as a ∈ clp({c′, b′}), it follows that a, b, b′ ∈ X. This now contradicts

the fact that dimension of clp({a, b, b′}). From this it follows that a set of with two

points has dimension two.

We now show that three any colinear points has dimension two. By our choice

of e, if one of the three points is e, the result is immediate. So consider three colinear

point that does not contain e, such as a, b, c. As a, b, c are pairwise independent but

are dependent it follows that dimp(clp{a, b, c}) = 2. The case of a, b′, c′ similar using

the fact that non-forking is automorphism invariant.

It remains to show that any three non-colinear points has dimension 3. We

have established this result in the case that non of the points involved is e. So

assume that one of the points is e. We will establish this result for a, c′, e, the

other cases being similar. By way of contradiction, assume that this is not the

case. As (pM, clp) satisfies exchange we may as well assume that c′ ∈ clp({a, e}). As

e ∈ clp({b, c′}), using exchange we obtain that b ∈ clp({e, c′}) ⊆ clp({e, a}). But

then a, b, c′ ∈ clp({e, a}) as dimp(clp({e, a}) = 2 and dimp({a, b, c′}) = 3.
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