
ABSTRACT

Title of Dissertation: CODES WITH EFFICIENT ERASURE CORRECTION

Zitan Chen
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Alexander Barg
Department of Electrical and Compute Engineering
Institute for Systems Research

Distributed storage systems are becoming increasingly ubiquitous in the emerg-

ing era of Internet of Things. Major internet technology companies employ large-

scale distributed storage systems to accommodate the massive amounts of data

generated and requested by global users. The need of reliable and efficient storage

of immense amounts of data calls for new applications and development of classical

error-correcting codes.

This dissertation is devoted to a study of codes with efficient erasure correction

for distributed storage systems. The efficiency of erasure correction is often assessed

by two performance metrics, bandwidth and locality. In this dissertation we address

several problems for each of these two metrics. We construct families of codes with

optimal communication complexity for erasure correction (“repair bandwidth”) for

a heterogeneous storage model, and derive several results for the problem of optimal

repair of Reed-Solomon codes. We also construct families of cyclic and convolutional

codes with locality, extending the range of parameters for which such families were

previously known.

CODES WITH EFFICIENT ERASURE CORRECTION

by

Zitan Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Alexander Barg, Chair/Advisor
Professor Behtash Babadi
Professor Prakash Narayan
Professor Sennur Ulukus
Professor William Gasarch

© Copyright by
Zitan Chen

2020

Acknowledgments

First and foremost, I would like to thank my PhD advisor, Professor Alexander

Barg for his guidance and support for the past five years. He always made himself

available to discuss any questions or ideas I had and provide helpful suggestions to

me based on his broad knowledge and rich research experience. It is a great fortune

for me to have him as my advisor. I am also indebted to Sidharth Jaggi and Michael

Langberg, my undergraduate research advisors, who led to me into the fascinating

realm of information theory and coding theory. Without their introduction, I would

not have chosen to pursue a doctoral degree in these fields, let alone complete this

dissertation.

I would like to acknowledge financial support that made it possible for me to

focus on my studies and research and to have the opportunity to learn from so many

incredible individuals at the University of Maryland, College Park. I feel fortunate

to have met so many excellent people on this beautiful campus. Thanks for all the

memories we created together. I own my deepest thanks to all the friends, here

at College Park or far in other places, who spoke with me, listened to me, and

accompanied me during most difficult times in this journey.

My most important acknowledgment is to my parents for their constant love,

understanding and support, and for all they have done for me. There are no words

in the world that can express my thanks to them.

ii

Lastly, I am grateful to my dissertation committee members, who kindly agreed

to serve on the panel, for their time and consideration.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Figures vii

List of Abbreviations viii

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Preliminaries and prior work . 2

1.2.1 Efficiency in terms of bandwidth 2
1.2.2 Stronger notions of optimal repair 5
1.2.3 Optimal repair under connectivity constraints 6
1.2.4 Efficiency in terms of locality 9
1.2.5 Further extensions of local repair 11
1.2.6 LRC convolutional codes . 14

1.3 Contributions . 14
1.3.1 Codes with optimal repair bandwidth 15
1.3.2 Codes with locality . 19

1.4 Organization . 21

Chapter 2: Enabling Optimal Access and Error Correction for the Repair
of Reed-Solomon Codes 22

2.1 Introduction . 22
2.1.1 Organization . 23

2.2 A simple example . 23
2.2.1 Preliminaries . 23
2.2.2 Repair scheme with optimal error correction capability 25
2.2.3 Optimal access property . 28
2.2.4 Optimal access with error correction 29

2.3 Enabling error correction for repair of RS codes 30
2.3.1 Preliminaries . 30
2.3.2 The repair scheme . 33
2.3.3 The matrices Mj . 36
2.3.4 The matrices Mj are invertible 41

iv

2.4 A family of optimal-access RS codes 46
2.4.1 New construction . 47
2.4.2 Error correction with optimal access 54

2.5 Every scalar MSR code affords optimal-access repair 57
2.5.1 Constant repair subspaces . 58
2.5.2 Optimal access for the case of constant repair subspaces . . . 62
2.5.3 Optimal-access repair for general scalar MSR codes 66

Chapter 3: Explicit Constructions of MSR Codes for the Rack-aware Stor-
age Model 74

3.1 Introduction . 74
3.1.1 Organization . 75

3.2 Problem statement and structural lemmas 75
3.2.1 Optimal repair . 78
3.2.2 Optimal access . 81
3.2.3 A lower bound on the sub-packetization of rack-aware optimal-

access MSR codes . 82
3.3 Rack-aware codes with optimal repair for all parameters 84
3.4 Low-access codes for the rack model 91

3.4.1 Optimal-access MSR codes with arbitrary repair degree for
homogeneous storage . 91

3.4.2 Rack-aware MSR codes with low access 92
3.5 A construction of Reed-Solomon codes with optimal repair 101

3.5.1 Rack-aware RS codes with optimal repair 102
3.5.2 Rack-aware RS codes with optimal error correction and low

access . 107

Chapter 4: Cyclic and Convolutional Codes with Locality 109
4.1 Introduction . 109

4.1.1 Organization . 109
4.2 The structure of zeros of cyclic codes with locality 110

4.2.1 Optimal cyclic LRC codes . 111
4.2.2 Cyclic codes with locality . 113

4.3 Codes with hierarchical locality . 116
4.3.1 Optimal cyclic codes with hierarchy 116
4.3.2 Hierarchical cyclic codes of unbounded length 123

4.4 Convolutional codes with locality . 126
4.4.1 Convolutional codes with column locality 130
4.4.2 Convolutional codes with row locality 131
4.4.3 Convolutional codes and quasicyclic codes 135
4.4.4 A family of tailbiting convolutional codes with row locality . . 136

4.5 Bi-cyclic codes with availability . 144

Chapter 5: Conclusion 149
5.1 RS codes with optimal repair . 149

v

5.2 Rack-aware MSR codes . 150
5.3 Codes with locality . 151

Chapter A: Omitted Proofs in Chapter 2 152
A.1 Proof of Proposition 7 . 152

Appendix B: Omitted Proofs in Chapter 3 160
B.1 Proof of Proposition 24 . 160
B.2 Proof of Proposition 26 . 161
B.3 Proof of Theorem 27 . 163

Appendix C: Omitted Proofs in Chapter 4 172
C.1 Proof of Proposition 37 . 172
C.2 Proof of Lemma 38 . 174
C.3 Proof of Proposition 42 . 176

Bibliography 179

vi

List of Figures

4.1 Sliding window repair . 130
4.2 Sliding window repair with column locality 132
4.3 Sliding window repair with row locality 133
4.4 Sliding window repair with row locality for tailbiting codes 133

vii

List of Abbreviations

GRS Generalized Reed-Solomon (codes) Section 2.2.1

H-LRC Hierarchical Locally Recoverable (codes) Section 1.2.5

LRC Locally Recoverable (codes) Section 1.2.4

MDS Maximum Distance Separable (codes) Section 1.2.1

MSR Minimum Storage Regenerating (codes) Section 1.2.1

OA Optimal Access Section 1.2.2

RS Reed-Solomon (codes) Section 1.2.1

viii

Chapter 1: Introduction

1.1 Motivation

Large-scale distributed storage systems are arguably the backbone of numerous

cutting-edge technologies in our contemporary society. These systems operate on

an increasingly large scale, and their reliability becomes the central consideration

of the system design. For example, parts of the data stored in the systems may be

inaccessible due to events such as unreliable network connections, power outages,

and disk-failures. Moreover, such events are the norm rather than the exception in

the course of daily operations of the system. To improve system reliability and to

combat data loss, several classes of erasure codes have been brought into play in

distributed storage systems in practice.

Existing coding schemes in distributed storage systems are usually capable

of correcting multiple erasures. However, the most common erasure pattern in

distributed storage systems in reality is the case of a single erasure. Since most of the

existing coding schemes and their erasure correction procedures do not distinguish

between correcting single and multiple erasures, they fall short of recovering a single

erasure efficiently. Thus, the problem of efficient erasure correction in various classes

of algebraic codes, also known as the repair problem, has recently attracted renewed

1

attention. In this dissertation, we address a series of questions related to the general

problem of codes with efficient erasure correction.

1.2 Preliminaries and prior work

In this section, we introduce some basic definitions and terminology related to

coding for distributed storage, and review prior work most relevant to the results in

this dissertation.

A distributed storage system is formed of a collection of n nodes that are used

to store the data. Loss of data in a node is called a node failure and the recovery of

the data in a failed node is termed node repair. Using the coding-theoretic language,

a distributed storage system is a code of length n, and therefore, a node corresponds

to a coordinate of the code. In the same vein, a failed node refers to an erasure of

the coordinates and erasure correction is another term to describe node repair.

The performance of efficient node repair can be measured by different metrics,

among which we are most interested in bandwidth and locality.

1.2.1 Efficiency in terms of bandwidth

To a large extent, efficient repair of failed nodes critically depends on the

volume of communication exchanged between the nodes. The constraint on the

amount of communication, termed “repair bandwidth,” adds new features to the

erasure correction problem, and has motivated a large amount of research in coding

theory in the last decade.

2

The repair problem under restriction of low repair bandwidth was initially

introduced in the well-known paper [20] which casts the capacity problem of dis-

tributed storage as a network coding problem where the necessary conditions for

the repair of failed nodes were derived by considering the information flow in the

network that occurred in the course of repair. These conditions imply a bound on

the minimum number of symbols required for repair of a single failed node, which is

known as the cut-set bound on the repair bandwidth. Paper [20] further considered

a variety of data coding schemes, termed regenerating codes, that optimize either

storage or repair bandwidth, as well as the tradeoff between these two quantities.

Consider an pn, k, lq array code C over a finite field F ,1 i.e., a collection of

codewords c “ pc1, . . . , cnq, where ci “ pci,0, ci,1, . . . , ci,l´1q
T P F l, i “ 1, . . . , n. A

node ci, i P rns can be repaired from a subset of d ě k helper nodes tcj : j P Ru,R Ď

rnsztiu, by downloading βipRq symbols of F if there are numbers βij, j P R, functions

fij : F l Ñ F βij , j P R, and a function gi : F
ř

jPR βij Ñ F l such that

ci “ giptfijpcjq, j P Ruq for all c “ pc1, . . . , cnq P C

and

ÿ

jPR

βij “ βipRq.

Codes that we consider form linear spaces over F . If C is not linear over F l, it

is also called a vector code, while if it is, it is called scalar to stress the linearity

property. A code C is called maximum distance separable or MDS if any k coordinates

1We also denote a finite field by Fq to indicate that its order is q.

3

tcji , i “ 1, . . . , ku of the codeword suffice to recover its remaining n´ k coordinates.

It is well known [20] that for any MDS code C (scalar or vector), any i P rns,

and any R Ď rnsztiu of cardinality |R| ě k, we have

βipRq ě
|R|l

|R| ´ k ` 1
. (1.1)

For an MDS code C, we define the minimum bandwidth of repair of a node from

a d-subset R of helper nodes as βpdq “ maxiPrns minRĂrnsztiu,|R|“d βipRq. It follows

immediately from (1.1) that

β :“ βpdq ě
dl

d´ k ` 1
. (1.2)

An MDS code that attains the bound (1.2) with equality is said to afford optimal

repair, and a repair scheme that attains this bound is called optimal. Such codes are

also termed minimum storage regenerating codes or MSR codes, and the parameter

l is called node size or sub-packetization. Multiple constructions of vector MDS

codes with optimal repair are available in the literature, including papers [56], [74],

[84, 85], [26], [58].

While the aforementioned papers mostly deal with vector codes, we are also

interested in the repair problem for scalar MDS codes, more specifically, for Reed-

Solomon codes or RS codes. This code family continues to attract attention in

multiple aspects of theoretical research such as list decoding of variants of RS codes,

and it is also one of the most used coding methods in a vast variety of practical

4

systems. The first work to isolate and advance the repair problem for RS codes was

[28] which itself followed and developed the ideas in [66]. In [28], the authors view

each coordinate of RS codes as a vector over some subfield and characterize linear

repair schemes of RS codes over this subfield. For RS codes (and more generally for

scalar codes), the node size l is defined as the degree of extension of the symbol field

over the subfield. Following [28], several papers attempted to optimize the repair

bandwidth of RS codes [17], [18], [51]. A family of optimal-repair RS codes in the

case of repairing a single failed node as well as multiple nodes was constructed in

[77].

1.2.2 Stronger notions of optimal repair

The basic repair problem of MDS codes has been extended to the case that

some of the helper nodes provide erroneous information (or arbitrary nature). Sup-

pose that a subset of e nodes out of d helpers provide erroneous information and

define βpd, eq to be the minimum number of symbols needed to repair a failed node

in the presence of such errors. It was shown in [57], [53] that for d ě k ` 2e,

βpd, eq ě
dl

d´ 2e´ k ` 1
. (1.3)

A repair scheme that achieves this bound is said to have optimal error correction ca-

pability. Constructions of MDS array codes with optimal error correction capability

are presented, for instance, in [84].

Another parameter of erasure codes for distributed storage that affects the

5

system performance is the so-called access, or input-output cost of repair. Indeed,

while the code may support parsimonious exchange between the helper nodes and

the repair center, generation of the symbols to be transmitted from the helper node

may require reading the entire contents of the node (trivial access), which increases

delays in the system. The smallest number of symbols accessed on each of the

helper nodes in an MSR code is l{pd ´ k ` 1q, and such codes are said to have the

optimal access property or OA property. Advantages of having this property are well

recognized in the literature starting with [65], and a number of papers were devoted

to constraints that it imposes on the code parameters such as sub-packetization

[75], [3]. Many families of MSR codes including early constructions in [8, 74] as

well as code families for general parameters in [84, 85], [81] have the optimal access

property.

The optimal-access repair and optimal error correction capability can be com-

bined. According to (1.3), we say that a code family/repair scheme have both

properties if repair can be performed in the presence of e errors, while the number

of symbols accessed on each of the helper nodes equals 1{pd´2e´k`1q proportion

of the contents of each of d helper nodes.

1.2.3 Optimal repair under connectivity constraints

Initially the problem of repair bandwidth was formulated for the so-called

centralized repair model which assumes that the failed nodes are repaired by a single

data collector that receives information from the helper nodes and performs the

6

recovery within a single location, having full access to all the downloaded information

and the intermediate results of the calculations [9, 59, 84]. Another well-known

model assumes cooperative repair, when the failed nodes are restored at different

physical locations, and the information downloaded to each of them as well as the

exchange of intermediate results between them are counted toward the overall repair

bandwidth [40, 43, 67, 86].

The problems of centralized and cooperative repair have been addressed in

multiple recent papers, and there are explicit constructions of optimal-repair regen-

erating codes that cover the entire range of admissible parameters, require small-size

ground alphabet compared to the length n of the encoding block, and attain the

smallest possible repair bandwidth [56, 74],[84],[64, 81, 85],[44] (more references are

given in a recent survey [2]). The availability of optimal constructions has motivated

a shift of attention toward studying data recovery not only under communication,

but also connectivity constraints, in other words, storage models in which communi-

cation cost between nodes differs depending on their location in the storage cluster.

Erasure coding for clustered architectures affords several extensions from the

basic setting of homogeneous storage. One of the first questions analyzed for het-

erogeneous storage models was related to repair under the condition that the system

contains a group of nodes, downloading information from which contributes more

to the repair bandwidth than downloading the same amount of information from

the other nodes [1]. Later works [23, 54] observed that a more realistic version of

non-homogeneous storage should assume that the cost of downloading information

depends on the relative location of the failed node in the system. In this case, down-

7

loading information from the group that contains the failed node (also called the

host group) contributes less to the cost than inter-cluster downloads. The authors of

[23, 54] have assumed that the storage is formed of two clusters and derived versions

of the cut-set bound for the minimum repair bandwidth. The two-cluster model was

further developed in recent papers [68, 69] which assumed that the encoded data is

placed in a number of clusters (generally more than two), and derived a cut-set type

bound on the repair bandwidth for this case. Moreover, [69] showed existence of

optimal-repair codes for their model, and [68] gave an explicit construction of MDS

array codes for the case when the code dimension is equal to the size of the clus-

ter. Paper [55] considers several versions of node repair for clustered (rack-aware)

storage, but does not address the general case of rack-aware MSR codes. We also

mention [61, 79, 84] which discuss other variations of clustered storage architectures

and are less related to our work in this dissertation.

The rack-aware storage that we address in this dissertation assumes that k data

blocks are encoded into a codeword of length n “ n̄u and stored across n nodes. The

nodes are organized into n̄ groups, also called racks. Suppose that a node has failed

and call the rack that contains it the host rack. To perform the repair, the system

downloads information from the nodes in the host rack (called below local nodes),

as well as information from the other racks. The rack-oriented storage model is

distinguished from the other clustered storage architectures in that the information

from nodes that share the same rack, can be processed before communicating it

to the failed node. Communication within the racks, including the host rack, does

not incur any cost toward the repair bandwidth. The main benefit of rack-aware

8

coding is related to reducing the bandwidth required for repair compared to coding

for homogeneous storage.

This model was introduced in [32, 33]. Specifically, the authors of [32] derived

a version of the cut-set bound of [20] adapted for this case and showed existence

of MSR codes with optimal repair for the rack model. A more expanded study of

codes for this model was undertaken in a recent paper [31], which showed existence

of codes with optimal repair bandwidth for a wide range of parameters. At the same

time, there are very few explicit constructions of MSR codes for this model known

in the literature. We mention [33] which presented such codes for 3 racks and for

the case when the number of parities of the code equals the size of the rack u.

1.2.4 Efficiency in terms of locality

In addition to the repair bandwidth, locality is another important metric for

assessing the performance of efficient erasure correction. Codes with locality, also

known as locally recoverable codes or LRC codes, are able to correct one or several

erasures in the codeword based on the contents of a subset of other code coordinates,

whose cardinality is much smaller than the dimension of the code. In other words,

LRC codes support repair of a failed node by contacting a small number of other

nodes in the storage system. The problem of local repair was first isolated in [25],

and, similarly to the problem of optimal-bandwidth repair, it has been actively

studied in the last decade.

Definition 1 (LRC codes). A linear code C Ă Fnq is locally recoverable with locality

9

r if for every i P t1, 2, . . . , nu there exists an r-element subset Ii Ă t1, 2, . . . , nuztiu

and a linear function φi : Frq Ñ Fq such that for every codeword c P C we have

ci “ φipcj1 , . . . , cjrq, where j1 ă j2 ă ¨ ¨ ¨ ă jr are the elements of Ii.

The coordinates in Ii are called the recovering set of i, and the set tiu Y Ii is

called a repair group. Below we refer to a linear LRC code of length n, dimension k,

and locality r as an pn, k, rq LRC code. Since the code is occasionally used to correct

a large number of erasures (such as in the event of massive system failure), another

parameter of interest is the maximum number of erasures that it can tolerate. This

is controlled by the minimum distance dpCq of the code, for which there are several

bounds known in the literature. We will be interested in the generalized Singleton

bound of [25] which states that for any LRC code C,

dpCq ď n´ k ´

R

k

r

V

` 2. (1.4)

LRC codes can be constructed in a number of ways. A connection between

LRC codes and the well-studied family of RS codes was put forward in [71], where

codes with large distance were constructed as certain subcodes of RS codes. The

results of [71] paved the way for using powerful algebraic techniques of coding theory

for constructing other families of LRC codes including algebraic geometric codes

[5, 46, 47]. In [73] it was observed that a particular class of the codes in [71] can be

represented in cyclic form, and the distance and locality properties of cyclic LRC

codes were described in terms of the zeros of the code. This established a framework

for cyclic LRC codes that was advanced in a number of ways in several recent works

10

[6, 11, 30, 50].

1.2.5 Further extensions of local repair

While in most situations repairing a single failed node restores the system to

the functional state, occasionally there may be a need to recover the data from

several concurrent node failures. The following extension of the previous definition

is due to [39].

Definition 2 (pr, δq locality). For any δ ě 2 we say that a linear code C has pr, δq

locality if every coordinate i P t1, . . . , nu is contained in a subset Ji Ă t1, . . . , nu of

size at most r ` δ ´ 1 such that the restriction CJi to the coordinates in Ji forms a

code of distance at least δ.

Note that in the case of δ “ 2 the codes defined here are exactly the codes

of Def. 1 above. The case of δ ą 2 was also studied in [71], where constructions

of RS-like LRC codes with pr, δq locality were presented. The approach of [73]

was later extended by [11] to construct codes with pr, δq locality, designing a cyclic

representation of the polynomial evaluation codes from [71] for the general case of

δ ě 2.

An intermediate situation arises when the code is designed to correct a single

erasure by contacting a small number r1 of helper nodes, while at the same time

supporting local recovery of multiple erasures. Extending this idea to multiple levels

of local protection, the authors of [63] introduced the concept of hierarchical LRC

codes or H-LRC codes, which are defined as follows.

11

Definition 3 (H-LRC codes). Let h ě 1, 0 ă r1 ă r2 ă . . . ă rh ă k, and

1 ă δ1 ď . . . ď δh ď d be integers. A linear code C Ă Fnq is said to have h-level

hierarchical locality pr1, δ1q, . . . , prh, δhq if for every 1 ď i ď h and every coordinate

of the code C there is a punctured code Cpiq such that the coordinate is in the support

of Cpiq and

(a) dimpCpiqq ď ri,

(b) dpCpiqq ě δi,

(c) the i-th local code Cpiq has pi´1q-level hierarchical locality pr1, δ1q, . . . , pri´1, δi´1q.

The authors of [63] proved the following extension of the bound (1.4): The

minimum distance of an h-level H-LRC code with locality satisfies the inequality

d ď n´ k ` δh ´
h
ÿ

i“1

R

k

ri

V

pδi ´ δi´1q, (1.5)

where δ0 “ 1. In particular, for h “ 1 this gives a version of the bound (1.4) for the

distance of an pn, kq code with pr, δq locality:

d ď n´ k ` δ ´
Qk

r

U

pδ ´ 1q. (1.6)

We call an H-LRC code optimal if its distance attains the bound (1.5). Note that

it is possible that the code is optimal while its local codes Cpiq for some or even all

i ď h´ 1 are not. We say that an H-LRC code C is strongly optimal if in every level

i, 1 ď i ď h, the i-th local codes are optimal H-LRC codes with i ´ 1 levels. For

12

h “ 1 the distance of the optimal code with pr, δq locality attains the bound (1.6)

with equality.

In addition to defining the problem and deriving a bound on the parameters of

H-LRC codes, the authors of [63] extended the construction of [71] to the hierarchical

case. Their construction was further generalized to algebraic geometric codes in [4].

On the other hand, several recent studies presented families of codes with multiple

levels of erasure correction [22, 27, 83], not necessarily within the framework of the

above definition. As far as H-LRC codes are concerned, the only general family of

optimal H-LRC codes that we are aware of was presented in [4, 63]. This construction

essentially followed the approach of [71], relying on multivariate polynomials that

are constant on the blocks that form the support of the code Cpiq in Def. 3. The codes

of [4, 63] form a family of strongly optimal H-LRC codes which can be constructed

for any code length n ď q, dimension k, and any values of ri, i “ 1, . . . , h as long

as ri|ri`1, i “ 1, . . . , h ´ 1 and rh|k. The divisibility constraint is essential for the

constructions discussed, and it limits the possible choices of the code parameters.

Another extension of the local repair is the problem of availability which calls

for constructing LRC codes with several disjoint recovering sets for each code coor-

dinate. LRC codes with this property are defined as follows [60, 82].

Definition 4 (LRC codes with availability). Let t ě 1 and pr1, δ1q, . . . , prt, δtq

be integers. A code C Ă Fnq is said to have availability t with locality pr1, δ1q, . . . , prt, δtq

if for every coordinate j, 1 ď j ď n of the code C there are t punctured codes

Cpiq, 1 ď i ď t such that j P supppCpiqq, i “ 1, . . . , t and

13

(a) dimpCpiqq ď ri,

(b) dpCpiqq ě δi,

(c)
Şt
i“1 supppCpiqq “ tju.

We note that the known bounds on the code parameters for multiple recovering

sets [41, 60, 72, 82] do not support a conclusive picture, and we are not aware of

general families of codes with availability whose distance attains one of the known

upper limits.

1.2.6 LRC convolutional codes

LRC convolutional codes form another class of erasure codes, which was con-

sidered in several previous works [15, 35, 87] before being thoroughly analyzed in a

recent paper [52]. The results of [52] focused on the so-called sliding window repair

property of convolutional codes, and the authors observed that certain families of

convolutional codes, notably the so-called codes with the maximum distance profile

[24, 80], suggest an approach to constructing codes with locality. They also pre-

sented a family of LRC convolutional codes with sliding window repair for the case

of column locality.2

1.3 Contributions

We address a range of questions on codes with optimal repair bandwidth and

on codes with locality, corresponding to the two metrics of interest for efficient

2See Sec. 4.4.1 for more details.

14

erasure correction: bandwidth and locality.

1.3.1 Codes with optimal repair bandwidth

The repair problem of scalar MDS codes.

First, we address two problems related to RS repair, namely, (i) repair schemes

of RS codes with optimal error correction, and (ii) RS codes with optimal-access

repair. Error correction during repair of failed nodes was previously only considered

for vector codes [57], [53], [84]. The problem of low-access RS codes was studied in

[16, 19, 45]. In particular, the last of these works analyzed the access (input/output)

cost of the family of RS codes of [77], providing an estimate of this parameter, but

stopping short of achieving optimal access.

Our results provide a solution to problems (i)-(ii). Specifically, we construct

a repair scheme for RS codes in [77] that has optimal error correction capability

(i.e., attains the bound (1.3)). This is accomplished by enforcing the information

provided by helper nodes for repair to form codewords of an appropriate MDS code,

and thus the error correction capability of the MDS code gives rise to an optimal

error-tolerance repair scheme. We also construct a family of RS codes with optimal

access repair for any single failed node. The starting point of our optimal-access

construction is the observation that the RS code family presented in [77] actually

affords optimal-access repair of one node but not all the other nodes. In view of

this, we impose additional structures on the underlying finite field that generalize

what is needed for the optimal-access repair of one node, which makes it possible

15

for every node to be repaired with optimal access. Additionally, combining both

ideas discussed herein, we prove that the constructed codes with optimal access can

be furnished with a repair scheme that supports both optimal error correction and

optimal-access repair simultaneously.

Apart from this, we also show that any scalar MDS code with optimal repair

of a single node from d helpers, k ď d ď n´ 1, affords a repair scheme with optimal

access, and this includes the RS codes in [77]. While our arguments do not provide

an explicit construction, we give a combinatorial search procedure, showing that it

exists for any scalar MSR code. The resulting optimal access codes have the same

sub-packetization as the original MDS codes.

The rack-aware storage model.

We present constructions of MSR codes for the rack-aware storage model that

have optimal repair bandwidth and cover all admissible parameters, such as the code

rate k{n, the size and number of the racks. The only restriction that we assume

is the natural condition that the racks are of equal size u and that the codeword

is written on n̄ racks such that u coordinates of the codeword are placed on each

of them. This assumption is also consistent with the literature [31, 32]. The main

idea that underlies these constructions is the multiplicative group structure of finite

fields. More precisely, the multiplicative structure enables one to aggregate and

compress the information provided by the nodes within in a helper rack that is

needed for repair of the failed node. The compressed information, together with the

free information from the local nodes in the host rack, enables the optimal repair of

16

the failed node.

We present two families of MDS array codes that support optimal repair in

the rack model. The first family gives an explicit construction of optimal-bandwidth

codes for repairing a single node from the nodes located in d̄ helper racks for any

tk{uu ď d̄ ď n̄´ 1. The underlying finite field of our construction is of size at most

n2{u where u is the size of the rack, and the node size (sub-packetization) equals

l « pd̄ ´ k
u
qn{u. The construction is phrased in terms of the parity-check equations

of the code, as in [84, 85], and relies on the multiplicative structure of the field to

account for the rack model considered here.

The second code family constructed in this paper, in addition to optimal repair,

addresses the question of reducing the number of symbols accessed on each of the

helper racks. The code construction is presented in two steps. First, we present a

new family of optimal-access codes for the standard repair problem (homogeneous

storage), constructing codes with arbitrary repair degree d, k ď d ď n ´ 1 over a

field F of size at least d ´ k ` 1. These parameters are similar to optimal-access

codes constructed in [84], and in fact require a slightly larger field F . At the same

time, the new construction can be modified for the rack model, resulting in codes

with low access. The additional ingredient that enables low access is that we devise

the parity check equations carefully such that the content of any single node and the

contents of a 1{pd´k`1q fraction of the other nodes constitute codewords of certain

MDS codes of dimension d. Thus, any d helper nodes suffice to repair the failed node

with optimal access under the homogeneous storage model. Furthermore, with the

multiplicative group structure discussed above, this leads to a family of low-access

17

codes for the rack-aware storage model.

We also present a family of (scalar) RS codes that can be optimally repaired

in the rack model. The construction is a modified version of the RS code family

constructed in [77] for the case of homogeneous storage. Furthermore, extending

this approach and utilizing ideas that form the basis of the RS codes with optimal

error correction and optimal access mentioned above, we are able to construct a

family of RS codes with optimal error correction capability and low access for the

rack-aware storage model.

Apart from the code constructions, we examine the structure of codes with

optimal repair or optimal access for the rack model. Because of intra-rack processing,

the definition of optimal access is not as explicit as in the homogeneous case. We

prove a lower bound on the number of accessed symbols for codes that support

optimal repair. At the same time, the codes that we construct fall short of attaining

this bound, and it is not clear what is the correct value of this quantity.

Finally, we derive a lower bound on the node size for optimal-repair codes

in the rack model, modifying for this purpose the approach of the recent work [3],

where a similar bound was proved for the homogeneous case.

We note that the results of [69] and [68] do not allow data processing within

clusters (racks) in the course of the repair task, and thus are not directly comparable

with our findings. Subsequent to our work [13], the repair problem of RS codes for

rack-aware storage was consider in [36] for a different range of storage parameters.

18

1.3.2 Codes with locality

Cyclic LRC codes.

In the part on cyclic codes we focus on several aspects of LRC codes that have

not been previously addressed in the literature. The first of these is codes with

hierarchical locality (H-LRC codes). The starting point of our constructions is a

cyclic version of the RS-like codes with locality designed in [71]. As noted above,

RS codes over Fq can be alternatively described in terms of polynomial evaluation

and (in the case that the code length n divides q ´ 1) as cyclic codes of the BCH

type.

We first derive conditions on the zeros of a cyclic code that support hierarchical

locality. As a result, we construct families of cyclic H-LRC codes for any levels of

hierarchy. We also derive conditions that are sufficient for our codes to be (strongly)

optimal which do not rely on the divisibility assumptions prevailed in the literature,

thus yielding a new range of code parameters.

Furthermore, we examine two other problems for LRC codes that benefit from

the cyclic code construction. The first of them is the problem of maximum length

of optimal LRC codes put forward in [29]. Answering the challenge of constructing

optimal LRC codes of length larger than q, the authors of [6, 10, 29, 50] constructed

several families of optimal cyclic codes of large, and in some cases even unbounded

length, and [10] extended these results to the case of several erasures. Here we follow

the lead of [50] and construct an infinite family of H-LRC codes over a given finite

19

field and establish conditions for their optimality in terms of the bound (1.5).

Finally, we consider the problem of availability, namely, LRC codes with mul-

tiple recovering sets for each coordinate of the code. We note that multidimensional

cyclic LRC codes (product codes of cyclic LRC codes) naturally yield several recov-

ering sets for the coordinates. We use a description of bi-cyclic codes in terms of

their zeros together with a special version of code concatenation [62] to construct

codes with availability and rate higher than the rate of product codes.

Although we do not pursue this direction here, let us note that the methods

of constructing cyclic codes with locality presented in this dissertation enable one

to construct codes with both hierarchical locality and availability. We remark that

constructions of LRC codes that have both properties were presented in [4], where

the main tools were fiber products and covering maps of algebraic curves.

LRC convolutional codes.

The results on H-LRC cyclic codes also enable us to connect the construction

of H-LRC cyclic codes and convolutional codes with locality. In fact, the recent

work [52] suggested that there may be a connection between H-LRC codes and LRC

convolutional codes. We show that this connection indeed leads to fruitful results,

designing LRC convolutional codes for the case of row locality (defined in Sec 4.4).

The lower bounds on the column distance3 of the codes constructed here and in

[52] are the same; however the alphabet size of our codes is much smaller than in [52].

We also derive an upper bound on the column distance of LRC convolutional codes

3A distance measure of interest for convolutional codes. See Def. 10 in Sec. 4.4 for more details.

20

with locality; however, our construction falls short of attaining it. The method

that we use relies on the characterization of zeros of cyclic block H-LRC codes.

We observe that several levels of hierarchy enable one to put our cyclic H-LRC

codes in an appropriate quasicyclic form, and then use a classic connection between

quasicyclic codes and convolutional codes [70] to construct convolutional codes with

locality.

1.4 Organization

The dissertation is organized as follows. Following this introductory chapter,

the main part of this dissertation is divided into three chapters, presenting our main

results in detail. Chapter 2 and 3 are devoted to the studies of codes with optimal

repair bandwidth, while Chapter 4 focuses on codes with various types of locality.

Chapter 2 is dedicated to the repair problem of scalar MSR codes, in particular,

to the studies of the properties of error correction and optimal access for repairing

RS codes. This chapter is based on the paper [14].

Chapter 3 concentrates on the rack-aware storage model, analyzing properties

that are unique for the model and construct families of MSR codes tailor-made for

the model. This chapter is built upon the paper [13].

Chapter 4 examines cyclic codes with hierarchical locality and availability as

well as convolutional codes with locality. This chapter is formed on the paper [12].

Finally, Chapter 5 concludes this dissertation and points out some open prob-

lems. Proofs omitted from the main text are collected in the Appendices.

21

Chapter 2: Enabling Optimal Access and Error Correction for the

Repair of Reed-Solomon Codes

2.1 Introduction

In this chapter we study the repair problem of scalar MDS codes. RS codes

were shown to possess a repair scheme that supports repair of failed nodes with

optimal repair bandwidth. We extend this result in two directions. First, we propose

a new repair scheme for the RS codes constructed in [77] and show that repair is

robust to erroneous information provided by the helper nodes while maintaining

the optimal repair bandwidth. Second, we construct a new family of RS codes

with optimal access for the repair of any single failed node. We also show that the

constructed codes can accommodate both features, supporting optimal-access repair

with optimal error-correction capability.

Going beyond RS codes, we also prove that any scalar MDS code with repair

bandwidth attaining the cutset bound affords a repair scheme with optimal access

property.

22

2.1.1 Organization

The constructions are technically involved, and we begin with illustrating them

in an example in Sec. 2.2. In Sec. 2.3 we present a repair scheme that supports

optimal error correction for the RS codes family constructed in [76]. Then in Sec. 2.4

we construct a new family of RS codes that affords optimal-access repair and this

family is shown to admit an explicit repair scheme that supports both optimal error

correction and optimal access simultaneously. Sec. 2.5 that follows proves that any

scalar MSR code has a repair scheme with optimal access property.

2.2 A simple example

In this section, we construct an RS code together with a repair scheme that

can recover its first node with both optimal access and optimal error correction

capability.

2.2.1 Preliminaries

1) We begin with some standard definitions. Recall that a generalized RS

code or GRS code of length n and dimension k over a finite field F is obtained by

fixing a set of n distinct evaluation points Ω :“ tα1, α2, . . . , αnu Ă F and a vector

pv1, . . . , vnq P pF
˚qn with no zero coordinates. Then the GRS code is the set of

vectors

GRSF pn, k, v,Ωq “ tpv1fpα1q, v2fpα2q, . . . , vnfpαnqq : f P F rxs, deg f ă ku.

23

In particular, if pv1, . . . , vnq “ p1, . . . , 1q, then the GRS code is called the Reed-

Solomon (RS) code and is denoted by RSF pn, k,Ωq. It is a classic fact that the

dual code pRSF pn, k,Ωqq
K is GRSF pn, n ´ k, v,Ωq, where v P pF ˚qn is some vector.

In particular, if c “ pc1, . . . , cnq P F
n is a vector such that

řn
i“1 cihpαiq “ 0 for

every polynomial hpxq of degree ď k ´ 1, then c is contained in a GRSF code of

dimension n ´ k. Rephrasing this, we have the following obvious proposition that

will be frequently used below.

Proposition 1. Let c “ pc1, . . . , cnq P F
n and suppose that

řn
i“1 ciα

t
i “ 0 for all

t “ 0, 1, . . . , k ´ 1. Then the vector c is contained in a code GRSF pn, n ´ k, v,Ωq,

where v P pF ˚qn and Ω “ tα1, . . . , αnu.

Let E be an algebraic extension of F of degree s. The trace mapping trE{F is

given by x ÞÑ 1` x|F | ` x|F |
2
` ¨ ¨ ¨ ` x|F |

s´1
. For any basis γ0, . . . , γs´1 of E over F

there exists a trace-dual basis δ0, . . . , δs´1, which satisfies trE{F pγiδjq “ 1ti“ju for all

pairs i, j. For an element x P E the coefficients of its expansion in the basis pγiq are

found using the dual basis, specifically, x “
řs´1
i“0 trE{F pxδiqγi. As a consequence,

for any basis pδiq the mapping E Ñ F s given by x ÞÑ ptrpxδiq, i “ 0, . . . , s´ 1q is a

bijection.

2) Before we define the RS code that will be considered below, let us fix

the parameters of the repair scheme. We attempt to repair a failed node using

information from d helper nodes. Suppose that at most e of them provide erroneous

information. Assume that d´2e ě k, and let s :“ d´2e´k`1. Let F be a finite field

of size |F | ě n´ 1. Choose a set of distinct evaluation points Ω :“ tα1, α2, . . . , αnu

24

such that αi P F for all 2 ď i ď n and α1 is an algebraic element of degree s over

F (which means that the extension field E :“ F pα1q forms an s-dimensional vector

space over F). Consider the code

C :“ RSEpn, k,Ωq.

In this section we present a repair scheme of the code C that can repair the first

node of C over the field F ; in other words, we represent the coordinates of C as

s-dimensional vectors over F in some basis of E over F. Thus, the node size of this

code is s. We note that the code C represented in this way is still a scalar code.

The repair scheme presented below has the following two properties:

� the optimal error correction capability, i.e., the repair bandwidth achieves the

bound (1.3) for any pair pd, eq such that d´ 2e “ s` k ´ 1;

� in the absence of errors it has the optimal access property, i.e., the number of

symbols accessed during the repair process is d. Thus, in this case e “ 0 and

s “ d´ k ` 1.

2.2.2 Repair scheme with optimal error correction capability

Let c “ pc1, c2, . . . , cnq P C be a codeword and suppose that c1 is erased. Since

CK “ GRSEpn, n´ k, v,Ωq for some v P pE˚qn, we have

v1α
t
1c1 ` v2α

t
2c2 ` ¨ ¨ ¨ ` vnα

t
ncn “ 0, t “ 0, 1, . . . , n´ k ´ 1,

25

or

v1α
t
1c1 “ ´v2α

t
2c2 ´ ¨ ¨ ¨ ´ vnα

t
ncn, t “ 0, 1, . . . , n´ k ´ 1. (2.1)

Evaluating the trace tr “ trE{F on both sides of (2.1), we obtain the relation

trpv1α
t
1c1q “ ´ trpv2α

t
2c2q ´ ¨ ¨ ¨ ´ trpvnα

t
ncnq

“ ´αt2 trpv2c2q ´ ¨ ¨ ¨ ´ α
t
n trpvncnq, t “ 0, 1, . . . , n´ k ´ 1, (2.2)

where the second equality follows from the fact that α2, . . . , αn P F . Therefore,

knowing the values of ptrpv2c2q, . . . , trpvncnqq enables us to compute trpv1α
t
1c1q for

all 0 ď t ď n ´ k ´ 1. Since degF pα1q “ s, the elements 1, α1, . . . , α
s´1
1 form

a basis of E over F . As a consequence, one can recover c1 from the values of

ttrpv1α
t
1c1q : 0 ď t ď s ´ 1u. By definition, s ´ 1 “ d ´ 2e ´ k ď n ´ k ´ 1,

so ttrpv1α
t
1c1q : 0 ď t ď s ´ 1u Ď ttrpv1α

t
1c1q : 0 ď t ď n ´ k ´ 1u. Combining

this with (2.2), we see that the value c1 is fully determined by the set of elements

ptrpv2c2q, . . . , trpvncnqq.

Recalling our problem, we will show that in order to repair c1, it suffices to

acquire the values trpviciq from any d helper nodes provided that at least d ´ e “

pd ` s ` k ´ 1q{2 of these values are correct. This will follow from the following

proposition.

Proposition 2. Let fpxq P F rxs be the minimal polynomial of α1. For any s ă

n ´ k and any c “ pc1, . . . , cnq P C the vectors pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq

26

are contained in an pn´ 1, s` k ´ 1q GRS code over F.

Proof. Let T :“ t0, 1, . . . , n´ k ´ s´ 1u. Since αi P F, i “ 2, . . . , n by definition we

have fpαiq ‰ 0 for all such i. Next, degpfq “ s, and thus for all t P T

pv1α
t
1fpα1q, v2α

t
2fpα2q, . . . , vnα

t
nfpαnqq P C

K.

This implies that for all t P T

v1α
t
1fpα1qc1 ` v2α

t
2fpα2qc2 ` ¨ ¨ ¨ ` vnα

t
nfpαnqcn “ 0,

but fpα1q “ 0, so taking the trace, we obtain

αt2fpα2q trpv2c2q ` ¨ ¨ ¨ ` α
t
nfpαnq trpvncnq “ 0, t P T. (2.3)

By Proposition 1, this implies that the vectors pfpα2q trpv2c2q, . . . , fpαnq trpvncnqq

are contained in a GRS code of length n´ 1 with n´ s´ k parities.

The GRS code identified in this proposition can be punctured to any subset R

of d coordinates, retaining the dimension and the MDS property. This means that

the punctured code is capable of correcting any e “ pd´s´k`1q{2 errors. Therefore,

as long as no more than e helper nodes provide incorrect information, we can always

recover ptrpv2c2q, . . . , trpvncnqq by acquiring a subset ttrpvijcijq, j “ 1, . . . , du from

any d helper nodes and correcting the errors based on any decoding procedure of

the underlying MDS code. Finally note that the case s “ n ´ k can be added

27

trivially because then d “ n´ 1 and e “ 0, so all the helper nodes provide accurate

information, and no error correction is required (or possible).

2.2.3 Optimal access property

Following the discussion in the first part of this section, we show that the code

C “ RSEpn, k,Ωq defined above supports optimal-access repair of the node c1. In

this part we assume that the helper nodes provide accurate information about their

contents, and we do not attempt error correction.

To represent the code, we choose a pair of trace-dual bases pbiq, pb
˚
i q of E over

F, where we assume w.l.o.g. that b0 “ 1. Next, represent the ith coordinate of the

code, i P t1, . . . , nu, using the basis pv´ii bm,m “ 0, . . . , s ´ 1q, where pv1, . . . , vnq is

defined by the code CK. Namely, for a codeword c P C we have

ci “ v´1
i

s´1
ÿ

m“0

ci,mb
˚
m, (2.4)

where ci,m P F for all m “ 0, 1, . . . , s´1. We assume that each storage node contains

the vector pci,0, ci,1, . . . , ci,s´1q.

As discussed above, the value c1 can be recovered from any d-subset of the set

of elements ttrpviciq, j “ 2, . . . , nu. Further, for all i “ 2, . . . , n and m “ 0, . . . , s´ 1

we have trpvicibmq “ ci,m, so in particular,

trpviciq “ ci,0.

28

Thus, to repair c1 it suffices to access and download a single symbol ci,0 from the cho-

sen subset of d helper nodes. According to the bound (1.1), the minimum number of

symbols downloaded from a helper node for optimal repair is the p1{sqth proportion

of the node’s contents. Overall this shows that the repair scheme considered above

has the optimal access property.

The above discussion sets the stage for constructing RS codes with optimal-

access repair for each of the n coordinates. Namely, we took a basis 1, b1, . . . , bs´1 of

E over F and represented each ci in the basis pv´1
i b˚i q. The only element of the helper

coordinate that we access and download is ci,0. For more complicated constructions

of RS codes, e.g., the ones constructed in [77] and below in the chapter, we assume

that E is an l-degree extension of F . The known repair schemes require to download

elements of the form trpvicia0q, trpvicia1q, . . . , trpviciapl{sq´1q, where a0, a1, . . . , apl{sq´1

are linearly independent over F . In this case, we can extend the set a0, a1, . . . , apl{sq´1

to a basis pbiq of E over F. Following the approach in (2.4), we store the code

coordinate ci as the vector of its coefficients pci,0, ci,1, . . . , ci,l´1q in the dual basis

pb˚i , i “ 0, . . . , l´1q of the basis pbiq. Since ci,m “ trpviciamq for all m “ 0, 1, . . . , l{s´

1, this choice of the basis enables one to achieve optimal access. This idea underlies

the construction presented below in Sec. 2.4.1.

2.2.4 Optimal access with error correction

Thus far, we have assumed that errors are absent for optimal-access repair.

To complete the picture, we address the case of codes with both optimal access and

29

optimal error correcting capability for the repair of node c1. It is easily seen that

both properties can be combined. Indeed, since trpviciq “ ci,0 for all i “ 2, . . . , n,

and since by Proposition 2 these elements form a codeword of a GRS code, it is

immediately clear that c1 can be repaired with optimal error correction capability

and optimal access. To enable this property for any ci, below we add extra features

to the general repair scheme with optimal access. Specifically, error correction and

optimal access are based on two different structures supported by the code. We

show that it is possible to realize the error-correction structure in an extension field

located between the base field and the symbol field of the code. Further reduction

to the base field enables us to perform repair with optimal access. These ideas are

implemented in detail in Sec. 2.4.2 below.

2.3 Enabling error correction for repair of RS codes

In this section we propose a new repair scheme for the optimal-repair family

of RS codes of [77] that supports the optimal error correction capability.

2.3.1 Preliminaries

We begin with briefly recalling the definition of the subfamily of RS codes

of [77]. The construction depends on the number of helper nodes d used for the

purpose of repair of a single node, k ď d ď n´ 1.

Definition 5 ([77]). Let p be a prime, let s :“ d´k`1, and let p1, . . . , pn be distinct

primes that satisfy the condition pi ” 1 mod s, i “ 1, . . . , n, Let C :“ RSKpn, k,Ωq

30

be a Reed-Solomon code, where

� Ω “ tα1, . . . , αnu, where αi, i “ 1, . . . , n is an algebraic element of degree pi

over Fp,

� K “ Fpβq, where β is an algebraic element of degree s over F :“ Fppα1, . . . , αnq.

As shown in [77], this code supports optimal repair of any node i from any set

of d helper nodes in rnsztiu. Below we use this construction, choosing the value of

s based not only on the number of helpers but also on the target number of errors

tolerated by the repair procedure.

In this section we consider an RS code C given by Def. 5, where we take

s “ d ´ 2e ´ k ` 1. For this code we will present a new repair scheme that has

the property of optimal error correction. This repair scheme as well as the original

repair scheme developed in [77] rely on the following lemma:

Lemma 3 ([77], Lemma 1). Let F be a finite field. Let r be a prime such that

r ” 1 mod s for some s ě 1. Let α be an element of degree r over F and β be of

degree s over the field F pαq. Let K “ F pα, βq be the extension field of degree rs.

Consider the F -linear subspace S of dimension r with the basis

E :“ tβuαu`qs | u “ 0, . . . , s´ 1; q “ 0, . . . , r´1
s
´ 1u

ď

!

s´1
ÿ

u“0

βuαr´1
)

.

Then S ` Sα ` ¨ ¨ ¨ ` Sαs´1 “ K, and this is a direct sum.

Without loss of generality, we only present the repair scheme for the first

node c1, and all the other nodes can be repaired in the same way (this is different

31

from the previous section where the code was designed to support optimal repair

only of the node c1). The scheme is complicated, and we take time to develop it,

occasionally repeating similar arguments more than once rather than compressing

the presentation.

The repair of c1 is conducted over the field F1 :“ Fppα2, α3, . . . , αnq. It is clear

that F “ F1pα1q and K “ Fpβq, where degF1
pα1q “ p1 and degFpβq “ s. Below we

use tr “ trK{F1 to denote the trace mapping from K to F1.

Define the set

E1 :“ tβuαu`qs1 | u “ 0, . . . , s´ 1; q “ 0, . . . , p1´1
s
´ 1u

ď

!

s´1
ÿ

u“0

βuαp1´1
1

)

. (2.5)

Clearly, |E1| “ p1, and we write the elements in E1 as e0, e1, . . . , ep1´1. Then

Lemma 3 implies that the set of elements

teiα
j
1 : i “ 0, . . . , p1 ´ 1, j “ 0, . . . , s´ 1u (2.6)

forms a basis of K over F1.

Let CK “ GRSKpn, n´k, v,Ωq be the dual code. For every codeword pc1, . . . , cnq P

C we have

v1α
t
1c1 ` v2α

t
2c2 ` ¨ ¨ ¨ ` vnα

t
ncn “ 0, t “ 0, 1, . . . , n´ k ´ 1.

Multiplying by ei on both sides of the equation and evaluating the trace, we obtain

32

the relation

trpeiv1α
t
1c1q “ ´

n
ÿ

j“2

trpeivjα
t
jcjq

“ ´

n
ÿ

j“2

αtj trpeivjcjq, t “ 0, 1, . . . , n´ k ´ 1, (2.7)

where the second equality follows since αj P F1 for all 2 ď j ď n. Therefore,

the elements ttrpeivjcjq : 2 ď j ď nu suffice to compute ttrpeiv1α
t
1c1q : 0 ď t ď

n ´ k ´ 1u. Since s “ d ´ 2e ´ k ` 1 ď d ´ k ` 1 ď n ´ k, we can calculate

ttrpeiv1α
t
1c1q : 0 ď t ď s´1u from ttrpeivjcjq : 2 ď j ď nu. Thus knowing the values

of ttrpeivjcjq : 2 ď j ď n, 0 ď i ď p1 ´ 1u suffices to find the set of elements

ttrpeiv1α
t
1c1q : 0 ď t ď s´ 1, 0 ď i ď p1 ´ 1u. (2.8)

Since the set (2.6) forms a basis of K over F1, the set teiv1α
t : 0 ď i ď p1 ´

1, 0 ď t ď s ´ 1u also forms a basis of K over F1, and therefore we can recover

c1 from (2.8). In conclusion, to recover c1, it suffices to know the set of elements

ttrpeivjcjq : 2 ď j ď n, 0 ď i ď p1 ´ 1u.

2.3.2 The repair scheme

For j “ 2, 3, . . . , n define the vector rj :“ ptrpeivjcjq, i “ 0, . . . , p1 ´ 1q. In this

section we design invertible linear transformations Mj that send these vectors to a

set of vectors zj that support error correction. The following proposition underlies

our repair scheme.

33

Proposition 4. Consider the set of vectors zj “ pzj,0, zj,1, . . . , zj,p1´1q, j “ 2, 3, . . . , n

defined by

zTj “Mjr
T
j , (2.9)

where M2, . . . ,Mn are invertible matrices of order p1. Suppose that for every i “

0, 1, . . . , p1 ´ 1, the vector pz2,i, z3,i, . . . , zn,iq is contained in an MDS code of length

n ´ 1 and dimension s ` k ´ 1. Then there is a repair scheme of the code C that

supports recovery of the node c1 with optimal error correction capability.

Note that, by the closing remark in Sec. 2.2.2, it suffices to assume that s ă

n´ k.

Proof. If pz2, z3, . . . , znq is a codeword in an MDS array code of length n ´ 1 and

dimension s ` k ´ 1, then the punctured codeword pzj : j P Rq is contained in an

MDS array code of length d “ |R| and dimension s` k ´ 1 “ d´ 2e, and such the

code can correct any e errors.

To repair the failed node c1, we download p1-dimensional vectors r̂j, j P R,

where R Ă rnszt1u, |R| “ d is a set of d helper nodes. For all but e or fewer values

of j, we have r̂j “ rj. The repair scheme consists of the following steps:

(i) Find the vectors ẑTj “Mj r̂
T
j , j P R,

(ii) Find the vectors zj, j P R using the error correction procedures of the under-

lying MDS codes,

(iii) For every i “ 0, . . . , p1´1 use the d-subset tzj,i, j P Ru to recover the codeword

pz2,i, z3,i, . . . , zn,iq,

34

(iv) Find the vectors rTj “M´1
j zTj , j “ 2, . . . , n´ 1 and finally recover c1.

Step (ii) is justified by the fact that, by assumption, at most e of the elements ẑj

are incorrect. In step (iii) we rely on the fact that d symbols of the MDS codeword

suffice to recover the remaining n´1´d symbols, and in step (iv) we use invertibility

of the matrices Mj and recover c1 using (2.7), (2.8).

The total number of downloaded symbols of F1 equals p1d, and it is easy to

verify that the repair bandwidth of our scheme meets the bound (1.3) with equality.

Why do we need the matrices Mj and why were they not involved in the

example in Sec. 2.2.2? The answer is related to the fact that we need to remove

the failed node from consideration and obtain a codeword of the MDS code that

contains all the other nodes. In the example the degree of the minimal polynomial

of α1, denoted fpxq, is s ă n´ k, so the evaluations of xtf are dual codewords (see

(2.3) in Prop. 2). This implies that the downloaded symbols form a codeword in an

MDS code over F which supports error correction. Importantly, this codeword does

not involve the erased coordinate.

Switching to the RS codes of [77] considered here, the element α1 is of degree

p1 over the repair field F pα2, . . . , αnq, and generally p1 ą n´ k ´ 1, so the minimal

polynomial of α1 is not a dual codeword. This requires us to modify the above idea.

In general terms, we will find suitable elements of the set E1 such that Eq. (2.7)

yields linear relations between the entries of the form trpeivjcjq. The coefficients of

these relations form the rows of the matrix Mj.

35

2.3.3 The matrices Mj

In this section we will construct the matrices Mj and the vector zj, and also

prove the full rank condition. Rather than writing the expressions at this point in the

text, We proceed in stages, by deriving p1 linear relations involving components of

the vectors on both sides of (2.9). (the notation is rather complicated and would not

be intuitive; if desired, the reader may nevertheless consult Sec. 2.3.4, particularly,

Eq.(2.24)).

2.3.3.1 The first p1 ´ s´ 1 relations

Proposition 5. For all 0 ď u ď s´ 1 and 0 ď q ď p1´1
s
´ 2, the vector

`

αsj trpβuαu`qs1 vjcjq ´ trpβuα
u`pq`1qs
1 vjcjq, j “ 2, . . . , n

˘

(2.10)

is a codeword in a GRS code of length n´ 1 and dimension s` k ´ 1.

Proof. Let us write (2.7) for ei of the form ei “ βuαu`qs1 :

trpβuαu`qs`t1 v1c1q “ ´

n
ÿ

j“2

αtj trpβuαu`qs1 vjcjq, t “ 0, 1, . . . , n´ k ´ 1.

(See also (2.5).) Writing this as

trpβuα
u`pq`1qs`t´s
1 v1c1q “ ´

n
ÿ

j“2

αs`t´sj trpβuαu`qs1 vjcjq, t “ 0, 1, . . . , n´ k ´ 1,

36

and performing the change of variable pt´ sq ÞÑ t, we obtain the relation

trpβuα
u`pq`1qs`t
1 v1c1q “ ´

n
ÿ

j“2

αs`tj trpβuαu`qs1 vjcjq, (2.11)

t “ ´s,´s` 1, . . . ,´s` n´ k ´ 1.

On the other hand, substituting ei “ βuα
u`pq`1qs
1 into (2.7), we obtain

trpβuα
u`pq`1qs`t
1 v1c1q “ ´

n
ÿ

j“2

αtj trpβuα
u`pq`1qs
1 vjcjq, (2.12)

t “ 0, 1, . . . , n´ k ´ 1.

Note that the left-hand sides of (2.11) and (2.12) conicide for t “ 0, 1, . . . , n´k´s´1,

and thus so do the right-hand sides. We obtain

n
ÿ

j“2

αs`tj trpβuαu`qs1 vjcjq “
n
ÿ

j“2

αtj trpβuα
u`pq`1qs
1 vjcjq

or
n
ÿ

j“2

αtj
`

αsj trpβuαu`qs1 vjcjq ´ trpβuα
u`pq`1qs
1 vjcjq

˘

“ 0,

for t “ 0, 1, . . . , n ´ k ´ s ´ 1. On account of Proposition 1 this implies the claim

about the GRS code; moreover, since there are n´ k ´ s independent parity-check

equations, the dimension of this code is pn´ 1q ´ pn´ k ´ sq “ s` k ´ 1.

We note that the components of the vector (2.10) are formed as linear combi-

nations of the elements trpeivjcjq, and so this gives us p1 ´ s´ 1 vectors zj.

37

2.3.3.2 One more relation

Proposition 6. The vector

´

s´1
ÿ

u“0

αs´uj trpβuαu`p1´s´1
1 vjcjq ´ tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

, j “ 2, . . . , n
¯

(2.13)

is a codeword in a GRS code of length n´ 1 and dimension s` k ´ 1.

Proof. Going back to (2.7), take ei “ βuαu`p1´s´1
1 for u “ 0, 1, . . . , s´ 1. We obtain

the relation

trpβuαu`p1´s´1`t
1 v1c1q “ ´

n
ÿ

j“2

αtj trpβuαu`p1´s´1
1 vjcjq, t “ 0, 1, . . . , n´ k ´ 1.

Changing the variable pt ` u ´ sq ÞÑ t in the above equation, we obtain that for

every u “ 0, 1, . . . , s´ 1,

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`sj trpβuαu`p1´s´1
1 vjcjq, (2.14)

t “ u´ s, u´ s` 1, . . . , u´ s` n´ k ´ 1.

Since

s´1
č

u“0

tu´ s, u´ s` 1, . . . , u´ s` n´ k ´ 1u “ t´1, 0, 1, . . . , n´ k ´ s´ 1u, (2.15)

38

we have

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`sj trpβuαu`p1´s´1
1 vjcjq,

´ 1 ď t ď n´ k ´ s´ 1, 0 ď u ď s´ 1.

Taking the cue from (2.15), let us sum these equations on u “ 0, 1, . . . , s ´ 1, and

we obtain

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“0

αt´u`sj trpβuαu`p1´s´1
1 vjcjq, (2.16)

´ 1 ď t ď n´ k ´ s´ 1.

Turning to (2.5) again, let us substitute the element
řs´1
u“0 β

uαp1´1
1 into (2.7):

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

αtj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

, 0 ď t ď n´ k ´ 1. (2.17)

From (2.16) and (2.17) we deduce the equality

n
ÿ

j“2

s´1
ÿ

u“0

αt´u`sj tr
´

βuαu`p1´s´1
1 vjcj

¯

“

n
ÿ

j“2

αtj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

or

n
ÿ

j“2

αtj

´

s´1
ÿ

u“0

αs´uj trpβuαu`p1´s´1
1 vjcjq ´ tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0

39

for 0 ď t ď n´ k ´ s´ 1. By Proposition 1, the proof is complete.

2.3.3.3 The remaining s relations

Following the plan outlined in Sec. 2.3.2, we have constructed p1 ´ s vectors

zj, listed in (2.10) and (2.13). In order to find the remaining s linear combinations

of the elements ri,j, we develop the idea used in the example in Sec. 2.2.2.

We begin with introducing some notation. Let fpxq be the minimal polynomial

of α1 over F1. For h “ 0, 1, . . . , s´ 1 define

fhpxq “ xp1`hpmodfpxqq, (2.18)

then deg fh ă deg f “ p1 and αp1`h
1 “ fhpα1q. Let fh,q P F1rxs, q “ 0, . . . , pp1 ´

1q{s´ 1 be the (uniquely defined) polynomials such that

(i) deg fh,q ď s´ 1, q “ 0, 1, . . . , p1´1
s
´ 2;

(ii) deg fh,pp1´1q{s´1 ď s;

(iii)

fhpxq “

pp1´1q{s´1
ÿ

q“0

xqsfh,qpxq. (2.19)

Proposition 7. For every h “ 0, 1, . . . , s´ 1, the vector

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs1 βuvjcjq `
s´1
ÿ

u“h`1

αh`1´u`s
j trpβuαu`p1´s´1

1 vjcjq

40

´ αh`1
j trp

s´1
ÿ

u“0

βuαp1´1
1 vjcjq, j “ 2, 3, . . . , n

¯

(2.20)

is contained in a GRS code of length n´ 1 and dimension s` k ´ 1.

The proof of this proposition is rather long and technical, and is given in

Appendix A.1.

Concluding, expressions (2.10), (2.13), and (2.20) yield p1 linear combinations

of the elements ptrpe0vjcjq, trpe1vjcjq, . . . , trpep1´1vjcjqq for every j P t2, 3, . . . , nu.

It is these linear combinations that we denote by zj “ pzj,0, zj,1, . . . , zj,p1´1q in (2.9).

We have shown that for every i P t0, 1, . . . , p1 ´ 1u, the vector pz2,i, z3,i, . . . , zn,iq

is contained in an MDS code of length n ´ 1 and dimension s ` k ´ 1. The next

subsection treats the remaining part of the assumptions in Proposition 4 above.

2.3.4 The matrices Mj are invertible

The object of this section is to show that the mapping

ptrpe0vjcjq, trpe1vjcjq, . . . , trpep1´1vjcjqq ÞÑ zj “ pzj,0, zj,1, . . . , zj,p1´1q

is invertible. In other words, we will show that rankpMjq “ p1 for all j. Let us first

simplify the notation. Recall the set E1 “ te0, e1, . . . , ep1´1u in (2.5) and let us order

its elements in the order of increase of the powers of α1 :

eu`qs :“ βuαu`qs1 for u “ 0, 1, . . . , s´ 1 and q “ 0, 1, . . . , p1´1
s
´ 1,

41

ep1´1 :“
s´1
ÿ

u“0

βuαp1´1
1 .

Using the notation ri,j “ trpeivjcjq introduced above, the vectors in (2.10) can be

written as

pαsjru`qs,j ´ ru`qs`s,j, j “ 2, . . . , nq

for 0 ď u ď s´ 1 and 0 ď q ď p1´1
s
´ 2, or, writing i “ u` qs, as

pαsjri,j ´ ri`s,j, j “ 2, . . . , nq (2.21)

for 0 ď i ď p1 ´ s´ 2. Similarly, the vector in (2.13) can be written as

´

s´1
ÿ

u“0

αs´uj ru`p1´s´1,j ´ rp1´1,j, j “ 2, . . . , n
¯

, (2.22)

and the vectors in (2.20) can be written as

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjqru`qs,j `
s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j

´ αh`1
j rp1´1,j, j “ 2, . . . , n

¯

, (2.23)

42

for 0 ď h ď s´ 1. For a fixed value of j, the entries in (2.21)–(2.23) form the vector

zj “ pzj,0, zj,1, . . . , zj,p1´1q, and we list its coordinates according to the chosen order:

zj,i :“ αsjri,j ´ ri`s,j for 0 ď i ď p1 ´ s´ 2,

zj,p1´s´1 :“
s´1
ÿ

u“0

αs´uj ru`p1´s´1,j ´ rp1´1,j,

zj,p1´s`h :“
h
ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqru`qs,j

`

s´1
ÿ

u“h`1

αh`1´u`s
j ru`p1´s´1,j ´ α

h`1
j rp1´1,j

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(2.24)

for 0 ď h ď s´ 1. Our objective is to show that the linear mapping

pr0,j, r1,j, . . . , rp1´1,jq
Mj
Ñ pzj,0, zj,1, . . . , zj,p1´1q

is invertible. This will follow once we show that its kernel is trivial, i.e., that if

pzj,0, zj,1, . . . , zj,p1´1q is an all-zeros vector, then so is pr0,j, r1,j, . . . , rp1´1,jq. If zj,i “

αsjri,j ´ ri`s,j “ 0 for 0 ď i ď p1 ´ s´ 2, then

ru`qs,j “ αsjru`pq´1qs,j “ ¨ ¨ ¨ “ αqsj ru,j for 0 ď u ď s´ 1 and 1 ď q ď
p1 ´ 1

s
´ 1.

(2.25)

Using (2.25) in the expression for zj,p1´s`h, 0 ď h ď s´ 1, we obtain the following s

relations:

zj,p1´s`h “

h
ÿ

u“0

pp1´1q{s´1
ÿ

q“0

fh´u,qpαjqα
qs
j ru,j `

s´1
ÿ

u“h`1

αh`1´u`s
j αp1´s´1

j ru,j ´ α
h`1
j rp1´1,j

43

“

h
ÿ

u“0

fh´upαjqru,j `
s´1
ÿ

u“h`1

αp1`h´u
j ru,j ´ α

h`1
j rp1´1,j, (2.26)

where the second equality follows from (2.19). Using (2.25) in the expression for

zj,p1´s´1, we obtain

zj,p1´s´1 “

s´1
ÿ

u“0

αs´uj αp1´s´1
j ru,j ´ rp1´1,j “

s´1
ÿ

u“0

αp1´u´1
j ru,j ´ rp1´1,j. (2.27)

Since we assumed that the z-vector is zero, coordinates zp1´u, u “ s ` 1, s, . . . , 1

that appear in (2.26), (2.27) are zero. Writing these conditions in matrix form using

the above order, we obtain relation (2.28). We aim to show that the matrix on the

left-hand side is invertible.

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

αp1´1
j αp1´2

j αp1´3
j . . . αp1´s

j ´1

f0pαjq αp1´1
j αp1´2

j . . . αp1´s`1
j ´αj

f1pαjq f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

f2pαjq f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j

...
...

...
...

...
...

fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αsj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

r0,j

r1,j

r2,j

...

rs´1,j

rp1´1,j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 0, (2.28)

Recall that fpxq is the minimal polynomial of α1 and from (2.19), fpxq `

f0pxq “ xp1 . Since fpxq is irreducible over F1 and αj P F1, we have fpαjq ‰ 0 for all

j “ 2, . . . , n.

Multiplying the first row of the matrix in (2.28) by αj and then subtracting

44

the second row from the first row, we obtain

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

f0pαjq αp1´1
j αp1´2

j . . . αp1´s`1
j ´αj

f1pαjq f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

f2pαjq f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j

...
...

...
...

...
...

fs´1pαjq fs´2pαjq fs´3pαjq . . . f0pαjq ´αsj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since fpαjq ‰ 0, we can use elementary row operations to erase the first column,

obtaining
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

0 αp1´1
j αp1´2

j . . . αp1´s`1
j ´αj

0 f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

0 f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j

...
...

...
...

...
...

0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αsj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proceeding analogously, let us multiply the second row of this matrix by αj and

45

then subtract the third row from the second one to obtain

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

fpαjq 0 0 . . . 0 0

0 fpαjq 0 . . . 0 0

0 f0pαjq αp1´1
j . . . αp1´s`2

j ´α2
j

0 f1pαjq f0pαjq . . . αp1´s`3
j ´α3

j

...
...

...
...

...
...

0 fs´2pαjq fs´3pαjq . . . f0pαjq ´αsj

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

As above, we can eliminate all the nonzeros in the second column except for fpαjq,

and so on. In the end we obtain the matrix diagpfpαjq, . . . , fpαjq,´α
s
jq with nonzero

diagonal. This proves that the matrix in (2.28) is invertible. Therefore, r0,j “ r1,j “

¨ ¨ ¨ “ rs´1,j “ rp1´1,j “ 0. Combining this with (2.25), we conclude that ri,j “ 0

for all 0 ď i ď p1 ´ 1. This proves that the matrices Mj, j “ 2, . . . , n in (2.9)

are invertible, providing the last missing element to the justification of the repair

scheme with optimal error correction.

2.4 A family of optimal-access RS codes

In this section, we construct a new family of RS codes that is similar to the

construction in [77] but affords repair with optimal access.

The input-output cost of node repair for the RS codes of [77] was analyzed in

[45] for d “ n ´ 1. According to (1.2), in this case the minimum access cost per

helper node equals l
n´k

. The authors of [45] showed that it is possible to adjust

46

the repair scheme so that the access cost is p1 ` n´k´1
pi

q l
n´k

, i.e., at most twice the

optimal value. However, more is true: namely, it turns out that any fixed node in the

construction of [77] (Def. 5) can be repaired with optimal access. This observation,

which is the starting point of the new construction, is based on the fact that it is

possible to construct a basis of the field K over the base field that reduces the access

cost of the repair of the chosen node. If the option of choosing the basis for each

erased node were available, we could use the arguments in Sec. 2.2.3 to perform

repair with optimal access. The difficulty arises because this would entail rewriting

the storage contents, which should be avoided. To address this issue, we construct

the code over a field that contains n elements βi instead of a single element β, and

this supports efficient repair of any single failed node. This idea is developed below.

2.4.1 New construction

Consider the following sequence of algebraic extensions of Fp : let K0 “ Fp

and for i “ 1, . . . , n let

Fi “ Ki´1pαiq, Ki “ Fipβiq, (2.29)

where αi is an algebraic element of degree pi over Fp and βi is an element of degree

s “ d´ k ` 1 over Fi. In the end we obtain the field

K :“ Kn “ Fppα1, . . . , αn, β1, . . . βnq. (2.30)

47

We still assume that p1, . . . , pn are distinct primes satisfying the condition pi ”

1 mod s for all i “ 1, . . . , n. Consider the code C :“ RSKpn, k,Ωq, where as before,

the set of evaluation points is given by Ω “ tα1, . . . , αnu. We will show that the

code C affords optimal-access repair.

The repair scheme follows the general approach of [28] and its implementation

in [77]. Let c “ pc1, . . . , cnq P C be a codeword. Suppose that the node i has failed

(coordinate ci is erased), and we would like to repair it from a set of helper nodes

R Ď t1, . . . , nuztiu with |R| “ d. Let

hpxq “
ź

jPt1,...,nuzpRYtiuq

px´ αjq.

Clearly, we have degpxthpxqq ă n´k for t “ 0, . . . , s´1. Therefore, for some nonzero

vector v “ pv1, . . . , vnq, we have pv1α
t
1hpα1q, . . . , vnα

t
nhpαnqq P C

K for t “ 0, . . . , s´1,

where CK “ GRSKpn, k, v,Ωq. In other words, we have

viα
t
ihpαiqci “ ´

n
ÿ

j“1
j‰i

vjα
t
jhpαjqcj, t “ 0, . . . , s´ 1. (2.31)

The repair scheme in [77] as well as in this chapter relies on this set of s dual

codewords to recover the value of ci.

Remark 1. The dual codewords xthpxq have zero values in the complement of the set

R̂ :“ RYtiu. In other words, they are contained in the shortened code pCKqR̂ of the

dual code. Thinking dually, we can start with the code CK and construct a repair

scheme for its coordinates based on the punctured code CR̂ (coordinate projection of

48

C on R̂). This approach is equivalent to the scheme used in [77] and in this chapter

because ppCKqR̂qK– CR̂.

Let us establish a few simple properties of the tower of fields defined above in

(2.29), (2.30).

Lemma 8. The extension degrees in the field tower Fp “ K0 Ă ¨ ¨ ¨ Ă Ki Ă ¨ ¨ ¨ Ă

Kn “ K are as follows:

rKi : Fps “ si
i
ź

j“1

pj, i “ 1, . . . , n

rK : Fps “ l :“ sn
n
ź

i“1

pi.

Proof. The proof is obvious from the definition: for each i we adjoin two elements

αi, βi to Ki´1, and their degrees over Ki´1 are coprime, so they contribute spi to

the result.

We will use an explicit form of the basis of K over Fp. For m “ 0, . . . , l ´ 1,

let us write

m “ pmn,mn´1, . . . ,m1, m̄n, m̄n´1, . . . , m̄1q (2.32)

where mi “ 0, . . . , pi ´ 1 and m̄i “ 0, . . . , s´ 1 for i “ 1, . . . , n.

Lemma 9. Let

A “ tam :“
n
ź

i“1

αmii

n
ź

j“1

β
m̄j
j | mi “ 0, . . . , pi ´ 1, m̄j “ 0, . . . , s´ 1;m “ 0, 1, . . . , l ´ 1u.

Then A is a basis for K over Fp.

49

Proof. By co-primality, for i “ 1, . . . , n we have degKi´1
pαiq “ pi, and by construc-

tion, we have degFipβiq “ s. Thus, the elements am,m “ 0, . . . , l ´ 1 are linearly

independent over Fp.

Lemma 10. For m “ 0, . . . , l ´ 1 let J “ tj P rns : pm̄j,mjq “ ps´ 1, pj ´ 1qu and

let

bm “
n
ź

i“1

αmii ¨
ź

jPJ

´

s´1
ÿ

u“0

βuj

¯

¨
ź

jRJ

β
m̄j
j .

Then the set B :“ tbm | m “ 0, . . . , l ´ 1u is a basis of K over Fp.

Furthermore, for i “ 1, . . . , n, let Ai “ tam P A | pmi, m̄iq “ p0, 0qu and

Bi “ tbm P B | pmi, m̄iq “ p0, 0qu, then

SpanFp Ai “ SpanFp Bi.

Proof. Since |B| “ l, to prove that B is a basis it suffices to show that the elements

am can be expressed as linear combinations of the elements in B. Let J Ă rns and let

ApJq “ tam P A : pm̄j,mjq “ ps´ 1, pj ´ 1q, j P J; pm̄j,mjq ‰ ps´ 1, pj ´ 1q, j R Ju.

We argue by induction on |J|. If m is such that J “ H, then am P B, and there is

nothing to prove. Now assume that for all J Ă rns, |J| ď J ´ 1 the elements am are

linearly generated by the elements in B, and let m be such that |J| “ J. We have

am “
n
ź

i“1

αmii
ź

jRJ

β
m̄j
j

ź

jPJ

βs´1
j

50

and

bm “
n
ź

i“1

αmii
ź

jRJ

β
m̄j
j

ź

jPJ

s´1
ÿ

u“0

βuj “
n
ź

i“1

αmii

´

ź

jRJ

β
m̄j
j

¯´

s´1
ÿ

t1,...,tJ“0

J
ź

u“1

βtuju

¯

.

Multiplying out the sums on right-hand side, we note that the term with all ti “ s´1

equals am, while the remaining terms contain fewer than J factors of the form

α
pju´1
ju

βs´1
ju

. Each of such terms is contained in some ApJq with |J| ď J ´ 1, and

is linearly generated by the elements bm by the induction hypothesis. This implies

that am is also expressible as a linear combination of the elements in B.

To prove the second claim, note that SpanFp Ai Ě SpanFp Bi. Therefore, to

show that SpanFp Ai “ SpanFp Bi, it suffices to show that for any a “ 0, . . . , n´1 and

any J Ď t1, . . . , nuztiu, the set AipJq can be generated linearly by the set Bi. This

proof amounts essentially to the same calculation as above, and will be omitted.

The role of the basis pbmq is to eliminate as many terms on the right-hand

side of (2.31) as possible. To repair the node ci we use the dual basis pb˚mq of pbmq,

writing

ci “ v´1
i

l´1
ÿ

m“0

ci,mb
˚
m. (2.33)

Below tr “ trK{Fp denotes the absolute trace.

Lemmas 8 and 3 immediately imply the following.

Proposition 11. For i “ 1, . . . , n, there exists vector space Si over Ki´1 such that

dimKi´1
Si “ pi and Si` Siαi` ¨ ¨ ¨ ` Siα

s´1
i “ Ki. Furthermore, a basis for Si over

51

Ki´1 is given by

Ei :“ tβui α
u`qs
i | u “0, . . . , s´ 1; q “ 0, . . . , pi´1

s
´ 1u

ď

!

αpi´1
i

s´1
ÿ

u“0

βui

)

.

We continue with the description of the repair scheme where we left in (2.31).

As a remark, below we write the scheme over Fp rather than over its extensions

(the latter approach was chosen in [77]). Multiplying both sides of (2.31) by

śn
i1“1 ei1

śn
j1‰i α

tj1

j1 , where ei1 P Ei1 and tj1 “ 0, . . . , s ´ 1, and evaluating the trace,

we obtain

tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiqci

¯

“ ´ tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1

n
ÿ

j‰i

vjα
t
jhpαjqcj

¯

“ ´

n
ÿ

j‰i

tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

“ ´
ÿ

jPR

tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcj

¯

. (2.34)

On account of Proposition 11 and the fact that vihpαiq ‰ 0, the set

!

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 viα
t
ihpαiq

)

, (2.35)

where ei1 P Ei1 , i
1 P rns; t “ 0, . . . , s´ 1; tj1 “ 0, . . . , s´ 1, j1 P rnsztiu, is a basis of K

over Fp. Therefore, we can recover ci once we know the right-hand side of (2.34).

For j P R, from (2.33) we have

trp
n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 vjα
t
jhpαjqcjq “ tr

´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 α
t
jhpαjq

l´1
ÿ

m“0

cj,mb
˚
m

¯

52

“

l´1
ÿ

m“0

tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb

˚
m

¯

cj,m. (2.36)

From (2.36), we see that in order to recover ci we need to access only those symbols

cj,m for which

trp
n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb

˚
mq ‰ 0.

Now, the element
śn

i1‰i ei1
śn

j1‰i α
tj1

j1 α
t
jhpαjq does not include αi, βi, and thus

it can be written as an Fp-linear combination of the elements in the set Ai. By

Lemma 10, it can further be expressed as an Fp-linear combination of the elements

in the set Bi. Therefore, the elements
śn

i1“1 ei1
śn

j1‰i α
tj1

j1 α
t
jhpαjq for ei1 P Ei1 and

tj1 “ 0, . . . , s´ 1 can be linearly generated over Fp by the set

ď

eiPEi

eiBi Ď B.

Since B and B˚ are dual bases,

tr
´

n
ź

i1“1

ei1
n
ź

j1‰i

α
tj1

j1 α
t
jhpαjqb

˚
m

¯

‰ 0

if and only if bm P
Ť

eiPEi
eiBi. It follows that to calculate the left hand side of

(2.34), we need to access
ř

eiPEi
|eiBi| “ pil{spi “ l{s symbols on each helper node

j P R, which implies that the node ci affords optimal-access repair.

In conclusion, we note that the repair scheme of each of the nodes i relies

on its own element βi. Looking back at the construction of [77], Sec. 2.3 above, it

contains one such β. Thus, these codes can be furnished with a repair scheme that

53

has the optimal access property for any one (fixed) node in the encoding; see also

the discussion at the end of Sec. 2.2.3.

2.4.2 Error correction with optimal access

In this section we present a repair scheme of the RS codes defined in the

beginning of Sec. 2.4.1 that supports both the optimal access and optimal error

correction properties. The scheme relies on a combination of ideas of Sections 2.4.1

and 2.3. A full presentation of the proof would require us to repeat the arguments

in Sec. 2.3.3; we shall instead confine ourselves to pointing to the similarity of

the starting point and argue that once this is recognized, the remaining part is

reproduced directly following the proof in Sec. 2.3.3.

Let us modify the construction of RS codes of Sec. 2.4.1 as follows. Let us

assume that the number of helper nodes is d. We will construct our RS code over the

symbol field K “ Fppα1, . . . , αn, β1, . . . , βnq (2.30), where as before, degKi´1
pαiq “ pi

but degFipβiq “ s :“ d ´ 2e ´ k ` 1. Define the code C :“ RSKpn, k,Ωq, where

Ω “ tα1, . . . , αnu.

Without loss of generality suppose that the failed node is the first one and let

R Ď t2, 3, . . . , nu with |R| “ d, 2e ` k ď d ď n ´ 1 be the subset of helper nodes.

Consider a basis of K over Fp given by
Ťs´1
t“0 α

t
1Λ, where

Λ “
!

n
ź

i“1

ei

n
ź

j“2

α
tj
j | ei P Ei, i P rns; tj “ 0, . . . , s´ 1, j P rnszt1u

)

.

That this is a basis is apparent from (2.35).

54

Next, note that pv1α
t
1, . . . , vnα

t
nq P CK for some v “ pv1, . . . , vnq P pK˚qn and

for t “ 0, . . . , n´ k ´ 1. Therefore, for every λ P Λ we have

λv1α
t
1c1 “ ´

n
ÿ

j“2

λvjα
t
jcj, t “ 0, . . . , n´ k ´ 1.

Let G1 :“ Fppα2, α3, . . . , αnq. Evaluating the trace trK{G1 on both sides of the above

equation, we obtain

trK{G1pλv1α
t
1c1q “ ´

n
ÿ

j“2

αtj trK{G1pλvjcjq, t “ 0, . . . , n´ k ´ 1. (2.37)

The repair scheme for the code C is based on (2.37) in exactly the same way as the

repair scheme of Proposition 4 is based on (2.7). Namely, suppose that there are

invertible linear transformations that map the vectors ptrK{G1pλvjcjq, λ P Λq, j “

2, 3, . . . , n to codevectors in an MDS code of length n ´ 1 and dimension s ` k ´

1. Then it is possible to correct e errors in the information collected from the

helper nodes upon puncturing of this code to any d coordinates in the same way

as is done in Proposition 4. Thus, the main step is to prove existence of such

transformations. Here we observe that the terms involved in (2.37) are formed of e1

times the remaining factors in λ. The element e1 plays the same role as ei in (2.7),

and the multiplier in front of it in λ does not affect the proof. For this reason, the

required proof closely follows the proof in Sec. 2.3.3, and we do not repeat it here.

Thus, the vectors ptrK{G1pλvjcjq, λ P Λq, j P R suffice to recover the value of the

failed node. We argue that these values can be calculated by accessing the smallest

55

possible number of symbols on the helper nodes, and thus support the claim of

optimal access. Let B “ pbmq be the basis of K over Fp defined in Lemma 10, let

B˚ “ pb˚mq be its dual basis, and let B1 “ tbm P b|pm1, m̄1q “ p0, 0qu. From (2.33),

for every λ P Λ and all j “ 2, 3, . . . , n we have the equality

trK{G1pλvjcjq “ trK{G1

´

λ
l´1
ÿ

m“0

b˚m

¯

ci,m.

Let Γ be a basis for G1 over Fp. Then from the above equation, for every γ P Γ we

have

trG1{Fppγ trK{G1pλvjcjqq “ trG1{Fp

´

γ trK{G1

´

λ
l´1
ÿ

m“0

b˚m

¯¯

ci,m.

Since γ P G1 and trG1{Fp ˝ trK{G1 “ trK{Fp , it follows that

trK{Fppγλvjcjq “ trK{Fp

´

γλ
l´1
ÿ

m“0

b˚m

¯

ci,m. (2.38)

Note that the elements γλ “ γ
śn

i“1 ei
śn

j“2 α
tj
j can be written as Fp-linear combi-

nations of the elements in the set
Ť

e1PE1
e1B1 Ď B. By the duality of B and B˚,

the number of symbols that each helper node accesses to calculate the left hand side

of (2.38) equals |
Ť

e1PE1
e1B1| “ l{s, which, as remarked in the introduction, is the

smallest possible number of symbols. Further, since Γ is a basis of G1 over Fp, we

can recover trK{G1pλvjcjq from the set ttrK{Fppγλvjcjq | γ P Γu.

56

Finally, evaluating the trace trG1{Fp on both sides of (2.37), we obtain

trK{Fppλv1α
t
1c1q “ ´

n
ÿ

j“2

trG1{Fppα
t
j trK{G1pλvjcjqq, t “ 0, . . . , s´ 1. (2.39)

Since the set tλv1α
t
1 | λ P Λ; t “ 0, . . . , s ´ 1u forms a basis for K over Fp, we

conclude from (2.39) that we can perform optimal error correction for the code C

with optimal access. As a final remark, the locations of the entries accessed on each

helper node depend only on the index of the failed node, and are independent of the

index of the helpers.

2.5 Every scalar MSR code affords optimal-access repair

This section is devoted to establishing the claim in the title. We begin with

a discussion of repair schemes with a particular property of having constant repair

subspaces and use it to show that every MSR code with this property can be repaired

with optimal access. In the last part of the section we remove this assumption,

establishing the general result, which is stated as follows.

Theorem 12. Let C be an pn, kq scalar MDS code over a finite field K of length

n such that any single failed node can be optimally repaired from any subset of d

helper nodes, k ` 1 ď d ď n ´ 1 with optimal repair bandwidth. Then there exists

an explicit procedure that supports optimal-access repair of any single node from any

subset of d helpers, k ` 1 ď d ď n´ 1.

57

2.5.1 Constant repair subspaces

Observe that the repair scheme presented above in Sec. 2.4 has the property

that for a given index of the failed node i, the procedure for recovering the node

contents does not depend on the chosen subset of d helper nodes. Indeed, to repair

node i, the scheme accesses symbols tcj,m | m : bm P
Ť

eiPEi
eiBiu on the node j, i.e.,

the symbols cj,m with m “ pmi, m̄iq and

pmi, m̄iq P tpu` qs, uq | u “ 0, . . . , s´ 1; q “ 0, . . . , ppi ´ 1q{s´ 1u Y tppi ´ 1, s´ 1qu.

Clearly the values ofm are independent of j P R. This simplifies the implementation,

and therefore represents a desirable property of the scheme. In this section, we

generalize this observation and give conditions for it to hold.

Let C be an pn, kq linear scalar MDS code of length n over finite field K, and

let r “ n ´ k be the number of parity nodes. Let F be a subfield of K such that

rK : F s “ l. For a subset M Ă K we write dimF pMq to refer to the dimension

of the subspace spanned by the elements of M over F . The following result is a

starting point of our considerations.

Theorem 13 ([28]). The code C has an optimal linear repair scheme over F with

repair degree d “ n ´ 1 if and only if for every i “ 1, . . . , n there exist l codewords

pcKt,1, . . . , c
K
t,nq P C

K, t “ 1, . . . , l such that

dimF pc
K
1,i, . . . , c

K
l,iq “ l,

58

n
ÿ

j‰i

dimF pc
K
1,j, . . . , c

K
l,jq “

pn´ 1ql

r
.

We go on to define the main object of this section.

Definition 6. Let C be a scalar MDS code that has a linear repair scheme for repair

of a single node with optimal bandwidth, based on dual codewords cK1 , . . . , c
K
l . The

scheme is said to have constant repair subspaces if for every i “ 1, . . . , n and every

R Ă rnsztiu, |R| “ d, the information downloaded from a helper node cj, j P R

to repair the failed node ci does not depend on the index j. Namely, the subspace

S
piq
j :“ SpanF pc

K
1,j, . . . , c

K
l,jq, j P R is independent of the index j, i.e., S

piq
j “ Spiq for

some linear subspace Spiq Ď K.

The notion of constant repair subspaces was mentioned earlier in the literature

on general MSR codes, for instance, see [75].

The algorithms below in this section rely on a proposition which we cite from

[77].

Proposition 14. Let C be an pn, n ´ rq MDS code and let rns “ J Y J c, where

J, |J | “ r is the set of parity coordinates. Let H “ ph1, . . . , hnq be a parity-check

matrix of C, where hi denote its columns. The code C has an optimal linear repair

scheme over F with repair degree d “ n´ 1 if and only if for each j P J c there exist

r vectors au P K
l{r, u “ 1, . . . , r such that

dimF pAhjq “ l, (2.40)

dimF pAhiq “
l

r
, i P t1, . . . , nuztju, (2.41)

59

where A :“ Diagpa1, . . . , arq is an l ˆ r block-diagonal matrix with blocks formed by

single columns. Furthermore for every subspace Au “ SpanF pauq, u “ 1, . . . , r (the

F -linear span of the entries of au) we have

dimF pAuq “
l

r
. (2.42)

Remark 2. The matrix A in Proposition 14 depends on the matrix H and the choice

of J , but we suppress this dependence from the notation for simplicity.

Before presenting the algorithms for finding a basis for optimal-access repair

we briefly digress to state some conditions for an optimal linear repair scheme to have

constant repair subspaces. First, we rephrase their definition based Proposition 14.

Definition 7. An optimal linear repair scheme for the code C is said to have constant

repair subspaces if for every j “ 1, . . . , n there exists a vector h P Kr such that

SpanF pAhiq “ SpanF pAhq

for every i P t1, . . . , nuztju. Here the matrix A is as in Proposition 14, and it

depends on H and the particular choice of the information coordinates.

Proposition 15. Suppose that A1 “ A2 “ ¨ ¨ ¨ “ Ar for each i “ 1, . . . , n, and

that for every j P t1, . . . , nuztiu there exists v P t1, . . . , ru such that hv,j P F , then

there exists an optimal linear repair scheme for the code C which has constant repair

subspaces.

Proof. Let V denote any of the (coinciding) repair subspaces. By Proposition 14,

60

we have dimF pVq “ l{r. Suppose that J is the subset of parity coordinates, and the

matrix H is represented in systematic form. In this case, for every j P J c, hu,j ‰ 0

for all u “ 1 . . . , r, and we have dimF pVhu,jq “ l{r. Note that

SpanF pAhjq “
r
ÿ

u“1

Auhu,j “
r
ÿ

u“1

Vhu,j, j P t1, . . . , nuztiu, (2.43)

where the sum on the right is a sum of linear spaces. By Proposition 14, we also

have l{r “ dimF pAhjq “ dimF p
řr
u“1 Vhu,jq. Therefore,

Vh1,j “ Vh2,j “ ¨ ¨ ¨ “ Vhr,j, j P J cztiu. (2.44)

Since for each j ‰ i there exists v P t1, . . . , ru such that hv,j P F, it follows that

Vhv,j “ V. On account of (2.43) and (2.44), we have SpanF pAhjq “ V “ SpanF pA¨1q

for every j P t1, . . . , nuztiu, where 1 is the all-ones column vector of length r. By

Definition 7 this completes the proof.

The assumptions of this proposition are satisfied, for instance, for the RS

subfamily of [77], which therefore have constant repair subspaces (this observation

was previously not stated in published literature).

Proposition 16. If there exists an optimal linear repair scheme for the code C which

has constant repair subspaces, then A1 “ A2 “ ¨ ¨ ¨ “ Ar for every j “ 1, . . . , n.

Proof. Indeed, since HJ is the identity, for j P J we have SpanF pAhjq “ At for some

t P t1, . . . , ru. It follows that A1 “ A2 “ ¨ ¨ ¨ “ Ar.

61

2.5.2 Optimal access for the case of constant repair subspaces

The codes constructed in Sec. 2.4 above form essentially the only known exam-

ple of RS codes that afford repair with optimal access. For instance, the optimal-

repair RS codes in [77] are not known to support optimal access, and the repair

scheme in [77] is far from having this property. Prior works on the problem of

access cost for RS repair [16, 19, 45] also do not give examples of repair schemes

with optimal access. In this section we show that any family of scalar MDS codes

with optimal repair can be furnished with a repair scheme with optimal access, and

this includes the code family in [77]. Unfortunately, our results are not explicit;

rather, we present an algorithm that produces a basis for representing nodes of the

codeword that supports optimal-access repair.

As in Sec. 2.5.1, let F be a subfield of K such that rK : F s “ l. Let C be an

pn, k “ n ´ rq linear scalar MDS code of length n over K equipped with a repair

scheme over F that attains the bound (1.2) for repair of a single node. Let us

represent C in systematic form, choosing a subset J Ď t1, . . . , nu, |J | “ r for the

parity symbols and J c for the data symbols. Let H be an rˆn parity-check matrix

for C such that HJ is the r ˆ r identity matrix,

In this section we assume that there exists an optimal repair scheme over F

for C that has constant repair subspaces, and that the repair degree is d “ n ´ 1.

We will lift both assumptions and show that our result holds in general in the next

section. For a given j “ 1, . . . , n consider the subspaces Ai, i “ 1, . . . , r defined in

Proposition 14. Under the assumption of constant repair subspaces, they coincide,

62

and we use the notation Vj to refer to any of them.

Consider the following procedure (Algorithm 1) that interatively collects vec-

tors to form a basis of K{F that supports optimal-access repair.

Algorithm 1: Construction of an optimal basis

Input: Subspaces V1, . . . ,Vn.
Output: A basis B for K over F .

1 for j Ð 1 to n do
2 Bj ÐH;
3 Bj Ð t0u;

4 for iÐ 0 to n´ 1 do
5 foreach I Ď t1, . . . , nu such that |I| “ i do
6 Ī Ð t1, . . . , nuzI;
7 UI Ð

Ş

jPĪ Vj;

8 for j Ð 1 to n do
9 if j P Ī then

10 Bj Ð Bj ` UI ;
11 Extend the set Bj to a basis of Bj over F ;

12 B̄ Ð
Ťn
j“1Bj;

13 Extend the set B̄ to a basis B of K over F ;

Proposition 17. Upon completion of Algorithm 1 we have Bj “ Vj for j “ 1, . . . , n,

and thus Bj is a basis for Vj over F .

Proof. From Algorithm 1, we have

Bj “

n´1
ÿ

i“0

ÿ

|I|“i,
IĎt1,...,nu

1tjPĪu

č

tPĪ

Vt, (2.45)

so clearly Bj Ď Vj. Suppose that v P VjzBj, then there exists a subset Ī Ă t1, . . . , nu

63

with 1 ď |Ī| ď n such that j P Ī and that

v R
č

tPĪ

Vt.

However, Bj Ě
Ş

tPĪ Vt for every Ī with 1 ď |Ī| ď n such that j P Ī, which is a

contradiction. Hence, Bj “ Vj.

Proposition 18. Algorithm 1 returns a basis B for K over F .

Proof. From Algorithm 1, for every Ī Ď t1, . . . , nu with 1 ď |Ī| ď n and for every

j P Ī, the set Bj contains a basis of the subspace UI “
Ş

tPĪ Vt. It follows that for

every Ī Ď t1, . . . , nu with 1 ď |Ī| ď n, the set
Ş

tPĪ Bt is a basis for
Ş

tPĪ Vt.

Now by Proposition 17, B1, B2 are bases for V1,V2 over F , respectively. From

the above, we have B1 XB2 is a basis of V1 XV2 over F . It follows that dimF pV1 X

V2q “ |B1 XB2|. Then

dimF pV1 ` V2q “ dimF pV1q ` dimF pV2q ´ dimF pV1 X V2q

“ |B1| ` |B2| ´ |B1 XB2|

“ |B1 YB2|.

By definition, SpanF pB1YB2q “ V1`V2, and so the set B1YB2 is a basis of V1`V2

over F . By a straightforward induction argument, we conclude that
Ťn
j“1Bj is a

basis for
řn
j“1 Vj over F .

Since
řn
j“1 Vj Ď K, we have |

Ťn
j“1Bj| ď rK : F s “ l. It follows that we can

extend the set B̄ “
Ťn
j“1Bj to a basis B of K over F .

64

Now we are ready to present a repair scheme for the code C with the optimal

access property. Let B “ pbmq be the basis of K over F constructed above and let

B˚ “ pb˚mq be its dual basis. Given a codeword c “ pc1, . . . , cnq P C, we expand its

coordinates in the basis B˚, writing

ci “
l´1
ÿ

m“0

ci,mb
˚
m. (2.46)

Suppose that ci is the erased coordinate of c (the “failed node”). The starting point,

as above, is Eq. (2.31), and our first step is to choose l dual codewords cKt , t “ 1, . . . , l

that support the repair. Construct the lˆn matrix CK “ AH and take the rows of C

to be the needed codewords cKt . Since cKt ¨c “ 0 for all t, we have cKt,ici “ ´
řn
j“1
j‰i

cKt,jcj

for all t “ 1, . . . , l. Computing the trace trK{F , we obtain

trK{F pc
K
t,iciq “ ´

n
ÿ

j‰i

trK{F pc
K
t,jcjq

“ ´

n
ÿ

j‰i

trK{F pc
K
t,j

l´1
ÿ

m“0

cj,mb
˚
mq

“ ´

n
ÿ

j‰i

l´1
ÿ

m“0

trK{F pc
K
t,jb

˚
mqcj,m. (2.47)

Note that for each j P t1, . . . , nuztiu, we have

SpanF pc
K
1,j, . . . , c

K
l,jq “ SpanF pAhjq “ Vi, (2.48)

where the last equality follows by the assumption of constant repair subspaces. By

Proposition 17, the set Bi Ď B is a basis for Vi over F . Therefore, cKt,j can be linearly

65

generated by the set Bi for every t “ 1, . . . , l. More precisely, let Bi “ tbi,u |u “

1, . . . , l{ru, then we have

cKt,j “

l{r
ÿ

u“1

γj,ubi,u (2.49)

for some γj,u, u “ 1, . . . , l{r. Substituting into (2.47), we obtain the equality

trK{F pc
K
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pbi,ub
˚
mqγj,ucj,m. (2.50)

It follows that to determine the left-hand side of (2.50), on each node cj, j ‰ i the

repair procedure needs to access the set of symbols tcj,m | trK{F pbi,ub
˚
mq “ 1u. Since

Bi Ď B and B˚ is the dual basis of B for K over F, the cardinality of this subset

equals |Bi| “ l{r, verifying that the repair can be accomplished with the minimum

possible access cost.

2.5.3 Optimal-access repair for general scalar MSR codes

In this section we extend the above arguments for optimal repair schemes that

do not necessarily have constant repair subspaces. This is done by a simple extension

of Algorithm 1. We use the same notation as in Sec. 2.5.2.

2.5.3.1 Repair degree d “ n´ 1

66

Assume that the index of the failed node is i P t1, . . . , nu. By Proposition 14, for

each j P t1, . . . , nuztiu, we have

dimF pAuq “ dimF pAhjq “
l

r
, u “ 1, . . . , r.

It follows that for j P J cztiu we have

A1hj,1 “ A2hj,2 “ ¨ ¨ ¨ “ Arhj,r.

Let J “ pi1, . . . , irq be the set of parity nodes written in increasing order of their

indices, and for it P J let σpitq “ t. Define

V
pjq
i “

$

’

’

’

&

’

’

’

%

A1hj,1 j P J cztiu,

Aσpjq j P J.

(2.51)

Proposition 19. When Algorithm 2 terminates, we have B
pjq
i “ V

pjq
i for i P

t1, . . . , nu and j P t1, . . . , nuztiu, and thus B
pjq
i is a basis for V

pjq
i over F .

Proposition 20. Algorithm 2 returns a basis B for K over F .

The proofs of Propositions 19 and 20 follow closely the proofs of Proposition 17

and 18 and will be omitted.

Now it is not difficult to see that we can repair the failed node ci with optimal

67

Algorithm 2: Construction of an optimal basis; repair degree d “ n´ 1

Input: Subspaces V
pjq
i , i P t1, . . . , nu, j P t1, . . . , nuztiu.

Output: A basis B for K over F .
1 for iÐ 1 to n do
2 foreach j P t1, . . . , nuztiu do

3 B
pjq
i ÐH;

4 B
pjq
i Ð t0u;

5 Ω Ð t1, . . . , nu2ztpi, iq | i “ 1, . . . , nu;
6 for uÐ 0 to n2 ´ n´ 1 do
7 foreach I Ď Ω such that |I| “ u do
8 Ī Ð ΩzI;

9 UI Ð
Ş

pi,jqPĪ V
pjq
i ;

10 for iÐ 1 to n do
11 foreach j P t1, . . . , nuztiu do
12 if pi, jq P Ī then

13 B
pjq
i Ð B

pjq
i ` UI ;

14 Extend the set B
pjq
i to be a basis of B

pjq
i over F ;

15 B̄ Ð
Ťn
i“1

Ťn
j‰iB

pjq
i ;

16 Extend the set B̄ to be a basis B for K over F ;

68

access cost relying on the basis B. Indeed, for each j P t1, . . . , nuztiu, we have

SpanF pc
K
1,j, . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq
i . (2.52)

By Algorithm 2 and Proposition 19, the set B
pjq
i Ď B is a basis for V

pjq
i over F .

Therefore, cKt,j can be linearly generated by the set B
pjq
i for every t “ 1, . . . , l. Let

B
pjq
i “ tb

pjq
i,u | u “ 1, . . . , l{ru. Then, similarly to (2.49) and (2.50), we have

cKt,j “

l{r
ÿ

u“1

γj,ub
pjq
i,u, (2.53)

trK{F pc
K
t,iciq “ ´

n
ÿ

j‰i

l´1
ÿ

m“0

l{r
ÿ

u“1

trK{F pb
pjq
i,ub

˚
mqγj,ucj,m. (2.54)

Therefore, each node cj, j ‰ i needs to access the set of symbols tcj,m | trK{F pb
pjq
i,ub

˚
mq “

1u, whose cardinality is given by |B
pjq
i | “ l{r. It follows that the repair scheme has

the optimal access property.

2.5.3.2 Arbitrary repair degree

So far we assumed that the repair relies on all the surviving nodes except for

the single failed node, i.e., |R| “ n ´ 1. In this section we derive the most general

version of the result of this section, that any scalar MDS code can be repaired with

optimal access from any subset of helper nodes R of size d, k ` 1 ď d ď n ´ 1. Let

s :“ d´ k ` 1.

Let G “ rg1|g2| . . . |gns be a k ˆ n generator matrix of C, where gi is a k-

column over K. Let i P t1, . . . , nu and let R S tiu be a subset of d helper nodes. Let

69

R̂ “ RY tiu and GR̂ be the k ˆ pd` 1q submatrix formed by the columns gj, j P R̂.

Clearly, GR̂ defines a pd ` 1, kq punctured code CR̂ of the code C. Since C is MDS,

the code CR̂ is itself MDS. Let H R̂ “ ph
pR̂q
i , i “ 1, . . . , d ` 1q be an the s ˆ pd ` 1q

parity-check matrix of the code CR̂. Recalling Remark 1, the code generated by H R̂

is a shortened code pCKqR̂, i.e., a subcode of CK formed of the codewords with zeros

in the coordinates in R̂c.

Suppose that the code C can optimally repair any single failed node i from

the coordinates in R “ R̂ztiu. This means that the MDS code CR̂ can optimally

repair any single failed node i from the helper nodes R̂ztiu. Let J Ď R̂, |J | “ s

and i R J and assume without loss of generality that the submatrix H R̂
J is an

s ˆ s identity matrix. Now Proposition 14 applied for the code CR̂ guarantees

that there exist vectors au P K
l{s, u “ 1, . . . , s such that the block-diagonal matrix

A “ Diagpa1, . . . , asq satisfies

dimF pAh
pR̂q
i q “ l, (2.55)

dimF pAh
pR̂q
j q “

l

s
, j P R̂ztiu, (2.56)

dimF pAuq “
l

s
, u “ 1, . . . , s, (2.57)

where Au :“ SpanF pauq.

It follows from (2.56) and (2.57) that for j P R̂zpJ Y tiuq, we have

A1h
pR̂q
j,1 “ A2h

pR̂q
j,2 “ ¨ ¨ ¨ “ Ash

pR̂q
j,s .

70

Let us define

V
pjq

R̂,i
“

$

’

’

’

&

’

’

’

%

A1h
pR̂q
j,1 j P R̂zpJ Y tiuq,

Aσpiq j P J,

(2.58)

where σ is a bijection between J and t1, . . . , su defined as before (2.51).

The procedure to construct a basis for optimal-access repair in this case is

constructed as a modification of Algorithm 2, and is given in Algorithm 3.

Algorithm 3: Construction of an optimal basis; arbitrary repair degree

Input: Subspaces V
pjq

R̂,i
for each R̂ Ď t1, . . . , nu such that |R̂| “ d` 1 and

i P R̂, j P R̂ztiu.
Output: A basis B for K over F .

1 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d` 1 do

2 foreach i P R̂ do

3 foreach j P R̂ztiu do

4 B
pjq

R̂,i
ÐH;

5 B
pjq

R̂,i
Ð t0u;

6 Ω Ð tpR̂, i, jq | R̂ Ď t1, . . . , nu, i P R̂, j P R̂ztiuu;

7 for uÐ 0 to
`

n
d`1

˘

ppd` 1q2 ´ pd` 1qq ´ 1 do

8 foreach I Ď Ω such that |I| “ u do
9 Ī Ð ΩzI;

10 UI Ð
Ş

pR̂,i,jqPĪ V
pjq
i ;

11 foreach R̂ Ď t1, . . . , nu such that |R̂| “ d` 1 do

12 foreach i P R̂ do

13 foreach j P R̂ztiu do

14 if pR̂, i, jq P Ī then

15 B
pjq

R̂,i
Ð B

pjq

R̂,i
` UI ;

16 Extend the set B
pjq

R̂,i
to be a basis of B

pjq

R̂,i
over F ;

17 B̄ Ð
Ť

R̂Ďt1,...,nu,|R̂|“d`1

Ť

iPR̂

Ť

j‰R̂ztiuB
pjq

R̂,i
;

18 Extend the set B̄ to be a basis B of K over F ;

71

Similarly to the previous sections, we have the following propositions, whose

proofs are analogous to the proofs of Propositions 17 and 18.

Proposition 21. When Algorithm 3 terminates, we have B
pjq

R̂,i
“ V

pjq

R̂,i
for R̂ Ď

t1, . . . , nu with |R̂| “ d ` 1, i P R̂, and j P R̂ztiu, and thus B
pjq

R̂,i
is a basis of V

pjq

R̂,i

over F .

Proposition 22. Algorithm 3 returns a basis B of K over F .

The basis of K over F constructed in the algorithm enables us to construct an

optimal-access repair scheme for the code C. Let d P tk` 1, . . . , n´ 1u be the repair

degree. Let pc1, . . . , cnq be a codeword of the code C written on the storage nodes,

and suppose that the failed node is i and that R be the set of d helper nodes. Let A

be the block-diagonal matrix defined above, constructed with respect to i and H R̂.

Define the matrix CK “ AH R̂ and note that its rows cKt , t “ 1, . . . , l form codewords

of the code dual to the punctured code CR̂. Letting cKt “ pc
K
t,iqiPR, we can write

cKt,ici “ ´
ÿ

jPR

cKt,jcj. (2.59)

Similarly to (2.47), we have

trK{F pc
K
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

trK{F pc
K
t,jb

˚
mqcj,m, (2.60)

where B˚ “ pb˚q is the dual basis of the basis B. Note that for j P R we have

SpanF pc
K
1,j, . . . , c

K
l,jq “ SpanF pAhjq “ V

pjq
R,i. (2.61)

72

By Algorithm 3 and Proposition 21, the set B
pjq
R,i Ď B forms a basis for the subspace

V
piq
R,j over F . Therefore, the element cKt,j can be linearly generated by the set B

pjq
R,i for

every t “ 1, . . . , l. Let B
pjq
R,i “ tb

pjq
R,i,u |u “ 1, . . . , l{su. Then, similarly to (2.49) and

(2.50), we have

cKt,j “

l{s
ÿ

u“1

γj,ub
pjq
R,i,u, (2.62)

trK{F pc
K
t,iciq “ ´

ÿ

jPR

l´1
ÿ

m“0

l{s
ÿ

u“1

trK{F pb
pjq
R,i,ub

˚
mqγj,ucj,m. (2.63)

Therefore, each node cj, j P R needs to access the set of symbols tcj,m | trK{F pb
pjq
R,i,ub

˚
mq “

1u, whose cardinality equals |B
pjq
R,i| “ l{s. It follows that the constructed repair

scheme has the optimal access property.

This completes the proof of Theorem 12.

73

Chapter 3: Explicit Constructions of MSR Codes for the Rack-aware

Storage Model

3.1 Introduction

In this chapter we consider a model of storage that assumes that nodes are

organized into equally sized groups, called racks, that within each group the nodes

can communicate freely without taxing the system bandwidth, and that the only

information transmission that counts is the one between the racks. This assumption

implies that the nodes within each of the racks can collaborate before providing

information to the failed node. The main emphasis of the chapter is on code con-

struction for this storage model. We present an explicit family of MDS array codes

that support recovery of a single failed node from any number of helper racks using

the minimum possible amount of inter-rack communication (such codes are said to

provide optimal repair). The codes are constructed over finite fields of size compa-

rable to the code length.

We also derive a bound on the number of symbols accessed at helper nodes

for the purposes of repair, and construct a code family that approaches this bound,

while still maintaining the optimal repair property.

74

Finally, we present a construction of scalar Reed-Solomon codes that support

optimal repair for the rack-oriented storage model. We also show how the RS code

families and repair schemes presented in Chapter 2 can be modified to enable optimal

error correction and low access for the rack-aware storage model.

3.1.1 Organization

We start with the problem statement of the rack-aware storage model and

some structural lemmas for the model in Sec. 3.2, and then move on to present the

first explicit construction of rack-aware MSR code for all admissible parameters in

Sec. 3.3. In Sec. 3.4, we construct a family rack-aware MSR code with low access.

In Sec. 3.5 we extend our approach of constructing rack-aware vector MSR codes to

(scalar) RS codes.

3.2 Problem statement and structural lemmas

Assume that the data file of size M is divided into k blocks and encoded using

an array code C of length n over some finite field F . Each symbol of the codeword

is represented by an l-dimensional vector over F and is placed on a separate storage

node. We assume that the code is MDS, i.e., the entire codeword can be recovered

from any k of its coordinates (from the encoding stored on any k out of the n nodes).

According to the cut-set bound of [20], the amount of information required for repair

75

of a single node from d helper nodes satisfies the inequality

βpdq ě
dl

d´ k ` 1
, (3.1)

where k ď d ď n´ 1.

Suppose that information is encoded with an MDS array code C of length

n “ n̄u over a finite field F. If the size of the code is qkl, we refer to it as a

Cpn, k, lq code. The set of nodes rns “ t1, 2, . . . , nu is partitioned into n̄ subsets

(racks) of size u each. Accordingly, the coordinates of the codeword c P C are

partitioned into segments of length u, and we label them as ct, t “ 1, . . . , n, where

t “ pm´ 1qu` j, 1 ď m ď n̄, 1 ď j ď u. We do not distinguish between the nodes

and the coordinates of the codeword, and refer to both of them as nodes. Each node

is an element in F l, and when needed, we denote its entries as ct,j, j “ 1, . . . , l.

Denote by R Ă t1, . . . , n̄u the set of d̄ helper racks and let m˚ be the index

of the host rack. To repair the failed node, information is generated in the helper

racks and is combined with the contents of the local nodes to perform the repair.

This is modeled by computing a linear function of the contents of the nodes within

each helper rack (the function depends on the contents of all the nodes in the rack,

and can in principle also depend on the rack index), and sending this information

to rack m˚.

Definition 8 (Repair scheme). Let Cpn, k, lq be an array code. Suppose that node

cpm˚´1qu`j˚ is erased (has failed). To recover the lost data, we rely on the values of

the symbols in coordinates ciu`j, where i P R and j “ 1, . . . , u. A repair scheme S

76

with repair degree d̄ ď n̄ ´ 1 is formed of d̄ functions fi : F ul Ñ F βi , i P R and a

function g : F
ř

iPR βi ˆ F pu´1ql Ñ F l. For a given i P R the function fi maps cpiq

(the nodes in rack i) to some βi symbols of F. The function g accepts these symbols

together with the available nodes in the host rack as arguments, and returns the value

of the failed node:

gptfipcpi´1qu`j, 1 ď j ď uq, i P Ru, tcpm˚´1qu`j, j P t1, . . . , uuztj
˚
uuq “ cpm˚´1qu`j˚ .

In general the function fi, i P R depends on i,m˚ and j˚, and the function g depends

on R,m˚, j˚.

The quantity βpR,m˚, j˚q “
ř

iPR βi is called the repair bandwidth of the node

cpm˚´1qu`j˚ from the helper racks in R and from the available nodes in the host rack

m˚.

The repair scheme can be defined in a more general way: for instance, each

of the functions fi that form the information downloaded by the failed node could

depend on the entire set R (and not just on the contents of the node i) and the

function g could depend on the labels of the helper nodes in addition to the infor-

mation downloaded from them. At the same time, all our results as well as all the

results in the earlier literature are well described by this definition, which therefore

suffices for our purposes. If the functions fi, g are F -linear, the repair scheme itself

is called linear. Only such schemes will be considered below.

Let

βupd̄q :“ min
CĂFnl

max
R,m˚,j˚

βpR,m˚, j˚q

77

where the minimum is taken over all pn,M “ qklq MDS array codes and the max-

imum over the index of the host rack, the failed node in the rack, and the choice

of the set of the helper racks R. To rule out the trivial case, we assume throughout

that k ě u.

3.2.1 Optimal repair

Suppose that k “ k̄u ` v, where 0 ď v ď u ´ 1. A necessary condition for

successful repair of a single node is given by a version of the cut-set bound [32], [31]

which states that for any pn, k, lqMDS array code, the (inter-rack) repair bandwidth

is at least

βupd̄q ě
d̄l

d̄´ k̄ ` 1
(3.2)

The code that attains this bound with equality is said to have the optimal repair

property.

The arguments below are based on the following obvious (and well-known)

observation.

Lemma 23. Let Cpn, k, lq be an MDS array code. Suppose that a failed node is

repaired using a set I, |I| “ d of helper nodes. The number of symbols of F down-

loaded for the repair task from any subset I 1 Ă I of size |I 1| “ d´ k ` 1 is at least

l.

To prove this it suffices to observe that, because of the MDS property, no

subset of k ´ 1 nodes carries any information about the value of any other node.

78

We note that this lemma applies to the rack model (i.e., allowing processing

of the information obtained from the nodes in I). It also applies if the count of

downloaded symbols is replaced by the count of symbols accessed on the helper

nodes.

The next statement, called the uniform download property, is well known for

the case of homogeneous storage. Its proof for the rack-aware storage is not much

different, and is given for completeness in Appendix B.1.

Proposition 24. Let C be an MSR code and suppose that k̄ ą 1. Let R be the set

of helper racks used to repair a single failed node. Then βi “ l{pd̄´ k̄ ` 1q, i P R.

We note that both the bound (3.2) and this proposition can be generalized to

the case of 2 ď h ď r failed nodes located on the same rack without any difficulty;

for instance, the bound takes the form β ě hd̄l
d̄´k̄`1

.

Next, observe that if k is divisible by the rack size u, then any MSR code for

the standard model will be optimal for the rack model, i.e., cooperation between

the nodes within the rack does not help to reduce the repair bandwidth (this has

been first observed in [31, Thm. 4]).

Proposition 25. Let k “ k̄u, and let C be an MSR code of length n “ n̄u with

optimal repair of a single node for the homogeneous storage model. Then C attains

the cut-set bound (3.2) for repair of any single node in the rack-aware model.

Proof: Take an MSR code of length n and assume that v “ 0. Suppose that

the number of helper nodes is d, and this includes the u ´ 1 local nodes. By (3.1),

the repair bandwidth necessary equals d
d´k`1

l. In accordance with the model, take

79

d “ d̄u` pu´ 1q, then

d

d´ k ` 1
l “

´ d̄

d̄´ k̄ ` 1
`

u´ 1

d´ k ` 1

¯

l (3.3)

and this achieves the bound (3.2) if the second term is discounted (which is possible

because of the uniform download property and because intra-rack communication

is free).

Note that in the case of v ‰ 0, optimal codes for the rack model perform repair

using a strictly smaller repair bandwidth than optimal codes for the homogeneous

model. This also suggests that the number of symbols downloaded from a helper rack

is strictly smaller than the number of accessed symbols, i.e., intra-rack processing is

necessary for optimal repair (this will be made rigorous once we establish Prop. 26

below).

For reader’s convenience, let us summarize the code parameters: We consider

pn, k, lq array codes used in a system where the nodes are arranged in racks of

size u. The codes are designed to repair a single node. We further assume that

n “ n̄u, k “ k̄u ` v, where 0 ă v ď u ´ 1, and the number of helper racks is d̄,

where k̄ ď d̄ ď n̄´ 1. We also use the notation r “ n´ k, r̄ “ n̄´ k̄ for the number

of parity nodes and parity racks, respectively. Finally, to shorten the formulas we

denote

s “ d´ k ` 1, s̄ “ d̄´ k̄ ` 1,

80

where d is the total number of helper nodes accessed for repair, and d̄ is the repair

degree, i.e., number of helper racks (not counting the host rack).

3.2.2 Optimal access

Some of the constructions of codes for the homogeneous case have the ad-

ditional property that the information accessed on the helper nodes is the same

as the information that is downloaded by the helper node (no processing is per-

formed before downloading). This property, also called repair by transfer, reduces

the implementation overhead, and is therefore desirable in the code construction.

Structure and constructions of optimal access (OA) codes for the homogeneous case

were addressed in [75, 81, 85] among others.

Definition 9. Let Cpn “ n̄u, k, lq be a code that supports optimal repair of a sin-

gle failed node with repair degree d̄. Suppose that each of the helper racks provides

l{s̄ field symbols and these symbols are generated by accessing the smallest possible

number of symbols of the nodes in the rack. In this case we say that C has the OA

property.

To motivate this definition, we draw an analogy with the homogeneous case.

In this case, on account of the bound (3.1) and the uniform download property,

the system accesses l{s symbols at each of the helper nodes, and these symbols are

downloaded to accomplish the repair. As a consequence, a group of u ą 1 helper

nodes provides ul{s symbols. This observation also extends to the rack-aware model

in the case that u|k. Indeed, in this case the number of symbols downloaded from,

81

and accessed on, each rack equals l{s̄ “ ul{s.

In the next proposition (proved in Appendix B.2) we derive a lower bound on

the number of accessed symbols and establish the uniform access condition.

Proposition 26. Let C be an pn, k, lq optimal-repair MDS array code for the rack

model with repair degree d̄ ě k̄` 1 and u ď k. The total number of symbols accessed

on the helper racks for repair of a single node satisfies

α ě
d̄ul

s
. (3.4)

Equality holds if and only if the number of symbols accessed on node e satisfies

αm,e “ l{s for all m P R; e “ 1, . . . , u.

As noted above, if u|k, the symbols accessed on the helper nodes can be down-

loaded without processing, accounting for optimal repair. At the same time, if u - k,

and the code meets the bound (3.4), then processing is necessary because d̄ul{s is

strictly greater than the optimal bandwidth in (3.2).

3.2.3 A lower bound on the sub-packetization of rack-aware optimal-

access MSR codes

In this section we present a lower bound on the value of the node size in MSR

codes for the rack model, which will be implicitly assumed throughout without

further mention. Similarly to [3, 75], we limit ourselves to systematic codes and

linear repair schemes. Let C be an pn “ n̄u, k “ k̄u, lq systematic optimal-access

82

MSR array code over F . Let A “ pAijq be the ppn´ kqlˆ klq encoding matrix of C;

in other words, the parity symbols ck`i, i “ 1 . . . , r “ n ´ k are obtained from the

data symbols cj, j “ 1, . . . , k according to the relation

ck`i “
k
ÿ

j“1

Ai,jcj, (3.5)

where each Ai,j is an lˆl invertible matrix over F . Assume without loss of generality

that the k systematic nodes are located on racks 1, . . . , k̄, called systematic racks

below. Racks k̄`1, . . . , n̄ will be called parity racks. Let cm “ pcpm´1qu`1, . . . , cmuq
T

be the data vector stored in the m-th rack, 1 ď m ď k̄, where each component is an

l-vector over F. Suppose for definiteness that the failed node is located in rack m1,

where 1 ď m1 ď k̄. Suppose further that the set of d̄ helper racks is formed of the

remaining k̄ ´ 1 systematic racks and some s̄ “ d̄´ k̄ ` 1 parity racks.

We assume throughout that the repair scheme is independent of the index of

the failed node in its rack.

The main result of this section is given in the following theorem, whose proof

is modeled on the result of [3] and generalizes its main ideas to the case of u ě 2.

Theorem 27. Let C be an pn “ n̄u, k “ k̄u, lq optimal-access MSR array code,

k ě u, and let d̄, k̄ ď d̄ ď n̄´ 1 be the size of the helper set R. Suppose further that

there is a linear repair scheme that supports repair of a single failed node from any

d̄ helper racks.

(a) Suppose that the repair scheme depends on the choice of the helper racks

83

as well as on the index of the host rack. Then

l ě mints̄pn̄´1q{s, s̄k̄´1
u, (3.6)

where s̄ “ d̄´ k̄ ` 1 and s “ s̄u.

(b) Suppose that the repair scheme depends on the index of the host rack but

not on the choice of the helper racks, then

l ě mints̄n̄{s, s̄k̄´1
u. (3.7)

A proof of this theorem is given in the Appendix. Here let us make the

following remark. The theorem is proved under the assumption that u|k, in which

case any optimal-access MSR code for the homogeneous storage model supports

optimal repair for the rack model. The smallest possible value of sub-packetization

for such codes is l “ rrn´1
r

s [3, 85]. Thus, this theorem says that it is possible that

there exist optimal-access rack codes that have smaller node size than OA codes for

homogeneous storage even in the case when k is a multiple of u.

3.3 Rack-aware codes with optimal repair for all parameters

Let s̄ “ d̄ ´ k̄ ` 1 and let F, |F | ą s̄n be a finite field. The code that we

construct is formed as an F -linear array MDS code C of length n, dimension k,

and sub-packetization l “ s̄n̄. We denote a codeword of C by pc1, c2, . . . , cnq, where

ci “ pci,1, . . . , ci,lq for all i “ 1, . . . , n. Suppose that s̄n | p|F | ´ 1q and let λ P F be

84

an element of multiplicative order s̄n. Finally, given j P t0, 1, . . . l´ 1u, consider the

base s̄ expansion j “ pjn̄, jn̄´1, . . . , j1q and let

jpp, aq :“ pjn̄, . . . , jp`1, a, jp´1, . . . , j1q, (3.8)

where 0 ď a ď s̄´ 1.

Construction 3.3.1. Consider an pn, k, l “ s̄n̄q code C “ tc “ pci,jq1ďiďn;0ďjďl´1u

defined by the following set of rl parity-check equations over F :

n̄
ÿ

e“1

λtppe´1qs̄`jeq
u
ÿ

i“1

λtpi´1qs̄n̄cpe´1qu`i,j “ 0 (3.9)

for all t “ 0, . . . , r ´ 1; j “ 0, . . . , l ´ 1.

We will show that the code defined in (3.9) is an MDS code that has the

smallest possible repair bandwidth according to the bound (3.2). Before stating the

main theorem that proves these claims let us comment on the origin as well as the

new elements in this construction. The code is formed of two levels, the algebraic

one, which accounts for the repair of a node in any fixed rack, say p, 1 ď p ď n̄, and

a stacking construction which makes the code universal (i.e., rack-independent).

The second part is accomplished by representing the index j of the parity check

equation as an s̄-ary number (3.8). This expansion enables us to isolate the parities

that are used to perform repair of any failed node in rack p, specifically, they are

the equations in (3.9) whose label j is obtained by varying the value of the entry jp

in the expansion (3.8) and fixing all the remaining values.

85

The algebraic development represents the main part of the proof of Theorem

28 and accounts for the optimal-bandwidth repair scheme. The key new idea utilized

in the proof is the choice of λ based on the multiplicative structure of F and using

the evaluation points given by the powers of λ.

Theorem 28. Let k̄ ď d̄ ď n̄ ´ 1. The pn, k, l “ s̄n̄q code C defined by the parity-

check equations (3.9) is an MDS code that supports optimal repair of any single node

from any d̄ helper racks, under the rack-aware storage model.

Proof. We begin with proving the part of the claim about the repair properties of

the code C. Suppose that the index of the rack that contains the failed node is

p P t1, . . . , n̄u. We have r̄u “ r ` v and since 0 ď v ď u ´ 1, pr̄ ´ 1qu ď r ´ 1.

Rewriting (3.9), we have:

λtppp´1qs̄`jpq
u
ÿ

i“1

λtpi´1qs̄n̄cpp´1qu`i,j “ ´

n̄
ÿ

e“1
e‰p

λtppe´1qs̄`jeq
u
ÿ

i“1

λtpi´1qs̄n̄cpe´1qu`i,j

for all t “ 0, . . . , r ´ 1; j “ 0, . . . , l ´ 1. We will use a subset of the parity-check

equations with indices t of the form t “ wu :

λppp´1qs̄`jpqwu
n
ÿ

i“1

cpp´1qu`i,j “ ´
ÿ

e‰p

λppe´1qs̄`jeqwu
u
ÿ

i“1

cpe´1qu`i,j

for all j “ 0, . . . , l´ 1;w “ 0, 1, . . . , r̄´ 1, where we have used the fact that λs̄n “ 1.

Denoting α “ λu and summing these equations on jp “ 0, 1, . . . , s̄ ´ 1, we obtain

86

the following set of conditions:

s̄´1
ÿ

jp“0

αppp´1qs̄`jpqw
u
ÿ

i“1

cpp´1qu`i,j “ ´
ÿ

e‰p

αppe´1qs̄`jeqw
s̄´1
ÿ

jp“0

u
ÿ

i“1

cpe´1qu`i,j (3.10)

for all w “ 0, 1, . . . , r̄´ 1 and all jn̄, . . . , jp`1, jp´1, . . . , j1, where each of these values

ranges over t0, 1, . . . , s̄ ´ 1u. Let R “ tq1, . . . , qd̄u be the set of helper racks and let

rn̄szR “ tp, p1, . . . , pr̄´s̄u. Then (3.10) can be written as follows:

s̄´1
ÿ

jp“0

αppp´1qs̄`jpqw
u
ÿ

i“1

cpp´1qu`i,j `
ÿ

aPrn̄szR
a‰p

αppa´1qs̄`jaqw
s̄´1
ÿ

jp“0

u
ÿ

i“1

cpa´1qu`i,j

“ ´
ÿ

bPR

αppb´1qs̄`jbqw
s̄´1
ÿ

jp“0

u
ÿ

i“1

cpb´1qu`i,j. (3.11)

In matrix form these equations are shown in (3.12) below, where

σe,jpp,˚q :“
s̄´1
ÿ

jp“0

u
ÿ

i“1

cpe´1qu`i,j, e “ 1, . . . , n̄,

and j is as given above after (3.10).

»

—

—

—

—

–

1 . . . 1 1 . . . 1

αs̄pp´1q . . . αs̄pp´1q`s̄´1 αs̄pp1´1q`jp1 . . . α
s̄ppr̄´s̄´1q`jpr̄´s̄

...
...

...
...

...
...

pαs̄pp´1qqr̄´1 . . . pαs̄pp´1q`s̄´1qr̄´1 pαs̄pp1´1q`jp1 qr̄´1 . . . pα
s̄ppr̄´s̄´1q`jpr̄´s̄ qr̄´1

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

řu
i“1 cpp´1qu`i,jpp,0q

...
řu
i“1 cpp´1qu`i,jpp,s̄´1q

σp1,jpp,˚q

...
σpr̄´s̄,jpp,˚q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ´

»

—

—

—

—

–

1 . . . 1

αs̄pq1´1q`jq1 . . . α
s̄pqd̄´1q`jqd̄

...
...

...

αps̄pq1´1q`jq1 qpr̄´1q . . . α
ps̄pqd̄´1q`jqd̄

qpr̄´1q

fi

ffi

ffi

ffi

ffi

fl

»

—

—

–

σq1,jpp,˚q
...

σqd̄,jpp,˚q

fi

ffi

ffi

fl

(3.12)

We claim that Equations (3.12) suffice to recover one failed node in rack p.

87

Indeed, suppose that the d̄-dimensional vector on the right-hand side of (3.12) is

made available to the failed node by transmitting one symbol of F from each of the

helper racks. Let us check that the matrix on the left-hand side is Vandermonde,

i.e., that the defining elements in the second row are distinct. To see this, note that

ordpαq “ s̄n̄, and the maximum degree of α in the set tαs̄pe´1q`m,m “ 0, . . . , s̄ ´

1; a “ 1, . . . , n̄u is

s̄pn̄´ 1q ` s̄´ 1 ă s̄n̄.

Moreover, each of the first s̄ coordinates of the multiplier vector on the left-hand

side of (3.12)

´

u
ÿ

i“1

cpp´1qu`i,jpp,0q, . . . ,
u
ÿ

i“1

cpp´1qu`i,jpp,s̄´1q

¯T

contains only one unknown term which corresponds to the failed node. Thus, if

the values cpp´1qu`i,jpp,˚q of all the functional local nodes are made available to the

failed node (recall that this does not count toward the repair bandwidth), then

system (3.12) can be solved to find the entries of the missing node. This calculation

is repeated s̄n̄´1 times for each assignment of the values jn̄, . . . , jp`1, jp´1, . . . , j1,

thereby completing the repair procedure.

Let us compute the inter-rack repair bandwidth of the described procedure.

To repair the entries of the single failed node in the pth rack with indices in the

subset tjpp, aq, a “ 0, 1, . . . , s̄ ´ 1u we download one symbol of F from each of the

d̄ helper racks. There are s̄n̄´1 subsets of the above form, and thus the total repair

bandwidth is

d̄s̄n̄´1
“
d̄l

s̄
,

88

proving the optimality claim of the code according to (3.2).

Finally let us prove that the code C is MDS. This is immediate upon ob-

serving that each subset of parity-check equations isolated by fixing the value of

j “ 0, 1, . . . , l ´ 1 defines an MDS code. To check this, observe that the set of

rows of the parity-check matrix of C for a fixed value j “ pjn̄, . . . , j1q forms a set of

parities of a generalized Reed-Solomon codes (i.e., each column is a set of powers of

an element of F), and the defining row of this set of parities is shown below,

|λj1 , λj1`s̄n̄, . . . , λj1`pu´1qs̄n̄
|λj2`s̄, λj2`s̄p1`n̄q, . . . , λj2`s̄p1`pu´1qn̄q

| . . .

|λjn̄`s̄pn̄´1q, λjn̄`s̄p2n̄´1q, . . . , λjn̄`s̄pn̄´1`pu´1qn̄q
| (3.13)

where each group between the vertical bars corresponds to a fixed value of s “

1, . . . , n̄ in (3.9). It suffices to show that all these elements are distinct or that these

groups do not overlap. Note that the largest power in (3.13) is

jn̄ ` s̄pn̄´ 1` pu´ 1qn̄q ď s̄´ 1` un̄s̄´ s̄ ă s̄n “ ordpλq. (3.14)

Now consider two groups and let their numbers be a and b, where 1 ď b ă a ď n̄.

Then the difference between the exponents of the first elements in the two groups is

pa´ bqs̄` pja ´ jbq ě 1

so the first elements are obviously distinct. Further, the exponents of the elements

89

in each of the groups are obtained by adding a multiple of s̄n̄ to the exponent of the

first element, which together with (3.14) implies that the groups are disjoint. This

shows that the code C is MDS, and the proof is complete.

We remark that the repair procedure relies on a subset of the parity-check

equations of the code C. Namely, the only rows of the parity-check matrix that we

use are the rows whose numbers are integer multiples of the size of the rack u. It

suffices to use only these parities because the assumptions of the rack model are

relaxed compared to the standard definition of regenerating codes. The remaining

parities support the MDS property of the code C and do not contribute to the repair

procedure.

In Sec. 3.4.2 we construct codes with somewhat better parameters than the

codes given by Construction 3.3.1. Specifically, the smallest field size required for the

code family in Sec. 3.4.2 is n ` s̄ ´ 1 (as opposed to s̄n), and the repair procedure

accesses fewer symbols on the helper nodes than the procedure presented in the

above proof. At the same time, the codes presented in this section have the optimal

update property. Namely, a codeword of the code C can be viewed as an l ˆ n

array, and for a given row index j P t1, . . . , l´ 1u the n symbols are encoded with a

generalized RS code independently of the other rows. Thus, if some k symbols are

taken as information symbols, then the change of one symbol in the data requires

to change r parity symbols, which is also the smallest possible number [75]. At the

same time, the codes in the family of Sec. 3.4.2 do not have optimal update, and

are in this respect inferior to the present construction.

90

3.4 Low-access codes for the rack model

This section aims at constructing an optimal-repair MSR code for the rack

model that accesses a reduced number of symbols on the nodes in the helper racks.

Our presentation is formed of two parts. In the first part we construct an optimal-

access MSR code for arbitrary repair degree k ď d ď n ´ 1 without assuming the

rack model of storage. The code has subpacketization l “ pd´ k ` 1qn.

In the second part we present a modification of this construction for the rack

model, attaining subpacketization l “ s̄n̄. Note that this value is smaller than the

smallest node size of known constructions of OA codes for the homogeneous model,

which is sn [85].

3.4.1 Optimal-access MSR codes with arbitrary repair degree for ho-

mogeneous storage

In this section we present a family of OA codes for any repair degree k ď

d ď n ´ 1. Let s “ d ´ k ` 1 and let F, |F | ě n ` s ´ 1 be a finite field. Let

λ0, . . . , λn´1, µ1, . . . , µs´1 be n` s´ 1 distinct elements of F . Let i “ pin´1, . . . , i0q

be the s-ary representation of i “ 0, . . . , l ´ 1 and (as before) let

ipa, bq “ pin´1, . . . , ia`1, b, ia´1, . . . , i0q

91

for 0 ď a ď n´ 1 and 0 ď b ď s´ 1. For brevity below we use the notation

δpiq :“ 1ti“0u.

Construction 3.4.1. Define an pn, k “ n ´ r, l “ snq array code C “ tc “

pcj,iq0ďjďn´1;0ďiďl´1u, where the codeword c satisfies the following parity check equa-

tions over F :

n´1
ÿ

j“0

λtjcj,i`
n´1
ÿ

j“0

δpijq
s´1
ÿ

p“1

µtpcj,ipj,pq “ 0, i “ 0, . . . , l ´ 1; t “ 0, . . . , r ´ 1. (3.15)

Since later in this section we rely on multiplicative structure of F , we label the nodes

0, . . . , n ´ 1 and not 1, . . . , n as in Construction 3.3.1. In the next subsection we

will also label the racks from 0 to n̄´ 1 for the same reason.

Theorem 29. The code C defined in (3.15) is an optimal-access MDS array code.

The proof will be omitted because in principle it can be obtained from the

proof of Theorem 30 below upon taking the size of the rack u “ 1. This is however

not entirely immediate, and interested readers can consult the arXiv posting of a

preprint of this chapter (arXiv:1901.04419, January 2019) which contains a complete

and independent proof of Theorem 29.

3.4.2 Rack-aware MSR codes with low access

In this section we adapt the code family constructed in Sec. 3.4.1 for the rack-

aware storage model. This result is obtained by adjusting the sub-packetization and

92

by carefully choosing the elements λ0, . . . , λn´1.

We aim to construct an pn, k, lq MDS array code over F , where n “ n̄u, and u

is the size of the rack. Recall that s̄ “ d̄´ k̄`1 where k̄ ď d̄ ď n̄´1, and k̄ “ tk{uu.

Let |F | ě n` s̄´ 1 and n|p|F | ´ 1q. Let λ P F be an element of multiplicative order

n, and let µ1, . . . , µs̄´1 be s̄ ´ 1 distinct elements in F ztλi | i “ 0, . . . , n ´ 1u. For

j “ 0, . . . , n´ 1, let us write j “ eu` g where 0 ď e ă n̄ and 0 ď g ă u.

We construct an rack-aware low-access MSR code over F that can repair any

single node from any d̄ helper racks.

Construction 3.4.2. Define an pn, k “ n ´ r, l “ s̄n̄q array code C “ tc “

pcj,iq0ďjďn´1;0ďiďl´1u by the following parity-check equations over F :

n´1
ÿ

j“0

λtjcj,i `
n´1
ÿ

j“0

δpieq
s̄´1
ÿ

p“1

µtpcj,ipe,pq “ 0, (3.16)

where λj “ λe`gn̄, i “ 0, . . . , l ´ 1 and t “ 0, . . . , r ´ 1.

We will show that this code family supports optimal repair while accessing l{s̄

symbols on each of the nodes in the helper racks, which is by a factor of s{s̄ « u

greater than the bound in Prop. 26. While these codes stop short of attaining the

bound (3.4), they have lower access requirement than the codes given by Construc-

tion 3.3.1, which access all symbols of the helper nodes, i.e., s̄ times more symbols

than the current construction.

Theorem 30. The code C defined in (3.16) is an optimal-repair MDS array code.

The repair procedure accesses l{s̄ symbols on each of the nodes in d̄ helper racks.

93

The repair scheme does not depend on the choice of the subset of d̄ helper racks.

Proof. I. Optimal-access property. Suppose cj1 is the failed node, where j1 “

e1u ` g1. Let R be the set of helper racks and let J “ t0, . . . , n̄ ´ 1uzR. We write

this set as J “ te1, e2, . . . , en̄´d̄u. For a given a, 1 ď a ď n̄ ´ d̄ we will need a-

subsets of J, which we denote by Ja. We always assume that e1 P Ja. As before, let

I Ă t0, 1, . . . , l ´ 1u be the subset of indices such that ie1 “ 0; let

I1 “ ti “ pin̄´1, . . . , i0q P t0, . . . , l ´ 1u | ie1 “ 0; ie ‰ 0, e P JzJ1u

and define

Ia “
ď

JaĎJ

IpJaq, a “ 2, . . . , n̄´ d̄,

where

IpJaq “ ti “ pin̄´1, . . . , i0q P t0, . . . , l ´ 1u | ie “ 0, e P Ja; ie ‰ 0, e P JzJau.

Recall that r̄ “ n̄ ´ k̄. We will use the parity check equations corresponding

to i P I and all powers t “ uw,w “ 0, . . . , r̄ ´ 1 to repair cj1 . To show that the

repair is possible, we argue by induction on a “ 1, . . . , n̄´ d̄.

To prove the induction basis, we show that it is possible to recover the values

tcj1,ipe1,pq | p “ 0, . . . , s̄ ´ 1u and t
řu´1
g“0 ceu`g,i | e P JzJ1u for every i P I1 from the

94

helper racks R. From (3.16), for i P I1, we have

ÿ

ePJ

u´1
ÿ

g“0

λteu`gceu`g,i `
u´1
ÿ

g“0

s̄´1
ÿ

p“1

µtpce1u`g,ipe1,pq

“ ´
ÿ

ePR

u´1
ÿ

g“0

´

λteu`gceu`g,i ` δpieq
s̄´1
ÿ

p“1

µtpceu`g,ipe,pq

¯

.

Using t “ uw, λeu`g “ λe`gn̄, and λn̄u “ 1, we obtain

ÿ

ePJ

λeuw
u´1
ÿ

g“0

ceu`g,i `
s̄´1
ÿ

p“1

µuwp

u´1
ÿ

g“0

ce1u`g,ipe1,pq

“ ´
ÿ

ePR

´

λeuw
u´1
ÿ

g“0

ceu`g,i ` δpieq
s̄´1
ÿ

p“1

µuwp

u´1
ÿ

g“0

ceu`g,ipe,pq

¯

, (3.17)

i P I1, w “ 0, . . . , r̄´1. To shorten our notation, denote the right-hand side of (3.17)

by σi,wpJ1q and let

πi,e :“
u´1
ÿ

g“0

ceu`g,i.

Note that the value of σi,wpJ1q only depends on the helper racks. For i “ 1, . . . , n̄´ d̄

define αi :“ λeiu. Let us write equations (3.17) for all w “ 0, . . . , r̄ ´ 1 in matrix

95

form:

»

—

—

—

—

—

—

—

—

—

—

–

1 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1

α1 µ1 ¨ ¨ ¨ µs̄´1 α2 ¨ ¨ ¨ αn̄´d̄

...
...

. . .
...

...
. . .

...

αr̄´1
1 µr̄´1

1 ¨ ¨ ¨ µr̄´1
s̄´1 αr̄´1

2 ¨ ¨ ¨ αr̄´1
n̄´d̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

πi,e1

πipe1,1q,e1

...

πipe1,s̄´1q,e1

πi,e2

...

πi,en̄´d̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

σi,0pJ1q

σi,1pJ1q

...

σi,r̄´1pJ1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.18)

Observe that the matrix on the left-hand side of (3.18) is invertible. Therefore, the

values tcj1,ipj1,pq | p “ 0, . . . , s̄ ´ 1u and t
řu´1
g“0 ceu`g,i | e P JzJ1u can be found from

the values tσi,wpJ1q | w “ 0, . . . , r̄ ´ 1u and the local nodes tce1u`g | g ‰ g1u for

every i P I1. This completes the proof of the induction basis.

Now let us fix a P t2, . . . , n̄´ d̄u and suppose that we have recovered the values

tcj1,ipe1,pq | p “ 0, . . . , s̄ ´ 1u and
!

řu´1
g“0 ceu`g,i | e P JzJ1

)

, i P Ia1 ; 1 ď a1 ď a ´ 1

from the information downloaded from the helper racks R.

Fix a subset Ja, |Ja| “ a, and let i P IpJaq. From (3.16), we have

ÿ

ePJ

u´1
ÿ

g“0

λteu`gceu`g,i `
ÿ

ePJa

u´1
ÿ

g“0

s̄´1
ÿ

p“1

µtpceu`g,ipe,pq

“
ÿ

ePJ

u´1
ÿ

g“0

λteu`gceu`g,i `
s̄´1
ÿ

p“1

µtp
ÿ

ePJa

u´1
ÿ

g“0

ceu`g,ipe,pq

“´
ÿ

ePR

´

u´1
ÿ

g“0

λteu`gceu`g,i ` δpieq
s̄´1
ÿ

p“1

µtp

u´1
ÿ

g“0

ceu`g,ipe,pq

¯

. (3.19)

96

Using t “ uw, λeu`g “ λe`gn̄, and λn̄u “ 1, we obtain

ÿ

ePJ

λeuw
u´1
ÿ

g“0

ceu`g,i `
s̄´1
ÿ

p“1

µuwp
ÿ

ePJa

u´1
ÿ

g“0

ce1u`g,ipe1,pq

“ ´
ÿ

ePR

´

λeuw
u´1
ÿ

g“0

ceu`g,i ` δpieq
s̄´1
ÿ

p“1

µuwp

u´1
ÿ

g“0

ceu`g,ipe,pq

¯

. (3.20)

Again for notational convenience denote the right-hand side of (3.20) by σi,wpJaq

and let

ρi,p :“
ÿ

ePJa

u´1
ÿ

g“0

ceu`g,ipe,pq.

Note that the value of σi,wpJaq depends only on the information in the helper racks.

Let us write Equations (3.20) for all w “ 0, . . . , r̄ ´ 1 in matrix form:

»

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1

µ1 ¨ ¨ ¨ µs̄´1 α1 ¨ ¨ ¨ αn̄´d̄

...
. . .

...
...

. . .
...

µr̄´1
1 ¨ ¨ ¨ µr̄´1

s̄´1 αr̄´1
1 ¨ ¨ ¨ αr̄´1

n̄´d̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ρi,1

...

ρi,s̄´1

πi,e1

...

πi,en̄´d̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

σi,0pJaq

σi,1pJaq

...

σi,r̄´1pJaq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.21)

Therefore, for any Ja Ď J and every i P IpJaq, the values tρi,p | p “ 1, . . . , s̄ ´ 1u

and t
řu´1
g“0 ceu`g,i | e P Ju can be found from the values tσi,wpJaq | w “ 0, . . . , r̄´ 1u.

It follows that we can recover the values tρi,p | p “ 1, . . . , s̄´ 1u and t
řu´1
g“0 ceu`g,i |

e P Ju for all i P Ia.

97

Note that for i P IpJaq, e P JazJ1, and for p ‰ 0, we have ipe, pq P Ia´1. By the

induction hypothesis, we have recovered the values t
řu´1
g“0 ceu`g,i | i P Ia´1; e P JzJ1u,

and therefore, we know the values t
řu´1
g“0 ceu`g,ipe,pq | j P JazJ1, p ‰ 0u for each i P Ia.

With these values and tρpi, pq | i P Ia, p “ 1, . . . , s ´ 1u, we can obtain the values

t
řu´1
g“0 ce1u`g,i | p “ 1, . . . , s ´ 1u. Since the values of local nodes tce1u`g,i | g ‰ g1u

are available, we can further recover the value cj1,i.

Thus, we can obtain the values tcj1,ipe1,pq | p “ 0, . . . , s̄´1u and t
řu´1
g“0 ce1u`g,i |

e P JzJ1u for every i P Ia. It follows that we can recover these values for every i P Ia

and 1 ď a ď n̄´ d̄ from the helper racks R. In conclusion, we can recover the values

tcj1,ipe1,pq | i P I, p “ 0, . . . , s̄ ´ 1u “ tcj1,i | i “ 0, . . . , l ´ 1u from the information

obtained from the helper racks in R.

Now let us count the number of symbols we access in each helper rack. It is

clear from the definition of σi,wpJaq (see (3.20)) that we need to access the symbols

tceu`g,i | 0 ď g ă u, i P Iu for each e P R. In other words, we need to access

s̄n̄´1 “ l{s̄ symbols on each node in the helper racks; thus, the total number of

accessed symbols equals d̄ul{s̄. Moreover, the set of symbols we access in each helper

rack depends on index of the host rack but not the index of the helper rack.

Note also that the symbols downloaded to the rack e1 from any helper rack

e P R form the subset t
řu´1
g“0 ceu`g,i | i P Iu. Thus, the total amount of information

downloaded for the purposes of repair equals

d̄|I| “ d̄s̄n̄´1
“

d̄l

d̄´ k̄ ` 1
.

98

This is the smallest possible number according to the bound (3.2), and thus the

codes support optimal repair.

II. MDS property. We will show that the contents of any n ´ r nodes

suffices to find the values of the remaining r nodes.

Let K “ tj1, . . . , jru Ď t0, . . . , n´1u be the set of r nodes to be recovered from

the set of n´r nodes in r0, n´1szK. Let us write jb “ ebu`gb where 0 ď gb ă u´1

for b “ 1, . . . , r.

Let J be the set of distinct eb, b “ 1 . . . , r. For 1 ď a ď |J|, let Ja Ď J be such

that |Ja| “ a.

Let I0 “ ti “ pin̄´1, . . . , i0q P t0, . . . , l ´ 1u | ie ‰ 0, e P Ju. For 1 ď a ď |J|

and Ja Ď J, let IpJaq “ ti “ pin̄´1, . . . , i0q P t0, . . . , l ´ 1u | ie “ 0, e P Ja; ie1 ‰

0, e1 P JzJau. Let Ipaq “
Ť

JaĎJ
IpJaq where 1 ď a ď |J|. Observe that the sets

Ia, 0 ď a ď |J| partition the set t0, 1, . . . , l ´ 1u.

We will prove by induction that we can recover the nodes in J from the nodes

in t0, 1, . . . , n´ 1uzJ. First, let us establish the induction basis, i.e., we can recover

the values tcj,i | j P Ju for every i P I0 from the nodes tcj | j P J
cu. From (3.16), for

i P I0, we have

ÿ

jPJ

λtjcj,i “ ´
ÿ

jPJc

´

λtjcj,i ` δpieq
s̄´1
ÿ

p“1

µtpcj,ipe,pq

¯

. (3.22)

To simplify notation, denote the right-hand side of (3.22) by σi,t “ σi,tpHq.

Note that the value of σi,t only depends on the nodes tcj | j P J
cu. Writing (3.22)

99

in matrix form, we have

»

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 1

λj1 ¨ ¨ ¨ λjr

...
. . .

...

λr´1
j1

¨ ¨ ¨ λr´1
jr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

cj1,i

cj2,i

...

cjr,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

σi,0

σi,1

...

σi,r´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.23)

Therefore, the values tcj,i | j P Ju can be calculated from the values tσi,t | t “

0, . . . , r ´ 1u for every i P I0.

Now let us establish the induction step. Suppose we recover the values tcj,i |

j P Ju for every i P Ia1 and 0 ď a1 ď a ´ 1 from the nodes tcj | j P J
cu, where

1 ď a ď |J|.

Now let us fix a set Ja Ď J and let i P IpJaq. From (3.16), we have

ÿ

jPJ

λtjcj,i “ ´
s̄´1
ÿ

p“1

µtp
ÿ

jPJ : ePJa

cj,ipe,pq ´
ÿ

jPJc

´

λtjcj,i ` δpieq
s̄´1
ÿ

p“1

µtpcj,ipe,pq

¯

“: ´ρ1i,t ´ σi,tpJaq, (3.24)

where the last line serves to introduce the shorthand notation. Note that we know

the values tσi,tpJaq | t “ 0, . . . , r ´ 1u since the value σi,tpJaq only depends on the

nodes tcj | j P J
cu. Furthermore, we also know the values tρ1i,t | t “ 0, . . . , r ´ 1u.

Indeed, for i P IpJaq, e P Ja, and p ‰ 0, we have ipe, pq P Ia´1. By the induction

hypothesis, we have recovered the values tcj,i | i P Ia´1, j P Ju, and therefore, we

know the values tcj,ipe,pq | j P J : e P Ja, p ‰ 0u for each i P Ia. It follows that we

100

know the values tρ1i,t | t “ 0, . . . , r ´ 1u. Writing (3.24) in matrix form, we have

»

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 1

λj1 ¨ ¨ ¨ λjr

...
. . .

...

λr´1
j1

¨ ¨ ¨ λr´1
jr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

cj1,i

cj2,i

...

cjr,i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

ρ1i,0 ` σi,0pJaq

ρ1i,1 ` σi,1pJaq

...

ρ1i,r´1 ` σi,r´1pJaq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.25)

Therefore, the values tcj,i | j P Ju can be recovered for every i P IpJaq and Ja Ď J.

It follows that we can recover the values tcj,i | j P Ju for every i P Ia. Thus, all

the values tcj,i | j P J, i P Ia, 0 ď a ď |J|u “ tcj,i | j P J, i P t0, . . . , l ´ 1u can be

recovered from the nodes tcj | j P J
cu.

Since J is arbitrary, we conclude that any n ´ r nodes can recover the entire

codeword, i.e., the code is MDS.

3.5 A construction of Reed-Solomon codes with optimal repair

In this section we present a family of scalar MDS codes that support optimal

repair of a single node from an arbitrary subset of d̄ helper racks. We still use

the same notation as in the previous parts of this chapter. As noted earlier, the

construction is a modification of the RS code family in [77]. The new element of the

construction is the idea of coupling the code family of [77] and the multiplicative

structure that matches the grouping of the nodes into racks. This latter part is

similar to the idea of Sec. 3.3.

101

3.5.1 Rack-aware RS codes with optimal repair

Let q be a power of a prime, let u be the size of the rack, and suppose that

u|pq´1q. Let k “ k̄u`v, 0 ď v ď u´1, s̄ “ d̄´ k̄`1. Let pi, i “ 1, . . . , n̄ be distinct

primes such that pi ” 1 mod s̄ and pi ą u for i “ 1, . . . , n̄; for instance, we can take

the smallest n̄ primes with these properties. For i “ 1, . . . , n̄ let λi be an element

of degree pi over Fq. Let

Fi :“ Fqpλj, j P t1, . . . , n̄uztiuq, i “ 1, . . . , n̄

F :“ Fqpλ1, . . . , λn̄q.

Let K be an extension of F of degree s̄ and let µ P K be a generating element of K

over F. Thus, for any i “ 1, . . . , n̄ we have the chain of inclusions

Fq Ă Fi Ă K;

so K is the l-th degree extension of Fq, where l “ rK : Fqs “ s̄
śn̄

m“1 pm.

Further, let λ P Fq be an element of multiplicative order u. Consider the set

of elements

λij “ λiλ
j´1, i “ 1, . . . , n̄; j “ 1, . . . , u.

Consider an RS code C “ RSKpn, k,Ωq where the set of evaluation points Ω is as

follows:

Ω “
n̄
ď

i“1

Ωi, where Ωi “ tλij, j “ 1, . . . , uu.

102

A codeword of C has the form c “ pc1, c2, . . . , cnq, where the coordinate cm,m “

pi´ 1qu` j, 1 ď i ď n̄; 1 ď j ď u corresponds to the evaluation point λij.

To describe the repair procedure, we will need the following easy modification

of Lemma 1 of [77].

Lemma 31. For i P t1, . . . , n̄u, there exists subspace Si of K such that

dimFi Si “ pi, Si ` Siλ
u
i ` ¨ ¨ ¨ ` Siλ

ups̄´1q
i “ K (3.26)

where Siβ “ tγβ, γ P Siu and the operation ` is the Minkowski sum of sets, T1 `

T2 :“ tγ1 ` γ2 : γ1 P T1, γ2 P T2u.

Proof. The space Si is constructed as follows. Define the following vector spaces

over Fi:

S
p1q
i “ SpanFipµ

tλt`es̄i , t “ 0, 1, . . . , s̄´ 1; e “ 0, 1, . . . , pi´1
s̄
´ 1q

S
p2q
i “ SpanFi

´

s̄´1
ÿ

t“0

µtλpi´1
i

¯

and take

Si “ S
p1q
i ` S

p2q
i .

Now the proof of [77, Lemma 1] can be followed step by step, using the fact that

t1, λui , . . . , pλ
u
i q
pi´1u forms a basis for F over Fi, and we do not repeat it here.

The main result of this section is given in the following proposition.

Proposition 32. The code C supports optimal repair of a single failed node in any

103

rack from any d̄ helper racks.

The proof follows the scheme in [77] which is itself an implementation of the

framework for repair of RS codes proposed in [28].

Proof. Let

c “ ppcpi´1qu`jq1ďiďn̄;1ďjďuq

be a codeword of C. Suppose that cpi˚´1qu`j˚ is the failed node, i.e., the index of

the host rack is i˚, 1 ď i˚ ď n, and the index of the failed node in this rack is

j˚, 1 ď j˚ ď u. Denote by R Ď t1, . . . , n̄uzti˚u, |R| “ d̄ the set of helper racks.

The repair relies on the information downloaded from all the nodes in R and the

functional nodes in the host rack. Define the annihilator polynomial of the set of

locators of all the nodes in R:

hpxq “
ź

iPt1,...,n̄uzpRYti˚uq,
1ďjďu

px´ λijq. (3.27)

Let t “ uw, where w “ 0, . . . , s̄´ 1. Since

deg xthpxq ď ps̄´ 1qu` pn̄´ d̄´ 1qu “ pr̄ ´ 1qu ă r̄u´ v “ n´ k (3.28)

evaluations of the polynomials xthpxq are contained in the dual code CK.

Since CK itself is a (generalized) RS code, there is a vector a “ pa1, . . . , anq P

pK˚qn such that any codeword of CK has the form paijfpλijqq1ďiďn̄;1ďjďu, where

f P Krxs is a polynomial of degree ď r ´ 1. Thus, by (3.28), we have the vec-

104

tor pa1λ
t
11hpλ11q, . . . , anλ

t
n̄,uhpλn̄,uqq P CK, so the inner product of this vector and

the codeword c is zero. In other words, we have

u
ÿ

j“1

api˚´1qu`jλ
t
i˚jhpλi˚jqcpi˚´1qu`j “ ´

n̄
ÿ

i“1,
i‰i˚

u
ÿ

j“1

api´1qu`jλ
t
ijhpλijqcpi´1qu`j.

Let Si˚ be the subspace defined in Lemma 31 and let te1, . . . , epi˚u be a basis of Si˚

over Fi˚ . Then for m “ 1, . . . , pi˚ , we have

u
ÿ

j“1

emapi˚´1qu`jλ
t
i˚jhpλi˚jqcpi˚´1qu`j “ ´

n̄
ÿ

i“1,
i‰i˚

u
ÿ

j“1

emapi´1qu`jλ
t
ijhpλijqcpi´1qu`j.

Evaluating the trace from K to Fi˚ on both sides of the last equation, we obtain

trK{Fi˚

´

u
ÿ

j“1

emapi˚´1qu`jλ
t
i˚jhpλi˚jqcpi˚´1qu`j

¯

“ ´

n̄
ÿ

i“1,
i‰i˚

u
ÿ

j“1

λtijhpλijqtrK{Fi˚ pemapi´1qu`jcpi´1qu`jq

“ ´
ÿ

iPR

u
ÿ

j“1

λtijhpλijqtrK{Fi˚ pemapi´1qu`jcpi´1qu`jq, (3.29)

where we used (3.27), the fact that λij P Fi˚ for all i ‰ i˚, and where t “ uw,w “

0, . . . , s̄´ 1 and m “ 1, . . . , pi˚ .

Recall that λij “ λiλ
j´1 and λu “ 1. From (3.29) we have

trK{Fi˚

´

emλ
uw
i˚

u
ÿ

j“1

api˚´1qu`jhpλi˚jqcpi˚´1qu`j

¯

“ ´
ÿ

iPR
λuwi

u
ÿ

j“1

hpλijqtrK{Fi˚ pemapi´1qu`jcpi´1qu`jq, (3.30)

105

where the parameters t,m are as above. By (3.26) in Lemma 31 and the definition

of the set temu, the set temλ
uw
i˚ | 1 ď m ď pi˚ , 0 ď w ď s̄ ´ 1u forms a basis for K

over Fi˚ . Therefore, the mapping

β ÞÑ trK{Fi˚ pemλ
uw
i˚ βq, 1 ď m ď pi˚ , 0 ď w ď s̄´ 1 (3.31)

is a bijection.

The repair procedure is accomplished as follows. For every i P R, the elements

u
ÿ

j“1

hpλijqtrK{Fi˚ pemapi´1qu`jcpi´1qu`jq,m “ 1, . . . , pi˚ (3.32)

are downloaded from helper rack i. By (3.30) this enables us to find the elements

trK{Fi˚

´

emλ
uw
i˚

u
ÿ

j“1

api˚´1qu`jhpλi˚jqcpi˚´1qu`j

¯

,

m “ 1, . . . , pi˚ . Next, on account of (3.31) we can find the value of the sum

u
ÿ

j“1

api˚´1qu`jhpλi˚jqcpi˚´1qu`j.

Finally, since the values of the coordinates cpi˚´1qu`j, j ‰ j˚ stored on the

functional nodes in the host rack i˚ are available and the entires of the vector a are

nonzero, we can find cpi˚´1qu`j˚ , completing the repair.

The number of field symbols of Fi˚ (3.32) transmitted from the helper racks

to the host rack equals d̄pi˚ . Therefore, we conclude that the repair bandwidth of

106

C is

d̄pi˚

rK : Fi˚s
l “

d̄l

s̄
. (3.33)

This meets the bound (3.2) with equality, and proves the claim of optimal repair.

3.5.2 Rack-aware RS codes with optimal error correction and low

access

The repair schemes and constructions of the RS code families with optimal

error correction and optimal access for the homogeneous storage model in Chapter 2

can also be modified by incorporating the ideas of constructing rack-aware MSR

codes we presented in this chapter, resulting in rack-aware RS codes with optimal

error correction and low access. Below we briefly sketch the basic ideas.

First, we need a bound for the repair bandwidth when there are unreliable

helper racks that provide erroneous information. Suppose there are ē ě 0 unreliable

helper racks such that d̄ ě k̄` 2ē. Let βupd̄, ēq be the minimum number of symbols

needed to repair a failed node in the host rack from d̄ helper racks (and from the

local nodes in the host rack), of which ē racks provide incorrect information. The

bound (3.2) can be generalized by extending the argument in Appendix B.1 to show

that for d̄ ě k̄ ` 2ē,

βupd̄, ēq ě
d̄l

d̄´ 2ē´ k̄ ` 1
. (3.34)

Next, we present a repair scheme that enables error correction for the rack-

107

aware RS code construction we saw in this chapter and that achieves the above

lower bound for the repair bandwidth. Indeed, with a moment of retrospection, this

goal can be accomplished as follows. Instead of using n minimal polynomials for

each of the n evaluation points of the code as in Sec 2.3, under the setting of the

rack-aware storage model, one only needs n̄ minimal polynomials for the evaluation

points λi, i “ 1, . . . , n̄. Then one can establish a proposition analogous to Prop. 4

by repeating arguments similar to those in Sec. 2.3 and applying the techniques we

used in this chapter. More precisely, one can show that the information provided by

the helper racks can be transformed by linear maps into vectors contained in certain

pn̄ ´ 1, d̄ ´ 2ēq MDS code. Thus, as long as there are no more than ē helper racks

that provide erroneous information, one can repair the failed node with the smallest

possible bandwidth given by (3.34).

Lastly, we can also construct a family of rack-aware RS codes that support low

access cost (and optimal error correction). Similarly to Sec. 2.4, we need additional

structures of the underlying finite field to reduce the access cost. This can be

done by a sequence of algebraic extensions of Fq similar to (2.29) and (2.30). In

short, let µi an element of degree s̄i over Fq for i “ 1, . . . , n̄ and define E :“

Fqpλ1, . . . , λn̄, µ1, . . . , µn̄q. The low-access rack-aware RS code is then defined over

E with evaluation points λij, i “ 1, . . . , n̄, j “ 1, . . . , u. The access cost of this code

can be shown to equal d̄ul{s̄. Moreover, it is possible to adopt the approach of

Sec. 2.4.2 to demonstrate a repair scheme for this code that supports both optimal

error correction and low access cost but we leave it to interested readers.

108

Chapter 4: Cyclic and Convolutional Codes with Locality

4.1 Introduction

LRC codes and their variants have been extensively studied in recent years.

In this chapter we focus on cyclic constructions of LRC codes and derive conditions

on the zeros of the code that support the property of hierarchical locality. As a

result, we obtain a general family of hierarchical LRC codes for a new range of

code parameters. We also observe that our approach enables one to represent an

LRC code in quasicyclic form, and use this representation to construct tail-biting

convolutional LRC codes with locality. Among other results, we extend the general

approach to cyclic codes with locality to multidimensional cyclic codes, yielding

new families of LRC codes with availability, and construct a family of q-ary cyclic

hierarchical LRC codes of unbounded length.

4.1.1 Organization

We begin with a characterization of the structure of the zeros of cyclic codes

in Sec. 4.2, which plays a fundamental role in the results of this chapter. Then we

present our results on cyclic H-LRC codes in Sec. 4.3, including families of cyclic H-

109

LRC codes and conditions for which the cyclic H-LRC codes are strong optimal. In

Sec. 4.3, we also address the problem of maximum length of optimal H-LRC codes,

wherein the main question is constructing such codes of length larger than the size

of the code alphabet.

Next, we derive an upper bound on the column distance of convolutional codes

with locality and present a family of tailbiting convolutional codes with row locality

in Sec. 4.4. The construction of the code family is done by exploiting a classic

link between quasicyclic codes and convolutional codes [70], whose parameters are

controlled by the set of zeros of the underlying quasicyclic code.

In Sec. 4.5 we study another variant of codes with locality, namely, LRC codes

with availability. Specifically, building upon the characterization of zeros of cyclic

codes and the technique of code concatenation, we construct a family of bi-cyclic

codes with availability whose rate is higher than that of product codes of LRC codes

with the same distance guarantee.

4.2 The structure of zeros of cyclic codes with locality

In this section, we characterize the structure of zeros of cyclic codes with

locality, which relates to the local dimension, the local distance, and the (global)

distance of the code.

110

4.2.1 Optimal cyclic LRC codes

Let C be a cyclic code of length n with generator polynomial gpxq and check

polynomial hpxq “ xn´1
gpxq

. The dual code C1 has generator polynomial gC1pxq “

xdegphpxqqhpx´1q, and the code ~C1 generated by hpxq is obtained from C1 by inverting

the order of the coordinates. A codeword apxq P C1 of weight r ` 1 defines a repair

group of the code C, and so does the reversed codeword ~apxq P ~C1. For this reason

below in this section we argue about the code ~C1 rather than C1, which makes the

writing more compact without affecting the conclusions.

Let us recall a connection between cyclic codes and LRC codes of [73], which we

present in the form close to the earlier works [6, 50]. The following lemma underlies

constructions of cyclic LRC codes in this chapter and elsewhere, and it represents

a mild extension of Lemma 3.3 in [73]. In the statement as well as elsewhere in

the chapter we do not distinguish between zeros of the code and their exponents in

terms of some fixed primitive nth root of unity in Fq.

Lemma 33. Let C be a cyclic code over Fq of length n|pq´1q and let α be a primitive

nth root of unity in Fq. Suppose that n “ νm for some integers ν,m. Then the code

~C1 contains a vector

bpxq “
m´1
ÿ

i“0

xiναpm´1´iqνu, u P t0, . . . ,m´ 1u (4.1)

if and only if the set L “ tu` im, i “ 0, 1, . . . , ν ´ 1u is among the zeros of C.

Proof. Notice that the polynomial bpxq can be equivalently written as bpxq “ xn´1
xν´ανu

,

111

where

xν ´ ανu “
ν´1
ź

i“0

px´ αu`imq (4.2)

is the annihilator polynomial of the set L. Thus, bpαtq ‰ 0 for all t P L. If bpxq P ~C1,

this implies that L is a subset of the set of zeros of C.

Conversely, let gpxq “ pxν ´ανuqppxq be the generator polynomial of C. Then

´xn ´ 1

gpxq

¯

ppxq “
xn ´ 1

xν ´ ανu
“ bpxq P ~C1.

This lemma immediately yields the cyclic codes from [73] (the cyclic case of

the codes from [71]).

Theorem 34 ([73]). Let pr` 1q|n, r|k, n|pq´ 1q. Let α P Fq be a primitive n-th root

of unity, and let C be an pn, kq cyclic code with zeros αi, i P Z :“ LYD, where

L “ t1` lpr ` 1q, l “ 0, . . . , n
r`1

´ 1u

D “ t1, 2, . . . , n´
k

r
pr ` 1q ` 1u.

(4.3)

Then C is an pn, k, rq optimal LRC code.

Proof. Since L Ă Z, Lemma 33 implies that

bpxq “
r
ÿ

i“0

αi
n
r`1xpr´iq

n
r`1

is a codeword in ~C1. This codeword is of weight r ` 1, and its cyclic shifts give n
r`1

112

disjoint repair groups, supporting the locality claim. At the same time, the BCH

bound implies that dpCq ě n´ k
r
pr` 1q` 2, so the code is optimal by (1.4) once one

observes |Z| “ n´ k and dimpCq “ n´ |Z| “ k.

This construction extends without difficulty to codes with pr, δq locality for any

δ ě 2. A family of optimal codes in the sense of the bound (1.6) was constructed

in [71], Construction 8 (see also [11]). The codes in this family are constructed as

certain subcodes of Reed-Solomon codes that rely on piecewise-constant polynomials

over Fq. In the particular case that the code length n divides q ´ 1 it is possible to

represent these codes in cyclic form. For this, we assume that r|k, take m “ r`δ´1,

and take the zeros of the code to be

L “ ti` lm | l “ 0, . . . , ν ´ 1, i “ 1, . . . , δ ´ 1u

D “ t1, 2, . . . , n´ k ´ ppk{rq ´ 1qpδ ´ 1qu.

(4.4)

As will be apparent from the proof of Lemma 35, the condition about zeros given

by the set L translates into conditions on the dual code that support the locality

claim. The distance of the code C clearly meets the bound (1.6) with equality.

4.2.2 Cyclic codes with locality

In the next lemma we present a slightly more general view of the method in

Theorem 34 that will be instrumental in the code constructions below in this work.

The main element of the construction is code Cp0q defined in (4.5), which isolates a

repair group in the code C and supports local correction of several erasures.

113

Lemma 35. Let n|pq ´ 1q, n “ νm. Let α be a primitive n-th root of unity in Fq,

and fix δ P t2, . . . ,mu. Let Z be a subset of size Z such that

t1, . . . , δ ´ 1u Ă Z Ă t0, . . . ,m´ 1u

and let L “
Ťν´1
s“0pZ` smq. Consider a cyclic code C “ xgpxqy of length n, where

gpxq “ ppxq
ź

tPL

px´ αtq,

and ppxq P Fqrxs is some polynomial. Let

Cp0q “ tpc0, cν , . . . , cpm´1qνq | pc0, . . . , cn´1q P Cu. (4.5)

Then dimpCp0qq ď m ´ Z, dpCp0qq ě δ, and thus, the code C is an LRC code with

pm´ Z, δq locality.

Further, if for every u P t0, . . . ,m´1uzZ there exists s P t0, 1, . . . , ν´1u such

that gpαu`smq ‰ 0, then dimpCp0qq “ m´ Z.

Proof. We proceed similarly to Theorem 34. Let

lpxq “
ź

tPL

px´ αtq “
ν´1
ź

s“0

ź

iPZ

px´ αi`smq “
ź

iPZ

lipxq

where lipxq :“ xν ´ ανi. Let hpxq “ xn´1
gpxq

and consider a subset of Z codewords of

114

~C
1

given by

bipxq :“ hpxqppxq
ź

jPZztiu

ljpxq, i P Z.

A codeword bi has the form

bipxq “
xn ´ 1

lipxq
“

m´1
ÿ

j“0

αpm´1´jqiνxjν ,

Hamming weight m, and contains ν ´ 1 zero coordinates after every nonzero entry.

To prove the statement about locality, let us form a Zˆm matrix H obtained

by inverting the order of coordinates in the codewords bi, i P Z, writing the resulting

vectors as rows, and discarding all the zero columns. By construction, every row

of H is a parity-check equation of the code Cp0q. Any submatrix of δ ´ 1 columns

of H has rank δ ´ 1 (its first δ ´ 1 rows form a Vandermonde determinant), and

thus, dpCp0qq ě δ. Since the rows of H give Z independent parity-check equations

for the code Cp0q, we also have dimpCp0qq ď m ´ Z. This argument exhibits a local

code in the coordinates that are integer multiples of ν, and by cyclic shifts we can

partition the set t0, 1, . . . , n ´ 1u into supports of disjoint local codes of length m

and distance at least δ. Furthermore, we note that the punctured code Cp0q is itself

a cyclic code of length m|n. Let g0pxq be its generator polynomial. Since each row

of H is a parity-check equation for the code Cp0q, we have g0pα
iνq “ 0 for every

i P Z and thus degpg0pxqq ě Z. Together these arguments prove the claim about

pm´ Z, δq locality of the code C.

Next we show that if degpg0pxqq ą Z, then necessarily there exists u P t0, . . . ,m´

115

1uzZ such that gpαu`smq “ 0 for all s “ 0, . . . , ν ´ 1. Suppose that there exists

u P t0, . . . ,m ´ 1uzZ such that g0pα
uνq “ 0. By Eq. (4.2) in the proof Lemma 33

there exists a codeword bu P ~C
1

given by

bupxq “
m´1
ÿ

j“0

αjuνxpm´1´jqν
“

xn ´ 1

xν ´ ανu
.

On the other hand, ~C
1

“ xhpxqy, so hpxq|bupxq and therefore pxν´ανuq|gpxq. Noticing

that xν ´ ανu “
śν´1

s“0px ´ αu`smq (cf. (4.2)), we conclude that gpxq is divisible by

x´αu`sm for all s “ 0, . . . , ν´1. Hence, if for every u P t0, . . . ,m´1uzZ there exists

0 ď s ď ν´ 1 such that px´αu`smq - gpxq, i.e., gpαu`smq ‰ 0, then degpg0pxqq “ Z,

and thus dimpCp0qq “ m´ Z.

4.3 Codes with hierarchical locality

4.3.1 Optimal cyclic codes with hierarchy

In this section we construct a family of H-LRC cyclic codes with h ě 1 levels

of hierarchy and derive sufficient conditions for their optimality. Suppose that h is

fixed and we are given the local dimension r1 (the dimension of the first, innermost

local code), and the designed local distances 1 “ δ0 ď δ1 ď . . . ď δh ď δh`1, where

δh`1 is the designed distance of the overall code C.

We will assume that the first local code is MDS and thus its length is n1 “

r1 ` δ1 ´ 1. For 1 ď i ď h, let ni`1 “ νini be the length of the code in the pi` 1qst

level of hierarchy, where νi ą 1 is an integer. Let Fq be a finite field and suppose

116

that nh`1|pq ´ 1q.

We construct a cyclic H-LRC code C over Fq of length n “ nh`1 and designed

(local) distances δ1, . . . , δh`1 as follows. Let α P Fq be a primitive n-th root of

unity. The code C will be given by its defining set of zeros Z which we specify via

a recursive procedure. Consider the set of exponents D1 “ t1, . . . , δ1 ´ 1u of the

primitive element α. Further, let L1 “ H and

Z1 “ L1 YD1. (4.6)

Having (4.3) in mind, for 1 ď i ď h let

Li`1 “

νi´1
ď

s“0

pZi`sniq, Di`1 “ t1, . . . , δi`1 ´ 1u,

Zi`1 “ Li`1 YDi`1.

(4.7)

Finally, put Z “ Zh`1.

The generator polynomial of the cyclic code C of length n is given by

gpxq “
ź

tPZ

px´ αtq. (4.8)

The parameters of the code C are estimated as follows.

Proposition 36. (i) The dimension of the code C is n ´ |Z| and the distance d ě

δh`1. (ii) The code C is an h-level H-LRC code with locality pni´|Zi|, δiq, i “ 1, . . . , h.

Proof. piq The value of the dimension is clear from the construction, and the estimate

for the distance comes from the BCH bound.

117

piiq The statement about the locality parameters follows by Lemma 35 once we

observe that gpxq is divisible by
ś

tP
Ťn{ni´1
s“0 pZi`sniq

px´αtq for every i “ 1, . . . , h.

Next we examine the conditions that suffice for the distance of C to meet the

bound (1.5) with equality. We build up the optimality of our code in an incremental

manner in the sense that we first ensure that the first local codes are optimal (i.e.,

MDS codes), and relying on these optimal local codes we make sure that the second

local codes are optimal (i.e., optimal LRC codes), and so forth until we reach the

outermost code.

Let r1 ă r2 ă . . . ă rh ă rh`1 “ dimpCq be the chosen values of the dimensions

of the local codes. As before, we set n1 “ r1`δ1´δ0 and let ni`1 “ νini for 1 ď i ď h

where the integer number νi satisfies νi ě rri`1{ris. Note that this assumption does

not entail a loss of generality since, assuming the ith and pi ` 1qst local codes

are optimal, by (4.7) we have |Li`1| “ pni ´ riqνi, and ri`1 “ ni`1 ´ |Zi`1| ď

ni`1 ´ |Li`1| “ riνi.

To show optimality of the code, we connect the target values of the local

distances δ2, δ3, . . . , δh`1 with the dimension values through several auxiliary pa-

rameters. For 1 ď i ď h, let us write ri`1 “ airi ´ bi where 0 ď bi ă ri. Further, let

b
piq
i “ bi and for j “ i, i´ 1, . . . , 2, let

b
piq
j “ u

piq
j´1rj´1 ` b

piq
j´1, 0 ď b

piq
j´1 ă rj´1.

118

Put b
p0q
0 “ 0 and for 1 ď i ď h let

b
piq
0 “ pb

piq
1 ` b

pi´1q
0 q mod r1, u

piq
0 “

[

b
piq
1 ` b

pi´1q
0

r1

_

. (4.9)

Finally, for 1 ď i ď h, let

δi`1 “ pνi ´ aiqni ` δi `
i´1
ÿ

j“1

u
piq
j nj ` u

piq
0 n1 ` b

piq
0 ´ b

pi´1q
0 . (4.10)

The high-level ideas behind these parameters are as follows. By Lemma 35, the

quantities δ1, . . . , δh`1 control the distances via the BCH bound and we would like

to make these quantities as large as possible given the target dimensions. We need

to make sure that the ith local code has a run of consecutive zeros of length δi ´ 1,

and our budget of creating such a run is limited by the dimension. Therefore, we

seek to rely on the already present runs of zeros of the jth local codes, j ă i, and

spend the budget frugally on the way to optimality. The quantities b
piq
j serve the

purpose bridging the “distance gap” (the gaps between runs of zeros) between the

local codes in levels j and j ` 1 on the way to ensure the distance of the ith code.

As for the dimensions of the local codes, by Lemma 35 they are determined

by Zi, 1 ď i ď h` 1. The cardinality of Zi is established in the next claim.

Proposition 37. For 1 ď i ď h` 1, we have |Zi| “ ni ´ ri.

The proof of this proposition proceeds by induction and is given in Appendix C.1.

An examination of the proof also gives a better understanding of the parameters

ai, bi introduced above.

119

On account of Proposition 37, the locality parameters of the code C are

pri, δiq, 1 ď i ď h. Furthermore, dim pCq “ rh`1, and by the BCH bound dpCq ě δh`1.

Sufficient conditions for optimality of the code C are given in the following

lemma whose proof is given in Appendix C.2.

Lemma 38. Suppose that for i ě 2 and 2 ď s ď i the following conditions are

satisfied:
R

rs`1

rs

V R

rs
r1

V

´

R

rs`1

r1

V

“ u
psq
0 ` u

psq
1 `

s´1
ÿ

j“2

u
psq
j

R

rj
r1

V

R

rs`1

rs

V R

rs
rl

V

´

R

rs`1

rl

V

“ u
psq
l `

s´1
ÿ

j“l`1

u
psq
j

R

rj
rl

V

,

(4.11)

where the first condition holds for s ě 2 and the second for 2 ď l ď s´ 1. Then for

1 ď i ď h, we have

δi`1 “ ni`1 ´ ri`1 ` δi ´
i
ÿ

l“1

R

ri`1

rl

V

pδl ´ δl´1q.

It follows from Lemma 35, Lemma 38, and the bound (1.5) that the code C is an

pn “ nh`1, k “ rh`1q optimal H-LRC code with local parameters pri, δiq, 1 ď i ď h.

Clearly, when h “ 0 our construction gives an pn1, r1q MDS code and when h “ 1,

it gives an pn2, r2q optimal LRC code of [73]. For h “ 2, conditions (4.11) take a

simpler form:

R

r3

r2

V R

r2

r1

V

´

R

r3

r1

V

“

Z

b1 ` b2

r1

^

. (4.12)

We note that the condition of [63, Theorem 2.6] is easily seen to be equivalent to

120

(4.12). Another known case of optimality, the divisibility conditions ri|ri`1, i “

1, . . . , h, is also covered by Lemma 38 (in this case both the left-hand sides and the

right-hand sides of (4.11) are zero).

Let us give a general example of the choice of parameters that ensures optimal-

ity. Suppose that r1 ě 2h and ri`1 “ 2ri ´ 1 for 1 ď i ď h. Then conditions (4.11)

are satisfied. Indeed, we have ri “ 2i´1pr1 ´ 1q ` 1 for 1 ď i ď h` 1. Therefore, for

1 ď j ď i ď h` 1 we have

R

ri
rj

V

“

R

2i´j ´
2i´j ´ 1

2jpr1 ´ 1q ` 1

V

“ 2i´j,

where the last equality follows because r1 ě 2h. It follows that the left-hand sides

of conditions (4.11) are zero. On the other hand, we have bi “ 1 for all 1 ď i ď h.

Since r1 ě 2h, we have u
psq
l “ 0 for all 1 ď s ď h and 0 ď l ď s ´ 1, and thus, the

right-hand sides are also zero, which confirms the optimality claim.

Proposition 39. Suppose that the conditions (4.11) are satisfied, then the code C

is a strongly optimal H-LRC code in the sense of Sec. 1.2.5.

Proof. It suffices to show that the dimension of the i-th local code equals ri for all

i.

By assumption, we have ri`1 ą ri and thus ai ě 2 for 1 ď i ď h. It is not

difficult to verify from (4.10) that δi`1 ď pνi´ai`1qni ď ni`1´ni for all 1 ď i ď h.

We claim that gpαn´ni`tiq ‰ 0 for every ti P Ti, 1 ď i ď h where

Ti “ tnu Y pt1, . . . , ni ´ 1uzZi ` n´ niq.

121

Then by the second part of Lemma 35 the dimension of the i-th local code equals

ri and the strong optimality follows.

Now let us show n´ni` ti R Z. Observe that the set Z contains n{ni copies of

Zi and the set Ti is the complement to the last one of those copies with respect to

t1, . . . , niu. Indeed, we have n´ni` ti “ ti`pn{ni´1qni R tnuYpZi`pn{ni´1qniq.

Now consider the last copy of Zi`1 contained in Z. Obviously, it contains the last

copy of Zi. To establish n´ ni ` ti R Z, it remains to show n´ ni ` ti is not in the

last copy of Di`1, namely, n´ni` ti R Di`1`n´ni`1. Since δi`1 ď ni`1´ni as we

observed above and ni`1 ´ ni ` ti ě ni`1 ´ ni ` δi, we have ni`1 ´ ni ` ti R Di`1. It

follows that n´ni`ti R Di`1`n´ni`1. Therefore, n´ni`ti R Z and gpαn´ni`tiq ‰ 0

for every ti P Ti, 1 ď i ď h.

In the case that ri`1 “ ri for some 1 ď i ď h (although we rule out this trivial

case in Definition 3), the code C is still strongly optimal if the optimality conditions

are satisfied. In fact, if ri`1 “ ri then from (4.10) we have δi`1 “ pνi ´ aiqni ` δi “

ni`1 ´ ni ` δi R Di`1. By similar arguments as above, we have n ´ ni ` ti R Z for

every ti P Ti, 1 ď i ď h, and thus establish the strong optimality of the code.

We conclude with a numerical example that shows that the assumptions on

the parameters can be simultaneously satisfied for moderate values of the length

and alphabet size.

Example 1. Consider the case h “ 3. Let r1 “ 2 and δ1 “ 2. Then n1 “ 3. Let

pn2, r2q “ p9, 3q, pn3, r3q “ p27, 5q, and pn4, r4q “ p81, 7q. Then our construction

(with designed distances found from (4.10)) gives rise to a strongly optimal H-LRC

122

code of length n “ n4 and dimension k “ r4 with local distances δ2 “ 6, δ3 “ 17 and

distance d “ δ4 “ 53 over a finite field Fq where 81|pq ´ 1q (for example, we can

take q “ 163).

4.3.2 Hierarchical cyclic codes of unbounded length

In this section we construct a family of H-LRC codes with distance d “ δh `

1, h ě 1 and unbounded length. The construction combines the idea of [50] with

H-LRC codes of the previous section.

Let 1 ă r1 ă r2 ă . . . ă rh be integers. Let 1 “ δ0 ă δ1 and let δ2, δ3, . . . , δh

be as in (4.10). Again, we put n1 “ r1`δ1´δ0 and let ni`1 “ νini for 1 ď i ď h´1,

where νi ě rri`1{ris is an integer. Let Fqm ,m ě 1 be a finite field and let nh|pq´ 1q.

Let n “ qm´1 and observe that nh|n. Let α P Fqm be a primitive n-th root of unity.

Let Zh be constructed by the procedure in (4.6) and (4.7). Finally, define

L “

n{nh´1
ď

s“0

pZh ` snhq, Z “ LY t0u. (4.13)

Consider a cyclic code C with generator polynomial

gpxq “
ź

tPZ

px´ αtq. (4.14)

As is easily seen, gpxq P Fqrxs. Indeed,

gpxq “ px´ 1q
ź

tPL

px´ αtq

123

“ px´ 1q

n{nh´1
ź

s“0

ź

tPZh

px´ αsnh`tq

“ px´ 1q
ź

tPZh

pxn{nh ´ αnt{nhq.

For the last equality we note that xn{nh ´ αnt{nh “
śn{nh´1

s“0 px ´ αsnh`tq. Observe

that for t P Zh we have pαnt{nhqq´1 “ 1 since nh|pq ´ 1q. It follows that αnt{nh P Fq

for t P Zh and thus gpxq P Fqrxs.

Proposition 40. Let C “ xgpxqy P Fqrxs{pxn ´ 1q be a cyclic code. Then dimpCq “

nrn{nh ´ 1, dpCq ě δh ` 1, and the locality parameters are pri, δiq for 1 ď i ď h.

Proof. The dimension of C is found as

k “ n´ degpgpxqq “ n´ 1´
|Zh|n

nh
“
nrh
nh

´ 1,

where the last equality follows by Proposition 37. The distance of the code C is

d ě δh ` 1 since gpxq has consecutive roots αt, t “ 0, . . . , δh ´ 1.

The locality parameters of the code C follow immediately by Lemma 35 and

Proposition 37.

The next lemma provides the conditions when the code C is optimal. Its proof

amounts to a calculation based on Lemma 38 and Proposition 40.

Lemma 41. Suppose that for 1 ď i ď h´1, conditions (4.11) are satisfied. Further,

suppose that

n

nh

R

rh
rl

V

“

R

k

rl

V

, 1 ď l ď h´ 1. (4.15)

124

Then the code C is optimal.

Proof. By Lemma 38, we have

δh “ nh ´ rh ` δh´1 ´

h´1
ÿ

l“1

R

rh
rl

V

pδl ´ δl´1q. (4.16)

By Proposition 40, we have k “ nrh{nh ´ 1. Using the bound (1.5), the

distance of the code cannot exceed

n´ k ` δh´
h
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q

“ n´
nrh
nh

` 1` δh ´
n

nh
pδh ´ δh´1q ´

h´1
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q (4.17)

“ 1` δh `
n

nh

h´1
ÿ

l“1

R

rh
rl

V

pδl ´ δl´1q ´

h´1
ÿ

l“1

R

k

rl

V

pδl ´ δl´1q (4.18)

“ 1` δh, (4.19)

where (4.17) follows since rh ą 1 implies rk{rhs “ n{nh, in (4.18) we used (4.16),

and (4.19) follows by (4.15). Hence, the code C has the largest possible distance

d “ δh ` 1.

In particular, the conditions in Lemma 41 are satisfied when ri|ri`1, i “

1, . . . , h´ 1 and rh|k.

As in Sec. 4.3.1, the code C constructed above in this section has the strong

optimality property if the optimality conditions in Lemma 41 are satisfied. Specif-

ically, the main difference between the construction in this section and the one in

the previous section is in the final step of constructing the defining set Z, which also

125

includes element 0 (i.e., α0). By an argument similar to Sec. 4.3.1, one can show

n´ ni ` ti R Z for every ti P pt0, . . . , ni ´ 1uzZiq ` pn´ niq, 1 ď i ď h and so strong

optimality follows.

Example 2. Consider the case h “ 3. Let r1 “ 2 and δ1 “ 2. Then n1 “ 3.

Let pn2, r2q “ p9, 3q and pn3, r3q “ p27, 5q. Let m ě 1 be an arbitrary integer and

q “ 163. Then our construction (with designed local distances given by (4.10))

gives rise to a strongly optimal H-LRC code of length n “ 163m ´ 1 and dimension

k “ 2p163m ´ 1q{9 with local distances δ2 “ 6, δ3 “ 17 and distance d “ 18 over Fq.

Recall that [6] shows that the length of an optimal LRC code in the general

case cannot be greater than a certain power of the alphabet size q. Using similar

arguments, it might be possible to derive upper bounds on the length of optimal

H-LRC codes in the general case; however already in the case of pr, δq locality

addressed in [10] (with just a single level of hierarchy), following this route requires

cumbersome calculations.

4.4 Convolutional codes with locality

It has been recognized a long while ago that quasi-cyclic codes can be encoded

convolutionally, and multiple papers constructed families of convolutional codes from

their quasicyclic counterparts [21, 38, 78]. In this section, we present a family of

convolutional codes with locality by relying on the tailbiting version of convolutional

codes [70]. We single out this approach because it enables us to establish the locality

properties of convolutional codes based on the properties of cyclic H-LRC codes

126

constructed above in this chapter.

We begin with a brief reminder of the basic notions for convolutional codes

[37]. Let D be an indeterminate and let FqpDq be the field of rational functions of

one variable over Fq. A q-ary pn, kq convolutional code C is a linear k-dimensional

subspace of FqpDqn. A generator matrix GpDq “ pgijpDqq of the code C is a k ˆ n

matrix with entries in FqpDq whose rows form a basis of C. Thus, the code C is a

linear space tupDqGpDq | upDq P FqpDqku. The matrix GpDq can be transformed to

the polynomial form by multiplying every element by the least common denominator

of its entries. The transformed matrix generates the same code C, and so in the

sequel we will consider only polynomial generator matrices. Below we will assume

that the generator matrix GpDq is a kˆn matrix with entries in FqrDs, where FqrDs

is the ring of polynomials over Fq.

For 1 ď i ď k, the degree mi of the i-th row of GpDq is the maximum degree of

the entries in row i, namely, mi “ max1ďjďn degpgi,jpDqq. As with linear block codes,

the encoding of a convolutional code depends on the choice of a generator matrix.

The maximum degree M :“ max1ďiďkmi is called the memory of the encoder. The

generator matrix of the code C can also be written in the form

G “

»

—

—

—

—

—

—

–

G0 G1 . . . GM

G0 G1 . . . GM

.

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (4.20)

where each Gi is a kˆ n matrix over Fq. The codeword of the code C is obtained as

127

a product uG, where u is a semi-infinite input sequence of symbols of Fq.

With a given convolutional code C one can associate a multitude of distance

measures. In direct analogy with block codes, one defines the free distance of the

code C as the minimum Hamming weight of the Laurent expansions of the nonzero

codewords.

Another distance measure of interest is the so-called column distance of the

code [37, p.162]. To define it, let Cr0,js be the truncated code of C at the j-th time

instant, j ě 0, namely,

Cr0,js “ tcr0,jspDq “
j
ÿ

i“0

ciD
i
| cpDq “

ÿ

iě0

ciD
i
P Cu.

This is a linear block code of length npj`1q, and by (4.20) its generator matrix can

be written in the form

Gc
j “

»

—

—

—

—

—

—

—

—

—

—

–

G0 G1 . . . Gj

G0 . . . Gj´1

. . .
...

G0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.21)

where we put Gl “ 0 for l ą M. Clearly, the code Cr0,js is obtained by truncating

the code C to its first j` 1 entries. A codeword of Cr0,js has the form pc0, c1, . . . , cjq,

where for j ďM and each l “ 0, 1, . . . , j

cl “
l
ÿ

i“0

uiGl´i, (4.22)

128

where cl “ pc
p1q
l , . . . , c

pnq
l q for each l.

We assume throughout that G0 has full rank, so the mapping Fkq
G
Ñ Fnq given

by u0G0 ÞÑ c0 is injective.

Definition 10. For j ě 0 the j-th column distance of C is given by

dcj “ mintwtpcr0,jspDqq | cr0,jspDq P Cr0,js, c0 ‰ 0u.

Clearly, the value of dcj is at least the minimum distance of the truncated

code Cr0,js. This follows because for the column distance we seek the minimum of

pairwise distances of codewords that differ in the first coordinate, while the standard

minimum distance computation does not involve this assumption. In many cases the

column distance is in fact strictly greater. This remark is important for the sliding

window repair which enables one to correct more erasures than would be possible

for block codes relying on their minimum distance.

Convolutional codes support several forms of erasure repair. One of them,

called the sliding window repair [52, 80], is based on the column distance and is

used to correct erasures in streaming applications [80]. We illustrate the idea of

sliding window repair in Fig. 4.1, representing a code sequence of the code C as a

semi-infinite matrix whose columns are length n vectors cl, l ě 0, and whose row

cpiq, i “ 1, . . . , n represents the stream formed by the ith coordinates of the symbols

cl, l “ 0, 1, We begin with fixing j based on the value of the column distance dcj

of the code. The box in the figure shown with dashed lines represents the window of

length j` 1 that contains the truncated code at time l ě j. The erasures within the

129

sliding window can clearly be repaired as long as their number at no point exceeds

dcj ´ 1.

Having in mind streaming applications, one may argue that a more efficient

way of repairing erasures is to rely either on the symbols at a fixed time instant, or

on a small group of symbols contained within the same stream i. Accordingly, in the

next two subsections we define two types of locality for convolutional codes, calling

them the column and row localities.

l “ 2

cp1q

cp2q

cp3q ˆ

ˆ ˆ

l “ 3

cp1q

cp2q

cp3q ˆ

ˆ ˆ

Figure 4.1: Sliding window repair. Suppose C is an p3, 2q convolutional code
with dc2 “ 4. Let pcp1q, cp2q, cp3qq P C be a codeword, where the crosses denote erasures.
At time instant l “ 2, there are two erasures in the window of length three (dashed
box in the left figure), which is less than the 2nd column distance. However, neither
of the two erasures are in the first column of the window, and thus their recovery
is postponed until later. At time l “ 3 (right figure), the sliding window contains
3 erasures, of which one is in the first column. This erasure can be recovered from
the other symbols in the window. The remaining erasures are corrected in the next
steps as long as the number of erasures in the window does not exceed dc2 ´ 1.

4.4.1 Convolutional codes with column locality

Column locality was introduced in [52]. First let us define the ith column code

Ci, i ě 0 of a convolutional code C as a block code of length n given by

Ci “ tci | cpDq P Cu.

130

We say that a convolutional code C has pr, δq column locality if for all i the codes

Ci have the pr, δq locality property.

The results in [52] are based on a version of this definition that requires that

only the code CM support pr, δq locality. This restriction may seem too narrow until

one realizes that if locality is present in the code CM , then every code Ci, i ě 0 has

the pr, δq locality property. This follows immediately from (4.22) and the definition

of Ci because Ci “ CM for i ą M and Ci forms a linear subcode of CM otherwise.

The only difference between this definition and the one given above is that under

the approach of [52], every code Ci has similarly aligned repair groups which are

propagated from the repair groups of CM , while our definition allows differently

aligned repair groups for different values of i.

To enable local repair, we simply assume that every column of the codeword

forms a block code with pr, δq locality. An example is given in Fig 4.2, demonstrating

sliding window repair combined with column locality.

4.4.2 Convolutional codes with row locality

In this section we introduce and study another notion of locality for convolu-

tional codes. Given a convolutional code C, define the ith row code C
piq
r0,js, 1 ď i ď n

truncated at jth time instant, j ě 0, as follows:

C
piq
r0,js “ tc

piq
r0,js “ pc

piq
0 , . . . , c

piq
j q | c P Cu. (4.23)

Definition 11. We say that C has pr, δq row locality if for all t ě 0 the codes

131

l “ 2

cp1q

cp2q

cp3q

cp4q ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

l “ 3

cp1q

cp2q

cp3q

cp4q

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 4.2: Sliding window repair with column locality. Suppose
C is a p4, 2q convolutional code with p1, 2q column locality and dc2 “ 6. Let
pcp1q, cp2q, cp3q, cp4qq P C be a codeword, where the crosses denote erasures, and dif-
ferent repair groups in the columns are shown in different colors. At time l “ 2,
the window of length j ` 1 “ 3 contains 4 erasures. Of these, the symbols c

p4q
0 , c

p2q
2

can be recovered within their repair groups. Then for l “ 3 the window contains 5
erasures, of which two in the first column can be repaired from the other symbols
in the window, while the symbol c

p1q
3 can be recovered locally.

C
piq
rt,t`js, 1 ď i ď n have the pr, δq locality property, where j ě 0 is fixed.

In the case of tailbiting codes, it is more convenient to give this definition in

the following form, which will also be used in our constructions below.

Definition 12. Let j ě 0 be fixed. A convolutional code C has pr, δq row locality at

time j if every code C
piq
r0,js, 1 ď i ď n has pr, δq locality.

We give two examples of repair with row locality. Namely, Figure 4.3 illustrates

Def. 11 while Figure 4.4 applies to the case of tailbiting codes and Def. 12. Let us

stress that whenever local repair by rows is not possible, we fall back on sliding

window repair relying on the column distance of the truncated code.

The problem that we address is to construct convolutional codes with locality

and large column distance. This is similar to the problem studied in [52] and also

to the case of block codes with locality and large minimum distance. We begin with

deriving an upper bound on the column distance of the truncated code with either

132

l “ 3

cp1q

cp2q

cp3q

cp4q ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

l “ 4

cp1q

cp2q

cp3q

cp4q

ˆ ˆ

ˆ ˆ

Figure 4.3: Sliding window repair with row locality. Suppose C is a p4, 2q
convolutional code with p1, 2q row locality dc3 “ 8. Let pcp1q, cp2q, cp3q, cp4qq P C be
a codeword, where the crosses denote erasures, and different repair groups in the
rows are shown in different colors. At time l “ 3, by row locality, the symbols
c
p2q
0 , c

p2q
3 , c

p4q
1 , c

p4q
2 can be recovered from the other symbols in their respective repair

groups. At time l “ 4 there are four erasures in the window of length four, which is
smaller than dc3, so they are recoverable. Thereafter the two remaining erasures can
be recovered relying on row locality.

Sliding window starting from time l “ 0

cp1q

cp2q

cp3q

cp4q ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

Sliding window starting from time l “ 2

cp1q

cp2q

cp3q

cp4q ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

Figure 4.4: Sliding window repair with row locality for tailbiting
codes. Suppose C is a p4, 2q unit memory tailbiting convolutional code with p1, 2q
row locality and dc7 “ 16. Let pcp1q, cp2q, cp3q, cp4qq P C be a codeword, where the
crosses denote erasures, and different repair groups in the rows are shown in differ-
ent colors. There are a total of 16 erasures. First we engage row locality to repair
symbols c

p2q
0 , c

p2q
5 , c

p4q
0 , c

p4q
5 , whereupon 12 erasures remain. In the sliding window

starting from time l “ 0, the remaining two erasures in the first column can be
recovered. After that, c

p1q
4 , c

p3q
4 can be recovered locally.

Next, we move the sliding window to start at time l “ 2. (Note that the window
is wrapped around.) The erasures in the first column of this window can be recov-
ered since the number of erasures is smaller than the column distance, and after
that the remaining erasures can be recovered relying on row locality.

133

column or row locality property.

Proposition 42. (a) Let C be an pn, kq convolutional code with pr, δq (column or

row) locality. Then for any j ě 0, the j-th column distance satisfies

dcj ď pn´ kqpj ` 1q ` δ ´

R

k

r

V

pδ ´ 1q. (4.24)

(b) Equality in (4.24) implies that for all i ď j, the i-th column distance

satisfies

dci “ pn´ kqpi` 1q ` δ ´

R

k

r

V

pδ ´ 1q. (4.25)

The proof of Proposition 42 is given in Appendix C.3.

Part (b) of Proposition 42 is similar to the propagation of the column dis-

tance optimality property in the case of general convolutional codes proved in [24].

Namely, the Singleton bound implies that the column distance for all j satisfies

dcj ď pn´ kqpj ` 1q ` 1, (4.26)

and equality for a given j implies that all the other distances dci , i ď j also attain

their versions of the Singleton bound with equality.

134

4.4.3 Convolutional codes and quasicyclic codes

A transformation between these two code families was constructed in [70], and

it has led to a broader family of convolutional codes and trellises now known as

tailbiting codes (tailbiting trellises) [37]. An pnpm ` 1q, kpm ` 1qq quasicyclic code

can be defined by a generator matrix

G “ pGijq, i “ 0, . . . , k ´ 1, j “ 0, . . . , n´ 1

where each Gij is an pm ` 1q ˆ pm ` 1q circulant matrix. With a given matrix Gij

we associate a polynomial gijpDq “
řm
l“0 glD

l, where pg0, . . . , gmq is the first row

of the matrix. Then the k ˆ n generator matrix GpDq “ pgijpDqq defines an pn, kq

convolutional code. The authors of [70] showed that if one takes the input sequences

of the convolutional code in the form

upDq “
m
ÿ

l“´M

ulD
l such that u´s “ um`1´s for s “ 1, . . . ,M, (4.27)

then the convolutional code is equivalent to the quasicyclic code defined above. In

other words, the quasicyclic code can be encoded convolutionally, and the convolu-

tional code with “symmetric” input sequences as in (4.27) is exactly the quasicyclic

code.

135

4.4.4 A family of tailbiting convolutional codes with row locality

We come to the main result of this section, which is a construction of a family

of convolutional codes with pr, δq row locality. This family of codes has the largest

possible minimum distance for the truncated code Cr0,js, however we stop short of

showing that the j-th column distance attains (4.24) with equality. The construction

is achieved by exploiting a connection between quasi-cyclic codes and convolutional

codes discussed above. In high-level terms, our plan is to construct a cyclic code

from its set of zeros chosen according to the procedure in Sec. 4.3, writing it in a

quasicyclic form (via a circulant generator matrix) and to construct a convolutional

code using the technique discussed above. We note that the lower bounds on the

column distance of the codes constructed here and in [52] coincide. At the same

time, the field size needed for our construction is linear in the output length n of

the code at each time instant whereas the construction in [52] requires exponentially

sized alphabet.

Let us first construct an pnpj`1q, kpj`1qq cyclic LRC codes with pr, δq locality.

We proceed similarly to Sec. 4.3.1. We will need a few assumptions regarding the

parameters of the code. Let j ě 0 be such that k ď j ` 1 ď n and that j ` 1 “

pr` δ´ 1qν where ν ě 1. Let Fq be a finite field such that npj ` 1q | pq´ 1q and let

α P Fq be a primitive root of unity of order npj ` 1q in Fq.

The set of zeros of the code is obtained as follows. let Z1 “ t1, . . . , δ ´ 1u.

136

Using (4.7) and setting D2 “ Z1, we have

Z2 “

ν´1
ď

l“0

pZ1 ` lpr ` δ ´ 1qq. (4.28)

Further, let L3 “
Ťn´1
l“0 pZ2 ` lpj ` 1qq and let D3 “ t1, . . . , δ3 ´ 1u, where

δ3 “ pn´ kqpj ` 1q ` δ ´

R

kpj ` 1q

r

V

pδ ´ 1q. (4.29)

Finally, put Z “ L3 Y D3 and let B be the cyclic code with generator polynomial

gBpxq “
ś

tPZpx´α
tq. Note for future use that the complement of the set D3 in the

set of exponents of α has cardinality

|D̄3| “ npj ` 1q ´ pδ3 ´ 1q “ kpj ` 1q `
´Qkpj ` 1q

r

U

´ 1
¯

pδ ´ 1q. (4.30)

In the next theorem we give an explicit representation of the code B in qua-

sicyclic form, and we also specify its locality properties.

Theorem 43. paq The code B is an pnpj`1q, kpj`1qq optimal LRC code with pr, δq

locality, and the punctured codes

Bl “ tpcl, cl`n, . . . , cl`njq | pc0, . . . , cnpj`1q´1q P Bu, l “ 0, . . . , n´ 1,

are LRC codes of length j ` 1 with pr, δq locality.

pbq Furthermore, if k|n, then the code B is equivalent to a code with generator

137

matrix G given by

G “ pGilq, i “ 0, . . . , k ´ 1, l “ 0, . . . n´ 1,

where every Gil is a pj ` 1q ˆ pj ` 1q circulant matrix. For every i “ 0, 1, . . . , k ´ 1

the matrices Gil satisfy

Gil “

$

’

’

’

&

’

’

’

%

Ij`1 if l “ in{k

0 if l P t0, n{k, . . . , n´ n{kuztin{ku.

Proof. paq We note that the set of zeros of the code B is partitioned into segments

of length r ` δ ´ 1, i.e., has the structure of the set L in (4.4). In other words, the

generator polynomial of B satisfies

ź

tPL

px´ αtq|gBpxq, where L “

nν´1
ď

s“0

pZ1 ` spr ` δ ´ 1qq.

Therefore, Lemma 35 implies that the code B has pr, δq locality. To compute the

dimension of the code B we count the number of its nonzeros. They are all located

in D̄3. This is a consecutive segment of exponents, and by (4.28), within each whole

subsegment of length r`δ´1 in it there are r nonzeros. Once all such segments are

accounted for, there may be an incomplete segment left, which contains minp|D̄3| ´

t
|D̄3|

r`δ´1
upr`δ´1q, rq zeros. As easily checked, the total number of nonzeros in either

case is kpj ` 1q, which is therefore the dimension of the code B. The distance of B

is at least δ3, and the bound (1.6) implies that the code B has the largest possible

138

distance for the chosen locality parameters.

Examining the structure of zeros of the punctured codes Bl, we observe that

they satisfy the assumptions of Lemma 35, and thus the punctured codes Bl also

have pr, δq locality. Indeed, let l “ 0. By Lemma 35, Eq. (4.5), the code Bp0q given

by

Bp0q “ tpc0, cnν , . . . , cpr`δ´2qnνq | pc0, . . . , cnpj`1q´1q P Bu

has dimension at most r and minimum distance at least δ. This implies that the

coordinates that are multiples of nν isolate a repair group of the code B0. By shifting

this set of coordinates to the right by n positions, we obtain another repair group of

B0, which is disjoint from the first one. After several more shifts we will reach the

set of coordinates tnpν´1q, npν´1q`nν, . . . , npν´1q`pr`δ´2qnνu. The collection

of the sets constructed along the way forms a partition of the support of B0 into

disjoint repair groups. The same argument works for every code Bl, 1 ď l ď n ´ 1

whose repair groups are formed by shifting the repair groups of B0 to the right by

l positions. This concludes the proof of Part (a).

Let us prove Part (b). Recalling the discussion in the beginning of Sec. 4.2.1,

it is possible to represent the generator matrix G of the code to have rows of the

form

ppαtqnpj`1q´1, pαtqnpj`1q´2, . . . , 1q, t P t0, . . . , npj ` 1q ´ 1uzZ, (4.31)

139

(note the inverse order of the exponents). Let

I “ t0, n{k, . . . , npj ` 1q ´ n{ku

be a subset of coordinates. As before, we label the columns of G by the exponents

of α from 0 to npj ` 1q ´ 1 and consider a square kpj ` 1q ˆ kpj ` 1q submatrix GI

formed of the columns with indices in I. We claim that GI is invertible. Indeed,

the rows of GI have the form

α´tppαtn{kqkpj`1q, pαtn{kqkpj`1q´1, . . . , αtn{kq, t P t0, . . . , npj ` 1q ´ 1uzZ,

and thus it forms a Vandermonde matrix generated by the set pαtn{kq for all t outside

the set of zeros Z. We will assume that the submatrix GI “ Ikpj`1q (the identity

matrix) and continue to use the notation G for the resulting generator matrix of the

code.

Let gi,0, gi,1, . . . , gi,npj`1q´1 be the ith row of G, where i P t0, . . . , k ´ 1u. With

an outlook of constructing convolutional codes later in this section, define the poly-

nomials

gipDq “

npj`1q´1
ÿ

s“0

gi,sD
s

gi,lpDq “
j
ÿ

s“0

gi,ns`iD
i, l “ 0, 1, . . . , n´ 1. (4.32)

140

Then we have

gipDq “
n´1
ÿ

l“0

Dl
j
ÿ

s“0

gi,ns`lD
ns
“

n´1
ÿ

l“0

Dlgi,lpD
n
q,

Since GI is the identity matrix, we have gi,in{kpDq “ 1 and gi,lpDq “ 0 for l P

t0, n{k, . . . , n´ n{kuztin{ku.

To write the generator matrix in the circulant form given in the statement, we

need to form the matrices Gil. This is accomplished by writing the coefficients of

gi,jpDq as the first row of Gil and filling the rest of this matrix by consecutive cyclic

shifts to the right. This yields the following pj ` 1q ˆ npj ` 1q matrix

ˆ

Gi,0 Gi,1 ¨ ¨ ¨ Gi,n´1

˙

. (4.33)

Note that each row in this matrix is a codeword of the code (equivalent to) B.

Finally, the matrix

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

G0,0 G0,1 ¨ ¨ ¨ G0,n´1

G1,0 G1,1 ¨ ¨ ¨ G1,n´1

...
...

. . .
...

Gk´1,0 Gk´1,1 ¨ ¨ ¨ Gk´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.34)

formed of the rows (4.33) for i “ 0, . . . , k´1 generates a code equivalent to the code

B.

This theorem gives an explicit representation of B as a quasicyclic code, and we

141

can use this representation to construct a convolutional code following the method

in Sec. 4.4.3. Let GpDq “ pgi,lpDqq be a k ˆ n generator matrix where gi,lpDq

is defined in (4.32). Since degpgi,lpDqq ď j, we conclude that the memory of the

generator matrix GpDq is M ď j. Having (4.27) in mind, define an pn, kq tailbiting

convolutional code over C “ Cr0,js P FqrDs as a set of sequences

C “

#

cpDq | cpDq “ upDqGpDq;upDq “
j
ÿ

s“´M

usD
s;u´s “ uj`1´s, s “ 1, . . . ,M

+

.

Here j, k ´ 1 ď j ď n´ 1 is any integer such that pr ` δ ´ 1q|pj ` 1q and k|n.

The next theorem states the main properties our construction.

Theorem 44. The code C has pr, δq row locality. When viewed as a block code, the

minimum distance of C attains the bound (1.6).

Proof. For l “ 0, . . . , n´ 1, we have

cplqpDq “
k´1
ÿ

i“0

upiqpDqgi,lpDq.

Furthermore, since u´s “ uj`1´s for s “ 1, . . . ,M , we have the following relation

cplqpDq “
k´1
ÿ

i“0

upiqpDqgi,lpDq mod pDj`1
´ 1q.

In other words, we have

ˆ

cp0qcp1q . . . cpn´1q

˙

“

ˆ

up0qup1q . . . upk´1q

˙

G,

142

where the matrix G is defined in (4.34). This implies that the codes Cplq are exactly

the codes Bl defined in Theorem 43(a), viz., Cplq “ Bl for l “ 0, . . . , n ´ 1. Since

the code Bl has pr, δq locality for l “ 0, . . . , n´ 1, we conclude that the code C has

pr, δq row locality. Concluding, we have established that the convolutional code C

has pr, δq row locality.

As a block code, C is equivalent to the code B, which proves the last claim of

the theorem.

The large minimum distance of the code C is related to the performance of

the (hard decision) Viterbi decoding of the code C, and is therefore of interest in

applications.

As remarked earlier, the constructed codes stop short of attaining the bound

(4.24), and thus cannot be claimed to be optimal. Of course, as observed after

Def. 10, the jth column distance of the code C is at least the minimum distance of

the code B, given by (4.29), but a more precise estimate remains an open question.

Nevertheless, we believe that extension of the basic construction of LRC codes to the

case of convolutional codes carries potential for future research into their structure.

In particular, the algebraic machinery of quasicyclic codes of [42, 48] could lead to

new constructions, and it may also be possible to further extend these studies to

codes over ring alphabets [49].

143

4.5 Bi-cyclic codes with availability

The H-LRC codes constructed in Sec. 4.3 rely on h embedded recovering sets

for each code coordinate, which are not disjoint. In this section we consider LRC

codes with t disjoint recovering sets for each code coordinate, i.e., LRC codes with

availability t (here we do not pursue a hierarchy of locality). This arises when the

data is simultaneously requested by a large number of users, which suggests that

the erased coordinate afford recovery from several nonoverlaping recovering sets in

order to increase data availability.

Below we limit ourselves to the case t “ 2. We say that two partitions P1,P2

of the coordinates of the code are orthogonal (or transversal) if |P1 X P2| ď 1 for

any P1 P P1, P2 P P2 and every coordinate is contained in a pair of subsets X P

P1, Y P P2. Orthogonal partitions enable multiple disjoint recovering sets and were

used in [71] to construct codes with availability. A simple observation made in [71]

is that product codes naturally yield orthogonal partitions, and it is possible to use

products of one-dimensional cyclic codes to support this structure. A drawback of

this approach is that product codes result in rather poor parameters of LRC codes

with availability, in particular the rate of the resulting codes is low (although the

alphabet is small compared to the code length [34, 71]). It is well known that the

rate of product codes can be increased with no loss to the distance by passing to

generalized concatenations of codes [7]. In this section we use a particular case of

this construction given in [62] and sometimes called hyperbolic codes. The resulting

LRC codes with availability have the same distance guarantee as simple product

144

codes while having a much higher rate. As above, our starting point is the general

method of Theorem 34, and we proceed similarly to Eq. (4.7).

We start with a finite field Fq and assume that the code length n divides

q ´ 1. We further choose the size of the repair groups to be r1, r2 and suppose

that 0 ă r1 ď r2 and pr1 ` 1q|n and pr2 ` 1q|n. Further, let ν1 “ n{pr1 ` 1q

and ν2 “ n{pr2 ` 1q. Let α P Fq be a primitive n-th root of unity. To simplify

the expressions below, we will construct codes with δ1 “ δ2 “ 2. To construct the

defining set Z of our code, let

L1 “ H, D1 “ tp0, 0qu, Z1 “ L1 YD1. (4.35)

Let us fix the designed distance of the code C to be δ ě 2. Define

L2,1 “

ν1´1
ď

l1“0

n´1
ď

j“0

pZ1 ` pl1pr1 ` 1q, jqq,

L2,2 “

n´1
ď

i“0

ν2´1
ď

l2“0

pZ1 ` pi, l2pr2 ` 1qqq, L2 “ L2,1 Y L2,2,

D2 “ tpi, jq | pi` 1qpj ` 1q ă δu, Z2 “ L2 YD2.

Note that zeros are now indexed by pairs of exponents, and pairs are added element-

wise. Finally, put Z “ Z2.

Consider a two-dimensional cyclic code C “ xgpx, yqy of length n2, where

gpx, yq “
ź

pi,jqPZ

px´ αiqpy ´ αjq. (4.36)

145

Lemma 45. The code C has two disjoint recovering sets of size r1 and r2 for every

coordinate.

Proof. The proof relies on Lemma 35. For c P C, let us write c “ pci,jq where

0 ď i ď n´ 1, 0 ď j ď n´ 1. Fix j and let Cp1q “ tpc0,j, cν1,j, . . . , cr1ν1,jq | c P Cu and

let L
j
2,1 “

Ťν1´1
l1“0 pZ1 ` pl1pr1 ` 1q, jqq. The generator polynomial for the punctured

code tpc0,j, c1,j, . . . , cn´1,jq | c P Cu is given by yj
ś

pi,jqPZpx ´ αiq, which is divisible

by
ś

pi,jqPLj2,1
px´αiq. Then, by arguments similar to Lemma 35 we conclude that the

code Cp1q has dimension at most r1 and distance at least 2. Since the code is cyclic

in both dimensions, we also claim that every symbol of the code C has a recovering

set of size at most r1 for one erasure.

Repeating the above arguments for a fixed index i, we isolate another recover-

ing of size r2 for every coordinate. Furthermore, the two recovering sets are disjoint

by construction.

To estimate the distance, recall the following result about bicyclic codes.

Lemma 46 (Hyperbolic bound [62]). Suppose that the defining set of zeros of

an n ˆ n bicyclic code contains a subset given by Z “ tpi, jq : pi ` 1qpj ` 1q ă du.

Then the distance of the code is at least d.

Thus, the distance of the code C constructed above is at least δ, and its di-

mension dimpCq “ n2 ´ |Z|. Let us estimate the dimension from below. We have

|D2| “

δ´2
ÿ

j“0

Z

δ

j ` 1

^

ď δ
δ´1
ÿ

j“1

1

j

146

ď δ

ˆ

1`

ż δ´1

1

lnpx´ 1qdx

˙

ď δp1` ln pδ ´ 1qq.

Therefore, we have

n2
´ |Z| ě n2

´ |L2| ´ |D2|

“ n2
´ pr1 ` r2 ` 1qν1ν2 ´ δp1` ln pδ ´ 1qq

“
n2r1r2

pr1 ` 1qpr2 ` 1q
´ δp1` ln pδ ´ 1qq (4.37)

To compare this estimate of the dimension with product codes, let C1 be a

direct product of two cyclic LRC codes of length n with locality r and distance
?
δ.

The defining set of this code are given by Z1 “ L1 YD1, where

L1 “ tpi, jq | i, j “ 1 mod pr ` 1qu,

D1
“ tpi, jq | i, j “ 1, . . . ,

?
δ ´ 1u.

Choosing r1 “ r2 “ r in our construction, we have L2 ` p1, 1q “ L1. It is also easy

to see that |Z| ď |Z1| and thus, dimpCq ě dimpC1q.

Let us write out an estimate for the rate of the constructed codes. Putting

r1 “ r2 “ r in (4.37), we obtain for the rate of the code C the following estimate in

terms of the relative distance θ “ δ{n2:

R ě 1´
2

r ` 1
`

1

pr ` 1q2
´ θp1` lnpδ ´ 1qq.

147

The best known upper bound on the rate of LRC codes with locality r, availability

t, and relative distance θ [41] has the form

R ď
r ´ 1

r
p1´ θq ´ op1q.

The gap between this bound and the lower estimate implied by our construction is

roughly Op1
r
` θ ln δq.

Example 3. Let r1 “ 2, r2 “ 6, and δ “ 9. Our construction gives rise to an LRC

code with availability two, of length n2 “ 441, dimension k “ 246, and distance

d ě 9, over a finite field Fq such that 21|pq ´ 1q (for example, we can take q “ 64).

To compare these codes with the product construction, let us choose the column codes

and row codes of length 21 and distance 3, and let us take the maximum dimension

of codes as given by the bound (1.4) for locality 2 and 6. This gives k1 “ 13, k2 “ 17

and the overall dimension k “ 221, lower than above.

An extension of the construction in this section to the case of t ě 2 can be

easily obtained via t-dimensional cyclic codes and the general hyperbolic bound

(the generalized concatenation of codes). Furthermore, using procedures similar to

those used in (4.6) and (4.7), our construction can be generalized to h ě 2 levels of

hierarchy such that the local codes in each of the h levels have availability t ě 2.

148

Chapter 5: Conclusion

We conclude the dissertation with some open problems. Specifically, Sec. 5.1

mentions a few open questions for the repair problem of RS codes and Sec. 5.2 points

out some future directions for rack-aware MSR codes. In Sec. 5.3, we discuss the

problem of convolutional codes with locality, which remains largely open.

5.1 RS codes with optimal repair

In Chapter 2 we showed that error correction is feasible in the original code

family of [77] without the increase of the extension degree of the symbol field of the

code (the node size). Namely, codes from [77] use extension degree l “ pd´k`1qL,

where L is the product of the first n distinct primes in an arithmetic progression,

L “

ˆ n
ź

i“1
pi”1 mod pd´k`1q

pi

˙

.

The lower bound on l from [77], necessary for repair of a single node, has the form

l ě
śk´1

i“1 pi, where pi is the i-th smallest prime. Asymptotically for fixed d´ k and

growing n we obtain the following bounds on the node size: Ωpkkq ď l ď Opnnq.

Essentially the same node size is used in this chapter for repair with error correction.

149

At the same time, the explicit RS code family with optimal access that we construct

comes at the expense of larger node size, namely l “ pd´k`1qnL. Since there is an

optimal-access repair scheme for every scalar MSR code, this leaves a gap between

what is known explicitly and what is shown to be possible, which represents a

remaining open question related to the task of optimal repair of RS codes.

Another direction of interest is to extend our approach to optimal error correc-

tion and optimal access to the problem of repairing RS codes with multiple erasures.

5.2 Rack-aware MSR codes

In Chapter 3 we presented various families of rack-aware MSR codes, including

both vector codes, scalar codes, and low-access codes. Nevertheless, a few problems

remain open.

Following the discussion in Sec. 3.5.2, one open problem is to extend vector

MSR code constructions in the literature that support optimal error correction for

the homogeneous model to the rack-aware storage model or to come up with novel

constructions that afford optimal error correction for the rack model.

More importantly, it would be interesting to close the gap of the access cost

between the constructions and the bound for the rack-aware storage model, in par-

ticular, for the case when the rack size u does not divide the code dimension k.

Another direction worth further investigating is to understand the case of

multiple erasures (node failures). When there are two or more failed nodes in the

rack model, one has to distinguish cases between the failed nodes located in a single

150

rack and dispersed among multiple racks, which would give rise to a delicate bound

for the repair bandwidth. However, we believe that our ideas presented in this

chapter will serve a starting point even for constructing rack-aware MSR codes for

multiple erasures.

5.3 Codes with locality

In Chapter 4 we addressed several variants of the problem of codes with lo-

cality. In particular, we constructed a family of tailbiting convolutional codes with

row locality.

Apart from understanding the optimal trade-off among the parameters for

codes with availability, convolutional codes with locality form an interesting direc-

tion for future work. In particular, it would be of interest to understand if the

upper bound (4.24) for the column distance is tight or not for convolutional code

with locality. It would be of great interest even if one could only prove existence of

convolutional codes with locality attaining the column distance in (4.24).

Moreover, in addition to column and row locality, can one construct convo-

lutional codes with a general type of locality? Further, as there are various types

of distance measures for convolutional codes for different motivations (see [37] for

more details), can one derive bounds for other types of distance measures and con-

struct codes to meet these bounds? Would the connection between quasicyclic codes

and convolutional codes we utilized herein be helpful for constructing convolutional

codes with locality for other types of distance measures?

151

Appendix A: Omitted Proofs in Chapter 2

A.1 Proof of Proposition 7

First we present the proof for the case h “ 0 (strictly speaking, we do not

have to isolate it, but it makes understanding the general case much easier). In this

case, definition (2.18), (2.19) simplifies as follows. Let f0pxq “ xp1 ´ fpxq. Write f0

as

f0pxq “ a0 ` a1x` a2x
2
` ¨ ¨ ¨ ` ap1´1x

p1´1

“

pp1´1q{s´1
ÿ

q“0

xqsf0,qpxq,

where

f0,0pxq “ a0 ` a1x` ¨ ¨ ¨ ` as´1x
s´1

f0,1pxq “ as ` as`1x` ¨ ¨ ¨ ` a2s´1x
s´1

. . .

f0,pp1´1q{s´1pxq “ ap1´1´s ` ap1´sx` ¨ ¨ ¨ ` ap1´1x
s,

(A.1)

152

so that the degree of the last polynomial is ď s and the degrees of the remaining

ones are ď s´ 1. Obviously, we have

αp1

1 “ f0pα1q (A.2)

“

pp1´1q{s´1
ÿ

q“0

αqs1 f0,qpα1q. (A.3)

As before, we start with (2.7), which implies that for any polynomial g P F1rxs

of degree deg g ď n´ k ´ 1, we have

trpeiv1gpα1qc1q “ ´

n
ÿ

j“2

gpαjq trpeivjcjq. (A.4)

Take ei “ αqs1 and gpxq “ xtf0,qpα1q and sum on q on the left, then from (A.3) we

obtain trpv1α
t
1f0pα1qc1q. Summing on q on the right of (A.4) and using (A.2), we

conclude that

trpv1α
p1`t
1 c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αtjf0,qpαjq trpαqs1 vjcjq (A.5)

for all t “ 0, 1, . . . , n´k´s´1, Note that the constraint t ď n´k´s´1 is implied

by the condition degpgq “ degpxtf0,qpxqq ď n ´ k ´ 1 needed in order to use (A.4)

(and (2.7)). Change the variable t ÞÑ pt´ 1q to write the last equation as

trpv1α
p1´1`t
1 c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αt´1
j f0,qpαjq trpαqs1 vjcjq, t “ 1, 2, . . . , n´ k ´ s.

(A.6)

153

From (2.14) and the fact that

s´1
č

u“1

tu´ s, u´ s` 1, . . . , u´ s` n´ k ´ 1u “ t´1, 0, 1, . . . , n´ k ´ su,

we obtain

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`sj trpβuαu`p1´s´1
1 vjcjq,

´ 1 ď t ď n´ k ´ s, 1 ď u ď s´ 1.

Summing these equations on u “ 1, 2, . . . , s´ 1, we obtain the relation

tr
´

s´1
ÿ

u“1

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“1

αt´u`sj trpβuαu`p1´s´1
1 vjcjq, ´1 ď t ď n´ k ´ s.

For each t “ 1, 2, . . . , n´k´s let us add this equation and (A.6). This gives n´k´s

relations of the form

tr
´

s´1
ÿ

u“0

βuαp1´1`t
1 v1c1

¯

“ ´

n
ÿ

j“2

´

s´1
ÿ

u“1

αt´u`sj trpβuαu`p1´s´1
1 vjcjq

`

pp1´1q{s´1
ÿ

q“0

αt´1
j f0,qpαjq trpαqs1 vjcjq

¯

.

Observe that the left-hand side of this equation is the same as the left-hand side of

(2.17). Therefore,

n
ÿ

j“2

αtj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

154

“

n
ÿ

j“2

´

s´1
ÿ

u“1

αt´u`sj trpβuαu`p1´s´1
1 vjcjq `

pp1´1q{s´1
ÿ

q“0

αt´1
j f0,qpαjq trpαqs1 vjcjq

¯

,

for 1 ď t ď n´ k ´ s. Replacing t´ 1 with t in this equation, we obtain that

n
ÿ

j“2

αtj

´

s´1
ÿ

u“1

αs´u`1
j trpβuαu`p1´s´1

1 vjcjq `

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs1 vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0, 0 ď t ď n´ k ´ s´ 1.

By Proposition 1, the vector

´

s´1
ÿ

u“1

αs´u`1
j tr

´

βuαu`p1´s´1
1 vjcj

¯

`

pp1´1q{s´1
ÿ

q“0

f0,qpαjq trpαqs1 vjcjq

´ αj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

, j “ 2, . . . , n
¯

(A.7)

is contained in a GRS code of length n ´ 1 and dimension s ` k ´ 1. This proves

the case h “ 0 of the proposition.

Now let us consider the general case 0 ď h ď s´ 1. From (2.18) and (2.19) we

obtain

αp1`h
1 “ fhpα1q “

pp1´1q{s´1
ÿ

q“0

αqs1 fh,qpα1q. (A.8)

This relation enables us to use the argument that yielded (A.5) above: Take ei “

αu`qs1 βu and gpxq “ xtfh,qpxq in (A.4) and sum on q “ 0, 1, . . . , pp1 ´ 1q{s ´ 1. We

obtain for h “ 0, . . . , s´ 1 and u “ 0, . . . , s´ 1´ h

trpαp1`h`u`t
1 βuv1c1q “

pp1´1q{s´1
ÿ

q“0

trpαqs`u`t1 βufh,qpα1qv1c1q

155

“ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αtjfh,qpαjq trpαu`qs1 βuvjcjq,

t “ 0, 1, . . . , n´ k ´ s´ 1.

The restriction t ď n ´ k ´ s ´ 1 is imposed in the same way as in (A.5) (namely,

it is necessary that degpxtfh,qpxqq ď n´ k ´ 1). Replacing h` u with h in the last

equation, we obtain that

trpαp1`h`t
1 βuv1c1q “ ´

pp1´1q{s´1
ÿ

q“0

n
ÿ

j“2

αtjfh´u,qpαjq trpαu`qs1 βuvjcjq,

0 ď h ď s´ 1, 0 ď u ď h, 0 ď t ď n´ k ´ s´ 1.

Let us sum these equations on u “ 0, 1, . . . , h to obtain

trpαp1`h`t
1

h
ÿ

u“0

βuv1c1q “ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αtjfh´u,qpαjq trpαu`qs1 βuvjcjq,

0 ď h ď s´ 1, 0 ď t ď n´ k ´ s´ 1.

Replacing t with t´ 1, we obtain that

tr
´

αp1´1`h`t
1

h
ÿ

u“0

βuv1c1

¯

“ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs1 βuvjcjq,

0 ď h ď s´ 1, 1 ď t ď n´ k ´ s. (A.9)

156

According to (2.14) and the fact that

s´1
č

u“h`1

tu´ s, u´ s` 1, . . . , u´ s` n´ k ´ 1u “ t´1, 0, 1, . . . , n´ k ´ s` hu,

for 0 ď h ď s´ 1, we have

trpβuαp1´1`t
1 v1c1q “ ´

n
ÿ

j“2

αt´u`sj trpβuαu`p1´s´1
1 vjcjq,

´ 1 ď t ď n´ k ´ s` h, h` 1 ď u ď s´ 1.

Replacing t with t` h, we have

trpβuαp1´1`h`t
1 v1c1q “ ´

n
ÿ

j“2

αh`t´u`sj trpβuαu`p1´s´1
1 vjcjq,

´ h´ 1 ď t ď n´ k ´ s, h` 1 ď u ď s´ 1.

Summing these equations on u “ h` 1, h` 2, . . . , s´ 1, we obtain

tr
´

s´1
ÿ

u“h`1

βuαp1´1`h`t
1 v1c1

¯

“ ´

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`sj trpβuαu`p1´s´1
1 vjcjq,

´ h´ 1 ď t ď n´ k ´ s.

Finally, adding together this equation and (A.9), we obtain that

tr
´

s´1
ÿ

u“0

βuαp1´1`h`t
1 v1c1

¯

157

“ ´

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs1 βuvjcjq

´

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`sj trpβuαu`p1´s´1
1 vjcjq,

0 ď h ď s´ 1, 1 ď t ď n´ k ´ s. (A.10)

Going back to (2.17), let us perform the change t ÞÑ t` h, then we obtain

tr
´

s´1
ÿ

u“0

βuαp1´1`h`t
1 v1c1

¯

“ ´

n
ÿ

j“2

αh`tj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

,

´ h ď t ď n´ k ´ h´ 1. (A.11)

For t “ 1, 2, . . . , n ´ k ´ s the left-hand sides of (A.10) and (A.11) coincide, and

therefore,

n
ÿ

j“2

αh`tj tr
´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯

“

n
ÿ

j“2

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

αt´1
j fh´u,qpαjq trpαu`qs1 βuvjcjq

`

n
ÿ

j“2

s´1
ÿ

u“h`1

αh`t´u`sj trpβuαu`p1´s´1
1 vjcjq,

1 ď t ď n´ k ´ s.

Replacing t by t` 1, we obtain that

n
ÿ

j“2

αtj

´

pp1´1q{s´1
ÿ

q“0

h
ÿ

u“0

fh´u,qpαjq trpαu`qs1 βuvjcjq

158

`

s´1
ÿ

u“h`1

αh`1´u`s
j trpβuαu`p1´s´1

1 vjcjq ´ α
h`1
j tr

´

s´1
ÿ

u“0

βuαp1´1
1 vjcj

¯¯

“ 0,

0 ď t ď n´ k ´ s´ 1.

The proof is complete.

159

Appendix B: Omitted Proofs in Chapter 3

B.1 Proof of Proposition 24

Let I Ă R, |I| “ k̄ ´ 1 be a subset of helper racks. Since

pd̄´ k̄ ` 1qu ě d´ k ` 1,

Lemma 23 implies that

ÿ

iPRzI

βi ě l. (B.1)

Let us sum the left-hand side on all I Ă R, |I| “ k̄ ´ 1:

ÿ

IĂR
|I|“k̄´1

ÿ

iPRzI

βi “
ÿ

iPR

ÿ

IĂR
ISi

βi “

ˆ

d̄´ 1

k̄ ´ 1

˙

ÿ

iPR

βi.

Together with (B.1) we obtain

ˆ

d̄´ 1

k̄ ´ 1

˙

ÿ

itPR

βi ě

ˆ

d̄

k̄ ´ 1

˙

l

or

ÿ

iPR

βi ě
d̄l

d̄´ k̄ ` 1
,

160

i.e., (3.2). Moveover, this bound holds with equality if and only if (B.1) holds with

equality for every I Ă R, |I| “ k̄ ´ 1. Suppose for the sake of contradiction that

the uniform download claim does not hold, and there is a rack i such that βi ‰ l{s̄,

for instance, βi ă l{s̄, where s̄ “ d̄ ´ k̄ ` 1. Let J Ă R, |J| “ s̄, i P J. There must

be a rack i1 P J that contributes more than the average number of symbols, i.e.,

βi1 ą l{s̄. Consider the subset pJztiuq Y ti2u, where i2 ‰ i is another element of R

(which exists since k̄ ą 1 implies |J| ă |R|). We have that βi2 ă l{s̄. Now take the

subset I “ pJzti1uq Y ti2u and note that for it, (B.1) fails to hold with equality, a

contradiction.

B.2 Proof of Proposition 26

Proof. Letm1 P R and let I be a subset of u´v nodes in rackm1, where 0 ď v ď u´1.

Let J Ď Rztm1u, |J| “ d̄ ´ k̄ be a subset of helper racks. These racks contain

upd̄´ k̄q “ d´ k ` 1´ pu´ vq nodes in these racks, and together with the nodes in

the set I this forms a group of d´ k ` 1 nodes. Using Lemma 23, we have

ÿ

mPJ

u
ÿ

e“1

αm,e `
ÿ

ePI
αm1,e ě l. (B.2)

Let us average over the
`

u
u´v

˘

choices of the set I :

ˆ

u

u´ v

˙

ÿ

mPJ

u
ÿ

e“1

αm,e `
ÿ

I:|I|“u´v

ÿ

ePI
αm1,e ě

ˆ

u

u´ v

˙

l.

161

Interchanging the sums in the second term on the left, we obtain

ˆ

u

u´ v

˙

ÿ

mPJ

u
ÿ

e“1

αm,e `

ˆ

u´ 1

u´ v ´ 1

˙ u
ÿ

e“1

αm1,e ě

ˆ

u

u´ v

˙

l.

or

u

u´ v

ÿ

mPJ

u
ÿ

e“1

αm,q `
u
ÿ

e“1

αm1,e ě
u

u´ v
l. (B.3)

Now let us average over the choice of J Ă Rztm1u. Noting that

ÿ

JĂRztm1u
|J|“s̄´1

ÿ

mPJ

u
ÿ

e“1

αm,e “

ˆ

d̄´ 2

s̄´ 2

˙

ÿ

mPRztm1u

u
ÿ

e“1

αm,e

we obtain from (B.3)

u

u´ v

ˆ

d̄´ 2

s̄´ 2

˙

ÿ

mPRztm1u

u
ÿ

e“1

αm,e `

ˆ

d̄´ 1

s̄´ 1

˙ u
ÿ

e“1

αm1,e ě

ˆ

d̄´ 1

s̄´ 1

˙

u

u´ v
l.

On account of the assumption that d̄ ě 2, s̄ ě 2 we find

u

u´ v

ÿ

mPRztm1u

u
ÿ

e“1

αm,e `
d̄´ 1

s̄´ 1

u
ÿ

e“1

αm1,e ě
d̄´ 1

s̄´ 1

u

u´ v
l. (B.4)

Now let us average on the choice of m1 P R :

upd̄´ 1q

u´ v

ÿ

mPR

u
ÿ

e“1

αm,e `
d̄´ 1

s̄´ 1

ÿ

m1PR

u
ÿ

e“1

αm1,e ě
d̄´ 1

s̄´ 1

u

u´ v
d̄l

162

or

α :“
ÿ

mPR

u
ÿ

e“1

αm,e ě
d̄ul

ups̄´ 1q ` u´ v
“
d̄ul

s
.

Equality holds if and only if it holds in (B.2). This implies the uniform access con-

dition, which is proved in exactly the same way as the uniform download condition

in Prop. 24.

B.3 Proof of Theorem 27

Proof of Part (a): The proof will be given for the repair of a node in a sys-

tematic rack. In the end we will argue that the claimed bound also applies to the

repair of nodes in parity racks.

Without loss of generality, assume tk̄ ` 1, . . . , k̄ ` s̄u to be the s̄ parity racks

that are involved in the repair of the failed node. Let k̄ ` i, i “ 1, . . . , s̄ be a helper

rack. Since the repair scheme is linear, the information that this rack provides is

obtained through a linear transformation of its contents. Denote the matrix of this

transformation by Sk̄`i,m1
and call it the repair matrix for repairing a failed node in

rack m1 from rack k̄` i (and call its row space the repair subspace of the node. Note

that it is an l
s̄
ˆ ul matrix over F ; moreover, for optimal repair, the rank of Sk̄`i,m1

necessarily is l{s̄ for all i P rs̄s. The information that parity rack k̄ ` i transmits to

repair the failed node in rack m1 is given by

Sk̄`i,m1
ck̄`i “ Sk̄`i,m1

´

ck`pi´1qu`1, . . . , ck`iu

¯T

163

“ Sk̄`i,m1

´

k
ÿ

j“1

Api´1qu`1,jcj, . . . ,
k
ÿ

j“1

Aiu,jcj

¯T

, i “ 1, . . . , s̄. (B.5)

For given i, j let us define the block matrix Ai,j “ pApi´1qu`1,j, . . . , Aiu,jq
T (a

part of column j in the encoding matrix that corresponds to rack m). Suppose that

the index of the failed node in rack m1 is j1, and note that pm1´1qu`1 ď j1 ď m1u.

Then from (B.5) we obtain

Sk̄`i,m1
ck̄`i “ Sk̄`i,m1

Ai,j1cj1 ` Sk̄`i,m1

k
ÿ

j“1
j‰j1

Ai,j1cj, i “ 1, . . . , s̄. (B.6)

From (B.6) we observe that the information that parity rack k̄ ` i provides for the

repair of node cj1 contains interference from the other systematic nodes cj, j ‰ j1.

Moreover, as rack m1 collects all the information sent from the helper racks k̄`i, 1 ď

i ď s̄, in order to repair node cj, it is necessary that

rank

»

—

—

—

—

—

—

–

Sk̄`1,m1
A1,j1

...

Sk̄`s̄,m1
As̄,j1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ l. (B.7)

This relation holds true because Equations (B.6) evaluate a linear combination of

the contents of the nodes in the host rack. To retrieve the l symbols of the failed

node from this linear combination, condition (B.7) is necessary.

Let us further define the ul ˆ ul matrix Di,m “ pAi,pm´1qu`1, . . . ,Ai,muq by

assembling together u columns of the form A¨,¨, i.e., Di,m “ pAα,βq, pi ´ 1qu ` 1 ď

164

α ď iu, pm´1qu`1 ď β ď mu. These matrices are defined for notational convenience

and enable us to argue about entire racks rather than their elements. Since the code

C is MDS, the matrix Di,m is invertible for all 1 ď i ď r̄ and 1 ď m ď k̄. Rewriting

(B.6) with this notation, we obtain

Sk̄`i,m1
ck̄`i “ Sk̄`i,m1

Di,m1cm1 ` Sk̄`i,m1

k̄
ÿ

m“1
m‰m1

Di,mcm. (B.8)

Since pm1 ´ 1qu` 1 ď j1 ď m1u, from (B.7) we have

rank

»

—

—

—

—

—

—

–

Sk̄`1,m1
D1,m1

...

Sk̄`s̄,m1
Ds̄,m1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ l. (B.9)

So far we have only considered the information provided by the parity racks. It

remains to characterize the information transmitted by the systematic racks. From

(B.8), in order to cancel out the interference from systematic rack m ‰ m1, rack m1

needs to download from systematic rack m the vector

pSk̄`1,m1
D1,mcm, . . . , Sk̄`s̄,m1

Ds̄,mcmq
T .

165

By Proposition 24, for optimal repair we necessarily have

rank

»

—

—

—

—

—

—

–

Sk̄`1,m1
D1,m

...

Sk̄`s̄,m1
Ds̄,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
l

s̄
. (B.10)

The rank conditions (B.9) and (B.10) give rise to the following subspace conditions.

For any m1 P rk̄s,

s̄
à

i“1

xSk̄`i,m1
Di,m1y “ F l, (B.11)

xSk̄`1,m1
D1,my “ . . . “ xSk̄`s̄,m1

Ds̄,my, m ‰ m1. (B.12)

The proof of the lower bounds in the theorem relies on these necessary conditions.

Let us first bound the dimension of the intersection of the row spaces of the repair

matrices.

Lemma 47. Let J Ă rk̄s be a subset of systematic nodes such that |J| ď k ´ 1 and

m1 P J. Then for any i, i1 ě 1

dim
č

mPJ

xSk̄`i,my “ dim
č

mPJ

xSk̄`i1,my. (B.13)

Proof. Let a P rk̄szJ. Since Di,a is nonsingular, for each i P rs̄s we have

č

mPJ

xSk̄`i,mDi,ay “

´

č

mPJ

xSk̄`i,my
¯

Di,a.

166

On the previous line we take the intersection of the subspaces as indicated, then

write a basis of the resulting subspace into rows of a matrix, which has ul columns.

Since this is also the number of rows of Di,a, this operation is well defined.

Since a R J, for any i, i1 P rs̄s, from (B.12) we have

č

mPJ

xSk̄`i,mDi,ay “
č

mPJ

xSk̄`i1,mDi1,ay.

Therefore, for any i, i1 P rs̄s

´

č

mPJ

xSk̄`i,my
¯

Di,a “

´

č

mPJ

xSk̄`i1,my
¯

Di1,a. (B.14)

Since Di,a and Di1,a are invertible, (B.13) follows.

Now consider the subspace
Ş

mPJxSk̄`i,mDi,m1y, where J is as in Lemma 47.

For any i1 P rs̄s, we have

č

mPJ

xSk̄`i,mDi,m1y “ xSk̄`i,m1
Di,m1y

č

´

č

mPJztm1u

xSk̄`i,mDi,m1y

¯

“ xSk̄`i,m1
Di,m1y

č

´

č

mPJztm1u

xSk̄`i1,mDi1,m1y

¯

Ď
č

mPJztm1u

xSk̄`i1,mDi1,m1y. (B.15)

Summing on i P rs̄s on both sides of (B.15), we obtain

s̄
à

i“1

´

č

mPJ

xSk̄`i,mDi,m1y

¯

Ď
č

mPJztm1u

xSk̄`i1,mDi1,m1y. (B.16)

167

Note that this is a direct sum because the subspaces
Ş

mPJxSk̄`i,mDi,m1y form a

subset of the set of subspaces on the left-hand side of (B.11) and therefore (for

different i) are disjoint.

Since Di,m1 and Di1,m1 are invertible, we conclude that

s̄
ÿ

i“1

dim
č

mPJ

xSk̄`i,my ď dim
č

mPJztm1u

xSk̄`i1,my.

Note that from (B.13), we have

s̄
ÿ

i“1

dim
č

mPJ

xSk̄`i,my “ s̄ dim
č

mPJ

xSk̄`i,my.

Therefore,

dim
č

mPJ

xSk̄`i,my ď
1

s̄
dim

č

mPJztm1u

xSk̄`i1,my

ď
1

s̄|J|´1
dimxSk̄`i1,my

ď
l

s̄|J|
. (B.17)

If l ě s̄k̄´1, then (3.6) is proved, so let us assume that l ă s̄k̄´1.

Lemma 48. Let T Ă rn̄sztk̄ ` iu be a subset such that

� 1 ď |T| ď n̄´ 1,

� m1 P T,

� T contains minpk̄ ´ 1, |T|q systematic racks.

168

Then

dim
č

mPT

xSk̄`i,my ď
l

s̄|T|
. (B.18)

Remark: Some of the repair matrices in (B.18) refer to the repair scheme

of a parity node (a node in a parity rack) using information from another parity

rack. These matrices exist and are well defined because by assumption, the code C

supports optimal repair of any node from any set of d̄ helper racks.

Proof. By the assumption before the lemma, Eq. (B.17) holds for any J of size

ď k̄ ´ 1, which proves the claim for the case |T| ď k̄ ´ 1. At the same time, if

|T| ą k̄ ´ 1, take |J| “ k̄ ´ 1 in (B.17) and note that J Ă T. In this case (B.17)

implies (B.18) and the proof is complete.

From (B.18) we observe that the subspaces xSk̄`i,my,m P T have a vector in

common if and only if |T| ď logs̄ l. Now consider a ulˆpn̄´1q matrix V whose rows

correspond to the ul vectors in the standard basis of F ul and columns to the repair

matrices Sk̄`i,m,m P rn̄sztk̄ ` iu. Put Vim “ 1 if the ith vector is one of the rows of

the mth repair matrix and 0 otherwise. The code has the optimal access property

if and only if the rows of the repair matrices are formed of standard basis vectors.

Every column of V contains l{s̄ ones, and if |T| ď logs̄ l, then every row contains at

most logs̄ l ones; thus

l

s̄
pn̄´ 1q ď ul logs̄ l.

169

It follows that

l ě s̄
n̄´1
s , (B.19)

where we used s “ s̄u. This concludes the proof of Part (a).

Proof of Part (b): We closely follow the arguments in Part (a) with the only

difference that the set T can now be of size n̄, which is possible because the repair

matrices are independent of the choice of the helper racks.

Let us outline the argument. Let |J| “ k̄´ 1 and l ă s̄k̄´1. In this case (B.17)

implies that

dim
č

mPJ

xSmy “ 0

(even in the case when the repair scheme is chosen based on the location of the

helpers, and all the more so in the current case). It follows that, for any T Ď rn̄s

such that T Ě J, we have

dim
č

mPT

Sm “ 0.

Therefore, for l ă s̄k̄´1, we have

dim
č

mPT

Sm ď
l

s̄|T|
, (B.20)

for 1 ď |T| ď n̄. For the left-hand side of the above inequality to be greater than 1,

170

we necessarily have |T| ď logs̄ l.

Repeating the argument that led to (B.19), we obtain

l ě s̄n̄{s. (B.21)

Thus, we have proved cases (a) and (b) of the theorem for repairing a failed

node in a systematic rack. The same bounds hold for repairing a failed node in any

of the parity racks. Indeed, note that a parity rack ck̄`i, i “ 1, . . . , r̄ is computed

from the systematic racks as follows:

ck̄`i “
k̄
ÿ

j“1

Dk̄`i,jcj (B.22)

If a node in rack k̄`i has failed, we first choose d̄ helper racks and isolate any pk̄´1q-

subset of the chosen d̄-set. Then we write equations of the form (B.22) where on

the right we use these k̄ ´ 1 racks together with the host rack to express the code

symbols in the remaining r̄ racks. These equations are obtained from (B.22) using

obvious matrix transformations (no complications arise because the code C is MDS).

After that, we can repeat the proofs given above, which establishes our claim.

171

Appendix C: Omitted Proofs in Chapter 4

C.1 Proof of Proposition 37

Let us first prove a technical claim.

Claim 49. For 1 ď i ď h` 1, we have δ1 “ pδi ´ b
pi´1q
0 q mod n1.

Proof. We prove the claim by induction. Clearly, for i “ 1 we have δ1 “ pδ1 ´

b
p0q
0 q mod n1. Next suppose that for a given i, 1 ď i ă h ` 1 we have δ1 “ pδi ´

b
pi´1q
0 q mod n1. Reducing (4.10) modulo n1, we obtain the equality pδi ´ b

pi´1q
0 q “

pδi`1 ´ b
piq
0 q mod n1. Thus also δ1 “ pδi`1 ´ b

piq
0 q mod n1, and this completes the

proof.

Now we are ready to prove Proposition 37. Clearly, for i “ 1 we have |Z1| “

δ1´1 “ n1´r1. Suppose for 1 ď i1 ď i we have |Zi1 | “ ni1´ri1 , where 1 ď i ă h`1.

Let us establish the induction step.

By the definition of Zi`1 and (4.10), we have |Zi`1| ě pνi ´ aiqni. Consider

the set

Ai`1 “ pνi ´ aiqni ` tδi ´ b
pi´1q
0 ´ δ1 ` 1, δi ´ b

pi´1q
0 ´ δ1 ` 2, . . . , niu

172

formed by adding pνi ´ aiqni to every element of the subset above, and let Bi`1 “

Ai`1 XDi`1. Since
Ťνi´ai´1
l“0 pZi ` lniq Ď Di`1, we have

|Zi`1| “ pνi ´ aiqni ` |Bi`1zpZi ` pνi ´ aiqniq| `
ˇ

ˇ

ˇ

νi´1
ď

l“νi´ai

pZi ` lniq
ˇ

ˇ

ˇ
. (C.1)

Next, we would like to determine the cardinality of the set Bi`1zpZi ` pνi ´ aiqniq.

By Claim 49, we have δ1 “ pδi ´ b
pi´1q
0 q mod n1. Therefore, |Ai`1| is divisible by n1.

Note that Bi`1 Ď Ai`1. Moreover, among the first u
piq
i´1ni´1 elements of Ai`1 there

are u
piq
i´1ri´1 ´ b

pi´1q
0 elements that are in Bi`1 but not in Zi ` pνi ´ aiqni. For the

next u
piq
i´2ni´2 elements in Ai`1 there are u

piq
i´2ri´2 elements that are in Bi`1 but not

in Zi ` pνi ´ aiqni, and so forth. Hence, we have

|Bi`1zpZi ` pνi ´ aiqniq| “
i´1
ÿ

j“1

u
piq
j rj ` u

piq
0 r1 ` b

piq
0 ´ b

pi´1q
0

“ bi.

It follows that

|Zi`1| “ pνi ´ aiqni ` bi `
ˇ

ˇ

ˇ

νi´1
ď

l“νi´ai

pZi ` lniq
ˇ

ˇ

ˇ

“ pνi ´ aiqni ` bi ` ai|Zi|

“ ni`1 ´ aini ` bi ` aipni ´ riq (C.2)

“ ni`1 ´ pairi ´ biq

“ ni`1 ´ ri`1,

173

where (C.2) uses |Zi| “ ni ´ ri, which is the induction hypothesis. This completes

the proof.

C.2 Proof of Lemma 38

We again argue by induction on i. For i “ 1, by (4.10) we have

δ2 “ pν1 ´ a1qn1 ` δ1 ` u
p1q
0 n1 ` b

p1q
0 ´ b

p0q
0

“ n2 ´ a1n1 ` δ1 ` u
p1q
0 pn1 ´ r1q ` b1 (C.3)

“ n2 ´ a1pr1 ` δ1 ´ δ0q ` δ1 ` u
p1q
0 pn1 ´ r1q ` b1

“ n2 ´ r2 ` δ1 ´ a1pδ1 ´ δ0q ` u
p1q
0 pδ1 ´ δ0q (C.4)

“ n2 ´ r2 ` δ1 ´ pa1 ´ u
p1q
0 qpδ1 ´ δ0q

“ n2 ´ r2 ` δ1 ´

R

r2

r1

V

pδ1 ´ δ0q,

where (C.3) follows from n2 “ n1ν1 and (4.9), in (C.4) we used a1r1 “ r2 ` b1, and

the last equality follows from a1 “ rr2{r1s and u
p1q
0 “ tpb

p1q
1 ` b

p0q
0 q{r1u “ 0.

For the induction step, let us fix i, 1 ď i ă h and suppose that

δi`1 “ ni`1 ´ ri`1 ` δi ´
i
ÿ

l“1

R

ri`1

rl

V

pδl ´ δl´1q, (C.5)

provided that conditions (4.11) are satisfied. Observe that

δi`2 “ pνi`1 ´ ai`1qni`1 ` δi`1 `

i
ÿ

j“1

u
pi`1q
j nj ` u

pi`1q
0 n1 ` b

pi`1q
0 ´ b

piq
0

174

“ ni`2 ´ ai`1ni`1 ` δi`1 `

i
ÿ

j“1

u
pi`1q
j pnj ´ rjq ` u

pi`1q
0 pn1 ´ r1q ` bi`1 (C.6)

Substituting ni`1 from (C.5), we obtain

ai`1ni`1 “ ai`1

´

ri`1 ` δi`1 ´ δi `
i
ÿ

l“1

Qri`1

rl

U

pδl ´ δl´1q

¯

. (C.7)

In addition, also by the induction hypothesis, we have

u
pi`1q
0 pn1 ´ r1q “ u

pi`1q
0 pδ1 ´ δ0q,

u
pi`1q
j pnj ´ rjq “ u

pi`1q
j pδj ´ δj´1q `

j´1
ÿ

l“1

u
pi`1q
j

Qrj
rl

U

pδl ´ δl´1q, 1 ď j ď i.

Therefore,

i
ÿ

j“1

u
pi`1q
j pnj ´ rjq ` u

pi`1q
0 pn1 ´ r1q

“

i
ÿ

l“1

´

u
pi`1q
l `

i
ÿ

j“l`1

u
pi`1q
j

Qrj
rl

U¯

pδl ´ δl´1q ` u
pi`1q
0 pδ1 ´ δ0q. (C.8)

Substituting (C.7) and (C.8) into (C.6), we obtain

δi`2 “ ni`2´ri`2 ` δi`1 ´ ai`1pδi`1 ´ δiq

`

i
ÿ

l“2

´

u
pi`1q
l `

i
ÿ

j“l`1

u
pi`1q
j

Qrj
rl

U

´ ai`1

Qri`1

rl

U¯

pδl ´ δl´1q

`

´

u
pi`1q
0 ` u

pi`1q
1 `

i
ÿ

j“2

u
pi`1q
j

Qrj
r1

U

´ ai`1

Qri`1

r1

U¯

pδ1 ´ δ0q.

175

Thus, if the corresponding conditions of (4.11) are satisfied, then we have

δi`2 “ ni`2 ´ ri`2 ` δi`1 ´

i`1
ÿ

l“1

Qri`2

rl

U

pδi`1 ´ δiq.

This completes the induction step.

C.3 Proof of Proposition 42

Part (a): The generator matrix of the truncated code Cr0,js is given in (4.21), where

rankpG0q “ k.

Since G0 has full rank, by Definition 10, the j-th column distance of C is equal

to

dcj “ mintwtpur0,jsG
c
jq | u0 ‰ 0u,

where ur0,js “ pu0, . . . , ujq P Fkpj`1q
q is an input sequence truncated at the j-th time

instant. Obviously,

dcj ď mintwtpur0,jsG
c
jq | u0 ‰ 0, u1 “ u2 “ . . . “ uj “ 0u. (C.9)

Consider the kˆnpj`1q submatrix rG0, G1, . . . , Gjs that forms the first k rows of Gc
j.

By elementary row operations it is possible to make some, say first, k columns of G1

be all-zero, and the same is true for some k columns of the matrices Gi, i “ 2, . . . , j.

(Note that to accomplish this, we use all the rows of Gc
j and not just the rows of

176

the submatrix rG0, G1, . . . , Gjs.) As a result, the vector bpu0q :“ u0rG0, G1, . . . , Gjs

will contain at least kj zero coordinates for any choice of u0 P Fkq , and so the

effective length of the set of vectors tbpu0qu is npj ` 1q ´ kj. The set of vectors

tbpu0q | u0 P Fkqu is a subset of the code Cr0,js and it forms a linear code K of

effective length npj ` 1q ´ kj with pr, δq locality if the original convolutional code

C has (column or row) pr, δq locality. The distance of the code K gives an upper

bound on dcj, and is itself bounded above as in (1.6). Substituting the parameters

of the code K, we obtain the bound (4.24) for the distance dcj. Part (a) is proved.

Remark: Without the locality assumption the above argument proves the

Singleton bound (4.26) for the column distance of the code C.

Part (b): Recall the following observation (e.g., [24]):

Proposition 50. Let j ě 0. Let Hc
j be the parity check matrix for the truncated

convolutional code Cr0,js. Then the following properties are equivalent:

1. dcj “ d;

2. none of the first n columns of Hc
j is contained in the span of any other d ´ 2

columns and one of the first n columns of Hc
j is in the span of some other

d´ 1 columns of Hc
j .

Now suppose that dcj attains (4.24) with equality while dcj´1 ă pn´ kqj ` δ ´

P

k
r

T

pδ ´ 1q. By Proposition 50, there exists a column among the first n columns of

Hc
j´1 such that it is in the span of some other dcj´1 ´ 1 columns of Hc

j´1. Note that

177

Hc
j´1 is a submatrix of Hc

j . Specifically, we have

Hc
j “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Hc
j´1

0

...

0

Hj Hj´1 ¨ ¨ ¨ H1
H0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where Hi, 1 ď i ď j are pn´ kqˆn matrices and rankpH0q “ n´ k. Because of this,

there exists a column among the first n columns of Hc
j such that it is in the span

of some other dcj´1 ´ 1 ` n ´ k ă dcj ´ 1 columns of Hc
j , which by Proposition 50

contradicts our assumption about dcj. Hence, it follows that the optimality of the

j-th column distance implies the optimality of the i-th column distance for all i ď j

for convolutional codes with (column or row) locality.

178

Bibliography

[1] S. Akhlagi, A. Kiani, and M. R. Ghabavati. Cost-bandwidth tradeoff in
distributed storage systems. Computer Commuunications, 33(17):2105–2115,
2010.

[2] S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and
P. V. Kumar. Erasure coding for distributed storage: An overview. Science
China Information Sciences, 61(100301):1–45, 2018.

[3] S. B. Balaji and P. V. Kumar. A tight lower bound on the sub-packetization
level of optimal-access MSR and MDS codes. In 2018 IEEE International
Symposium on Information Theory (ISIT), pages 2381–2385, 2018. Expanded
version available online as arXiv:1710.05876.

[4] S. Ballentine, A. Barg, and S. Vlăduţ. Codes with hierarchical locality from
covering maps of curves. IEEE Trans. Inf. Theory, 65(10):6056–6071, 2019.

[5] A. Barg, I. Tamo, and S. Vlăduţ. Locally recoverable codes on algebraic curves.
IEEE Trans. Inform. Theory, 63(8):4928–4939, 2017.

[6] A. Beemer, R. Coatney, V. Guruswami, H. H. Lopez, and F. Pinero. Explicit
optimal-length locally repairable codes of distance 5. In 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
pages 800–804, 2018.

[7] E. L. Blokh and V. V. Zyablov. Coding of generalized cascade codes. Probl.
Inform. Trans., 10(3):218–222, 1974.

[8] V. R. Cadambe, C. Huang, and J. Li. Permutation code: Optimal exact-
repair of a single failed node in MDS code based distributed storage systems.
In 2011 IEEE International Symposium on Information Theory (ISIT), pages
1225–1229, 2011.

[9] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh. Asymp-
totic interference alignment for optimal repair of MDS codes in distributed
storage. IEEE Trans. Inf. Theory, 59(5):2974–2987, 2013.

179

[10] H. Cai, Y. Miao, M. Schwartz, and X. Tang. On optimal locally repairable codes
with super-linear length. IEEE Trans. Inf. Theory, 66(8):4853–4868, 2020.

[11] B. Chen, S.-T. Xia, J. Hao, and F.-W. Fu. Constructions of optimal pr, δq
locally repairable codes. IEEE Trans. Inf. Theory, 64(4):2499–2511, 2018.

[12] Z. Chen and A. Barg. Cyclic and convolutional codes with locality. IEEE
Trans. Inf. Thoery, 2020. DOI: 10.1109/TIT.2020.3031207.

[13] Z. Chen and A. Barg. Explicit constructions of MSR codes for clustered dis-
tributed storage: The rack-aware storage model. IEEE Trans. Inf. Theory,
66(2):886–899, 2020.

[14] Z. Chen, M. Ye, and A. Barg. Enabling optimal access and error correction
for the repair of Reed-Solomon codes. IEEE Trans. Inf. Theory, 2020. DOI:
10.1109/TIT.2020.3017666.

[15] A. Datta. Locally repairable rapidRAID systematic codes–one simple convo-
luted way to get it all. In 2014 IEEE Information Theory Workshop (ITW
2014), pages 60–64, 2014.

[16] H. Dau, I. Duursma, and H. Chu. On the I/O costs of some repair schemes
for full-length Reed-Solomon codes. In 2018 IEEE International Symposium
Information Theory, pages 1700–1704, 2018.

[17] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic. Repairing Reed-Solomon
codes with multiple erasures. IEEE Trans. Inf. Theory, 54(10):6567–6582, 2018.

[18] H. Dau and O. Milenkovic. Optimal repair schemes for some families of Reed-
Solomon codes. In 2017 IEEE International Symposium on Information Theory,
pages 346–350, 2017.

[19] H. Dau and E. Viterbo. Repair schemes with optimal I/O costs for full-length
Reed-Solomon codes with two parities. In 2018 IEEE Information Theory
Workshop (ITW), pages 1–5, 2018.

[20] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. IEEE Trans. Inf. Theory,
56(9):4539–4551, 2010.

[21] M. Esmaeili, T. A. Gulliver, N. P. Secord, and S. A. Mahmoud. A link be-
tween quasi-cyclic codes and convolutional codes. IEEE Trans. Inf. Theory,
44(1):431–435, 1998.

[22] R. Freij-Hollanti, T. Westerbäck, and C. Hollanti. Locally repairable codes
with availability and hierarchy: Matroid theory via examples. In 24th Interna-
tional Zürich Seminar on Communications (IZS), Zurich, Switzerland, March
2-4, 2016, pages 45–49. ETH-Zürich, 2016. https://doi.org/10.3929/ethz-a-
010645448.

180

[23] B. Gastón, J. Pujol, and M. Villanueva. A realistic distributed storage system
that minimizes data storage and repair bandwidth. In Proc. Data Compression
Conf, 2013. Preprint: arXiv:1301.1549.

[24] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. Strongly-MDS con-
volutional codes. IEEE Trans. Inf. Theory, 52(2):584–598, 2006.

[25] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword
symbols. IEEE Trans. Inf. Theory, 58(11):6925–6934, 2012.

[26] S. Goparaju, A. Fazeli, and A. Vardy. Minimum storage regenerating codes for
all parameters. IEEE Trans. Inf. Theory, 63(10):6318–6328, 2017.

[27] M. Grezet and C. Hollanti. The complete hierarchical locality of the punctured
simplex code. In 2019 IEEE International Symposium on Information Theory
(ISIT), pages 2833–2837, 2019.

[28] V. Guruswami and M. Wootters. Repairing Reed-Solomon codes. IEEE Trans.
Inf. Theory, 63(9):5684–5698, 2017.

[29] V. Guruswami, C. Xing, and C. Yuan. How long can optimal locally repairable
codes be? IEEE Trans. Inf. Theory, 6(6):3662–3670, 2019.

[30] L. Holzbaur, R. Freij-Hollanti, and A. Wachter-Zeh. Cyclic codes with locality
and availability, 2018. arXiv preprint arXiv:1812.06897.

[31] H. Hou, P. P. C. Lee, K. W. Shum, and Y. Hu. Rack-aware regenerating codes
for data centers. IEEE Trans. Inf. Theory, 65(8):4730–4745, 2019.

[32] Y. Hu, P. P. C. Lee, and X. Zhang. Double regenerating codes for hierarchical
data centers. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 245–249. IEEE, 2016.

[33] Y. Hu, X. Li, M. Zhang, P. Lee, X. Zhang, P. Zhou, and D. Feng. Optimal
repair layering for erasure-coded data centers: From theory to practice. ACM
Transactions on Storage (TOS), 13(4), 2017. Article #33.

[34] P. Huang, E. Yaakobi, and P. H. Siegel. Multi-erasure locally recoverable
codes over small fields: A tensor product approach. IEEE Trans. Inf. The-
ory, 66(5):2609–2624, 2020.

[35] F. Ivanov, A. Kreshchuk, and V. Zyablov. On the local erasure correction ca-
pacity of convolutional codes. In 2018 International Symposium on Information
Theory and Its Applications (ISITA), Singapore, pages 296–300, 2018.

[36] L. Jin, G. Luo, and C. Xing. Optimal repairing schemes for Reed-Solomon
cods with alphabet sizes linear in lengths under the rack-aware model.
arXiv:1911.08016, Nov. 2019.

181

[37] R. Johannesson and K. S. Zigangirov. Fundamentals of Convolutional Coding.
J. Wiley & Sons, Inc., Hoboken, NJ, 2nd edition, 2015.

[38] J. Justesen, E. Paaske, and M. Ballan. Quasi-cyclic unit memory convolutional
codes. IEEE Trans. Inf. Theory, 36(3):540–547, 1990.

[39] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar. Codes with local
regeneration and erasure correction. IEEE Trans. Inform. Theory, 60(8):4637–
4660, 2014.

[40] A. M. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing multiple fail-
ures with coordinated and adaptive regenerating codes. In 2011 Int. Sympos.
Network Coding (NetCod), pages 1–6. IEEE, 2011.

[41] S. Kruglik, K. Nazirkhanova, and A. Frolov. New bounds and generaliza-
tions of locally recoverable codes with availability. IEEE Trans. Inf. Theory,
65(7):4156–4166, 2019.

[42] K. Lally and P. Fitzpatrick. Algebraic structure of quasicyclic codes. Discrete
Applied Mathematics, 111:157–175, 2001.

[43] J. Li and B. Li. Cooperative repair with minimum-storage regenerating codes
for distributed storage. In Proc. IEEE INFOCOM, pages 316–324. IEEE, 2014.

[44] J. Li, X. Tang, and C. Tian. A generic transformation to enable optimal re-
pair in mds codes for distributed storage systems. IEEE Trans. Inf. Theory,
64(9):6257–6267, 2018.

[45] W. Li, H. Dau, Z. Wang, H. Jafarkhani, and E. Viterbo. On the I/O costs
in repairing short-length Reed-Solomon codes. In 2019 IEEE International
Symposium Information Theory, pages 1087–1091, 2019.

[46] X. Li, L. Ma, and C. Xing. Construction of asymptotically good locally re-
pairable codes via automorphism groups of function fields. IEEE Trans. Inf.
Theory, 65(11):7087–7094, 2019.

[47] X. Li, L. Ma, and C. Xing. Optimal locally repairable codes via elliptic curves.
IEEE Trans. Inform. Theory, 65(1):108–117, 2019.

[48] S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes, I. IEEE
Trans. Inf. Theory, 47(7):2751–2760, 2001.

[49] S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes II: Chain
rings. Designs, Codes and Cryptography, 30:113–130, 2003.

[50] Y. Luo, C. Xing, and C. Yuan. Optimal locally repairable codes of distance 3
and 4 via cyclic codes. IEEE Trans. Inf. Theory, 65(2):1048–1053, 2018.

[51] J. Mardia, B. Bartan, and M. Wootters. Repairing multiple failures for scalar
MDS codes. IEEE Trans. Inf. Theory, 65(5):2661–2672, 2019.

182

[52] U. Mart́ınez-Peñas and D. Napp. Locally repairable convolutional codes with
sliding window repair. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2838–2842, 2019. expanded version in arXiv preprint
arXiv:1901.02073.

[53] S. Pawar, S. El Rouayheb, and K. Ramchandran. Securing dynamic distributed
storage systems against eavesdropping and adversarial attacks. IEEE Trans.
Inf. Theory, 57(10):6734–6753, 2011.

[54] J. Pernas, C. Yuen, B. Gastón, and J. Pujol. Non-homogeneous two-rack model
for distributed storage systems. In 2013 IEEE International Symposium on
Information Theory (ISIT), pages 1237–1241, 2013.

[55] N. Prakash, V. Abdrashitov, and M. Medard. The storage vs repair bandwidth
trade-offs for clustered storage systems. IEEE Trans. Inf. Theory, 64(8):5783–
5805, 2018.

[56] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-matrix
construction. IEEE Trans. Inf. Theory, 57(8):5227–5239, 2011.

[57] K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar. Regenerating
codes for errors and erasures in distributed storage. In 2017 IEEE International
Symposium on Information Theory (ISIT), pages 1202–1206, 2012.

[58] N. Raviv, N. Silberstein, and T. Etzion. Constructions of high-rate mini-
mum storage regenerating codes over small fields. IEEE Trans. Inf. Theory,
63(4):2015–2038, 2017.

[59] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Centralized repair of mul-
tiple node failures with applications to communication efficient secret sharing.
IEEE Trans. Inf. Theory, 64(12):7529–7550, 2018.

[60] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath. Locality
and availability in distributed storage. IEEE Trans. inf. theory, 62(8):4481–
4493, 2016.

[61] S. Sahraei and M. Gastpar. Increasing availability in distributed storage systems
via clustering. In 2018 IEEE International Symposium on Information Theory
(ISIT), pages 1705–1709, 2018. Preprint: arXiv:1710.02653v2.

[62] K. Saints and C. Heegard. On hyperbolic cascaded Reed-Solomon codes. In
International Symposium on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, pages 291–303. Springer, 1993.

[63] B. Sasidharan, G. K. Agarwal, and P. V. Kumar. Codes with hierarchical
locality. In 2015 IEEE International Symposium on Information Theory (ISIT),
pages 1257–1261, 2015. Expanded version in arXiv preprint arXiv:1501.06683.

183

[64] B. Sasidharan, M. Vajha, and P. V. Kumar. An explicit, coupled-layer con-
struction of a high-rate MSR code with low sub-packetization level, small field
size and all-node repair, 2016. Preprint: arXiv:1607.07335.

[65] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Distributed
storage codes with repair-by-transfer and nonachievability of interior points on
the storage-bandwidth tradeoff. IEEE Trans. Inf. Theory, 58(3):1837–1852,
2012.

[66] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire. A repair
framework for scalar MDS codes. IEEE Journal on Selected Areas in Commu-
nications, 32(5):998–1007, 2014.

[67] K. W. Shum and Y. Hu. Cooperative regenerating codes. IEEE Trans. Inf.
Theory, 59(11):7229–7258, 2013.

[68] J.-y. Sohn, B. Choi, and J. Moon. A class of MSR codes for clustered distributed
storage. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 2366–2370, 2018.

[69] J.-y. Sohn, B. Choi, S. W. Yoon, and J. Moon. Capacity of clustered distributed
storage. IEEE Trans. Inf. Theory, 65(1):81–107, 2019.

[70] G. Solomon and H. C. A. van Tilborg. A connection between block and con-
volutional codes. SIAM J. Appl. Math., 37(2):358–369, 1979.

[71] I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE
Trans. Inf. Theory, 60(8):4661–4676, 2014.

[72] I. Tamo, A. Barg, and A. Frolov. Bounds on the parameters of locally recover-
able codes. IEEE Trans. inf. theory, 62(6):3070–3083, 2016.

[73] I. Tamo, A. Barg, S. Goparaju, and R. Calderbank. Cyclic LRC codes, binary
LRC codes, and upper bounds on the distance of cyclic codes. International
Journal of Information and Coding Theory, 3(4):345–364, 2016.

[74] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with optimal
rebuilding. IEEE Trans. Inf. Theory, 59(3):1597–1616, 2013.

[75] I. Tamo, Z. Wang, and J. Bruck. Access versus bandwidth in codes for storage.
IEEE Trans. Inf. Theory, 60(4):2028–2037, 2014.

[76] I. Tamo, M. Ye, and A. Barg. Optimal repair of Reed-Solomon codes: Achieving
the cut-set bound. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 216–227, 2017.

[77] I. Tamo, M. Ye, and A. Barg. The repair problem for Reed-Solomon codes:
Optimal repair of single and multiple erasures with almost optimal node size.
IEEE Trans. Inf. Theory, 65(5):2673–2695, 2019.

184

[78] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello. LDPC
block and convolutional codes based on circulant matrices. IEEE Trans. Inf.
Theory, 50(12):2966–2984, 2004.

[79] M. A. Tebbi, T. H. Chan, and C. W. Sung. A code design framework for multi-
rack distributed storage. In Proc. IEEE Information Theory Workshop (ITW
2014), pages 55–59, 2014.

[80] V. Tomás, J. Rosenthal, and R. Smarandache. Decoding of convolutional codes
over the erasure channel. IEEE Trans. Inf. Theory, 58(1):90–108, 2012.

[81] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan, P. V.
Kumar, A. Barg, M. Ye, S. Hussain, S. Narayanamurthy, and S. Nandi. Clay
codes: Moulding MDS codes to yield an MSR code. In 16th USENIX Con-
ference on File and Storage Technologies (FAST 2018), Oakland, CA, pages
139–154, Feb. 2018.

[82] A. Wang and Z. Zhang. Repair locality with multiple erasure tolerance. IEEE
Trans. Inf. Theory, 60(11):6979–6987, 2014.

[83] S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek. Hierarchical coding to
enable scalability and flexibility in heterogeneous cloud storage. In 2019 IEEE
Global Communications Conference (GLOBECOM), pages 1–6, 2019. arXiv
preprint arXiv:1905.02279.

[84] M. Ye and A. Barg. Explicit constructions of high-rate MDS array codes with
optimal repair bandwidth. IEEE Trans. Inf. Theory, 63(4):2001–2014, 2017.

[85] M. Ye and A. Barg. Explicit constructions of optimal-access MDS codes with
nearly optimal sub-packetization. IEEE Trans. Inf. Theory, 63(10):6307–6317,
2017.

[86] M. Ye and A. Barg. Cooperative repair: Constructions of optimal MDS codes
for all admissible parameters. IEEE Trans. Inf. Theory, 65(3):1639–1656, 2019.

[87] B. Zhu, X. Li, H. Li, and K. W. Shum. Replicated convolutional codes: A design
framework for repair-efficient distributed storage codes. In 2016 54th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1018–1024, 2016.

185

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Preliminaries and prior work
	Efficiency in terms of bandwidth
	Stronger notions of optimal repair
	Optimal repair under connectivity constraints
	Efficiency in terms of locality
	Further extensions of local repair
	LRC convolutional codes

	Contributions
	Codes with optimal repair bandwidth
	Codes with locality

	Organization

	Enabling Optimal Access and Error Correction for the Repair of Reed-Solomon Codes
	Introduction
	Organization

	A simple example
	Preliminaries
	Repair scheme with optimal error correction capability
	Optimal access property
	Optimal access with error correction

	Enabling error correction for repair of RS codes
	Preliminaries
	The repair scheme
	The matrices Mj
	The matrices Mj are invertible

	A family of optimal-access RS codes
	New construction
	Error correction with optimal access

	Every scalar MSR code affords optimal-access repair
	Constant repair subspaces
	Optimal access for the case of constant repair subspaces
	Optimal-access repair for general scalar MSR codes

	Explicit Constructions of MSR Codes for the Rack-aware Storage Model
	Introduction
	Organization

	Problem statement and structural lemmas
	Optimal repair
	Optimal access
	A lower bound on the sub-packetization of rack-aware optimal-access MSR codes

	Rack-aware codes with optimal repair for all parameters
	Low-access codes for the rack model
	Optimal-access MSR codes with arbitrary repair degree for homogeneous storage
	Rack-aware MSR codes with low access

	A construction of Reed-Solomon codes with optimal repair
	Rack-aware RS codes with optimal repair
	Rack-aware RS codes with optimal error correction and low access

	Cyclic and Convolutional Codes with Locality
	Introduction
	Organization

	The structure of zeros of cyclic codes with locality
	Optimal cyclic LRC codes
	Cyclic codes with locality

	Codes with hierarchical locality
	Optimal cyclic codes with hierarchy
	Hierarchical cyclic codes of unbounded length

	Convolutional codes with locality
	Convolutional codes with column locality
	Convolutional codes with row locality
	Convolutional codes and quasicyclic codes
	A family of tailbiting convolutional codes with row locality

	Bi-cyclic codes with availability

	Conclusion
	RS codes with optimal repair
	Rack-aware MSR codes
	Codes with locality

	Omitted Proofs in Chapter 2
	Proof of Proposition 7

	Omitted Proofs in Chapter 3
	Proof of Proposition 24
	Proof of Proposition 26
	Proof of Theorem 27

	Omitted Proofs in Chapter 4
	Proof of Proposition 37
	Proof of Lemma 38
	Proof of Proposition 42

	Bibliography

