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ABSTRACT

This paper describes and analyzes a method for finding nontriv-
ial solutions of the inequality Az > 0, where A is an m X n matrix
of rank n. The method is based on the observation that a certain
function f has a unique minimum if and only if the inequality
fails to have a nontrivial solution. Moreover, if there is a solution,
an attempt to minimize f will produce a sequence that will di-
verge in a direction that converges to a solution of the inequality.
The technique can also be used to solve inhomogeneous inequali-
ties and hence linear programming problems, although no claims
are made about competitiveness with existing methods.
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1 Introduction

In this paper we will describe an iterative method for finding nontrivial
solutions of the homogeneous inequality

Az >0, (1.1)

where A is an m X n matrix of rank n. The underlying idea is simple.
Consider the function

f(e) = 17 exp(~ Az), (1.2)
where 1 = (11 ... 1)T and for any vector y
exp(y) = (e, e, .. .,eym)T.

We shall show that one of two things must happen if f is minimized iter-
atively. If (1.1) has no nontrivial solution, then f has a unique minimum,
to which the iteration must converge. On the other hand, if (1.1) has a
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nontrivial solution, then the iterates will grow unboundedly in such a way
that a solution can be computed from them.

Unfortunately, in at least one application it is not enough to compute just
any solution. Specifically, any linear programming problem can be reduced
to a sequence of inhomogeneous inequalities of the form

Az >b. (1.3)

This inequality has a solution if and only if the homogeneous inequality

A —b
N w

has a solution with n > 0. If we apply the technique sketched in the last
paragraph to (1.4), there is a possibility that it might return a solution with
n = 0, in which case we cannot say whether (1.3) has a solution or not. Thus
if one wants to apply our method to linear programming, it is necessary to
show that it not only computes a solution of (1.1) but that it computes
one for which as many components of Az as possible are positive. It is this
necessity that accounts for most of the technical detail in the paper.

In 1952, Motzkin [3] proposed finding solutions of (1.1) by minimizing
(1.2). The author [5] rediscovered the method independently in connection
with problems in the statistical analysis of categorical data (for the connec-
tion see [1, Ch.2]), and the algorithm has actually been incorporate into a
set of programs for solving such problems.

In the next section we shall introduce some preliminary notation and
definitions. In §3 we will show that if f does not have a minimum, any
diverging sequence that drives f to its infimum will produce the required
solution. The problem then reduces to finding an iterative method that
diverges properly, and we will show in §4 that one such is Newton’s method
with line searches. The paper concludes with some general observations.

2 Preliminaries

Since we must maximize the number of positive components of Az, let us
introduce the following notation. Let A be partitioned by rows in the form

T
aj

T
a;

T
A,
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and for any vector z set

P(x) calz >0},
Z(x) s afz =0},
N(z)={i: alz <0}.

Thus P, Z, and N comprise the indices for which the components Az are
positive, zero, and negative.
If z is a solution of (1.1), then M(z) = 0. If ! and 2? are solutions,
then z! + 22 is a solution and
P(al 4+ 22) = P(al) U P(2?),
Z(zl 4 2?) = Z(al) N Z(2?).
From this it follows that there is a solution #* of (1.1) for which the cardinal-

ity of P(z*) is greatest. We will call this a mazimally positive (MP) solution.
MP solutions are not unique, but they all have the same sets P* = P(z2*)
and Z* = Z(z*).

A transformed version of the inequality will be needed in the sequel. Let
2* be a MP solution of (1.1). Without loss of generality we may assume that
the rows indexed by Z* are the last rows of A4; i.e.,

A:(i;), (2.1)

where Aj2* > 0 and Ayz™ = 0. Let V = (V; V3) be an orthogonal matrix
with the columns of V; spanning the null space of Ay.! If we set

Bij = AV

= {i
= {i

T
T

and
u=Vilz, (2.2)

then the inequality (1.1) becomes

Bi1 Bia Uy
= > 0. .

Here both By1 and Bys have full column rank. Moreover, the MP solution
u* corresponding to x* satisfies

Bnuf >0 (24)

and
uy = 0.

Hf p* = @, both A; and V; will be void matrices.
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3 Diverging to a solution

In this section we shall investigate the relation of the function f defined by
(1.2) to the homogeneous inequality (1.1). Specifically, we will show that
if (1.1) has a nontrivial solution then the members of any sequence {z*}
satisfying

Jlim f(") = inf f(2)

must ultimately provide an MP solution.
We begin by stating some elementary facts about the function f. Clearly
f is bounded below by zero. Its gradient and Hessian are given by

fl(x) = —AT exp(—Ax) (3.1)
and
f(z) = ATD(2)A, (3.2)
where . . .
D(z) = diag(e™" 1%, e7%% .. e "m¥),

Since D(z)is positive definite and A is of full column rank, f”(z) is positive
definite. If follows that f is strictly convex and can have at most one local
minimum, which, when it exists, is also a global minimum. Necessary and
sufficient conditions for the existence of a minimum are contained in the
following theorem.

Theorem 1 The function f has a minimum if and only if the inequality
(1.1) has a nontrivial solution.

Proof. First suppose that (1.1) does not have a nontrivial solution. To
show that f has a minimum, it is sufficient to show [4, §4.3.3] that for any
norm® limjg(— f(2) = +o00. For any z with [Jz]| = 1 set

$(z) =min{alz: i € N(x)}.

Since (1.1) has no solution, AV'(z) is nonempty and ¢(z) < 0. Clearly ¢ is
continuous. Hence

“Throughout this paper, |- || will stand for both a vector norm and a submultiplicative
matrix norm.
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Now for any z # 0,
f(x) Z Z e_a’irl’ Z e_QPHl’H7

1EN(2)

which establishes the first part of the theorem.
Next suppose that (1.1) has a nontrivial solution z*. Partition A as in
(2.1) so that Ay2* > 0 and Ayz™ = 0. Then for any point z,

lim f(z+az*) = lim 1Texp(—Ajz — adjz*) + 1T exp(—Agz — adyz™)

a— 00 a— 00

= 1727 < f(a),

which shows that z cannot be a minimum of f.

Theorem 3.1 shows that if we apply a globally convergent minimization
algorithm to f it will converge whenever (1.1) does not have a nontrivial
solution. The proof of the theorem also suggests that when (1.1) does have
a unique solution the iterates may diverge along a direction that is itself
a solution. In the next section we will show that this is actually true of
Newton’s method with line searches. However, since our goal is to find MP
solutions, we must first establish the conditions under which a diverging
sequence furnishes an MP solution.

For the rest of this section we assume that (1.1) has a MP solution z*
with a corresponding partition (2.1) of A. The problem is best approached
through the transformed inequality (2.3). If we define u by (2.2) and set

g(u) =1"exp(—Bu)
= ]_T eXp(—B11u1 — B12UQ) —|— ]_T eXp(—BQQUQ) (33)
= g1(u) + g2(u2),

then g(u) = f(x), so that ¢ serves the same role in the transformed inequality
(2.3) as does fin (1.1).

Lemma 2 The system
B22u2 Z 0 (34)

has no nontrivial solution. Hence go has a unique minimum

v = ga(u)). (3.5)
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Proof. Suppose u; is a nontrivial solution of (3.4). Because Bjj is of full
rank, Boouo is nonzero and hence has at least one positive component. From
(2.4) it follows that there is a ¢ > 0 such that

O'BlluiK + B12U2 > 0.

%

- ou
U= 1
U2

is a solution of (2.3) with P(u*) a proper subset of P(@), which contradicts
the fact that «* is an MP solution. The existence of a unique minimum now
follows from Theorem 3.1.

Hence the vector

Since g1 and g2 are both positive, the number 4 defined by (3.5) is a
strict lower bound on g¢(u). In the next theorem we will show that it is
actually the infimum of g(u). Moreover, any sequence of points that drives
g(u) to v must have properties that enable us to extract an MP solution.

Theorem 3 The function g satisfies
g(u) > inf g(v) = 7. (3.6)

Moreover, if {u*} is any sequence with g(u*) — v, then with v}, defined by

(3.5)

ub — (3.7)
and
Byt > O{—1In[g(u*) — ~]}. (3.8)
Proof. We have already noted that v is a lower bound for the values of g.
If we set
Uy
then
lim g(ua) = lim gi(ua) + g2(u3)

0+~v=1,

which establishes (3.6).

Now let {«*} be any sequence with g(u*) — 7. Then by (3.3) we must

have go(u5) — 7, which in view of Lemma 3.2 establishes (3.7).
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Finally, since g;(u*) < g(u*) — v, it follows that
exp(—Brzub) ® exp(—Byuk) < g(uh) 7,

where ¢ denotes component-wise multiplication. Hence

exp(—Briuf) < [g(u") — 7] exp(Biaub),

or
Bnulf > — ln[g(uk) —7]1 - B12u’§.

Since uf is converging, this is equivalent to (3.8).

Let us reinterpret this theorem in terms of the original inequality. Sup-
pose we are given a sequence {z*} with the property that lim f(z*) =
inf f(z). Then one of two things must happen. Either the 2" remain
bounded, in which case they must converge to a local minimum of f, and by
Theorem 3.1 the inequality (1.1) has no nontrivial solution. Or the z* grow
unboundedly. In this case, theorem 3.3 then says that the components of
Az" divide into two classes: those which converge and those which grow un-
boundedly. The indices of the former make up the set Z*, while the indices
of the latter make up the set P*. Once these sets have been recognized we
may compute the transformation V to the w-coordinate system and hence
trial solutions

ik = V1V1Txk = Vlulf
(i.e., the vectors obtained by setting u5 = 0 so that A,z% = 0). Initially the
Z* may fail to be solutions, owing to the suppression of the terms Byu5; but
3.8) insures that ultimately Ayz* > 0, and at that point * is a solution.

The above procedure gives no problems when (1.1) either has no solution
or when it has a solution with Z* = ). In the former case the sequence z*
converges; in the latter it ultimately exhibits a solution. When there is a
solution with Z* # (), we are faced with the problem of determining which of
the components of Az* are converging and which are diverging, a decision
which must be based on tolerances that are to some extent arbitrary. It
should be stressed that this is not a failing of the method; the problem
itself is intrinsically difficult, since a small perturbation of the matrix A can
cause Z* to become zero, on the one hand, or cause there to be no nontrivial
solution on the other. How such a case should be treated will depend on the
application.
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4 The divergence of Newton’s method

To complete our algorithm for solving the inequality (1.1), we must generate
a sequence of vectors {2} such that lim #* = inf f(). In this section we will
show that Newton’s method with line search will produce such a sequence.
This method generates an iterate 2*t! from a previous iterate 2* as follows.

1. Set d* = — f"(a*)=1 f'(2F).
2. Determine ay, so that the function ¢p(a) = f(2* + ad®) is
minimized.

3. Set 2341 = 2k + agdk.

There are two reasons why Newton’s method with line search is par-
ticularly well suited for this application. First, if f has a minimum, the
sequence {x"*} converges to it, ultimately quadratically. Second, the form of
f makes it cheap to determine ay. For if we precompute y* = eXp(—Axk)
and 2% = Ad*, then

k

m
prla) =) ylemm,
=1

a very simple function to work with.

The proof that Newton’s method with line search forces f to its infimum
depends on two results which are of independent interest. The first gets
us started by showing that the method diverges when f does not have a
minimum.

Theorem 4 Let f : R" — R be thrice continuously differentiable. Let D
be any compact set with the property that f'(x) # 0 and f"(x) is positive
definite for all x € D. Then there are positive constants a < 1/4, €, and 6,
such that if © € D and

d=—f"(x)" f(z) +e, (4.1)

where ||e|]| <€, then

J(e +ad) < f(z) - 0.

Proof. By Taylor’s theorem

flo+ad) = fla)+ af @) d+ Sd e+ r(e), (1)



Linear Inequalities 9

where for some fixed M >0
()] < Ma?||d||.

Substituting the definition (4.1) of d into (4.2), we get
flztad) = flz)- (04 - a—) F@) @) f () +

(a—2a2)f'(z) e+ a—eTf"(x)e + r(z).

2
Since f’(x) is nonzero and f”(x) is positive definite on the compact set D,
the quantity f/(z)T f”(2)f'(x) is positive and uniformly bounded below on
D, say
F'@) @) f'(e) = p > 0.
The norms of the terms f’(x) and f”(z) are bounded above on D, and if we

stipulate that € < 1, so is the norm of d. Hence we may choose a@ < 1/4 so

that
2

Ma®|ld|f* < p

on D. For this value of o, we may choose ¢ < 1 so that

(0 = 20%) /()T + L6 (a)e| < S

N | R

on D. It follows that for all z € D
fo+ad) < f(o) - (§ - )

which establishes the theorem with 6§ = ($ — a®)p.

In application to our problem, Theorem 4.1 (with e = 0) shows that if f
does not have a minimum, then the iterates generated by Newton’s method
with line search cannot remain in a compact set; for within that set each
iteration must reduce f by at least §. Consequently, the iterates z*
diverge. However, the divergent sequence could possibly approach a contour
that is greater than the infimum of f. Before we can prove that this does
not happen, we need another technical result.

From (3.1) and (3.2), we see that the Newton step is given by

must

[ATD(zM) AL AT D(2F)1.
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Although at first glance this formula seems uncomplicated, in our appli-
cation the diagonal elements of D are the numbers e_“z‘Tx, some of which
are converging to zero while others remain finite. This means that the ma-
trices ATD(xk)A will become increasingly ill conditioned. Fortunately, al-
though [AT D(2*)A]~! can become unbounded, the weighted pseudo-inverse
[ATD(2%)A)=* AT D(2*) remains bounded, no matter what happens to D(z*).

Specifically, we have the following surprising theorem.?

Theorem 5 Let A be an m X n of rank n, and let DT denote the space of
diagonal matrices with positive diagonal elements. Then

sup ||(ATDA)TTATD| < . (4.3)
DeD+

Proof. The proof is by induction on m, assuming that the result holds
for all matrices of full column rank having fewer than m rows. To start the
induction, we observe that for an m x m matrix, the weighted pseudo inverse
reduces to A™', whose norm is clearly independent of D.

For the induction step, let us fix D and suppose that the smallest diago-
nal element of D is the ith element é;. Let D, be the matrix obtained from D
by deleting its ith row and column, and let A; be the matrix obtained from
A by deleting its ith row. There are two cases to consider: rank(A4;) = n
and rank(A;) =n — 1.

First assume rank(A;) = n. Then by the induction hypothesis

(A D:A)T AT DY) < a,

where «; is independent of ;. Now the norm we seek to bound is

7= ||(daia] + A DA (80 AL D)

-1
_ H (14 6:(AT DAY aral) ™ (AL DAY (81a; ALDy) m

< H (I + 6¢(AiTDiA¢)_1aiaiT)_lH (H(SZ'(AZ»TDZ'AZ')_IQZ'H + Oéi) :

Let

*yi_lz inf ||A;z|.
[lz]|=1

*The same kind of systems come up in connection with Karmarkar’s algorithm for
linear programming [2].
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Then 1 1
107 Asall = 27 D727
z||=1

Since & DY < 1, it follows that
16:(AF DiA) ! < 57 (4.5)
Moreover

(52'(AZ»TDZ'A¢)_1(ZZ'(Z»T

2

B 1+ 52'612'T(A¢TD¢A¢)_1@¢ '

(I + (52'(AZ'TDZ'A¢)_1(ZZ'(Z'T) - =1

k3

Hence if 8; = ||a;||, then

7

-1
H (I + (52'(AZ'TDZ'A¢)_1(ZZ'(ZT) H <14 ﬁ?’y? (4.6)
It then follows from (4.4), (4.5), and (4.6) that

7 < (ai+ BivH)(1 + BI7). (4.7)

In the second case, where rank(A4;) = n — 1, we may assume that n > 1;
for if n = 1, then A; = 0 and the result follows by direct computation. Let
W = (wy W3) be an orthogonal matrix such that A;wy = 0. Set

T R
( Z )(w1 Wy) = ( 0 ly/T ) (1.8)

Since postmultiplication by orthogonal transformations does not affect the
norm of the weighted pseudo-inverse, we can equivalently bound the norm of
the weighted pseudo-inverse of the right-hand side of (4.8), which by direct
calculation is seen to be

0t =ty (DY) YD,
Z=1" LT ~1yT :
0 (YT DY)~ YT D;

Now (Y1 D;Y;)"'V.ID; is a weighted pseudo-inverse of the (m — 1) x
(n—1) matrix Y;. Hence by the induction hypothesis, there is a constant a;

independent of D; such that

1(Y;" D:Y;) 'Y Dyl < @
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Hence if we set 3; = ||y;|| and %; = ||, then
m=1Z|| < ai + (1 + i) (4.9)

The theorem now follows from the observation that the bounds (4.7) and
(4.9) depend only on the row index ¢ and not on D. Maximizing over 7 gives
the required bound.

It is natural to ask if the theorem remains true when D is replaced by
an arbitrary positive definite matrix. The following example shows that it
does not. Let A be the vector (0 1)T and let

() ()

Then it is easily verified by direct computation that
lim [[(A" D) AT D] = ()

which becomes unbounded as ¢ — 0. It is probably significant that in this
example the nearer D is to a diagonal matrix the larger [|[(ATDA)~1ATD||.
We are now in a position to establish the main result of this section.

Theorem 6 Let Newton’s method with line search be applied to the function
[ producing a sequence of iterates {x*}. Then

f(z®) — inf f(2").

Proof. If f has a local minimum, then the theorem follows from the global
convergence of Newton’s method with line searches. Hence we may assume
that f has no global minimum. By Theorem 4.1, the vectors z* grow un-
boundedly.

Let us look at the components of Az*. Some of these must remain
bounded; otherwise, f(xk) will approach zero, which is a lower bound on f
and hence its infimum. By passing to a subsequence {y*} we may divide
the components of Ay* into to sets: those that remain bounded and those
that approach +o00. Let us assume that the latter are grouped at the top of
A, which we then partition as in (2.1).

We claim that A, has a nontrivial null space. Indeed, since Ayy* re-
mains bounded while ||y*|| — oo, any accumulation point of the sequence
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{y*/1ly*||} is a null vector. Thus as in §2, we may transform the matrix A

to the form
Bi1 Bia
0 Bay

by an orthogonal change of variables u = V1. Let w* denote the subse-
quence of the u* = VT2* corresponding to the subsequence y*. Finally, let
g, 91, and g be the functions defined by (3.3).

The idea of the proof is the following. Since anf + Blgwé“ grows
unboundedly, we must have gl(wk) — 0. Thus the only way the sequence
g(w") can fail to approach its infimum is for go(w*) to fail to approach its
infimum. Let s* denote the Newton step corresponding to w* and partition

it in the form
k
s = k
82

We shall show asymptotically s5 approaches the Newton step for gy at u4 and
that s§ has negligible effect on the value of g. Thus as far as gy is concerned,
we are taking Newton steps, and Theorem 4.1 will yield a contradiction if
g2 does not achieve a minimum.

Let us write D¥ = diag(D¥, D) for D(y*). Then lim Df = 0, while both
| D% and ||(D5)~1|| are bounded. Now the Newton equations for s* are

Bl DiBy, Bl,D!By, s\ Bl,Df1
BL,DiBii B3, Dy By + BL,DY By s5 )\ BpDi1+ B,D1
or

1 (Bf, D B11) 7' B, DY By, sk
(B3 D5By2) ' By DY By I+ (B3yDE Byg) ' B, DY By s5
(Bf, D By1)~'Bf; Di1
(B3,D5 Bay) ™' B3, D51 + (B3, D5 Byy) ' B, Di1

By Theorem 4.2, the matrices (B} Df By1)~! B{, D} remain bounded. More-
over, the matrices (Ba, D% Byg) ™' B, D% approach zero. Consequently, if we
define 5§ and s} as the solution of

I (B DYB1)7 B D B1s s\ _ [ (BLD{By) ' B, Df1
0 T g5 | 7\ (BLDsBy) ' B, D51
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then s¥ — 5% and s§ — 35. From this we see that s5 approaches the Newton
step for gy and is uniformly bounded in k. Hence s¥ and s* are also uniformly
bounded.

The result now follows from Theorem 4.1 as follows. Suppose that
lim g(w*) = 4" > infg(u). Let the Newton steps satisfy [|sg|| < o. Let
D be a compact set that includes the w4 and excludes the minimum of g,
if it has one. Let a < 1/4, €, and 8 be the positive constants from Theorem
4.1. Choose k so large that

L ||s5 — 5[l < e,
2. g(wk) <~'+0/3,
3. sup{gn(u): Ilu— || <o} <0/3

Then since a < 1/4,

gi(w" + as®) + go(wh + ash)

sup{gi(u) : [lu—y"|| <o} +ga(wh)—0
0/3+ (v +60/3)—0

v —8/3.

g(w® + as*)

IAN A

Thus the iterate following w” gives ¢ a value less than v —which is a con-
tradiction.

5 Conclusions

As was mentioned in the introduction, the algorithm proposed here is being
used in the statistical analysis of categorical data, where it performs quite
well. What makes it a particularly attractive choice is that the underlying
problem is to maximize a convex function, so that an optimizer is already
at hand. However, the problems are of low dimension.

Although we have given a complete mathematical analysis of the algo-
rithm, there are still open questions. For example, scaling the rows of A
does not affect the existence of a solution; but it can be expected to have
a profound effect on the behavior of the algorithm, since exponentials are
such rapidly varying functions. More generally, the exponentials could be
replaced by any sufficiently smooth function with the property that they
increase monotonically from 0 at —oc to oo at +oo. What effect this will
have on the algorithm is unclear.
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Nor is it clear how the algorithm will perform for large problems. Here
Newton’s method becomes less desirable, since it involves forming and solv-
ing the large Newton equations. A possibility is some method based on the
conjugate gradient algorithm, especially since line searches remain compar-
atively cheap. However, this is a subject for further analysis and experimen-
tation.
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