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The climate’s role in determining where species occur is increasingly well 

understood, but our ability to predict how biotic interactions both influence and 

respond to species’ range shifts remains poor. This is particularly important when 

considering climate-change-driven range shifts in habitat-forming species like 

mangroves, given their impact on ecosystem structure and function. In this 

dissertation, I consider the arthropods associated with the black mangrove, Avicennia 

germinans, to explore whether patterns of arthropod diversity affect the rate of a 

plant’s range expansion, and, in turn, how a range-expanding plant alters arthropod 

communities in habitats where it is invading. Among arthropods with the potential to 

influence plants’ range dynamics, pollinators can directly affect plant reproduction 

and ability to spread into new territory. Breeding system experiments reveal that A. 

germinans relies on pollinators for full fruit set, and surveys along the Florida coast 

show a substantial northward decline in the overall frequency of pollinator visits to A. 



  

germinans flowers. However, the decline in abundance of some common pollinator 

taxa is partly offset by an increase in the frequency of other highly effective taxa. 

Furthermore, range-edge A. germinans produce more flowers than southern 

individuals, contributing to high range-edge fecundity and enabling range expansion. 

As a woody plant with nectar-producing flowers, A. germinans is a novel resource for 

arthropods in the salt marshes where it is encroaching. To understand arthropod 

community assembly on these frontier mangroves, and how mangrove presence 

affects marsh arthropod community composition, I compare arthropod communities 

in these adjacent vegetation types. Arthropods form distinct communities on 

mangroves and marsh vegetation, with at least one A. germinans specialist already 

present in this range-edge population. However, neither mangrove proximity nor the 

abundance of mangrove flowers appears to influence salt marsh arthropod community 

structure, indicating that mangrove encroachment may lead to a net increase in 

arthropod diversity in coastal regions by increasing habitat heterogeneity. In sum, 

plants that rely on pollinators can avoid range-edge reproductive failure by attracting 

a diverse group of pollinating taxa, and range-expanding plants can rapidly alter 

invaded communities by shaping diversity at very local scales. 
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Chapter 1: Overview 

Conceptual background 

Climate change has repeatedly been linked to species distributional shifts 

around the world, in the terrestrial, freshwater, and marine realms (Parmesan 2006, 

Chen et al. 2011, Poloczanska et al. 2013). In general, these shifts reflect predicted 

movements – typically upward in elevation or latitude – given models of species’ 

physiological tolerances and projections of future climatic conditions (Parmesan and 

Yohe 2003). However, species are not all shifting their distributional limits at the 

same rates, or even the same directions, a fact that will lead to a degree of 

“reshuffling” of local ecological communities (Williams and Jackson 2007, Loarie et 

al. 2009, Urban et al. 2012). As a result, climate change is expected to alter networks 

of biotic interactions, with some species losing interaction partners as their 

distributions grow apart, and others gaining new interaction partners (Tylianakis and 

Morris 2017). Consequently, the composition of local ecological communities, their 

functioning, and the ecosystem services they provide are extraordinarily challenging 

to predict. 

For most species, we lack the ability to predict two important aspects of 

climate-driven range shifts: 1) the ways in which biotic interactions will inhibit or 

facilitate species’ range dynamics, and 2) the biotic interactions that rapidly shifting 

species will take part in, and thus the ecological role they will play, in the novel 

systems into which they spread. This dissertation illustrates some of the traits and 
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circumstances that facilitate a species’ rapid response to climate change, and thus 

contributes to our ability to predict future ecosystem structure and function. 

Study system 

As a flowering plant with well-described range dynamics and distributional 

limits, Avicennia germinans (L.) L. (Acanthaceae), black mangrove, is an ideal 

organism with which to answer questions surrounding range shifts and biotic 

interactions. Like the approximately 60 other species of mangroves found worldwide, 

A. germinans is a tree adapted to the salty conditions of the intertidal zone, with a 

primarily tropical distribution (Tomlinson 1986, Duke 1995). Mangroves – a 

polyphyletic group – have evolved a variety of physiological, chemical, and 

anatomical traits that confer tolerance to salinity and flooding (Tomlinson 1986, 

Krauss et al. 2008, Feller et al. 2010). A. germinans achieves this through, among 

other mechanisms, salt excretion glands on its leaves and aerial roots 

(‘pneumatophores’) containing aerenchyma that promotes efficient gas exchange 

(Dawes 1981, Borg and Schönenberger 2011). Traits like these allow mangroves to 

dominate in settings that few other plants can tolerate, making mangroves critical 

providers of habitat and ecosystem services along tropical and subtropical coastlines 

around the world (Tomlinson 1986, Barbier et al. 2011, Mcleod et al. 2011, Kelleway 

et al. 2017). 

Their tolerance of salinity and inundation notwithstanding, mangroves are 

believed to be generally intolerant of cold conditions (Stuart et al. 2007, Cavanaugh 

et al. 2015, Osland et al. 2015). Previous research has revealed a tight link between A. 

germinans’ thermal tolerance and its range dynamics in the southeastern U.S. (Stuart 
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et al. 2007, Cavanaugh et al. 2014, 2015, Osland et al. 2017). Over the past two 

centuries, A. germinans and the region’s two other (less cold-tolerant) mangrove 

species have repeatedly shifted their northern range edge across approximately 3° of 

latitude (~28-31°N), roughly in sync with the occurrence of extreme cold events in 

the region (Cavanaugh et al. 2019). Given its physiological constraints and climate 

forecasts that predict a decline in hard freezes, A. germinans is expected to 

permanently dominate coastlines where it currently co-occurs with temperate salt 

marsh, effectively shifting the mangrove-marsh ecotone northward (Cavanaugh et al. 

2019). 

At its northernmost range margin, A. germinans forms single-species stands 

within salt marsh – a biologically simplified arrangement that lends itself to 

observational study and experimentation. Even where A. germinans does not occur in 

monospecific stands, it provides physical substrate in a dynamic coastal setting and 

thereby facilitates many other taxa – both benthic marine organisms and terrestrial 

species (Barbier et al. 2011, Kelleway et al. 2017, Armitage et al. 2020). It attracts a 

wide range of taxa to its flowers (Figure 1.1), although the degree to which it relies on 

pollinators is unknown, and no previous effort has been made to identify its most 

important pollinators in the southeastern U.S. In sum, A. germinans is an important 

foundation species in the coastal regions where it occurs, facilitating a diverse 

community of associated organisms. 

In this dissertation, I consider the arthropods associated with the black 

mangrove, A. germinans, to explore whether patterns of arthropod diversity affect the 
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rate of a plant’s range expansion, and, in turn, how a range-expanding plant alters 

arthropod communities in habitats where it is invading. 

Outline of the dissertation 

I begin, in Chapter 2, by establishing baseline biological information 

regarding A. germinans’ breeding system – specifically, the degree to which it 

depends on pollinators. Obligate mutualisms are thought to present a barrier to range 

shifts, in that the mutualist partner may not be present beyond the range edge. To 

determine the degree to which A. germinans depends on pollinator mutualists, I 

monitored for windborne pollen and experimentally manipulated A. germinans 

flowers to either exclude pollinators or prevent spontaneous self-pollination. 

Having established that A. germinans does rely on pollinators to achieve 

maximum fecundity, Chapter 3 examines whether pollination or reproductive failure 

Figure 1.1: A bumble bee visits A. germinans flowers, 

whose abundant nectar earned this species the title of 

‘honey mangrove’ among Florida’s beekeepers. 
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constrain A. germinans’ northward range expansion. To assess variation in the 

pollination environment, I monitored pollinators visiting A. germinans populations 

along a latitudinal gradient, from south-central Florida to the northern range edge. I 

also measured the relative effectiveness of different pollinator taxa, to quantify each 

population’s pollination environment. Finally, I measured flower production, 

propagule production, and propagule mass to assess inter-population variation in 

allocation to reproduction. These approaches reveal how a range-shifting pollinator-

dependent plant can avoid pollen limitation at its expanding range margin, and how it 

also maintains high reproductive output near its physiological limit. 

Finally, Chapter 4 pivots to consider how arthropod communities respond to 

A. germinans encroachment into salt marshes. Range shifts of dominant, habitat-

forming species like A. germinans result in large structural, chemical, and 

phenological changes for local taxa within the ecotone. I sampled arthropod 

communities in range-edge A. germinans and in adjacent salt marsh at varying 

distances, to test the hypothesis that mangrove encroachment facilitates a new 

arthropod community and has effects that extend into surrounding marsh habitat. I 

also manipulated the number of A. germinans flowers to specifically test the influence 

of the novel floral resources on the structure and differentiation of arthropod 

communities in neighboring vegetation. Understanding how resident communities 

respond to the introduction of a new foundation species, and how communities vary 

across the patchy habitat of an ecotone, will make it easier to predict the effects of 

distributional shifts on regional biodiversity. 
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Chapter 2: Pollinator-dependence in Avicennia germinans, the 
black mangrove 

 

Abstract 

Avicennia germinans (black mangrove) is a cold-intolerant species undergoing 

a northward range shift in the southeastern U.S., as winter temperatures warm. This 

species’ ability to track the changing climatic conditions may depend, however, on its 

breeding system. If A. germinans can maintain adequate fruit set without the 

assistance of pollinators – thanks to either wind pollination or spontaneous self-

pollination – then its range expansion will not be constrained by pollen limitation at 

its range edge. Alternatively, if A. germinans relies on pollinators for full fruit set, 

then its ability to shift its distribution northward could be slowed if it reaches areas of 

low pollinator abundance. To determine the degree to which A. germinans depends on 

pollinators, we assessed the likelihood of wind pollination in A. germinans by 

monitoring for airborne pollen, and we tested A. germinans’ ability to set fruit when 

pollinators were excluded and when within-flower selfing was prevented. We found 

no A. germinans pollen on pollen traps immediately adjacent to flowering trees, 

suggesting that this species is rarely, if ever, wind-pollinated. We also found 

significant declines in fruit set when pollinators were excluded from flowers, and no 

decline in fruit set when within-flower selfing was prevented. These results indicate 

that although A. germinans can reproduce to a limited extent without the assistance of 

pollinators, this species depends on pollinators to avoid pollen limitation. 
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Introduction 

Avicennia germinans (L.) L. (black mangrove) is a common, sometimes 

dominant member of intertidal vegetation in tropical and subtropical regions of the 

Americas and West Africa (Tomlinson 1986). It is a culturally, economically, and 

ecologically important species, contributing to ecosystem services like carbon 

storage, wave attenuation, and nursery habitat for various fisheries (Barbier et al. 

2011, Doughty et al. 2015, Kelleway et al. 2017). Despite its prominence in coastal 

settings, A. germinans’ pollination system is not well understood. Its flowers are 

known to be attractive to animals – there are several records of floral visitors 

(Sánchez-Núñez and Mancera-Pineda 2012, Landry 2013a), and, at least historically, 

Floridian beekeepers have obtained high yields from hives in A. germinans stands 

(Pellett 1919) – but the degree to which it relies on pollinators is unknown. Given that 

this species may be undergoing climate-driven range expansion in the southeastern 

US (Cavanaugh et al. 2014), and given reproduction’s critical role in plants’ range 

dynamics, understanding these aspects of A. germinans’ pollination biology is 

important for making predictions about the rate of its range shift and its future 

distribution. 

If A. germinans were wind-pollinated or were capable of spontaneous 

autogamy (unassisted pollination of flowers by their own pollen), then this species 

would not require pollinators to ensure reproduction. And indeed, molecular methods 

have revealed that A. germinans does self-pollinate – sometimes quite frequently 

(Nettel-Hernanz et al. 2013). However, it is unknown whether this selfing occurs is 

spontaneous. In other words, selfing may occur either via spontaneous autogamy, via 
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pollinator-mediated fertilization of flowers with their own pollen or pollen from 

neighboring flowers on the same plant (geitonogamy), or via both mechanisms 

(Goodwillie et al. 2005). Furthermore, A. germinans may not be capable of 

spontaneous autogamy at all, since its flowers are protandrous (its anthers mature 

before the stigmas) (Daniel 2016) – a reproductive strategy that is thought to help 

plants avoid self-pollination (Lloyd and Webb 1986). De Lima Nadia et al. (2013) 

found that a sister-species, A. schaueriana Moldenke, that is also protandrous, is 

incapable of spontaneous autogamy, and it therefore relies on a vector for self-

pollination. Two other sister-species – A. officinalis L. and A. marina (Forssk.) Vierh. 

– have recently been shown to suffer reduced fruit set (though not outright 

reproductive failure) in the absence of pollinators (Chakraborti et al. 2019). If A. 

germinans cannot spontaneously self, or can only do so to a limited extent, then 

pollinators may be essential for maximum reproduction. However, this has not been 

tested. 

One additional means by which A. germinans can avoid dependence on 

pollinators is wind pollination. A. germinans is usually assumed to be exclusively 

animal-pollinated (Tomlinson 1986), but no test for windborne pollen has ever been 

reported. Some aspects of A. germinans’ floral morphology – the showy corollas, 

copious nectar production, and moderate pollen production – are considered atypical 

for a wind-pollinated plant (Faegri and van der Pijl 1979). Additionally, the 

attractiveness of A. germinans’ flowers to insects – it has variously been described as 

having a generalized pollination system (Sánchez-Núñez and Mancera-Pineda 2012), 

and as being bee-pollinated (Nettel-Hernanz et al. 2013) – seems to have led 
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observers to assume that wind pollination is unimportant. But A. germinans possesses 

several characteristics common in wind-pollinated species (Culley et al. 2002), such 

as a high pollen:ovule ratio (measured as 3,351 ± 881 SD, unpublished data) and a 

relatively small pollen size (Bertrand 1983). Wind pollination could help ensure 

reproduction in settings with low pollinator availability – a situation that individuals 

at the leading range edge could encounter. That being said, Avicennia pollen is scarce 

in the fossil record (Duke 1995), suggesting that it infrequently becomes airborne. 

The details of A. germinans’ pollination biology have important implications 

for its range dynamics. If A. germinans can self only with the assistance of 

pollinators, then its ability to shift its distribution may depend on pollinator 

availability (Moeller et al. 2012). In settings like the salt marshes of the southeastern 

US – the habitat into which mangroves are encroaching – pollinator availability may 

be low, due to the dominance of wind-pollinated grasses (Steffan-Dewenter and 

Tscharntke 1999, Hegland and Boeke 2006). If this is the case, A. germinans’ rate of 

range expansion may rely on its ability to attract pollinators from neighboring upland 

habitat. On the other hand, if A. germinans is capable of spontaneous autogamy or 

wind pollination, and therefore does not rely on pollinators for reproduction, then its 

range dynamics may not directly depend on pollinator availability. However, even if 

A. germinans is capable of some reproduction in the absence of pollinators, its 

breeding system and the genetic structure of its populations may still be influenced by 

the abundance and identity of pollinators in a given environment (Loveless and 

Hamrick 1984).  
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This study’s objective is to describe the pollination biology of A. germinans. 

Specifically, we sought to identify its pollen vector or vectors – i.e. insects and/or 

wind – and to assess its ability to spontaneously self-pollinate. Ultimately, we wanted 

to determine if A. germinans is capable of setting fruit in the absence of pollinators. If 

A. germinans relies even partially on pollinators, its ability to track the changing 

climate of the Southeastern U.S. may depend on the insect communities of the 

region’s coastal zone. 

 

Materials and Methods 

Field site description 

Pollinator exclusion experiments were carried out during the summers of 2014 

and 2015 at several sites spanning approximately 320km of Florida’s Atlantic coast 

(Figure 2.1). The northern sites (Anastasia State Park and the Guana-Tolomato-

Matanzas NERR) contain some of the northernmost mangroves in Florida, having 

scattered, sometimes very dense, monospecific stands of short A. germinans 

surrounded by salt marsh vegetation (mainly Sporobolus alterniflora (Loisel.) P.M. 

Peterson & Saarela and Batis maritima L.). Heading south, sites are increasingly 

mangrove-dominated, with taller trees and increased abundance of Florida’s other 

two mangrove species (Rhizophora mangle L. and Laguncularia racemosa (L.) C.F. 

Gaertn.). 
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Figure 2.1: Sites where pollinator exclusion experiments were conducted, in 2014 (orange) and 2015 

(red). All sites were located on the lagoon side of barrier islands. See text for individual site 

descriptions. 

Experiment 1: Reproductive strategy 

To assess A. germinans’ ability to self without pollinators, the contribution of 

within-flower selfing to fruit set, and inter-site variation in A. germinans’ breeding 

system, we conducted an experiment to test reproductive strategy across six sites in 

2014 (Figure 2.1). At each site, we haphazardly selected 12-21 A. germinans 

N

●

●

●

●

●
●
●

St. Lucie Inlet
Preserve SP

Avalon SP

Pine Island CA
Meritt Island NWR

GTM NERR

Anastasia SP
GTM NERR

●

●

2014 sites

2015 site
A. germinans 
distribution

−84 −83 −82 −81 −80

25
26

27
28

29
30



 

 

12 
 

individuals, with most trees at least 10m apart. In June-July (depending on site), each 

tree received all of the following treatments: anther removal, pollinator exclusion, 

pollinator exclusion plus hand-pollination with self pollen, and unmanipulated natural 

pollination. Up to 20 nearly-opened flowers, each on a different inflorescence, were 

selected within each tree. Each flower was haphazardly assigned to one of the 

treatment levels, such that all treatments were replicated up to five times within a tree. 

In order to identify each replicate at the end of the experiment, the calyx of each focal 

flower was marked with white correction fluid, and the pedicel of its inflorescence 

was tagged with flagging tape. 

The first manipulative treatment – anther removal – effectively left flowers 

unable to self-pollinate. Therefore, this treatment’s fruit set, when compared to that of 

the unmanipulated natural-pollination treatment, would reveal the degree to which 

within-flower selfing boosts A. germinans’ fruit set. This treatment was applied by 

using dissecting scissors to cut out all four anthers from focal flowers, prior to pollen 

release; in total, 449 flowers received this treatment across all six sites. 

For the pollinator exclusion treatment, inflorescences containing the focal 

flowers were covered with a 7.5x10cm fine-mesh (0.05 mm) bag prior to anthesis, to 

ensure the flowers had not been pollinated prior to the treatment. The bags remained 

in place for 5-8 days, by which point the anthers and corollas had abscised. In total, 

462 flowers received this treatment across all six sites. 

To partly account for the confounding effect that increased temperatures 

inside the pollinator exclusion bags had on fruit set (Figure A.1), we included a hand-

pollination treatment, in which replicates were bagged as in the pollinator-exclusion 
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treatment, but also received supplemental pollen (applied with a brush from another 

open flower on the same tree). This allowed us to directly compare the fruit set of 

bagged flowers – for which spontaneous autogamy was the only means of pollination 

– to the maximal fruit set of bagged flowers that received abundant pollen. This 

treatment also gave some indication of the extent of fruit set decline due to 

heat/humidity within the pollinator exclusion bags: if there were no such negative 

effects, then fruit set of this treatment would be expected to be as high or higher than 

fruit set in the unmanipulated natural-pollination treatment. Across all six sites, 309 

flowers received this treatment. 

Five to seven weeks after applying the treatments, we covered any developing 

focal propagules with large-mesh (~1.0 cm) bags, to catch the mature propagules as 

they dropped (which occurred 4-5 months later). In the fall, we recorded the presence 

or absence of a propagule from each focal flower. 

In R version 3.5.0, we modeled fruit set (presence/absence) using a binomial 

generalized linear mixed model (glmer function in the lme4 package), with treatment, 

site, and a treatment´site interaction as fixed effects, and tree as a random intercept 

(Bates et al. 2015, R Core Team 2018). We used a bootstrap approach to test the 

significance of the treatment, site, and interaction predictors (Halekoh and Højsgaard 

2014), and used post hoc Tukey testing (Hothorn et al. 2017) to assess differences in 

treatment effects site-by-site. Finally, we calculated the model’s marginal and 

conditional R2, for fixed effects and both random and fixed effects, respectively, with 

the r.squaredGLMM function in the MuMIn package (Bartoń 2018). 
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Experiment 2: Pollinator exclusion 

The second pollinator exclusion experiment, in 2015, was conducted at a 

single site (Figure 2.1) and was designed to better account for treatment effects that 

were revealed in the first experiment, by using pollinator exclusion bags with wider 

mesh. In early June, before flowers had opened, 20 A. germinans were selected, with 

all trees at least 10m from one another. We selected six inflorescences on each tree, 

randomly assigning three to a pollinator exclusion treatment and three as 

unmanipulated natural pollination (ultimately n=45 and n=54, respectively, after 

some replicates were lost over the course of the experiment). The pollination 

exclusion treatment here was the same as in the first experiment in 2014, except for 

the size of the mesh in the exclusion bags. Inflorescences assigned to the pollinator 

exclusion treatment were covered with large-mesh (~1.0 cm) plastic bags, which were 

meant to exclude most large insect pollinators (however, we did observe one 

Crabronid wasp leaving one of the bags partway through the experiment, indicating 

that the bags were not impenetrable to large insects). Inflorescences assigned to the 

natural pollination treatment were left unbagged and were marked with flagging. In 

late August, once flowering had finished, bags were placed over the control 

inflorescences, as well, to catch propagules as they dropped. We collected all bags in 

early November, 2015, and counted both the number of propagules inside and the 

number of initial floral buds on the inflorescence. 

The number of propagules was modeled using a Poisson generalized linear 

mixed model, with treatment as a fixed effect, tree as a random intercept, and total 
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floral buds as an offset, in R (glmer function in the lme4 package) (Bates et al. 2015, 

R Core Team 2018). 

Monitoring for windborne pollen 

Monitoring for windborne A. germinans pollen was conducted in 2015 at the 

same range-edge site as the second pollinator-exclusion experiment. During peak 

flowering, we selected five 1-2m tall A. germinans that were at least 1.5m away from 

any other A. germinans. At each tree, we installed five 1m-tall stakes: one near the 

tree’s main trunk, and one in each of the four cardinal directions approximately 0.5m 

from the tree’s periphery. At 8:30am, sticky traps – Vaseline-coated microscope 

slides – were hung on each stake facing the focal tree, with the stake near the tree’s 

main trunk receiving four sticky traps, each facing outward. The sticky traps were left 

in place for 24hrs to collect pollen. After collecting the traps, we covered their 

adhesive surfaces with glass slip covers, and inspected them at 100X magnification 

using a compound microscope. To provide a reference search image, we intentionally 

applied A. germinans pollen to one unused sticky trap. Two points were randomly 

selected on each sticky trap’s adhesive surface, and the area inside the field of view 

(approximately 2.5mm2), centered on these points, was examined to record any A. 

germinans pollen present. The rest of the slides were also scanned to check for any 

missed clumps of pollen. 
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Results 

Experiment 1: Reproductive strategy 

In 2014, there was substantial variation in fruit set among sites, with the 

highest natural rates of fruit set observed at the northernmost site (Anastasia) and at 

one of the southernmost sites (Avalon) (Figure 2.2). Of 466 natural-pollination 

flowers across all sites, 130 had initiated propagule development by the end of the 

experiment, amounting to an overall fruit set rate of 0.28 propagules/flower. The full 

model, with treatment, site, and treatment´site fixed predictors and tree ID as a 

random intercept, explained a moderate amount of variation in fruit set (marginal 

R2=0.34, model conditional R2=0.39). 

We detected a significant interaction between treatment and site (bootstrap p = 

0.001), such that treatment effects varied among sites (Figure 2.2, Figure A.2). In 

general, anther removal did not decrease fruit set; in four out of six sites, flowers that 

had their anthers removed set fruit at a rate similar to those exposed to natural levels 

of pollination. (Two sites – Pine Island and Merritt Island – saw an increase in fruit 

set for flowers without anthers, relative to natural-pollination flowers.) 

Additionally, bagging to exclude pollinators tended to decrease fruit set; in 

another four of the six sites, flowers that were bagged and received no supplemental 

pollen set fruit at a significantly lower rate than flowers exposed to natural levels of 

pollination (Figure 2.2, Figure A.2). The remaining two sites (Merritt Island and the 

GTM NERR) showed no difference in fruit set between bagged and natural-

pollination flowers; notably, these two sites were those with the lowest rates of 

natural fruit set. 
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Figure 2.2: Variation among treatments and sites in fruit set, in the first reproductive strategy 

experiment in 2014. Y-axis values are calculated as the number of propagules that began to develop 

divided by the number of flowers assigned to this treatment and site. Sites are arranged within each 

treatment from southernmost on the left (red), to northernmost on the right (yellow). Bars show 

standard errors. For significant differences among treatments within each site, see Figure A.2. 

Flowers that received supplemental self-pollen and were bagged mostly 

displayed similar levels of fruit set to bagged flowers, except for one site (Anastasia), 

where supplemental pollen increased fruit set relative to bagged flowers, restoring it 

to a level similar to that of natural-pollination flowers (Figure 2.2, Figure A.2). At 

three additional sites (Saint Lucie, Avalon, and the GTM NERR), bagged flowers that 
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received supplemental pollen showed slightly higher rates of fruit set, relative to 

flowers that were bagged and received no additional pollen; however, the differences 

in fruit set at these sites were not significant. In addition, compared to natural-

pollination flowers, flowers that received supplemental pollen tended to display a 

reduced fruit set rate – although this difference was only statistically significant at 

one site (Avalon). 

Experiment 2: Pollinator exclusion 

The 2015 experiment, involving a single pollinator exclusion treatment and 

larger exclusion mesh, also showed a negative effect of pollinator exclusion on 

propagule production (Figure 2.3). Control inflorescences had a mean propagule 

production rate of 0.25 propagules/floral bud (±0.14 SD), whereas bagged 

inflorescences produced propagules at a rate of 0.13 propagules/floral bud (±0.13 SD) 

(model marginal R2=0.21, model conditional R2=0.46) . 

Monitoring for windborne pollen 

In our monitoring for windborne A. germinans pollen, we did not observe a 

single A. germinans pollen grain across all 40 sticky traps associated with our five 

focal trees. 
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Figure 2.3: Propagule production (measured as number of propagules produced by an inflorescence), 

from the second pollinator exclusion experiment in 2015. Bagged inflorescences produced significantly 

fewer propagules per floral bud than unmanipulated inflorescences that received natural levels of 

pollination (bootstrap p = 0.005). 

Discussion 

Avicennia germinans displays a moderately high level of pollinator 

dependence, and does not appear to rely on wind for pollination. Here, we have 

shown that while A. germinans is capable of spontaneous self-pollination, its fruit set 

declines substantially in the absence of pollinators. When pollinators were largely 

excluded from flowers, fruit set dropped by nearly half (Figure 2.3). Additionally, 

flowers that were entirely inaccessible to pollinators may have been pollen-limited, as 

evidenced by the tendency for fruit set to increase when supplemental pollen was 
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supplied (although this increase was only statistically significant at one site) (Figure 

2.2). Furthermore, flowers prevented from spontaneously self-pollinating – those 

whose anthers were removed – did not experience a decrease in fruit set rate, 

indicating that within-flower selfing is negligible, or that it can be entirely made up 

for by other pollen vectors. Finally, we found no evidence for windborne A. 

germinans pollen, suggesting that anemophily is not an important means of 

pollination in this species. Together, these findings point to reliance on pollinators for 

full fruit set in A. germinans, and to the potential for pollinator availability to 

influence this species’ range expansion. 

This result is somewhat counterintuitive, given A. germinans’ life history. An 

effective colonizer, A. germinans might benefit from the reproductive assurance that 

spontaneous autogamy provides, especially during the early stages of colonization, 

when density of individuals is low (Baker 1955). Indeed, plants that predominantly 

self-pollinate have been found to have larger range sizes than those that are 

predominantly outcrossing, presumably due to their ability to establish in new 

settings, (Grossenbacher et al. 2015), and A. germinans’ range is certainly very large 

(Tomlinson 1986). On the other hand, in the presence of inbreeding depression, 

selfing can cause a decline in fecundity and/or offspring fitness that is large enough to 

offset the benefits of reproductive assurance (Hargreaves and Eckert 2014). Perennial 

plants, like A. germinans, can escape this tradeoff between inbreeding depression and 

reproductive uncertainty by avoiding self-pollination (via mechanisms like 

herkogamy and dichogamy) and simply waiting to reproduce another season, if 

pollination in a given season is low (Stebbins 1970, Morgan et al. 1997). The 
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magnitude of inbreeding depression has not been tested in this species; it may be 

considerable, given our finding that A. germinans rarely spontaneously self-

pollinates, despite the presumed benefits of doing so. Alternatively, the ability to 

achieve full fruit set via spontaneous self-pollination may not have evolved in this 

species thanks to a highly generalized pollination system and an adequate supply of 

pollinators wherever A. germinans establishes. 

While we are confident that A. germinans is dependent on pollinators for full 

fruit set, it is important to emphasize that the magnitude of A. germinans’ reliance on 

pollinators is difficult to derive from this study. The tradeoff between floral damage 

from heat/humidity (with narrow-mesh exclusion bags) and incomplete pollinator 

exclusion (with wide-mesh exclusion bags) means that our first experiment, using 

narrow-mesh bags, overestimated the strength of pollinator dependence, while our 

second experiment, using wide-mesh bags, underestimated it. Furthermore, meta-

analysis has revealed that experiments like these, where just a fraction of each 

individual plant’s flowers are involved, tend to overestimate the strength of pollen 

limitation, on average (Knight et al. 2006). This may occur if plants allocate resources 

away from flowers with low pollen receipt (e.g. flowers experimentally subjected to 

pollinator exclusion). Whether or not A. germinans does this is unknown. Our 

experiments somewhat avoided this issue by applying treatments to entire 

inflorescences; trees are less likely to allocate resources among distant branch tips 

than among adjacent pedicels (Knight et al. 2006). 

A. germinans’ dependence on pollinators means that pollinator availability can 

influence its ability to shift its distribution in sync with the changing climate of the 
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southeastern US. In this region, A. germinans’ rate of range expansion may depend on 

how well it attracts pollinators from neighboring upland habitat, given a potential 

scarcity of pollinators in the salt marsh habitats into which mangroves are 

encroaching. In theory, this will be challenging for the northernmost colonizing 

individuals, which are small and isolated (Kunin 1993). However, our results reveal a 

complex picture regarding the relationship between reproductive success and 

proximity to the range edge: a general negative trend in fruit set with increasing 

latitude was erased by very high fruit set seen at the northernmost population (Figure 

2.2). This suggests that A. germinans’ ability to attract pollinators near its range edge 

will be site-specific, and that its continued encroachment northward will not 

necessarily be pollinator-limited. Future research, with this species and others, should 

test the importance of pollinator dependence and availability for plants near their 

range limits, as they respond to climate change.   
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Chapter 3: Major turnover in pollinator community composition 
does not impact fecundity of a range-shifting plant 

 

Abstract 

Plants’ ability to reproduce near their geographic range edge can determine 

whether distributions will shift in response to changing climatic conditions. However, 

range-edge reproduction can be a challenge, particularly for species that rely on 

pollinators. The pollinator assemblage at a plant’s range edge can differ in abundance 

and identity from assemblages within the geographic core of the plant’s distribution, 

potentially causing pollen limitation at the range edges. Additionally, for plants 

whose range limits are defined by environmental tolerances, abiotic conditions at the 

range edge can be stressful, affecting allocation to reproductive output. Animal-

pollinated plants that have shifted their distributions have overcome these multiple 

barriers, but the mechanisms by which they have done so is poorly understood. In this 

study, I examined plant-pollinator interactions hypothesized to impact reproduction as 

populations of the black mangrove, Avicennia germinans, expand poleward in eastern 

coastal Florida, USA. I identified and counted pollinators visiting A. germinans 

populations varying in proximity to the geographic range edge, evaluated the 

relationship between local pollinator assemblages and pollen deposition (a measure of 

pollen limitation), and measured A. germinans flower and propagule production. I 

found that despite a 72% decline in pollinator abundance at the range edge, species 

turnover resulted in a highly effective assemblage of pollinator taxa there; 

consequently, pollen deposition remained high at the range edge. I also observed 
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elevated flower production in northern populations, which, combined with the 

maintenance of pollinator effectiveness there, contributed to high per-tree 

reproductive output at the range edge. Furthermore, mean propagule mass in northern 

populations was 18% larger than propagules sampled from the southernmost 

populations. Together, these findings suggest that range-edge A. germinans are able 

to rapidly encroach on surrounding salt marsh, and corroborate research that points to 

rapid expansion of mangrove cover in the region. These results show that the climatic 

constraints that set this species’ range limit do not necessarily limit range-edge 

allocation to reproduction, and that pollinator identity, rather than sheer abundance, 

can support plant reproductive success at an expanding range edge. 

Introduction 

In response to climate change, the geographic distributions of many taxa are 

shifting to track changing environmental conditions (Parmesan 2006, Lenoir et al. 

2008, Chen et al. 2011). For plants (and other sessile organisms), range shifts depend, 

in part, on the ability to reproduce at or relatively near the leading range edge, so that 

propagules can disperse into newly suitable habitat. However, a number of abiotic 

and biotic conditions can constrain a plant’s ability to produce viable seeds near the 

edges of its geographic range. Reproductive failure can be as important as mortality 

in setting plants’ range limits (Pigott 1992, Gaston 2009). For plants subject to 

changing climatic conditions, reproductive failure at the range edge can result in a 

delayed range shift, or in no shift at all (Clark et al. 2001, Alexander et al. 2018, 

Brown et al. 2018). 
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Multiple ecological mechanisms can decrease plant fecundity, or the number 

of viable seeds produced per individual, near geographic range edges. For species 

whose range limits are set by environmental tolerances, particularly climatic ones, 

conditions at the range edge can be generally stressful across all life stages, leading to 

reduced plant vigor and allocation to reproduction (Reinartz 1984, Chiariello and 

Gulmon 1991, García et al. 2000, Gaston 2009). While some plants can react to 

stressful conditions by increasing reproductive effort (to compensate for early losses 

to reproductive components or for reduced adult survival), allocation to reproduction 

generally declines as resources become limiting – particularly for perennial plants 

(Chiariello and Gulmon 1991). But reduced fecundity due to a decline in overall vigor 

is not the only reason that physical conditions can limit range-edge fecundity; 

different developmental stages can respond differently to abiotic conditions, leading 

to situations in which, for example, adults can persist but are unable to reproduce. For 

instance, Pigott and Huntley (1981) observed prohibitively slow pollen-tube growth 

in otherwise apparently healthy populations of Tilia cordata near its northern range 

edge, which they attributed to cold spring temperatures there. Weis and Hermanutz 

(1993) found that a population of Betula glandulosa near the species’ northern range 

edge produced relatively few staminate and pistillate flowers, and little pollen per 

catkin, leading to a complete failure to set seed; they speculated that winter freezes or 

the short growing season could be responsible. More recently, Brown et al. (2018) 

demonstrated that despite an increasingly favorable climate for adult trees at the 

forest-tundra ecotone in arctic regions, an interaction between decreased tree density, 

growing degree days, and precipitation results in reduced viable seed production 
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there, constraining trees’ ability to colonize the tundra, and potentially creating a lag 

in the northward shift of the arctic treeline. Additional studies have found range-edge 

reproductive failure in plants whose reproductive phenology is incompatible with 

earlier winters or later springs there (Chuine and Beaubien 2001, Tremblay et al. 

2002, Griffith and Watson 2006, Morin et al. 2007, Chuine 2010). In sum, harsh 

abiotic conditions at a plant’s range edge can cause reproductive failure there, even if 

individuals are still capable of establishment and vegetative growth. 

In addition to abiotic conditions, biotic factors at a plant’s range edge can 

create barriers to reproduction. While negative biotic interactions, particularly 

competition, have received growing research attention as the causes of species’ range 

limits, there is increasing recognition of the role that positive species interactions can 

play in setting species’ range limits (Gaston 2003, Sexton et al. 2009, 

HilleRisLambers et al. 2013, Svenning et al. 2014). For example, absence of 

mutualists beyond a plant’s range edge can prevent local establishment (Parker 1997, 

2001, Nuñez et al. 2009, Moeller et al. 2012, Afkhami et al. 2014). Plants that rely on 

pollinators for full fruit set – i.e. most flowering plants (Ollerton et al. 2011) – face 

this biotic barrier to range-edge reproduction. Pollinator communities often vary in 

composition throughout the distribution of a given plant species, potentially creating 

spatial gradients of pollen limitation (Herrera 1988, Horvitz and Schemske 1990, 

Gómez et al. 2010). If a plant and its pollinators are similarly limited by 

environmental conditions – e.g. aridity, soil conditions, or temperature – then 

pollinator availability can decline (and pollen limitation can rise) toward the plant’s 

range edge (Stone and Jenkins 2008, Moeller et al. 2012). Alternatively, pollinator 
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visitation can decline at a plant’s range edge if the habitat beyond contains few floral 

resources, and therefore supports few pollinators (Chalcoff et al. 2012). Finally, 

pollination can decline if a plant’s density, height, and/or floral display are reduced at 

the range edge, thereby reducing its attractiveness to pollinators (Kunin 1993, Brody 

and Mitchell 1997, Donnelly et al. 1998, Hegland and Boeke 2006). 

If changes in the abundance or identity of pollinators result in increased pollen 

limitation of a plant species near its range edge, plant performance can decline there, 

affecting range dynamics. How often these gradients of pollen limitation and 

geographical ranges align is unknown; while increased pollen limitation due to 

changes in pollinator abundance and identity can limit plant performance at some 

range edges and invasion fronts (e.g. Hopkins 1914, Parker 1997, Chalcoff et al. 

2012, Moeller et al. 2012, Rivest and Vellend 2018), this pattern has not emerged in 

other systems (e.g. Stanton 1987, Busch 2005, Traveset and Richardson 2014, 

Hargreaves et al. 2015). This inconsistency has led to disagreement concerning the 

importance of pollination as a factor influencing plants’ range dynamics (Traveset 

and Richardson 2014, Hargreaves et al. 2015). 

Despite these potential abiotic and biotic barriers to range-edge reproduction, 

animal-pollinated plants have successfully shifted their range edges in response to 

climatic changes, both past and present. Avicennia germinans (L.) L. (Acanthaceae) 

(black mangrove) in the southeastern U.S. is one such species responding to 

contemporary climate change. A freeze-intolerant tree that depends on pollinators for 

full fruit set, A. germinans has expanded rapidly northward in the Gulf of Mexico and 

northern Florida over the past three decades, in tandem with a decline in the 
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frequency of hard freezes over that period (Tomlinson 1986, Osland et al. 2013, 

Cavanaugh et al. 2014). Recent work has reconstructed a longer history of mangrove 

extent in the region, revealing a highly dynamic range edge that has oscillated 

between mangrove dominance and salt marsh dominance for at least the last 150 

years, mirroring decadal-scale fluctuations in the region’s climate (Rodriguez et al. 

2016, Cavanaugh et al. 2019). These repeated and rapid re-expansions of the A. 

germinans range edge point to this species’ ability to quickly respond to changing 

climatic conditions. However, this research has not addressed range-edge fecundity 

and reproduction, and particularly the pollination ecology, that could contribute to 

geographic range expansion and population growth beyond historical range limits. 

 In this study, I address the question of how A. germinans pollination, 

reproductive effort, and ultimately fecundity vary along a geographical gradient from 

the range interior to the leading range edge, testing the hypothesis that barriers to 

reproduction are more severe toward this species’ northern periphery. Specifically, I 

hypothesized that the quality of the pollination environment and allocation to 

reproduction decline from the core of the distribution toward the northern range edge. 

I expected that the abundance and overall effectiveness of pollinators would decline 

in range-edge populations, where mangrove stands are surrounded by a matrix of 

largely wind-pollinated salt marsh species. I investigated variation in local pollination 

environments by quantifying a) the relationship between proximity to the range edge 

and the abundance and identity of floral visitors; b) the degree to which different 

floral visitors vary in their effectiveness as pollinators; and c) variation in stigmatic 

pollen deposition and fruit set rates, measures of pollen limitation. Additionally, 
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considering that northern populations of A. germinans are subject to colder 

temperatures and a shorter growing season (conditions that affect their leaf and 

vascular morphology [Cook-Patton et al. 2015]), I predicted that flowering and 

propagule size would decline in range-edge populations, due to reduced allocation to 

reproduction. 

Materials and Methods 

Study system 

 Avicennia germinans is an intertidal tree or shrub that bears its bisexual 

flowers on terminal panicles of spikes. Floral corollas are white, ~1cm in diameter, 

and open in pairs within each spike. Flowers contain four stamens and a gynoecium 

with four ovules and a single style and bilobed stigma. The flowers are protandrous, 

with anthers that release pollen prior to the opening of the stigmatic lobes (Borg and 

Schönenberger 2011, Daniel 2016). A. germinans is self-compatible (Nettel-Hernanz 

et al. 2013), but in previous work we demonstrate that it relies on pollinators for full 

fruit set. Typically, flowers produce at most a single seed that, as with other 

mangrove taxa, germinates while still attached to the parent plant, giving rise to a 

dispersive seedling known as a ‘propagule’ (Tomlinson 1986). Although reproduction 

occurs year-round in the tropics (Daniel 2016), in subtropical regions A. germinans 

flower synchronously May-August and release their propagules September-

November (unpublished data). 

Data were collected over the course of three years at eleven sites containing A. 

germinans populations in eastern Florida (Table B.1, Figure B.1). These sites span the 
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full extent of Florida’s eastern mangrove-marsh ecotone – an approximately 200-km 

coastal zone where salt marsh in the north transitions to mangroves in the south – and 

extend southward into a region that has been continuously mangrove-dominated for 

several thousand years (Scholl 1964). 

The southernmost sites (latitudes 27.1-27.9°N) contain mixed stands of all 

three Floridian mangrove species [the two others being Rhizophora mangle L. 

(Rhizophoraceae) and Laguncularia racemosa (L.) C.F. Gaertn. (Combretaceae)], in 

varying stages of regeneration following impoundment for mosquito control in the 

first half of the 20th century. Farther north, in the southern reaches of the mangrove-

marsh ecotone (latitudes 28.5-29.1°N), many sites are also recovering from 

impoundment or other human alteration, but here are characterized by mixed-

mangrove stands edging waterways, with salt marsh vegetation [primarily Distichlis 

spicata (L.) Greene (Poaceae), Spartina alterniflora Loisel. (Poaceae), Batis maritima 

L. (Bataceae), and Salicornia sp. L. (Amaranthaceae)] landward. At the northern end 

of the study region (latitudes 29.6-29.9°N), sites contain some of Florida’s 

northernmost mangroves (Cavanaugh et al. 2019). Here, clusters of short (generally 

<3m tall) mangroves – almost exclusively A. germinans – are embedded in a salt 

marsh matrix consisting primarily of S. alterniflora, B. maritima, and Salicornia sp. 

Most of these northern sites fall within the Guana-Tolomato-Matanzas National 

Estuarine Research Reserve (GTM). 

Sampled mangroves varied in their proximity to upland vegetation, ranging 

from <10m to over 300m distant, depending on the site and specific location. Upland 

vegetation consists of mixed hardwood hammock, oak scrub, and high marsh, the 



 

 

31 
 

latter containing abundant Borrichia frutescens (L) DC (Asteraceae) and Limonium 

carolinianum (Walter) Britton (Plumbaginaceae), which we observed co-flowering 

with A. germinans. 

Floral visitor identity and frequency 

The identity and frequency of A. germinans’ floral visitors were assessed 

during the 2013, 2014, and 2015 flowering seasons. All 11 sites were monitored at 

least once over these three years, though only seven were monitored in any given year 

(Table B.1), with each site visited repeatedly within a flowering season. Across all 

sites in a given year, visitation data were collected over 105.5hrs, 67hrs, and 33.5hrs 

in 2013, 2014, and 2015, respectively. 

A. germinans flowers were monitored for floral visitors during 15-minute 

observation periods, which we conducted in fair weather from mid-morning to mid-

day. Focal A. germinans were selected haphazardly; trees were at least 10m apart and 

contained at least 10 open flowers. We conducted a single observation period per day 

at each focal tree (i.e. no tree was monitored twice on the same date). During each 

observation period, the observer selected 4-10 open flowers in close proximity to one 

another, and recorded the identity of each floral visitor and the number of focal 

flowers visited by each individual insect. Insects were typically identified to family, 

with the exception of the Apidae which were identified to genus or species. A 

complete list of the 29 taxonomic labels used in floral monitoring, as well as the 

study-wide abundance of each taxon, is available in Table 3.1. Altogether, 2,127 

individual insects were observed visiting A. germinans flowers. 
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Table 3.1: Taxonomic categories assigned to A. germinans floral visitors, and total number of visitors 
of each taxon observed, across sites and years, over the course of the study. 

Taxon # Visitors 
Hymenoptera  

Apis mellifera 1,037 
Melissodes 143 

Bombus 109 
Xylocopa 19 
Triepeolus 1 
Halictidae 10 

Megachilidae 8 
Vespidae 59 

Crabronidae 28 
Pompilidae 15 
Sphecidae 7 

Formicidae 275 
Lepidoptera  

Pieridae 40 
Hesperiidae 11 
Nymphalidae 8 
Lycaenidae 2 
Noctuidae 1 

Diptera  
Syrphidae 306 
Muscidae 6 
Ulidiidae 3 

Calliphoridae 2 
Stratiomyidae 2 
Anthomyiidae 2 

Dolichopodidae 1 
Unk. Diptera 11 

Coleoptera  
Oedemeridae 16 
Scarabaeidae 3 
Coccinellidae 1 

Orthoptera  
Unk. Orthoptera 1 

 

During each observation period, the observer recorded the focal tree’s height 

(to the nearest 0.5m) and estimated the total number of open flowers on the tree. 

Floral visitor identity and frequency - Analysis 

These, and all subsequent analyses, were performed in R version 3.5.0 (R 

Core Team 2018). Floral visitation was modeled three separate ways: as total visits 

across all taxa (to explain overall trends in insect abundance), as a binary 
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presence/absence variable across all taxa (a form that may be more relevant for A. 

germinans, for which the difference between the presence and absence of floral 

visitors is more important than the difference between few and many floral visitors), 

and as taxon-specific visitation (to explore changes in the floral visitor assemblage). 

To model total visits across all taxa, I used a generalized linear mixed model 

(GLMM) with a negative binomial error distribution, to account for overdispersion in 

the data (lme4 package [Bates et al. 2015]). Latitude (here, and in all modeling in this 

study, centered on its mean), year, a latitude´year interaction, the number of flowers 

open on the focal tree, and tree height were included as fixed effects; date was 

included as a random effect (multiple observation periods were conducted on the 

same date). In addition, the number of flowers watched during the observation period 

was included as an offset. I used a bootstrapping method (pbkrtest package [Halekoh 

and Højsgaard 2014]) to test the significance of each fixed effect in the model. 

Marginal and conditional R2 – measures of variance explained by fixed effects and 

variance explained by both fixed and random effects, respectively – were calculated 

following Nakagawa and Schielzeth (2016). 

Floral visitor presence/absence was modeled similarly, but used a GLMM 

with a binomial error distribution (lme4 package [Bates et al. 2015]). For the response 

variable, all non-zero visit totals were converted to 1. Once again, I used 

bootstrapping to test the significance of each fixed effect (pbkrtest package [Halekoh 

and Højsgaard 2014]), and used the MuMIn package (Bartoń 2018) to calculate 

marginal and conditional R2. 
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To assess changes in the floral visitor assemblage across the latitudinal 

gradient of the study sites, I constructed a third GLMM with a random slope term that 

allowed the effect of latitude to vary among taxa. I subset the raw visitation data to 

the 12 most abundant taxa (representing 97% of all flower visits), and used a negative 

binomial error distribution (glmmADMB package [Fournier et al. 2012]). In addition 

to the by-taxon random slope and intercept terms, the model included random terms 

for date and observation period (as individuals observed during the same observation 

period might behave similarly), a single fixed effect for latitude, and an offset for the 

number of flowers watched during the observation period. I then plotted the model-

estimated random slopes to assess differences among taxa in their variation with 

latitude. Finally, I performed a non-metric multidimensional scaling (NMDS) on 

visitation rates (vegan package [Oksanen et al. 2018]), using just the ten most 

abundant taxa and summing across observation periods made at the same site and on 

the same date (to avoid problems associated with low abundance per sample). The 

NMDS used Bray-Curtis dissimilarities. 

Pollinator effectiveness 

To approximate the relative importance of individual taxa as pollinators of A. 

germinans, we captured floral visitors and measured the size of their pollen loads. 

Using hand nets, we collected individual insects representing 11 of the 12 most 

frequently observed floral visitor taxa, directly from A. germinans flowers (one 

frequent taxon – Pompilidae – was not encountered during this time). We collected as 

close to 10 individuals per taxon as possible (see sample sizes in Figure B.2). We 

quickly immobilized the insects in coolers with ice packs, and later transferred them 
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to a freezer to kill them. They were subsequently pinned and inspected using a 

dissecting microscope. 

In the lab, each insect was swabbed with a ~2mm3 cube of fuchsin jelly for up 

to 10 minutes to sample its pollen load. In the case of A. mellifera and Bombus, 

hydrated corbicular pollen was avoided, as it is thought to be unlikely to contribute to 

pollination (Thorp 2000). The fuchsin jelly was then transferred to a microscope 

slide, where the number of Avicennia and non-Avicennia pollen grains could be 

counted using a compound microscope at 100X and 400X magnification. 

Using these pollen load data and the visitation data described above, I created 

an index of pollinator effectiveness, which incorporates aspects of floral visitor 

quantity and quality during each observation period (Herrera 1987). I defined the 

effectiveness index as the visitation rate of each taxon during an observation period 

(i.e. the “quantity”) multiplied by each taxon’s respective mean pollen load (i.e. the 

“quality”), summed across all taxa recorded during the observation period. This 

resulted in an index of overall pollinator effectiveness, for every observation period in 

our dataset. 

Finally, to assess pollen deposition, we collected A. germinans stigmas from 

six sites in 2015 (Table B.1). Each site was visited twice – once in the early flowering 

season and once in the mid-flowering season. During each site visit, up to 12 trees 

were haphazardly selected, and we collected up to eight flowers with mature stigmas 

from throughout the tree canopy. Mature stigmas could be identified by their spread 

lobes, which open on approximately day 3 of anthesis (personal observation); flowers 

are syncarpous, with a single stigma per flower. In total, we collected 768 stigmas 
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from all six sites. In the lab, each stigma was removed from its flower and mounted in 

fuchsin jelly on a microscope slide, which we inspected at 100X and 400X 

magnification on a compound microscope. Given the sometimes-large number of 

pollen grains present, we counted the number of A. germinans pollen grains three 

times on each stigma, and used the average of these three counts for analysis. 

Pollinator effectiveness - Analysis 

 To test for variation among taxa in the size of their pollen loads, I used the 

MASS package (Ripley 2018) to construct a generalized linear model (GLM) with a 

single fixed effect of taxon. To account for overdispersion, I used a negative binomial 

error distribution. This model was compared to a GLM with only an intercept term, 

using a likelihood ratio test. 

To assess the degree to which observation-level pollinator effectiveness varies 

with latitude, I built a GLMM with a negative binomial error distribution (to account 

for overdispersion in the data), with latitude as the sole fixed effect, observation date 

as a random effect, and the number of flowers on the focal tree as an offset (lme4 

package [Bates et al. 2015]). I used bootstrapping (pbkrtest package [Halekoh and 

Højsgaard 2014]) to test the significance of latitude, and calculated marginal and 

conditional R2 following Nakagawa and Schielzeth (2016). 

Similarly, pollen deposition was modeled with a negative binomial GLMM, to 

address overdispersion in the dataset (lme4 package [Bates et al. 2015]). The response 

variable was the average of the three tallies of A. germinans pollen on each stigma. 

As predictors, I included a single fixed effect (latitude) and single random effect (tree 

ID).  Again, I used bootstrapping (pbkrtest package [Halekoh and Højsgaard 2014]) 
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to test the significance of latitude, and calculated marginal and conditional R2 

following Nakagawa and Schielzeth (2016). 

Flower and propagule production 

Flower production per tree was measured during each observation period for 

floral visitors, as described above. In late October-early November of 2014 and 2015, 

when propagules were maturing on parent trees, we established transects at multiple 

sites to measure the densities of reproductive A. germinans trees and fecundity 

(propagule production per tree). In each year, transects were established at six sites 

(though not the same set of sites both years; see Table B.1). At each site, we 

identified three areas of high A. germinans density and laid out one 20m transect in 

each area (resulting in three transects per site). We recorded the number of 

reproductive A. germinans over 0.5m tall that occurred within 1m of the transect tape, 

on either side. 

To measure propagule production per tree, or fecundity, we randomly selected 

five reproductive trees along each transect (or in close proximity to the transect, if 

fewer than five were immediately adjacent) and estimated the number of propagules 

present by counting the number on a representative portion of the tree and 

extrapolating to the entire canopy. Because different sites were in different stages of 

propagule drop, I then corrected these estimates to account for propagules that had 

already fallen. I did this using infructescences at each site that had been covered in 

mesh bags prior to the onset of propagule drop (three bags per tree on up to 30 

haphazardly selected A. germinans per site); these bags collected falling propagules, 

and allowed us to calculate the fraction of total propagules that remained attached to 
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the pedicel. By multiplying our original propagule counts by the inverse of this 

fraction, I could estimate the total number of propagules originally produced by the 

trees. 

Fruit set rates, defined as the number of mature propagules produced per floral 

bud, were also measured using these same bags. Once each bag was collected, we 

counted the number of propagules (both abscised and still attached to the pedicel) as 

well as the total number of floral bud scars. Fruit set rate was calculated as the total 

number of propagules produced by a given inflorescence, divided by the number of 

floral bud scars. 

In 2015, propagules were collected from seven sites (Table B.1) and weighed. 

To avoid bias resulting from earlier phenology at the northern sites, we collected only 

mature propagules that had dropped from their pedicels. To do this, we haphazardly 

selected 13-22 A. germinans at each site in late summer, once flowering had ended; 

we installed large-mesh (~1.0cm) bags over three inflorescences, each on a separate 

branch. In late October/early November, we returned to the sites, collected any 

mature propagules that had dropped from the pedicels into the bags, and weighed 

them to the nearest 0.001g. In total, we collected 326 propagules. 

Flower and propagule production - Analysis 

Flower production, reproductive tree density, and propagule production all 

showed signs of overdispersion, so were modeled with negative binomial error 

distributions. Flower production and reproductive tree density were analyzed using 

GLMs (MASS package [Ripley 2018]) with a single predictor: latitude. I used 

likelihood ratio tests to compare these models to ones without latitude as a predictor, 
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and calculated McFadden’s pseudo-R2 using the rsq package (Zhang 2018). I 

modeled propagule production in two ways, in order to 1) test latitude as a predictor 

of A. germinans fecundity (which involved modeling propagule production as a 

function of latitude) and 2) to explore inter-site differences in fecundity (which 

involved modeling propagule production as a function of site, instead). Both models 

were GLMMs (lme4 package [Bates et al. 2015]), with transect as a random effect. 

For both, I used bootstrapping (pbkrtest package [Halekoh and Højsgaard 2014]) to 

test the significance of latitude, and calculated marginal and conditional R2 following 

Nakagawa and Schielzeth (2016). 

Fruit set rate was modeled using a binomial GLMM (lme4 package [Bates et 

al. 2015]), with the total number of original floral buds set as a weight, or number of 

trials. Latitude was the sole fixed effect; tree ID was included as a random predictor, 

as was an observation-level random effect, to account for overdispersion. I tested the 

significance of latitude using bootstrapping (pbkrtest package [Halekoh and 

Højsgaard 2014]) and used the MuMIn package (Bartoń 2018) to calculate marginal 

and conditional R2. 

Finally, propagule mass was similarly modeled with a single fixed effect of 

latitude and a random effect of tree ID, using a GLM with Gaussian errors (lme4 

package [Bates et al. 2015]). Once again, I tested the significance of latitude using 

bootstrapping (pbkrtest package [Halekoh and Højsgaard 2014]) and used the MuMIn 

package (Bartoń 2018) to calculate marginal and conditional R2. 
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Results 

Floral visitor identity and frequency 

Across all taxa observed visiting A. germinans flowers, total visitation rates 

declined slightly, but significantly, as latitude increased (parametric bootstrapping: p 

= 0.03) (Figure 3.1). Neither the number of flowers on the focal tree, tree height, year, 

nor the latitude´year interaction were significant predictors of total visitation rate 

(parametric bootstrapping: p = 0.16, 0.07, 0.68, and 0.29, respectively); the complete 

model had low explanatory power (R2m = 0.04, R2c = 0.15). However, a model in 

which floral visitation was treated as presence/absence (binomial) performed 

considerably better (R2m = 0.08, R2c = 0.26), and revealed a marked northward 

decline in the proportion of observations that recorded at least one floral visitor 

(latitude parametric bootstrapping: p = 0.01) (Figure 3.1). (Again, the number of 

flowers on the focal tree, tree height, and year were not significant predictors 

[parametric bootstrapping: p = 0.44, 0.32, and 0.52, respectively].) 

 Although overall floral visitation rates declined at higher latitudes, the 

relationship between visitation rate and latitude varied among insect taxa. Estimates 

of the taxon-specific random slopes revealed that some taxa – like pierid butterflies, 

ants, and honey bees (Apis mellifera [Hymenoptera: Apidae], the most abundant 

floral visitor observed [Table 3.1]) – did indeed visit A. germinans flowers less 

frequently at northern sites. However, visitation by other taxa – primarily Xylocopa 

bees, Bombus bees, and syrphid flies – was positively associated with latitude (Figure 

3.2). Positions of taxa in the NMDS (stress = 0.18) reflected the results of the random 

slopes model, with southern sites clustering near A. mellifera and northern sites 
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falling closer to Xylocopa (Hymenoptera: Apidae), Bombus (Hymenoptera: Apidae), 

and Syrphidae (Diptera) (Figure 3.2). In sum, the composition of the A. germinans 

floral visitor assemblage shifted along a north-south geographical gradient. 

 

Figure 3.1: (a) The frequency of all insect visits to A. germinans flowers declined from south to north. 

Points show sampling locations; point size indicates mean visitation rate, across all taxa. (b) The 

probability of at least one insect visiting A. germinans flowers during an observation period declined 

at higher latitudes. Line shows model-estimated relationship. Points are jittered to better display the 

frequencies of presences and absences. 
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Figure 3.2: (a) Random slope estimates, representing taxon-specific relationships between visitation 

frequency and latitude. Points falling near the dashed line at 0 indicate taxa whose visitation rate 

varied little with latitude; points above/below the line represent taxa that increased/decreased in 

visitation frequency with latitude, respectively. Bars show SD. (b) Nonmetric multidimensional scaling 

(NMDS) of floral visitors observed at each site and date. Points are color-coded to indicate site 

latitude, with red representing southern sites and blue representing northern sites. 
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Pollinator effectiveness 

Pollen load size varied significantly among flower-visiting taxa (parametric 

bootstrapping: p < 0.001), with large-bodied bees and wasps – e.g. Xylocopa, 

Melissodes, A. mellifera, and crabronids – carrying the largest amounts of A. 

germinans pollen on their bodies (Figure B.2). Ants (Formicidae) and pierid 

butterflies carried the smallest pollen loads, each with a median of 0 A. germinans 

pollen grains collected from the individuals sampled. 

The GLMM of pollinator effectiveness – my index combining pollen load and 

visitation data – revealed a significant decline in pollinator effectiveness at northern 

sites (parametric bootstrapping: p = 0.01) (Figure 3.3). This decline was probably 

driven by the large drop in the proportion of observation periods that recorded at least 

one floral visitor (Figure 3.1). While model-predicted pollinator effectiveness was 

lower closer to the A. germinans range edge, variation in pollinator effectiveness 

among observations was very large at the four northernmost sites; indeed, some of the 

highest-recorded indices of pollinator effectiveness were recorded during observation 

periods at range-edge sites (Figure 3.3). 

Pollen deposition, however, was unrelated to latitude (parametric 

bootstrapping: p = 0.14) (Figure 3.3). We observed substantial intra-site variation in 

the amount of A. germinans pollen deposited on floral stigmas, with a median of 11 

pollen grains and an interquartile range of 3-34 pollen grains. 
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Figure 3.3: (a) The overall pollinator effectiveness of each observation, a measure of both pollinator 

quantity and quality, generally declined at northern sites (R2m < 0.01, R2c = 0.02). However, the 

increased relative abundance of some highly-effective taxa at higher latitudes led to some of the 

largest-recorded pollinator effectiveness indices there (note the greater spread of values to the right). 

(b) Pollen deposition on A. germinans stigmas was unrelated to latitude (model R2m < 0.01, R2c = 

0.27). 

Flower and propagule production 

Flower production per tree was significantly higher at northern sites (c2 =  

14.2, p < 0.001), rising from a median of 150 flowers per tree at the southernmost site 
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to 380 flowers per tree at the northernmost (Figure 3.4). However, fecundity – 

measured as the number of propagules produced per tree – did not vary consistently  

 

Figure 3.4: (a) A. germinans flowering increased with latitude, but (b) fecundity showed no 

relationship with latitude. (c) Consequently, the fruit set rate declined slightly at northern sites. Note 

the logarithmic scale of the Y-axes in (a) and (b). Lines show model-estimated relationships. 
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with latitude (parametric bootstrapping: p = 0.86, R2m < 0.001, R2c = 0.29), but did 

vary significantly among sites (parametric bootstrapping: p = 0.010, R2m = 0.22, R2c = 

0.30) (Figure 3.4). Fruit set rate (the rate at which flowers develop into propagules), 

therefore, declined slightly with latitude (parametric bootstrapping: p = 0.01, R2m < 

0.01, R2c = 0.08), from 0.31 at the southernmost site to 0.26 for A. germinans nearest 

the range edge (Figure 3.4). 

The density of reproductive A. germinans increased significantly with latitude 

(c2(1) = 14.32, p = 0.0002), growing from 2.5 ± 1.0 (mean ± SD) trees per transect at 

the southernmost site sampled to 21.2 ± 14.3 trees per transect at the northernmost 

site (Figure 3.5). Substantial variation in reproductive tree density remained 

unexplained by the model, however (McFadden’s pseudo-R2 = 0.04). Propagule mass 

was also significantly larger at higher latitudes, increasing by 0.210g (± 0.075g SE) 

with every northward degree of latitude (parametric bootstrapping: p = 0.010, R2m = 

0.02, R2c = 0.16) (Figure 3.5). 
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Figure 3.5: (a) The density of reproductive A. germinans (those with at least one 

inflorescence/infructescence at the time of survey) increased with latitude, (b) as did propagule mass. 

Note the logarithmic scale of the Y-axis in (a). Lines show model-estimated relationships. 

 

Discussion 

 Contrary to expectations, A. germinans fecundity remained high in 

populations near the leading range edge, due in part to substantial allocation to flower 

and propagule production and to changes in the pollinator assemblage there. Overall, 

floral visitation declined toward the range margin, but this decline was partly offset 

by an increase in the frequency of taxa that carry large amounts of A. germinans 
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pollen, such as Xylocopa and Bombus bees, at more northern latitudes. Consequently, 

the amount of pollen deposited on A. germinans stigmas did not decline toward the 

range margin, suggesting that pollen limitation does not act as a barrier to range-edge 

reproduction. Incidentally, fruit set rates did decline in northern populations of A. 

germinans, but this may be due to the effect of increased flowering there, and to the 

considerable resource allocation required to scale up propagule production. A. 

germinans propagules are large structures – especially at the range edge, where 

propagule size was on average 18% larger than at the southernmost site – and may be 

too resource-intensive to scale proportionally with increased flower production. In 

combination with the high density of reproductive trees in northern populations, these 

findings point to A. germinans’ ability to produce large numbers of propagules at its 

expanding range edge, which may contribute to its continued northward range shift. 

Pollinators and pollen limitation at the range edge 

 This study found that a latitudinal shift in pollinator composition, which 

resulted in a small but sufficient pollinator assemblage in the northernmost sites, 

rescued range-edge A. germinans from pollen limitation. Few previous studies have 

documented variation in pollinator assemblages with respect to a plant’s range edge, 

and its consequences for plant reproduction. Chalcoff et al. (2012) found a decline in 

pollen receipt and fruit set toward a Patagonian shrub’s dry range limit, which they 

attributed to a decline in abundance of the shrub’s most effective pollinator, 

hummingbirds. Similarly, Moeller et al. (2012) observed a decline in effective bee 

pollinators at an annual plant’s arid range edge, leading to reduced fruit set there. On 

the other hand, Hargreaves et al. (2015) documented high abundances of an annual 
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alpine plant’s most effective pollinators (Bombus bees) at its altitudinal range limit, 

contributing to a constant seed set across an altitudinal gradient. Likewise, in the case 

of an alpine herbaceous perennial, Theobald et al. (2016) observed large differences 

in the pollinator assemblage among sites, but no consistent altitudinal trends in 

pollinator frequency or identity; consequently, pollen limitation was unrelated to 

proximity to the range edge 

Other studies have found that the expected positive relationship between 

pollinator abundance and pollen receipt by plants can be erased by spatial changes in 

resource availability or in the co-flowering plant assemblage. For example, Stone and 

Jenkins (2008) found decreased pollinator visitation near the altitudinal range limit of 

a tropical shrub, but no real differences in pollen limitation between low- and high-

altitude sites. They hypothesized that stressful conditions at the high-altitude sites, 

and perhaps increased self-compatibility there, made high-altitude plants less 

responsive to a changing pollination environment. In contrast, Castilla et al. (2011) 

observed an increase in fruit set at a Mediterranean shrub’s range edge, which they 

attributed to fewer co-flowering plants and decreased competition for pollinators 

there, as well as to turnover in the pollinator assemblage.  

In sum, when considering these studies collectively, there emerges no 

consistent relationship between pollinator abundance, reproductive success, and 

proximity to a plant’s range edge. Some of this variation may be explained by 

idiosyncrasies in resource limitation or co-flowering plants, as mentioned above. 

Additional variation can be attributed to differences in the factors controlling plants’ 

range limits and the identity and abundances of their pollinators. For example, in 



 

 

50 
 

some settings, a single environmental gradient – e.g. precipitation – can directly 

shape both the distribution of a plant and the abundance of its pollinators (Chalcoff et 

al. 2012, Moeller et al. 2012). That is unlikely to be the case in this study system, 

given the increases in some pollinator taxa toward the A. germinans periphery, and 

the occurrence of Apis mellifera well north of the A. germinans range limit. Rather, in 

this study, regional changes in land use and apicultural practice may play an 

important role in determining the pollinator assemblage for a given A. germinans 

population. Alternatively, the mosaic nature of the mangrove-marsh ecotone, and the 

presence of mangroves within or adjacent to large areas of salt marsh, might reduce 

their apparency to pollinators (Kunin 1993) or might only attract pollinators that can 

energetically afford to forage in a patchy landscape (Essenberg 2013). Taken 

together, our findings and those of other researchers suggest that successfully 

predicting the effects of pollinators and pollen limitation on plants’ range shifts 

requires an understanding of both the drivers of variation in the pollinator 

assemblage, and the setting into which the plant is spreading. 

Reproductive allocation at the range edge 

Instead of declining toward the range edge, A. germinans fecundity was 

maintained even at the northernmost populations studied. This is partly due to 

turnover in the pollinator community and the preservation of range-edge pollinator 

effectiveness, as described above. It is also partly attributable to an increase in 

flowering – contrary to my expectations, flowering was greater in populations near 

the range edge, with the northernmost trees producing over twice as many flowers as 

the southernmost, despite being substantially smaller in size. Increased allocation to 
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reproduction was not restricted to flowers; propagules produced by these northern 

trees were significantly larger than propagules from populations closer to the range 

center. 

There are several reasons why A. germinans might increase allocation to 

reproduction near its range edge. Similarly to how some plant species have a 

“suicidal” strategy of compensating for herbivore damage by increasing reproductive 

output (Trumble et al. 1993), A. germinans might respond to cold stress at northern 

sites by allocating more resources to flowering and propagule growth. Alternatively, 

range-edge A. germinans may, somewhat counterintuitively, experience superior 

growing conditions in northern Florida, despite infrequent die-offs due to hard freezes 

(Cavanaugh et al. 2019). Competitively superior to some dominant salt marsh plants 

(Kangas and Lugo 1990), and released from competition with other mangrove species 

for space, water, and light, northern populations of A. germinans may be under less 

physical stress, which translates into greater reproductive output (Chiariello and 

Gulmon 1991). Another explanation for the increased allocation to reproduction 

could lie in the range-edge trees’ young-to-intermediate age, if A. germinans is a 

species with a life history strategy that promotes early reproduction. (However, most 

plants are thought to show a positive relationship between age/size and fecundity 

[Greene and Johnson 1994].) Finally, selection or the founder effect could be acting 

on range-edge populations to produce a phenotype that reproduces early and often 

(Phillips et al. 2010, Dangremond and Feller 2016). Regardless of its cause, A. 

germinans’ strong allocation to reproduction and high fecundity at its range edge has 

important implications for its continued northward range shift. 
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Conclusion 

This study demonstrates that the climatic constraints setting the A. germinans 

range margin do not necessarily limit range-edge allocation to reproduction, and that 

pollinator identity, rather than sheer abundance, can be more important for 

maintaining the pollination environment at an expanding range edge. These results 

are consistent with research showing recent, rapid increases in mangrove cover in 

northern Florida, coinciding with a decrease in the frequency of hard freezes 

(Cavanaugh et al. 2014, 2019). Of course, there is more to range expansion than 

maintaining fecundity; dispersal, establishment, germination, and seedling survival 

and growth are also critical for range shifts (Angert et al. 2011). Given A. germinans’ 

capacity for long-distance dispersal (Dodd et al. 2002), reproduction close to the 

leading range edge may not be essential for sustained northward expansion. Still, 

local reproduction will be important for the growth of frontier populations around 

new colonizers, which can, in turn, promote further dispersal (Shigesada et al. 1995). 

The fate of range-edge propagules and the origins of range-edge colonizers – from 

range-edge populations, or from populations closer to the interior of the distribution – 

is worthy of further study. So, too, is the underlying cause of spatial variation in 

pollinator abundance and identity, in order to better predict future A. germinans 

spread and the range shifts of other pollinator-dependent plants. 
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Chapter 4: In a shifting ecotone, mangrove encroachment alters 
arthropod communities at fine scales 

 

Abstract 

As climate change alters plants’ distributional limits, new ecotone regions will 

form where relatively homogeneous habitat previously existed. Understanding the 

impact of ecotone shifts on local arthropod communities is of particular importance, 

given their diversity and their critical roles in ecosystem function. Here, I study the 

mechanisms behind and scale at which arthropod communities respond to expansion 

by Avicennia germinans, the black mangrove, into salt marshes of the southeastern 

U.S. I hypothesized that advancing trees would host a novel arthropod assemblage 

relative to salt marsh, and that this effect on community composition would spill over 

into salt marsh adjacent to invading trees, mediated by a novel plant trait introduced 

by A. germinans to the system: nectar-producing flowers. I found a stark divide 

between mangrove- and marsh-associated arthropod communities, even at sub-meter 

scales. Arthropod abundance in salt marsh vegetation was over six times greater than 

in mangrove vegetation, and salt marsh rarefied richness was over twice as high as 

that in mangroves. Each vegetation type – marsh and mangroves – contained 

arthropod taxa not present in the other. Remarkably, A. germinans’ presence did not 

impact the arthropod community of neighboring salt marsh; arthropod assemblages in 

marsh vegetation near mangroves were no different from those farther away. 

Experimental manipulation of A. germinans flowers had little effect on arthropod 

communities, indicating that mechanisms other than floral traits drive the observed 
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changes in arthropod community composition. In sum, the addition of mangroves to a 

salt marsh results in a patchy mosaic of habitat types, with discrete arthropod 

communities that mirror the spatial heterogeneity of the vegetation at very fine spatial 

scales. These findings provide support for the idea that the addition of a functionally 

distinct foundation species increases diversity by increasing habitat heterogeneity, 

and suggest that mangrove encroachment on salt marsh will drive large changes in 

coastal arthropod communities. 

Introduction 

As climate change drives the redistribution of species on Earth, the locations 

of ecotones – regions where neighboring biomes meet and intermix – will also change 

(Parmesan 2006, Harsch et al. 2009, Poloczanska et al. 2013). In some cases, one or 

both neighboring biomes are defined by the presence of a foundation species – i.e. 

one that is abundant, common, and that forms habitat for other organisms (Ellison et 

al. 2005). While some ecotones can be abrupt transition zones, many are diffuse, with 

patches of both foundation species co-occurring and creating a heterogeneous 

landscape (Harsch et al. 2009, Harsch and Bader 2011). This heterogeneity can play 

an important role in structuring the community of associated organisms that inhabits 

the ecotone; high diversity of plant traits, for example, has been linked to greater 

faunal diversity (Siemann et al. 1998, Tscharntke et al. 2008, Angelini and Silliman 

2014). Indeed, ecotones can host higher levels of diversity than either of their two 

neighboring habitats on their own (Ward et al. 1999, Kark and van Rensburg 2006, 

Kark 2013). Given the unprecedented movements of species distributions due to 

climate change, understanding how shifting ecotones host biodiversity, and how this 
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is mediated by the traits of the new foundation species being introduced, is important 

for determining how communities in these regions will be affected. This study 

considers these questions within a shifting mangrove-salt marsh ecotone and its 

associated arthropod communities. 

 When a new plant species is introduced to an ecosystem, the consequences for 

local fauna depend on several factors. In relatively equilibrated systems, i.e. those that 

are not undergoing a response to a recent large perturbation, arthropod diversity is 

typically positively related to plant diversity (Novotny et al. 2006, Forister et al. 

2015). But studies of biological invasion find that invasive plants – especially woody 

species – tend to reduce arthropod abundance and richness, on average (van 

Hengstum et al. 2014, Litt et al. 2014). Potentially solving the paradox, Angelini and 

Silliman (2014) proposed that the effect of an additional foundation species – i.e. one 

that is abundant, common, and that forms habitat for other organisms (Ellison et al. 

2005) – on faunal diversity depends on both the degree to which the new species 

alters habitat availability and the degree of functional difference from the foundation 

species already present. For example, the introduction of a short, insect-pollinated 

forb to a grassland would be expected to alter the diversity of the insect community, 

but not necessarily its overall abundance (provided the new arrival does not displace 

the preexisting grasses). Conversely, the establishment of a new, tall grass species 

would provide more, but functionally similar, habitat, resulting in a larger but 

compositionally similar insect community. Thus, the nature of a community’s 

response to a novel foundation species will hinge on the traits of the new species, 

relative to the resident one(s). 
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 In a patchy landscape, the effects of a novel foundation species will also 

depend on the spatial scale at which organisms respond to it (Johnston and Gruner 

2018). A newly established foundation species can have a very localized effect on the 

faunal community, or it can have a spatially diffuse effect that extends into the 

surrounding landscape. The community response will be highly localized if 

organisms can detect and respond to changes in foundation species at fine spatial 

scales. On the other hand, the influence of encroaching foundation species can extend 

into the surroundings if its presence modifies how organisms perceive neighboring 

species. For example, the identity of a plant’s neighbors can influence its apparency 

or attractiveness to herbivores, pollinators, and natural enemies (i.e. associational 

effects; Hambäck et al. 2014). Spillover can also occur, whereby mobile species 

move from one habitat type into an adjacent one (Rand et al. 2006, Stobart et al. 

2009). Regardless of the mechanism causing it, the influence of an encroaching 

foundation species on the community that surrounds it should decay with distance 

(Morlon et al. 2008), meaning that the adjacent community will be more strongly 

affected than communities farther away. 

 The mangrove-salt marsh ecotone of the southeastern U.S. is an ideal system 

for addressing questions regarding shifting ecotones and their effects on local 

diversity. This ecotone is diffuse and broad, spanning the Gulf Coast and over 200km 

of the Atlantic coast in Florida. Transitioning from mangroves at southern latitudes to 

salt marsh in the north, this is a zone between two ecologically, economically, and 

culturally important biomes (Tomlinson 1986, Barbier et al. 2011, Doughty et al. 

2015, Kelleway et al. 2017). As winters in the region have warmed in recent decades, 
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the ecotone has shifted northward substantially. The three mangrove species found 

here – Rhizophora mangle L. (Rhizophoraceae), Laguncularia racemosa (L.) C.F. 

Gaertn. (Combretaceae), and Avicennia germinans (L.) L. (Acanthaceae) – are cold-

intolerant trees that have undergone a dramatic increase in cover at their northern 

range limit, encroaching on salt marsh (Osland et al. 2013, Cavanaugh et al. 2019). 

The species best at surviving moderate freezes is A. germinans (hereafter 

‘Avicennia’), which occurs the farthest north, forming monospecific stands of short 

trees within the salt marshes of northern Florida (Cavanaugh et al. 2015). The 

northward shift of the ecotone, therefore, is marked by the introduction of Avicennia 

to previously mangrove-free salt marsh. 

 Avicennia and salt marsh vegetation possess different physical traits that could 

contribute to differences in their associated arthropod communities. Because grasses 

tend to retain senesced leaves for a considerable period of time (Bouchard and 

Lefeuvre 2000), salt marshes support large detritivore assemblages composed of 

snails, crustaceans, and insects – notably, flies (Davis and Gray 1966, Currin et al. 

1995, Pennings and Bertness 2001). Insects are the predominant herbivores in salt 

marshes (Pennings and Bertness 2001); in addition to katydids and grasshoppers, 

specialist sap-feeding Hemiptera are often abundant (Davis and Gray 1966, Pfeiffer 

and Wiegert 1981, Bertness et al. 1987), and are preyed on by spiders and some 

Hemiptera (Davis and Gray 1966, Döbel and Denno 1994). External free-living 

herbivores are less abundant on Avicennia, which has foliage that is chemically and 

structurally well-defended (Farnsworth and Ellison 1991, Feller et al. 2007, 2010). 

However, specialist leaf-galling psyllids can cause significant damage to leaves, and 
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crickets are occasional folivores (Feller et al. 2007). Avicennia has also been 

documented as a host for external-feeding lepidopteran caterpillars, leaf-mining flies, 

and xylem-feeding beetles (Farnsworth and Ellison 1991, Cannicci et al. 2008). 

Several species of spider have been recorded on Avicennia, probably none of them 

specialists (Morrisey et al. 2010). 

 Morphological and phenological differences in Avicennia and salt marsh 

plants’ flowers also likely drive differences in their associated arthropod 

communities. Spartina alterniflora Loisel. (Poaceae), the dominant plant in temperate 

North American salt marshes, is a wind-pollinated grass that flowers in late 

summer/fall at subtropical latitudes (Crosby et al. 2015). Avicennia, on the other 

hand, blooms in late spring/summer (personal observation), producing large displays 

of showy white flowers that attract a broad array of insect taxa, especially 

Hymenoptera and Diptera (Sánchez-Núñez and Mancera-Pineda 2012, Landry 

2013b). While specialized salt marsh herbivores are probably unable to consume most 

Avicennia tissues, this may not be true when it comes to Avicennia flowers, which 

produce easily-accessible nectar and pollen. These flowers are a novel resource in the 

grass-dominated salt marsh, where nectar is scarce and pollen is not widely available 

in the summer months. Flowers and extrafloral nectaries are known to structure 

arthropod communities, both by attracting pollinators and by attracting predatory taxa 

that exert top-down control on lower trophic levels (Inouye and Taylor Jr. 1979, Yano 

1994, Romero and Vasconcellos-Neto 2004, Rudgers and Gardener 2004). 

Sometimes nectar has complex community-wide effects, as when pollinating and 

predatory taxa interact (LeVan et al. 2014), or when herbivores are also attracted to 
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the plant (Adler and Bronstein 2004). If floral availability attracts marsh arthropods 

into mangrove vegetation, then the communities found on mangroves and in marsh 

vegetation will appear more blended when mangroves are in bloom. Alternatively, 

flowers could amplify the differences between mangrove- and marsh-associated 

arthropod communities, by attracting mobile taxa that occur only on mangroves. 

 Given the structural, chemical, and phenological differences between 

mangroves and salt marsh, I predicted that mangrove encroachment would drive an 

increase in arthropod diversity within the ecotone. Specifically, (1) I compared 

arthropod community composition on young frontier mangroves to that of 

surrounding salt marsh vegetation, to test the hypothesis that mangroves host a novel 

arthropod community (rather than a subset of the marsh community), thereby 

increasing ecotone biodiversity. (2) I also predicted that salt marsh arthropod 

communities immediately adjacent to mangroves would differ from those farther 

away, as would be expected if associational effects or spillover were to occur. Finally, 

(3) I experimentally manipulated Avicennia flowering in order to test if mangrove 

flowers amplify compositional differences between mangrove- and marsh-associated 

arthropods. By quantifying changes in community structure across fine spatial scales, 

this study illustrates how arthropod communities respond to the encroachment of a 

novel foundation species. 
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Materials and Methods 

Study system 

 On the Atlantic coast of Florida, the mangrove-salt marsh ecotone extends 

from approximately 28°N to 30°N. Toward the southern end of the ecotone, mixed 

stands of Florida’s three mangrove species co-occur with scattered patches of salt 

marsh, while at the northern edge of the ecotone, only scattered stands of Avicennia 

are embedded in extensive salt marsh. This study was conducted at one site in the 

northern ecotone where salt marsh dominated by Spartina alterniflora, as well as 

Salicornia sp. L. (Amaranthaceae) and Batis maritima L. (Bataceae) is being 

colonized by Avicennia (Figure C.1). Mangrove cover in this area has fluctuated over 

time, with mangroves periodically extirpated from the region by hard freezes; 

historical imagery suggests that the area has seen rapid mangrove expansion in the 

last 20 years (Cavanaugh et al. 2019). 

Experiment 

 In June of 2015, we selected 30 young focal Avicennia at the study site that 

were similar in size (~1.5m tall), distance to other mangroves, and distance to open 

marsh. All focal Avicennia were separated from each other (but not necessarily from 

other mangroves) by at least 10m. To establish variation in flower number, we 

randomly assigned each Avicennia to one of the following categories: no 

inflorescence removal, partial inflorescence removal, or complete inflorescence 

removal. (Note that inflorescences contain 1-2 open flowers at any given time; thus, 

inflorescence number, and not flower number, are included in all analyses.) We used 
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hand clippers to either remove all inflorescences (complete removal), roughly half of 

the inflorescences (partial removal), or a similar number of non-flowering branch tips 

(no removal) to simulate any effects that damage alone might have on the arthropod 

community. Once this process was completed, we counted the number of 

inflorescences remaining on each focal Avicennia. 

 The following day, all focal trees were vacuum sampled using a modified 

Craftsman blower-vac and nylon paint strainer bags as collection bags. Each tree was 

sampled for 30 seconds, with the vacuum operator thoroughly sampling the entire 

tree. All collected material and specimens were bagged and immediately put into a 

cooler with ice; on return to the lab several hours later, all samples were immediately 

moved to the freezer. Following a four-day period (to give marsh-associated 

arthropods enough time to recolonize areas disturbed during the mangrove vacuum 

sampling), the marsh surrounding each focal Avicennia was also vacuum sampled. 

Marsh was sampled along two 5m x 1m transects that circled each focal mangrove, 

one transect at 1.5m (“near”) and one at 5m (“far”) from the focal mangrove’s main 

stem. Each sample had a duration of 30 seconds (Figure C.2). Together, each focal 

Avicennia and its two associated marsh transects were termed a ‘plot’. 

 Sampling of all plots was repeated twice more over the summer: once in 

early/mid-July, and once in late July/early August. Each time, mangroves were 

sampled first, and surrounding marsh transects were sampled several days later. 

Because marsh transects were not permanently staked, the sampled transects did not 

always fall precisely in the same place. 
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 Finally, to capture marsh heterogeneity and any consistent difference in 

vegetation characteristics between near and far transects that might be an important 

influence on the arthropod community, we measured the relative cover of marsh plant 

species surrounding each focal mangrove. We established circular transects at 1.5m 

and 5m from each focal A. germinans, and placed a 40cm x 40cm quadrat every 

meter along these transects. Within each quadrat, we estimated percent cover of each 

plant species present, as well as the cover of bare ground (percent cover was 

constrained to add to 100%). For subsequent analysis, the percent cover of each 

species was later averaged across all quadrats within a transect. 

 Arthropods were stored in ethanol and sorted to the order level, with the 

exception of ants, which, being functionally distinct and having unique life histories, 

were split from the rest of the Hymenoptera. Given that Hemiptera were a large 

portion of all collected arthropods, that abundances of different hemipteran taxa 

appeared to vary substantially with vegetation type, and that at least one hemipteran 

Avicennia specialist (Hemiptera: Psyllidae: Telmapsylla) was present, we further 

sorted Hemiptera to morphospecies. As a result, this generated two datasets – order-

level abundances, and hemipteran morphospecies-level abundances – which were 

analyzed separately. 

Analysis 

 All analyses were performed in R version 3.5.0 (R Core Team 2018). For each 

sample, we calculated: 1) its total arthropod abundance; 2) raw arthropod richness, at 

both the order level and hemipteran morphospecies level; 3) individual-based rarefied 

richness, at both the order level and hemipteran morphospecies level (mangrove and 
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marsh samples were rarefied separately, given large differences in abundance) 

(Oksanen et al. 2018); and 4) Shannon diversity, at both the order level and 

hemipteran morphospecies level (Oksanen et al. 2018). 

 To simplify marsh vegetation heterogeneity for modeling purposes, I used 

Principal Components Analysis (PCA) to reduce species cover dimensionality to two 

principal axes (which together explained 73% of the variation in plant species cover 

among marsh transects). Positive values of the first axis reflect dominance by S. 

alterniflora over marsh forbs; positive values of the second axis indicate sparser 

vegetation and more bare ground (Table C.1). 

Do mangroves host a distinct community? 

To determine if Avicennia host a unique community that differs in either 

identity or abundance from that found in the surrounding salt marsh vegetation, I first 

compared lists of arthropod taxa found in mangrove and marsh samples, to determine 

if any taxa were uniquely associated with one vegetation type. Then, for order-level 

arthropod abundances, I used mixed models (containing a random effect for 

mangrove/transect ID, to account for repeated measures) to compare mangrove and 

marsh samples in terms of their total abundance (Poisson), richness (Poisson), and 

Shannon diversity (Gaussian), testing the importance of vegetation type with 

parametric bootstrapping (Halekoh and Højsgaard 2014, Bates et al. 2015). Rarefied 

richness of the two vegetation types was not compared, as the very low abundances in 

mangrove samples relative to those in marsh forced the marsh rarefaction curves to 

become too truncated. 
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Because multivariate dispersion differed between marsh and mangrove 

samples (F = 107.4, p = 0.0001) (Oksanen et al. 2018), and PERMANOVA and other 

similar multivariate tests assume equal dispersion among groups (Anderson and 

Walsh 2013), I opted to use a Generalized Linear Mixed Model (GLMM) approach to 

quantify community differences between marsh and mangrove vegetation. For each 

dataset (arthropod order and hemipteran morphospecies abundances), I built a 

negative binomial GLMM with a random slope term that allowed the effect of 

vegetation type to vary among arthropod orders or hemipteran morphospecies, 

depending on the response being modeled (Fournier et al. 2012). This model structure 

allows for the easy identification of taxa driving a community response to a predictor. 

These GLMMs also included random effects for plot ID and for mangrove/transect 

ID, to account for blocking and repeated sampling. For each model, a likelihood ratio 

test was used to determine if the random slope term had significant explanatory 

power. To visualize the community differences between the two vegetation types, I 

performed Principal Coordinates Analyses (PCoA) on arthropod order and Hemiptera 

morphospecies abundances, excluding rare taxa, averaging across the three repeated 

samples of each mangrove and transect, and calculating Bray-Curtis dissimilarities 

between samples (Oksanen et al. 2018). 

 Then, for both order-level and Hemiptera-only datasets, I quantified the 

degree to which mangrove community composition is nested within marsh 

communities, using the NODF metric (Almeida-Neto et al. 2008). For each dataset, I 

summed across all three repeated samples of each mangrove/marsh transect to 

generate a sample´species matrix, and converted the matrix to presence/absence; I 
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then sorted the matrix rows (samples) by vegetation type, with those from mangroves 

at the bottom and those from marsh at the top. Columns (arthropod orders or 

Hemiptera morphospecies, depending on the dataset being used) were sorted by 

decreasing frequency of occurrence. Using the vegan package (Oksanen et al. 2018), I 

simulated 1,000 null matrices that maintained richness within a sample but re-

shuffled the taxa found within each sample, based on their known occurrence 

frequencies. 

Does mangrove proximity affect marsh arthropods? 

 To assess differences between marsh arthropod communities found near 

mangroves versus those farther away from mangroves, I repeated many of the 

analyses described above, replacing vegetation type with marsh transect as a predictor 

(and omitting mangrove samples from the analysis). Total arthropod abundance, order 

richness, rarefied richness, and Shannon diversity were compared using GLMMs, 

with transect location and the first two marsh vegetation PCA axes as fixed effects, 

and transect ID and plot as random effects (Bates et al. 2015). I used parametric 

bootstrapping to test the significance of each fixed effect in these models (Halekoh 

and Højsgaard 2014). Marginal and conditional R2 – measures of variance explained 

by fixed effects and variance explained by both fixed and random effects, 

respectively – were calculated following Nakagawa and Schielzeth (2016). 

 To quantify taxon-level differences in community composition between near 

and far marsh transects, I built a negative binomial GLMM with a random slope term 

that allowed the effect of marsh transect to vary among arthropod taxa (Bates et al. 

2015). I constructed two such models: one for order-level abundances, and one for 



 

 

66 
 

hemipteran morphospecies. These GLMMs also included random effects for plot ID 

and for transect ID, to account for blocking and repeated sampling, and they included 

the first two marsh vegetation PCA axes as fixed effects, as well. 

Do mangrove flowers alter community composition? 

 The effects of mangrove flowers on community composition were first 

quantified separately for mangrove and marsh samples. For each vegetation type and 

each dataset (abundance by order and by hemipteran morphospecies), I constructed a 

negative binomial GLMM with a fixed effect for the number of mangrove 

inflorescences in the plot, and a random slope term that allowed the effect of 

inflorescence number to vary among arthropod taxa (Fournier et al. 2012). In addition 

to the single fixed effect of inflorescence number, and the by-taxon random slope and 

intercept terms, the models for mangrove communities included a random effect for 

mangrove ID, to account for repeated sampling; marsh community models included 

all of these predictors plus a random effect for plot, to account for the spatial 

proximity of the two transects within each plot. For each model, a likelihood ratio test 

was used to determine if the random slope term had significant explanatory power. If 

it did, I then plotted the model-estimated random slopes to assess differences among 

taxa in their variation with inflorescence number. 

 Finally, to determine whether Avicennia flowers drive differences between 

Avicennia- and marsh-associated communities, I calculated dissimilarities between 

each pair of mangrove and near-marsh samples within a plot, and modeled these 

dissimilarities as a function of the number of mangrove inflorescences present. This 

was done separately for order abundances and for hemipteran morphospecies 
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abundances. I removed rare taxa from each dataset (those found fewer than five times 

over the course of the study) and calculated Bray-Curtis dissimilarities on Wisconsin-

standardized square-root-transformed abundances. Because Bray-Curtis dissimilarity 

is analogous to a proportion and varies between 0 and 1, I constructed a binomial 

GLMM for each dataset (Bates et al. 2015), modeling dissimilarity between a 

mangrove community and its nearby marsh community as a function of mangrove 

inflorescence number, with mangrove/marsh transect ID as a random effect. For both 

models, I used bootstrap parametric testing to calculate the significance of 

inflorescences as a predictor of sample dissimilarities (Halekoh and Højsgaard 2014). 

 

Results 

 Altogether, we collected 58,282 arthropods across all samples over the course 

of the experiment, with representatives from 17 taxonomic orders, 10 of which were 

insect orders (including ants as their own group). At the order level, the arthropod 

communities of both mangrove and marsh vegetation were highly uneven, and were 

dominated by Diptera and Hemiptera (Figure 4.1). We further subdivided the 

Hemiptera into 17 morphospecies: 10 cicadellids, two delphacids, two flatids, 

Heteroptera (mainly Miridae), Telmapsylla (a psyllid specialized on Avicennia), and 

non-Telmapsylla Sternorrhyncha (mainly Aphididae). 

Do mangroves host a distinct community? 

 Each vegetation type contained arthropod orders not found in the other. 

Amphipods, isopods, collembola, and mantids were orders unique to the marsh 
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vegetation; however, these were all rare, with three or fewer individuals found across 

all marsh samples. Neuroptera, on the other hand, were solely collected from 

mangroves (all 10 individuals belonged to a single species, the mantidfly Climaciella 
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Figure 4.1: (a) Abundances of the 12 most common arthropod orders, summed across all samples 

collected from marsh vegetation far from mangroves (“Far Marsh”), marsh vegetation near 

mangroves (“Near Marsh”), and directly from mangroves. (b) Hemiptera alone, further subdivided 

into morphospecies (the 10 most common of which are shown). Telmapsylla is an Avicennia specialist. 
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brunnea [Say in Keating, 1824]). Unique hemipteran morphospecies were also 

present in each vegetation type, with marsh containing six morphospecies that were 

entirely absent in mangroves, while mangroves contained three morphospecies absent 

in marsh. Notably, the specialist Avicennia psyllid, Telmapsylla, was found in both 

vegetation types: of 430 Telmapsylla collected in the study, 12 of them were 

recovered from marsh vegetation. 

 Total arthropod abundance was significantly higher in marsh vegetation than 

in mangroves (parametric bootstrapping: p = 0.0011) (Figure 4.1), with an average of 

327 individuals collected per marsh vacuum sample versus 49 individuals per 

mangrove sample. Predictably, therefore, raw richness at the order level was also 

significantly higher in marsh vegetation (parametric bootstrapping: p = 0.0010) 

(Figure 4.2). However, Shannon diversity at the order level did not differ significantly 

among vegetation types (Figure 4.2), probably because marsh communities were so 

uneven (as can be seen in Figure 4.1). 

 When considering the abundances of different arthropod orders, a model that 

allowed taxa to randomly vary in their response to vegetation type significantly 

improved model fit over one that did not (random slope LRT: Ddeviance = 229.2, p < 

0.00001), indicating that not all orders responded similarly to vegetation type. While 

every order except Neuroptera was more abundant in marsh vegetation than on 

mangroves, the model identified Hemiptera, Diptera, and Hymenoptera as responding 

more positively to marsh vegetation than other taxa (estimated random slope 

coefficients ± SD: 1.7±0.45, 0.77±0.31, and 0.55±0.30, respectively). Hemipteran 

morphospecies also differed in their response to vegetation type (random slope LRT: 



 

 

70 
 

Ddeviance = 88.8, p < 0.00001). A PCoA of Wisconsin-standardized order 

abundances explained 44% of the variation with the first two axes, and indicated 

substantial differentiation between mangrove and marsh communities (Figure 4.3). 

Similarly, a PCoA of hemipteran morphospecies abundances explained 72% of 

variation in the first two axes, with much of the variation being attributable to 
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Figure 4.2: (a) Raw arthropod richness (at the order level) was significantly higher in marsh 

than in mangroves. (b) However, Shannon diversity was not significantly different between the 

two vegetation types, indicating that marsh arthropod communities were more strongly 

dominated by a few groups. 
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dominance by Telmapsylla (in the case of mangroves) versus dominance by 

Auchenorrhyncha and Heteroptera (in the case of marsh vegetation) (Figure 4.3). 

 At the order level, the relatively low-richness mangrove samples appeared to 

be nested within high-richness marsh samples, such that arthropod orders represented 

in mangrove communities were subsets of those present in marsh (p = 0.0010). 

However, nestedness of mangrove hemipteran morphospecies within marsh 

Hemiptera was not evident (p = 0.26), suggesting that the pooling of taxa within 

orders obscures some mangrove-marsh differentiation, and that nestedness disappears 

when finer taxonomic resolution is used. 

Does mangrove proximity affect marsh arthropods? 

 Marsh transects near mangroves largely shared the same arthropod taxa as 

those far from mangroves (Figure 4.1); all orders or hemipteran morphospecies not 

common to both transect types were so rare (n=1-2) as to be unlikely or impossible to 

be found in both based on rarity alone. Neither total arthropod abundance, raw 

richness, rarefied richness, nor Shannon diversity differed significantly between 

marsh transects near and far from mangroves (Table 4.1). Rather, abundance, 

richness, and diversity were better explained by the composition of the marsh 

vegetation (Table 4.1). Furthermore, neither arthropod orders nor hemipteran 

morphospecies significantly varied in their response to transect type (random slope 

LRT Ddeviance = 18.0, p = 0.36; and Ddeviance = 3.1, p = 0.21, respectively); 

random slope estimates were approximately 0 across all taxa. Confirming this result, 

the PCoA’s of order and hemipteran morphospecies abundances both revealed little 

differentiation between far marsh and near marsh transects (Figure 4.3). 
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Table 4.1: Models of marsh arthropod abundance, richness, rarefied richness, and Shannon diversity 

as a function of the type of transect (near vs far from the focal mangrove) and the two PCA axes 

representing variation in marsh plant composition. Random effect estimates are not shown. Marginal 

R2 is given for each model. P-values were calculated using parametric bootstrapping. 

Response (Rm2) Fixed Effect Coefficient 
Est. SE p 

Total arth. abundance (0.22) Transect (Near) -0.034 0.072 0.66 
 PCA axis 1 0.13 0.027 0.0012 
 PCA axis 2 0.09 0.037 0.024 
     

Order richness (0.03) Transect (Near) 0.010 0.064 0.86 
 PCA axis 1 -0.018 0.019 0.32 
 PCA axis 2 -0.050 0.026 0.052 
     

Rarefied order richness (0.24) Transect (Near) -0.042 0.13 0.83 
 PCA axis 1 -0.23 0.064 0.0012 
 PCA axis 2 -0.37 0.084 0.0012 
     

Shannon diversity (0.21) Transect (Near) -0.00017 0.028 0.97 
 PCA axis 1 -0.025 0.011 0.033 
 PCA axis 2 -0.068 0.014 0.001 

 

Do mangrove flowers alter community composition? 

 On Avicennia, arthropod community composition was significantly affected 

by the number of mangrove inflorescences present, with the effect of inflorescences 

varying among arthropod taxa (random slope LRT: Ddeviance = 49.8, p < 0.00001). 

However, order-specific random slope estimates revealed that only two orders 

showed a truly significant response to inflorescences: Diptera and Hemiptera, both of 

which increased in abundance with mangrove flowering (Figure 4.4). (Orthoptera, 

which also appeared to show a positive response to flowering on mangroves, were too 

uncommon for the effect to be meaningful.) In contrast, the composition of 
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hemipteran morphospecies found on mangroves was unaffected by the number of   

inflorescences present (random slope LRT: Ddeviance » 0, p » 1), with random slope 

estimates close to 0 for all morphospecies. 

 Marsh arthropod community composition showed the opposite pattern with 

respect to mangrove flowers, with no response to the number of nearby mangrove 

inflorescences at the order level (random slope LRT: Ddeviance = 2.56, p = 0.11), but 

with significant differences among hemipteran morphospecies in their response 

Figure 4.4: (a) Random slope estimates for mangrove arthropods, representing order-specific 

relationships between abundance and the number of mangrove inflorescences present. Points falling 

near the dashed line at 0 are orders whose abundance did not vary with inflorescence number; points 

well above/below 0 (e.g. Diptera) are orders whose abundance increased/decreased with mangrove 

inflorescences, respectively. On mangroves, Diptera (b) and Hemiptera (c) were the only two orders 

whose abundance was meaningfully associated with the number of inflorescences. Lines show model-

estimated relationships. 
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(random slope LRT: Ddeviance = 11.2, p = 0.001). In particular, Heteroptera were 

more abundant in marsh surrounding heavily-flowering Avicennia, whereas two of 

the cicadellid morphospecies and Sternorrhyncha (predominantly aphids) were 

slightly less common in marsh when mangrove flowers were in the vicinity (Figure 

4.5). 

 However, despite these effects of mangrove flowers on arthropod community 

composition, the Bray-Curtis dissimilarities between mangrove-associated arthropod 

communities and nearby (1.5m) marsh-associated communities were unrelated to the 

Figure 4.5: (a) Random slope estimates for marsh Hemiptera, representing morphospecies-specific 

relationships between abundance and the number of mangrove inflorescences nearby (at the order 

level, marsh arthropods did not show any relationship between abundance and flowers). Points falling 

near the dashed line at 0 are morphospecies whose abundance did not vary with inflorescence number; 

points well above/below 0 are morphospecies whose abundance increased/decreased with mangrove 

inflorescences, respectively. Marsh Heteroptera (b) and a cicadellid morphospecies (c) had the 

strongest responses to nearby mangrove inflorescences. Lines show model-estimated relationships. 
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number of mangrove inflorescences present (order-based dissimilarities: bootstrap p = 

0.16; hemipteran morphospecies-based dissimilarities: bootstrap p = 0.46). This 

indicates that the flowering responses seen in Diptera and Hemiptera on mangroves, 

and in several hemipteran morphospecies in marsh vegetation, did not change how 

dissimilar overall mangrove community composition and marsh community 

composition were from one another (Figure C.3). 

 

Discussion 

 As mangroves expand northward and shift the position of the marsh-mangrove 

ecotone in the southeastern U.S., once-pure salt marsh will become a mixture of 

vegetation types, altering habitat suitability for coastal fauna. This study compared 

arthropod communities associated with flowering and non-flowering range-edge 

Avicennia and neighboring salt marsh vegetation, to determine how the arthropod 

community is structured within this ecotone landscape. While Avicennia hosted fewer 

arthropods and less diversity than surrounding salt marsh vegetation, it did support a 

unique arthropod assemblage that was not simply a subset of the greater marsh 

community, with taxa that were entirely absent or rare in nearby marsh. Surprisingly, 

however, given the stark differences between mangrove and marsh arthropod 

assemblages, proximity to mangroves did not appear to influence community 

composition of the surrounding marsh. Marsh vegetation a mere 1.5m from the 

central trunk of Avicennia trees – meaning, in effect, that the mangrove canopy was 

often less than 1m away – hosted an arthropod community no different from marsh 

vegetation that was 5m distant. Consequently, the arthropod community within the 
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ecotone has a fine-scale spatial heterogeneity that precisely mirrors the heterogeneity 

of the vegetation. 

 Surprisingly, Avicennia flowers did not appear to play a large role in shaping 

diversity within the mangrove-marsh ecotone – at least, for the more sessile 

arthropods collected via vacuum sampling in this study. On mangroves themselves, 

Diptera were the only group to show a large response, increasing from a median of 7 

individuals on Avicennia with no flowers to a median of 161 individuals on trees with 

300 or more inflorescences (Figure 4.4). Diptera are common floral visitors in other 

systems, consuming nectar and pollen (Kearns 2001, Larson et al. 2001); the Diptera 

collected in this study were mainly small-bodied Chloropidae and Ceratopogonidae, 

which were likely opportunistic floral visitors but could theoretically contribute to 

Avicennia pollination (Larson et al. 2001). Hemiptera, too, tended to increase in 

abundance on heavily-flowering Avicennia, but the effect was much more modest, 

growing from a median of 4 individuals to 9 on trees with the most inflorescences 

(Figure 4.4). Importantly, this increase in Hemiptera abundance did not appear to be 

driven by marsh taxa migrating onto flowering mangroves; those morphospecies that 

were relatively common in surrounding marsh vegetation did not respond more 

positively to mangrove flowers than other morphospecies. 

 For the most part, marsh arthropods displayed no response to the quantity of 

nearby Avicennia inflorescences, although several hemipteran morphospecies in the 

salt marsh did statistically vary in abundance with mangrove flower number (Figure 

4.5). Most of the Heteroptera observed were herbivorous mirids, a group that is 

known to opportunistically feed on nectar from plants they otherwise do not consume 
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(Wheeler and Skaftason 2010). Heteroptera were very rare on Avicennia (n=16), 

which might explain why their abundance on mangroves was unrelated to flowering. 

In sum, the communities in marsh and even on mangroves themselves generally were 

unaffected by the number of mangrove flowers present. It should be noted, however, 

that the sampling method used in this study selectively collects less mobile organisms 

(Zou et al. 2016); bees, large wasps, and other strong fliers that may visit Avicennia 

flowers within the ecotone, increasing mangrove-associated diversity, were not 

captured in this study. 

 That neighboring Avicennia and salt marsh host different arthropod 

communities is not surprising, given previous work documenting their associated 

fauna (Davis and Gray 1966, Pennings and Bertness 2001). Arthropod herbivores 

tend to be specialized on their host plants, at least to the level of family or genus 

(Forister et al. 2015), and Avicennia is a distant relative of the salt marsh plants at this 

study site. Furthermore, some of the most abundant salt marsh herbivores in North 

America – e.g. Prokelisia marginata, (Hemiptera: Delphacidae) and P. dolus – are 

known specialists of Spartina alterniflora (Denno 1977). In addition, a host plant’s 

physical structure plays an important role in shaping the associated arthropod 

community (Döbel et al. 1990); the shrubby, broad-leaved Avicennia within the 

ecotone possess a very different architecture from the grasses and succulent forbs that 

make up the surrounding salt marsh. For example, in a salt marsh, Döbel et al. (1990) 

found that co-occurring Spartina species host distinct spider assemblages, largely due 

to differences in grass architecture and thatch density, which influence spider hunting 

strategy (e.g. active hunting vs. web-building). This study found higher spider 
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abundance in salt marsh than on mangroves, which could be due to the abundance of 

prey and/or to the fine-scale structural complexity of the vegetation. Further study of 

neighboring Avicennia and salt marsh spider assemblages at a finer taxonomic 

resolution would be valuable for determining species and functional turnover between 

the two vegetation types. 

 The coarse taxonomic resolution of this study undoubtedly obscured some of 

the distinctions between Avicennia and salt marsh arthropod communities. The one 

order which was considered at a finer taxonomic resolution illustrates this point: over 

97% of all Hemiptera (n=18,310) were found in marsh samples, but within the 

Hemiptera, over 97% of Telmapsylla (n=430) were collected from mangrove samples 

(Figure 4.1). Consequently, this study is almost certainly conservative in its estimate 

of the differences between the two communities. This also means that this study may 

be unable to detect within-order differences in community composition that exist 

between marsh immediately adjacent to mangroves and marsh farther away, resulting 

from associational effects due to mangrove proximity or to spillover. Tellingly, and in 

contrast to this study, Loveless and Smee (2019) found differences in arthropod 

communities of Texas salt marshes that varied with the amount of Avicennia cover 

nearby. Specifically, they found that arthropod abundance and diversity were highest 

in marshes where Avicennia was rare, and that predator-to-herbivore ratios were 

substantially lower in marsh bordering dense stands of Avicennia. To better 

understand the causality of mangrove encroachment and changes in marsh arthropod 

community composition, experimental introduction of mangroves or time series data 

from permanent plots in marsh experiencing mangrove encroachment are needed. 
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 This study contributes to our understanding of how mangrove encroachment 

into salt marsh affects arthropod diversity and community composition, by showing 

that the heterogeneity of the vegetation in the mangrove-marsh ecotone translates into 

a mosaic-like arthropod community, with sharp, sub-meter boundaries between 

assemblages associated with mangroves versus salt marsh. However, contrary to 

expectations, mangrove flowers did not meaningfully contribute to the differences 

between mangrove- and marsh-associated arthropod communities. This suggests that 

other traits, such as the plants’ physical structure, are of greater importance. In sum, 

as Avicennia continues to expand northward due to climate change, settings that 

transition from pure salt marsh to mixed marsh-mangrove ecotone will experience an 

increase in regional arthropod diversity, due to increasing habitat heterogeneity (via 

traits other than flowers). Future work monitoring the response to mangrove 

encroachment in a salt marsh, over time, would help to reveal the temporal pattern of 

diversity change, and the pace at which the arthropod community adjusts to the 

shifting ecotone. 
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Appendices 
 

Appendix A 

 

Figure A.1: Temperatures recorded inside fine-mesh pollinator exclusion bags (red lines), large-mesh 

pollinator bags (blue lines), and in open air on adjacent branches (black lines) over four days. Fine-

mesh bags presumably blocked air flow and evaporation, leading to high temperatures during the day. 
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Figure A.2: Variation in treatment effects by site, in the first reproductive strategy experiment in 2014. 

Fruit set was defined as the number of propagules that began to develop divided by the number of 

flowers assigned to this treatment and site. The three southernmost sites are shown on the left; the 

three northernmost sites are on the right. Different letters above bars indicate significant differences, 

according to Tukey post-hoc comparisons (p<0.05). Bars show standard errors. 
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Appendix B 

Table B.1: Site descriptions and variables measured at each site, listed from northernmost (Anastasia 

State Park) to southernmost (Hobe Sound National Wildlife Refuge). See map of these sites in Figure 

B.1. 

Site Name Description Measurements 

1 Anastasia S.P. 
Vegetation: Mixture of mangrove (A. germinans 
only) and salt marsh (S. alterniflora and B. 
maritima). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; fruit set 

2 GTM-Braddocks 
Point 

Vegetation: Mixture of mangrove (A. germinans 
only) and salt marsh (S. alterniflora, B. maritima, 
and Salicornia sp.). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition 

3 GTM-Matanzas 
Vegetation: Mixture of mangrove (A. germinans 
only) and salt marsh (S. alterniflora, B. maritima, 
and Salicornia sp.). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition; fruit set 

4 GTM-Marineland 
Vegetation: Mangrove (primarily A. germinans, 
scattered R. mangle) immediately adjacent to 
upland forest. 

Floral visitation 

5 Spruce Creek 
Preserve 

Vegetation: Mixture of mangrove (primarily A. 
germinans and R. mangle, some L. racemosa) and 
salt marsh (S. alterniflora, B. maritima, and 
Salicornia sp.). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition 

6 Merritt Island 
N.W.R. 

Former mosquito impoundment (natural flow 
restored 1997). Vegetation: Mixture of mangrove 
(primarily A. germinans and L. racemosa, some R. 
mangle) and salt marsh (Distichlis spicata, B. 
maritima, and Salicornia sp.). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition; fruit set 

7 Pine Island 
Conservation Area 

Former dredge spoil island (restored 2006). 
Vegetation: Mixture of mangrove (R. mangle, A. 
germinans, and L. racemosa) and salt marsh 
(Distichlis spicata, B. maritima, and Salicornia 
sp.). 

Reproductive tree density and 
fecundity; floral visitation; 
fruit set 

8 Sebastian Inlet S.P. 
Former mosquito impoundment. Vegetation: Pure 
mangrove (R. mangle, A. germinans, and L. 
racemosa). 

Floral visitation 

9 Avalon S.P. 
Mosquito impoundment. Vegetation: Pure 
mangrove (R. mangle, A. germinans, and L. 
racemosa). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition; fruit set 

10 St. Lucie Inlet 
Preserve S.P. 

Vegetation: Pure mangrove (R. mangle, A. 
germinans, and L. racemosa). 

Reproductive tree density and 
fecundity; propagule mass; 
floral visitation; pollen 
deposition; fruit set 

11 Hobe Sound 
N.W.R. 

Vegetation: Pure mangrove (R. mangle, A. 
germinans, and L. racemosa). Floral visitation 
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Figure B.1: Map of study sites in Florida, USA. Identities and visitation rates of pollinators were 

measured at all sites; pollen deposition, flowering, and propagule production were measured at a 

subset of these sites. See text for details; see Table B.1 for site descriptions. 
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Figure B.2: Pollen load size varied significantly among insect taxa. Shown here are pollen loads 

collected from 11 of the 12 most frequently observed floral-visiting taxa (no pompilids were collected 

for pollen load measurements). Sample sizes are shown along the top of the plot. 
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Appendix C 

 

Table C.1: Variable loadings from a Principal Components Analysis of % cover along transects 

encircling each focal mangrove, at 1.5m and 5m. 

 
	 PCA	Axes	

Variable	 1	 2	
Spartina	 0.624	 	
Salicornia	 -0.508	 0.162	
Batis	 -0.278	 -0.672	

Bare	ground	 	 0.646	
Avicennia	seedlings	 -0.524	 0.311	

	 	 	
Proportion	of	

variance	explained	 0.47	 0.27	
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Figure C.1: The study site, in northern Florida (inset), is dominated by salt marsh (brown and gray 

regions bordering tidal creeks). A. germinans is increasing in cover in parts of the marsh, and, in this 

satellite image, is visible as dark-green vegetation along the northern and central areas of the site. 
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Figure C.2: Birds-eye schematic showing vacuum sampling of one plot, consisting of a focal Avicennia 

mangrove and its two surrounding marsh vegetation transects (dashed lines). Each plot was sampled 

three times over the course of the experiment. 
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Figure C.3: Dissimilarities between mangrove and nearby marsh communities, based on (a) arthropod 

orders or (b) only Hemiptera morphospecies, was unrelated to the number of mangrove inflorescences 

present. 
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