ABSTRACT

Title of Dissertation: CODES WITH EFFICIENT ERASURE CORRECTION

Zitan Chen
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Alexander Barg

Department of Electrical and Compute Engineering
Institute for Systems Research

Distributed storage systems are becoming increasingly ubiquitous in the emerg-
ing era of Internet of Things. Major internet technology companies employ large-
scale distributed storage systems to accommodate the massive amounts of data
generated and requested by global users. The need of reliable and efficient storage
of immense amounts of data calls for new applications and development of classical
error-correcting codes.

This dissertation is devoted to a study of codes with efficient erasure correction
for distributed storage systems. The efficiency of erasure correction is often assessed
by two performance metrics, bandwidth and locality. In this dissertation we address
several problems for each of these two metrics. We construct families of codes with
optimal communication complexity for erasure correction (“repair bandwidth”) for
a heterogeneous storage model, and derive several results for the problem of optimal
repair of Reed-Solomon codes. We also construct families of cyclic and convolutional
codes with locality, extending the range of parameters for which such families were

previously known.

CODES WITH EFFICIENT ERASURE CORRECTION

by

Zitan Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2020

Advisory Committee:

Professor Alexander Barg, Chair/Advisor
Professor Behtash Babadi

Professor Prakash Narayan

Professor Sennur Ulukus

Professor William Gasarch

© Copyright by
Zitan Chen
2020

Acknowledgments

First and foremost, I would like to thank my PhD advisor, Professor Alexander
Barg for his guidance and support for the past five years. He always made himself
available to discuss any questions or ideas I had and provide helpful suggestions to
me based on his broad knowledge and rich research experience. It is a great fortune
for me to have him as my advisor. I am also indebted to Sidharth Jaggi and Michael
Langberg, my undergraduate research advisors, who led to me into the fascinating
realm of information theory and coding theory. Without their introduction, I would
not have chosen to pursue a doctoral degree in these fields, let alone complete this
dissertation.

I would like to acknowledge financial support that made it possible for me to
focus on my studies and research and to have the opportunity to learn from so many
incredible individuals at the University of Maryland, College Park. I feel fortunate
to have met so many excellent people on this beautiful campus. Thanks for all the
memories we created together. I own my deepest thanks to all the friends, here
at College Park or far in other places, who spoke with me, listened to me, and
accompanied me during most difficult times in this journey.

My most important acknowledgment is to my parents for their constant love,
understanding and support, and for all they have done for me. There are no words
in the world that can express my thanks to them.

i

Lastly, I am grateful to my dissertation committee members, who kindly agreed

to serve on the panel, for their time and consideration.

1ii

Table of Contents

Acknowledgements ii
Table of Contents iv
List of Figures vii
List of Abbreviations viii
Chapter 1: Introduction 1
1.1 Motivationo 1

1.2 Preliminaries and prior work L. 2
1.2.1 Efficiency in terms of bandwidth 2

1.2.2 Stronger notions of optimal repair 5)

1.2.3 Optimal repair under connectivity constraints 6

1.2.4 Efficiency in terms of locality 9

1.2.5 Further extensions of local repair 11

1.2.6 LRC convolutional codes 14

1.3 Contributions 14
1.3.1 Codes with optimal repair bandwidth 15

1.3.2 Codes with locality 19

1.4 Organization 21

Chapter 2: Enabling Optimal Access and Error Correction for the Repair

2.1

2.2

2.3

of Reed-Solomon Codes 22
Introduction 22
2.1.1 Organization 23
A simple example 23
2.2.1 Preliminaries 23
2.2.2 Repair scheme with optimal error correction capability 25
2.2.3 Optimal access property 28
2.2.4 Optimal access with error correction 29
Enabling error correction for repair of RScodes 30
2.3.1 Preliminaries 30
2.3.2 The repair scheme Lo 33
2.3.3 The matrices M; 0oL 36
2.3.4 The matrices M; are invertible 41

v

2.4 A family of optimal-access RScodes. 46
2.4.1 New constructiono 47
2.4.2 FError correction with optimal access 54

2.5 Every scalar MSR code affords optimal-access repair 57
2.5.1 Constant repair subspaces 58
2.5.2 Optimal access for the case of constant repair subspaces . . . 62
2.5.3 Optimal-access repair for general scalar MSR codes 66

Chapter 3: Explicit Constructions of MSR Codes for the Rack-aware Stor-
age Model 74

3.1 Introduction 74
3.1.1 Organization 75

3.2 Problem statement and structural lemmas 75
3.2.1 Optimal repair 78
3.2.2 Optimal access 81
3.2.3 A lower bound on the sub-packetization of rack-aware optimal-

access MSR codes Lo 82

3.3 Rack-aware codes with optimal repair for all parameters 84

3.4 Low-access codes for the rack model 91
3.4.1 Optimal-access MSR codes with arbitrary repair degree for

homogeneous storageo 91
3.4.2 Rack-aware MSR codes with low access 92

3.5 A construction of Reed-Solomon codes with optimal repair 101
3.5.1 Rack-aware RS codes with optimal repair 102
3.5.2 Rack-aware RS codes with optimal error correction and low

ACCESS + o v v e e e e e e e e 107
Chapter 4: Cyclic and Convolutional Codes with Locality 109

4.1 Introduction 109
4.1.1 Organization0 109

4.2 The structure of zeros of cyclic codes with locality 110
4.2.1 Optimal cyclic LRC codes 111
4.2.2 Cyclic codes with locality 113

4.3 Codes with hierarchical locality 116
4.3.1 Optimal cyclic codes with hierarchy 116
4.3.2 Hierarchical cyclic codes of unbounded length 123

4.4 Convolutional codes with locality 126
4.4.1 Convolutional codes with column locality 130
4.4.2 Convolutional codes with row locality 131
4.4.3 Convolutional codes and quasicyclic codes 135
4.4.4 A family of tailbiting convolutional codes with row locality . . 136

4.5 Bi-cyclic codes with availability 00000 L. 144

Chapter 5: Conclusion 149

5.1 RS codes with optimal repair L. 149

5.2 Rack-aware MSR codes, 150

5.3 Codes with locality 151
Chapter A: Omitted Proofs in Chapter 2 152
A.1 Proof of Proposition 7 152
Appendix B: Omitted Proofs in Chapter 3 160
B.1 Proof of Proposition 24 L. 160
B.2 Proof of Proposition 26 161
B.3 Proof of Theorem 27 163
Appendix C: Omitted Proofs in Chapter 4 172
C.1 Proof of Proposition 37 172
C.2 Proofof Lemma 38 174
C.3 Proof of Proposition 42 L 176
Bibliography 179

vi

4.1
4.2
4.3
4.4

List of Figures

Sliding window repair Lo 130
Sliding window repair with column locality 132
Sliding window repair with row locality 133
Sliding window repair with row locality for tailbiting codes 133

vil

List of Abbreviations

GRS Generalized Reed-Solomon (codes) Section 2.2.1
H-LRC Hierarchical Locally Recoverable (codes) Section 1.2.5
LRC Locally Recoverable (codes) Section 1.2.4
MDS Maximum Distance Separable (codes) Section 1.2.1
MSR Minimum Storage Regenerating (codes) Section 1.2.1
OA Optimal Access Section 1.2.2

RS Reed-Solomon (codes) Section 1.2.1

viil

Chapter 1: Introduction

1.1 Motivation

Large-scale distributed storage systems are arguably the backbone of numerous
cutting-edge technologies in our contemporary society. These systems operate on
an increasingly large scale, and their reliability becomes the central consideration
of the system design. For example, parts of the data stored in the systems may be
inaccessible due to events such as unreliable network connections, power outages,
and disk-failures. Moreover, such events are the norm rather than the exception in
the course of daily operations of the system. To improve system reliability and to
combat data loss, several classes of erasure codes have been brought into play in
distributed storage systems in practice.

Existing coding schemes in distributed storage systems are usually capable
of correcting multiple erasures. However, the most common erasure pattern in
distributed storage systems in reality is the case of a single erasure. Since most of the
existing coding schemes and their erasure correction procedures do not distinguish
between correcting single and multiple erasures, they fall short of recovering a single
erasure efficiently. Thus, the problem of efficient erasure correction in various classes

of algebraic codes, also known as the repair problem, has recently attracted renewed

attention. In this dissertation, we address a series of questions related to the general

problem of codes with efficient erasure correction.

1.2 Preliminaries and prior work

In this section, we introduce some basic definitions and terminology related to
coding for distributed storage, and review prior work most relevant to the results in
this dissertation.

A distributed storage system is formed of a collection of n nodes that are used
to store the data. Loss of data in a node is called a node failure and the recovery of
the data in a failed node is termed node repair. Using the coding-theoretic language,
a distributed storage system is a code of length n, and therefore, a node corresponds
to a coordinate of the code. In the same vein, a failed node refers to an erasure of
the coordinates and erasure correction is another term to describe node repair.

The performance of efficient node repair can be measured by different metrics,

among which we are most interested in bandwidth and locality.

1.2.1 Efficiency in terms of bandwidth

To a large extent, efficient repair of failed nodes critically depends on the
volume of communication exchanged between the nodes. The constraint on the
amount of communication, termed “repair bandwidth,” adds new features to the
erasure correction problem, and has motivated a large amount of research in coding

theory in the last decade.

The repair problem under restriction of low repair bandwidth was initially
introduced in the well-known paper [20] which casts the capacity problem of dis-
tributed storage as a network coding problem where the necessary conditions for
the repair of failed nodes were derived by considering the information flow in the
network that occurred in the course of repair. These conditions imply a bound on
the minimum number of symbols required for repair of a single failed node, which is
known as the cut-set bound on the repair bandwidth. Paper [20] further considered
a variety of data coding schemes, termed regenerating codes, that optimize either
storage or repair bandwidth, as well as the tradeoff between these two quantities.

Consider an (n, k,l) array code € over a finite field F,! i.e., a collection of
codewords ¢ = (cy,...,¢c,), where ¢; = (¢i0,Cins--- i)t € Fli=1,...,n. A
node ¢;, 7 € [n] can be repaired from a subset of d > k helper nodes {c; : j € R}, R <
[n]\{i}, by downloading /3;(R) symbols of F if there are numbers 3;;, j € R, functions

fij: F' — FP_je R, and a function g; : F2=x% — F!such that

¢ = gi({fij(cj),J e R}) for all c = (c1,...,cn) € C

and

DBy = Bi(R).

jeR
Codes that we consider form linear spaces over F. If € is not linear over F', it
is also called a wector code, while if it is, it is called scalar to stress the linearity

property. A code € is called maximum distance separable or MDS if any k coordinates

1We also denote a finite field by F, to indicate that its order is g.

3

{cj,,1 =1,...,k} of the codeword suffice to recover its remaining n — k coordinates.
It is well known [20] that for any MDS code € (scalar or vector), any i € [n],
and any R < [n]\{i} of cardinality |R| > k, we have

|RJ
Bi(R) = R—k+l (1.1)

For an MDS code €, we define the minimum bandwidth of repair of a node from
a d-subset R of helper nodes as (d) = maxje[n) Minge) (i}, j=1=d Bi(R). It follows

immediately from (1.1) that

dl

Bi=Bld) = g7

(1.2)

An MDS code that attains the bound (1.2) with equality is said to afford optimal
repair, and a repair scheme that attains this bound is called optimal. Such codes are
also termed minimum storage regenerating codes or MSR codes, and the parameter
[is called node size or sub-packetization. Multiple constructions of vector MDS
codes with optimal repair are available in the literature, including papers [56], [74],
[84, 85], [26], [58].

While the aforementioned papers mostly deal with vector codes, we are also
interested in the repair problem for scalar MDS codes, more specifically, for Reed-
Solomon codes or RS codes. This code family continues to attract attention in
multiple aspects of theoretical research such as list decoding of variants of RS codes,

and it is also one of the most used coding methods in a vast variety of practical

systems. The first work to isolate and advance the repair problem for RS codes was
[28] which itself followed and developed the ideas in [66]. In [28], the authors view
each coordinate of RS codes as a vector over some subfield and characterize linear
repair schemes of RS codes over this subfield. For RS codes (and more generally for
scalar codes), the node size [is defined as the degree of extension of the symbol field
over the subfield. Following [28], several papers attempted to optimize the repair
bandwidth of RS codes [17], [18], [51]. A family of optimal-repair RS codes in the
case of repairing a single failed node as well as multiple nodes was constructed in

7).

1.2.2 Stronger notions of optimal repair

The basic repair problem of MDS codes has been extended to the case that
some of the helper nodes provide erroneous information (or arbitrary nature). Sup-
pose that a subset of e nodes out of d helpers provide erroneous information and
define 8(d, e) to be the minimum number of symbols needed to repair a failed node

in the presence of such errors. It was shown in [57], [53] that for d > k + 2e,

dl
d—2e—k+1

f(d,e) = (1.3)

A repair scheme that achieves this bound is said to have optimal error correction ca-
pability. Constructions of MDS array codes with optimal error correction capability
are presented, for instance, in [84].

Another parameter of erasure codes for distributed storage that affects the

system performance is the so-called access, or input-output cost of repair. Indeed,
while the code may support parsimonious exchange between the helper nodes and
the repair center, generation of the symbols to be transmitted from the helper node
may require reading the entire contents of the node (trivial access), which increases
delays in the system. The smallest number of symbols accessed on each of the
helper nodes in an MSR code is [/(d — k + 1), and such codes are said to have the
optimal access property or OA property. Advantages of having this property are well
recognized in the literature starting with [65], and a number of papers were devoted
to constraints that it imposes on the code parameters such as sub-packetization
[75], [3]. Many families of MSR codes including early constructions in [8, 74] as
well as code families for general parameters in [84, 85], [81] have the optimal access
property.

The optimal-access repair and optimal error correction capability can be com-
bined. According to (1.3), we say that a code family/repair scheme have both
properties if repair can be performed in the presence of e errors, while the number
of symbols accessed on each of the helper nodes equals 1/(d —2e — k + 1) proportion

of the contents of each of d helper nodes.

1.2.3 Optimal repair under connectivity constraints

Initially the problem of repair bandwidth was formulated for the so-called
centralized repair model which assumes that the failed nodes are repaired by a single

data collector that receives information from the helper nodes and performs the

recovery within a single location, having full access to all the downloaded information
and the intermediate results of the calculations [9, 59, 84]. Another well-known
model assumes cooperative repair, when the failed nodes are restored at different
physical locations, and the information downloaded to each of them as well as the
exchange of intermediate results between them are counted toward the overall repair
bandwidth [40, 43, 67, 86].

The problems of centralized and cooperative repair have been addressed in
multiple recent papers, and there are explicit constructions of optimal-repair regen-
erating codes that cover the entire range of admissible parameters, require small-size
ground alphabet compared to the length n of the encoding block, and attain the
smallest possible repair bandwidth [56, 74],[84],[64, 81, 85],[44] (more references are
given in a recent survey [2]). The availability of optimal constructions has motivated
a shift of attention toward studying data recovery not only under communication,
but also connectivity constraints, in other words, storage models in which communi-
cation cost between nodes differs depending on their location in the storage cluster.

Erasure coding for clustered architectures affords several extensions from the
basic setting of homogeneous storage. One of the first questions analyzed for het-
erogeneous storage models was related to repair under the condition that the system
contains a group of nodes, downloading information from which contributes more
to the repair bandwidth than downloading the same amount of information from
the other nodes [1]. Later works [23, 54] observed that a more realistic version of
non-homogeneous storage should assume that the cost of downloading information

depends on the relative location of the failed node in the system. In this case, down-

7

loading information from the group that contains the failed node (also called the
host group) contributes less to the cost than inter-cluster downloads. The authors of
[23, 54] have assumed that the storage is formed of two clusters and derived versions
of the cut-set bound for the minimum repair bandwidth. The two-cluster model was
further developed in recent papers [68, 69] which assumed that the encoded data is
placed in a number of clusters (generally more than two), and derived a cut-set type
bound on the repair bandwidth for this case. Moreover, [69] showed existence of
optimal-repair codes for their model, and [68] gave an explicit construction of MDS
array codes for the case when the code dimension is equal to the size of the clus-
ter. Paper [55] considers several versions of node repair for clustered (rack-aware)
storage, but does not address the general case of rack-aware MSR codes. We also
mention [61, 79, 84] which discuss other variations of clustered storage architectures
and are less related to our work in this dissertation.

The rack-aware storage that we address in this dissertation assumes that k£ data
blocks are encoded into a codeword of length n = nu and stored across n nodes. The
nodes are organized into n groups, also called racks. Suppose that a node has failed
and call the rack that contains it the host rack. To perform the repair, the system
downloads information from the nodes in the host rack (called below local nodes),
as well as information from the other racks. The rack-oriented storage model is
distinguished from the other clustered storage architectures in that the information
from nodes that share the same rack, can be processed before communicating it
to the failed node. Communication within the racks, including the host rack, does

not incur any cost toward the repair bandwidth. The main benefit of rack-aware

coding is related to reducing the bandwidth required for repair compared to coding
for homogeneous storage.

This model was introduced in [32, 33]. Specifically, the authors of [32] derived
a version of the cut-set bound of [20] adapted for this case and showed existence
of MSR codes with optimal repair for the rack model. A more expanded study of
codes for this model was undertaken in a recent paper [31], which showed existence
of codes with optimal repair bandwidth for a wide range of parameters. At the same
time, there are very few explicit constructions of MSR codes for this model known
in the literature. We mention [33] which presented such codes for 3 racks and for

the case when the number of parities of the code equals the size of the rack u.

1.2.4 Efficiency in terms of locality

In addition to the repair bandwidth, locality is another important metric for
assessing the performance of efficient erasure correction. Codes with locality, also
known as locally recoverable codes or LRC codes, are able to correct one or several
erasures in the codeword based on the contents of a subset of other code coordinates,
whose cardinality is much smaller than the dimension of the code. In other words,
LRC codes support repair of a failed node by contacting a small number of other
nodes in the storage system. The problem of local repair was first isolated in [25],
and, similarly to the problem of optimal-bandwidth repair, it has been actively

studied in the last decade.

Definition 1 (LRC cODES). A linear code € < Fyy is locally recoverable with locality

rif for every i € {1,2,...,n} there exists an r-element subset I, < {1,2,...,n}\{i}
and a linear function ¢; : Fy, — F, such that for every codeword ¢ € C we have

¢ = ¢i(cyy, ..., ¢j,), where j; < jo < --- < j, are the elements of I,.

The coordinates in I; are called the recovering set of 7, and the set {i} U I; is
called a repair group. Below we refer to a linear LRC code of length n, dimension k,
and locality r as an (n, k,) LRC code. Since the code is occasionally used to correct
a large number of erasures (such as in the event of massive system failure), another
parameter of interest is the maximum number of erasures that it can tolerate. This
is controlled by the minimum distance d(C) of the code, for which there are several
bounds known in the literature. We will be interested in the generalized Singleton

bound of [25] which states that for any LRC code €,

d(C) <n—k— m L2 (1.4)

r

LRC codes can be constructed in a number of ways. A connection between
LRC codes and the well-studied family of RS codes was put forward in [71], where
codes with large distance were constructed as certain subcodes of RS codes. The
results of [71] paved the way for using powerful algebraic techniques of coding theory
for constructing other families of LRC codes including algebraic geometric codes
[5, 46, 47]. In [73] it was observed that a particular class of the codes in [71] can be
represented in cyclic form, and the distance and locality properties of cyclic LRC
codes were described in terms of the zeros of the code. This established a framework
for cyclic LRC codes that was advanced in a number of ways in several recent works

10

[6, 11, 30, 50].

1.2.5 Further extensions of local repair

While in most situations repairing a single failed node restores the system to
the functional state, occasionally there may be a need to recover the data from
several concurrent node failures. The following extension of the previous definition

is due to [39].

Definition 2 ((r,0) LOCALITY). For any 6 > 2 we say that a linear code C has (r,0)
locality if every coordinate i € {1,...,n} is contained in a subset J; {1,...,n} of
size at most r + 6 — 1 such that the restriction Cj, to the coordinates in J; forms a

code of distance at least §.

Note that in the case of 6 = 2 the codes defined here are exactly the codes
of Def. 1 above. The case of § > 2 was also studied in [71], where constructions
of RS-like LRC codes with (r,0) locality were presented. The approach of [73]
was later extended by [11] to construct codes with (r,d) locality, designing a cyclic
representation of the polynomial evaluation codes from [71] for the general case of
0= 2.

An intermediate situation arises when the code is designed to correct a single
erasure by contacting a small number r; of helper nodes, while at the same time
supporting local recovery of multiple erasures. Extending this idea to multiple levels
of local protection, the authors of [63] introduced the concept of hierarchical LRC

codes or H-LRC codes, which are defined as follows.

11

Definition 3 (H-LRC CODES). Let h =2 1, 0 < r; <re < ... <rp, <k, and
1 <d; < ... <0p <d be integers. A linear code C < Fy is said to have h-level
hierarchical locality (r1,01), ..., (Th, On) if for every 1 < i < h and every coordinate

of the code @ there is a punctured code C® such that the coordinate is in the support

of € and
(a) dim(CW) < 7y,
(1) d(e) > 5,
(c) thei-th local code @Y has (i—1)-level hierarchical locality (ry,61), . .., (ri—1, di_1).

The authors of [63] proved the following extension of the bound (1.4): The

minimum distance of an h-level H-LRC code with locality satisfies the inequality

d<n—k+@—§J5}@—@4% (1.5)

i=11"1

where dp = 1. In particular, for h = 1 this gives a version of the bound (1.4) for the

distance of an (n, k) code with (r,) locality:

dgn—k+5—[§k5—m. (1.6)

We call an H-LRC code optimal if its distance attains the bound (1.5). Note that
it is possible that the code is optimal while its local codes C® for some or even all
1 < h—1 are not. We say that an H-LRC code € is strongly optimal if in every level

1,1 < i < h, the i-th local codes are optimal H-LRC codes with i — 1 levels. For

12

h =1 the distance of the optimal code with (r,d) locality attains the bound (1.6)
with equality.

In addition to defining the problem and deriving a bound on the parameters of
H-LRC codes, the authors of [63] extended the construction of [71] to the hierarchical
case. Their construction was further generalized to algebraic geometric codes in [4].
On the other hand, several recent studies presented families of codes with multiple
levels of erasure correction [22, 27, 83|, not necessarily within the framework of the
above definition. As far as H-LRC codes are concerned, the only general family of
optimal H-LRC codes that we are aware of was presented in [4, 63]. This construction
essentially followed the approach of [71], relying on multivariate polynomials that
are constant on the blocks that form the support of the code €% in Def. 3. The codes
of [4, 63] form a family of strongly optimal H-LRC codes which can be constructed
for any code length n < ¢, dimension k, and any values of r;,7 = 1,...,h as long
as 1i|riv1,4 = 1,...,h — 1 and rp|k. The divisibility constraint is essential for the
constructions discussed, and it limits the possible choices of the code parameters.

Another extension of the local repair is the problem of availability which calls
for constructing LRC codes with several disjoint recovering sets for each code coor-

dinate. LRC codes with this property are defined as follows [60, 82].

Definition 4 (LRC CODES WITH AVAILABILITY). Lett > 1 and (ry,01), ..., (7, 6¢)
be integers. A code C < Ty is said to have availability t with locality (11,061), .. ., (¢, 0¢)
if for every coordinate j,1 < j < n of the code C there are t punctured codes

CW 1 < i <t such that j € supp(C?),i =1,...,t and

13

(a) dim(CW) < r;,
(b) d(CW) = §;,

(¢) Mizisupp(CY) = {7}.

We note that the known bounds on the code parameters for multiple recovering
sets [41, 60, 72, 82] do not support a conclusive picture, and we are not aware of
general families of codes with availability whose distance attains one of the known

upper limits.

1.2.6 LRC convolutional codes

LRC convolutional codes form another class of erasure codes, which was con-
sidered in several previous works [15, 35, 87] before being thoroughly analyzed in a
recent paper [52]. The results of [52] focused on the so-called sliding window repair
property of convolutional codes, and the authors observed that certain families of
convolutional codes, notably the so-called codes with the maximum distance profile
[24, 80], suggest an approach to constructing codes with locality. They also pre-
sented a family of LRC convolutional codes with sliding window repair for the case

of column locality.?

1.3 Contributions

We address a range of questions on codes with optimal repair bandwidth and

on codes with locality, corresponding to the two metrics of interest for efficient

2See Sec. 4.4.1 for more details.

14

erasure correction: bandwidth and locality.

1.3.1 Codes with optimal repair bandwidth

The repair problem of scalar MDS codes.

First, we address two problems related to RS repair, namely, (i) repair schemes
of RS codes with optimal error correction, and (ii) RS codes with optimal-access
repair. Error correction during repair of failed nodes was previously only considered
for vector codes [57], [53], [84]. The problem of low-access RS codes was studied in
[16, 19, 45]. In particular, the last of these works analyzed the access (input/output)
cost of the family of RS codes of [77], providing an estimate of this parameter, but
stopping short of achieving optimal access.

Our results provide a solution to problems (i)-(ii). Specifically, we construct
a repair scheme for RS codes in [77] that has optimal error correction capability
(i.e., attains the bound (1.3)). This is accomplished by enforcing the information
provided by helper nodes for repair to form codewords of an appropriate MDS code,
and thus the error correction capability of the MDS code gives rise to an optimal
error-tolerance repair scheme. We also construct a family of RS codes with optimal
access repair for any single failed node. The starting point of our optimal-access
construction is the observation that the RS code family presented in [77] actually
affords optimal-access repair of one node but not all the other nodes. In view of
this, we impose additional structures on the underlying finite field that generalize

what is needed for the optimal-access repair of one node, which makes it possible

15

for every node to be repaired with optimal access. Additionally, combining both
ideas discussed herein, we prove that the constructed codes with optimal access can
be furnished with a repair scheme that supports both optimal error correction and
optimal-access repair simultaneously.

Apart from this, we also show that any scalar MDS code with optimal repair
of a single node from d helpers, k < d < n — 1, affords a repair scheme with optimal
access, and this includes the RS codes in [77]. While our arguments do not provide
an explicit construction, we give a combinatorial search procedure, showing that it
exists for any scalar MSR code. The resulting optimal access codes have the same

sub-packetization as the original MDS codes.

The rack-aware storage model.

We present constructions of MSR. codes for the rack-aware storage model that
have optimal repair bandwidth and cover all admissible parameters, such as the code
rate k/n, the size and number of the racks. The only restriction that we assume
is the natural condition that the racks are of equal size u and that the codeword
is written on 7n racks such that u coordinates of the codeword are placed on each
of them. This assumption is also consistent with the literature [31, 32]. The main
idea that underlies these constructions is the multiplicative group structure of finite
fields. More precisely, the multiplicative structure enables one to aggregate and
compress the information provided by the nodes within in a helper rack that is
needed for repair of the failed node. The compressed information, together with the

free information from the local nodes in the host rack, enables the optimal repair of

16

the failed node.

We present two families of MDS array codes that support optimal repair in
the rack model. The first family gives an explicit construction of optimal-bandwidth
codes for repairing a single node from the nodes located in d helper racks for any
|k/u] < d <n — 1. The underlying finite field of our construction is of size at most
n?/u where u is the size of the rack, and the node size (sub-packetization) equals
I~ (d— s)”/ “. The construction is phrased in terms of the parity-check equations
of the code, as in [84, 85], and relies on the multiplicative structure of the field to
account for the rack model considered here.

The second code family constructed in this paper, in addition to optimal repair,
addresses the question of reducing the number of symbols accessed on each of the
helper racks. The code construction is presented in two steps. First, we present a
new family of optimal-access codes for the standard repair problem (homogeneous
storage), constructing codes with arbitrary repair degree d,k < d < n — 1 over a
field F' of size at least d — k + 1. These parameters are similar to optimal-access
codes constructed in [84], and in fact require a slightly larger field F'. At the same
time, the new construction can be modified for the rack model, resulting in codes
with low access. The additional ingredient that enables low access is that we devise
the parity check equations carefully such that the content of any single node and the
contents of a 1/(d—k+1) fraction of the other nodes constitute codewords of certain
MDS codes of dimension d. Thus, any d helper nodes suffice to repair the failed node
with optimal access under the homogeneous storage model. Furthermore, with the

multiplicative group structure discussed above, this leads to a family of low-access

17

codes for the rack-aware storage model.

We also present a family of (scalar) RS codes that can be optimally repaired
in the rack model. The construction is a modified version of the RS code family
constructed in [77] for the case of homogeneous storage. Furthermore, extending
this approach and utilizing ideas that form the basis of the RS codes with optimal
error correction and optimal access mentioned above, we are able to construct a
family of RS codes with optimal error correction capability and low access for the
rack-aware storage model.

Apart from the code constructions, we examine the structure of codes with
optimal repair or optimal access for the rack model. Because of intra-rack processing,
the definition of optimal access is not as explicit as in the homogeneous case. We
prove a lower bound on the number of accessed symbols for codes that support
optimal repair. At the same time, the codes that we construct fall short of attaining
this bound, and it is not clear what is the correct value of this quantity.

Finally, we derive a lower bound on the node size for optimal-repair codes
in the rack model, modifying for this purpose the approach of the recent work [3],
where a similar bound was proved for the homogeneous case.

We note that the results of [69] and [68] do not allow data processing within
clusters (racks) in the course of the repair task, and thus are not directly comparable
with our findings. Subsequent to our work [13], the repair problem of RS codes for

rack-aware storage was consider in [36] for a different range of storage parameters.

18

1.3.2 Codes with locality

Cyclic LRC codes.

In the part on cyclic codes we focus on several aspects of LRC codes that have
not been previously addressed in the literature. The first of these is codes with
hierarchical locality (H-LRC codes). The starting point of our constructions is a
cyclic version of the RS-like codes with locality designed in [71]. As noted above,
RS codes over [, can be alternatively described in terms of polynomial evaluation
and (in the case that the code length n divides ¢ — 1) as cyclic codes of the BCH
type.

We first derive conditions on the zeros of a cyclic code that support hierarchical
locality. As a result, we construct families of cyclic H-LRC codes for any levels of
hierarchy. We also derive conditions that are sufficient for our codes to be (strongly)
optimal which do not rely on the divisibility assumptions prevailed in the literature,
thus yielding a new range of code parameters.

Furthermore, we examine two other problems for LRC codes that benefit from
the cyclic code construction. The first of them is the problem of maximum length
of optimal LRC codes put forward in [29]. Answering the challenge of constructing
optimal LRC codes of length larger than ¢, the authors of [6, 10, 29, 50] constructed
several families of optimal cyclic codes of large, and in some cases even unbounded
length, and [10] extended these results to the case of several erasures. Here we follow

the lead of [50] and construct an infinite family of H-LRC codes over a given finite

19

field and establish conditions for their optimality in terms of the bound (1.5).

Finally, we consider the problem of availability, namely, LRC codes with mul-
tiple recovering sets for each coordinate of the code. We note that multidimensional
cyclic LRC codes (product codes of cyclic LRC codes) naturally yield several recov-
ering sets for the coordinates. We use a description of bi-cyclic codes in terms of
their zeros together with a special version of code concatenation [62] to construct
codes with availability and rate higher than the rate of product codes.

Although we do not pursue this direction here, let us note that the methods
of constructing cyclic codes with locality presented in this dissertation enable one
to construct codes with both hierarchical locality and availability. We remark that
constructions of LRC codes that have both properties were presented in [4], where

the main tools were fiber products and covering maps of algebraic curves.

LRC convolutional codes.

The results on H-LRC cyclic codes also enable us to connect the construction
of H-LRC cyclic codes and convolutional codes with locality. In fact, the recent
work [52] suggested that there may be a connection between H-LRC codes and LRC
convolutional codes. We show that this connection indeed leads to fruitful results,
designing LRC convolutional codes for the case of row locality (defined in Sec 4.4).

The lower bounds on the column distance® of the codes constructed here and in
[52] are the same; however the alphabet size of our codes is much smaller than in [52].

We also derive an upper bound on the column distance of LRC convolutional codes

3 A distance measure of interest for convolutional codes. See Def. 10 in Sec. 4.4 for more details.

20

with locality; however, our construction falls short of attaining it. The method
that we use relies on the characterization of zeros of cyclic block H-LRC codes.
We observe that several levels of hierarchy enable one to put our cyclic H-LRC
codes in an appropriate quasicyclic form, and then use a classic connection between
quasicyclic codes and convolutional codes [70] to construct convolutional codes with

locality.

1.4 Organization

The dissertation is organized as follows. Following this introductory chapter,
the main part of this dissertation is divided into three chapters, presenting our main
results in detail. Chapter 2 and 3 are devoted to the studies of codes with optimal
repair bandwidth, while Chapter 4 focuses on codes with various types of locality.

Chapter 2 is dedicated to the repair problem of scalar MSR codes, in particular,
to the studies of the properties of error correction and optimal access for repairing
RS codes. This chapter is based on the paper [14].

Chapter 3 concentrates on the rack-aware storage model, analyzing properties
that are unique for the model and construct families of MSR codes tailor-made for
the model. This chapter is built upon the paper [13].

Chapter 4 examines cyclic codes with hierarchical locality and availability as
well as convolutional codes with locality. This chapter is formed on the paper [12].

Finally, Chapter 5 concludes this dissertation and points out some open prob-

lems. Proofs omitted from the main text are collected in the Appendices.

21

Chapter 2: Enabling Optimal Access and Error Correction for the

Repair of Reed-Solomon Codes

2.1 Introduction

In this chapter we study the repair problem of scalar MDS codes. RS codes
were shown to possess a repair scheme that supports repair of failed nodes with
optimal repair bandwidth. We extend this result in two directions. First, we propose
a new repair scheme for the RS codes constructed in [77] and show that repair is
robust to erroneous information provided by the helper nodes while maintaining
the optimal repair bandwidth. Second, we construct a new family of RS codes
with optimal access for the repair of any single failed node. We also show that the
constructed codes can accommodate both features, supporting optimal-access repair
with optimal error-correction capability.

Going beyond RS codes, we also prove that any scalar MDS code with repair

bandwidth attaining the cutset bound affords a repair scheme with optimal access

property.

22

2.1.1 Organization

The constructions are technically involved, and we begin with illustrating them
in an example in Sec. 2.2. In Sec. 2.3 we present a repair scheme that supports
optimal error correction for the RS codes family constructed in [76]. Then in Sec. 2.4
we construct a new family of RS codes that affords optimal-access repair and this
family is shown to admit an explicit repair scheme that supports both optimal error
correction and optimal access simultaneously. Sec. 2.5 that follows proves that any

scalar MSR code has a repair scheme with optimal access property.

2.2 A simple example

In this section, we construct an RS code together with a repair scheme that
can recover its first node with both optimal access and optimal error correction

capability.

2.2.1 Preliminaries

1) We begin with some standard definitions. Recall that a generalized RS
code or GRS code of length n and dimension k over a finite field F' is obtained by
fixing a set of n distinct evaluation points := {ay, as,...,®,} < F and a vector
(v1,...,v,) € (F*)" with no zero coordinates. Then the GRS code is the set of

vectors

GRSgr(n, k,v,Q) = {(vi f(an),vaf (), ..., vnf(an)) : f € Flx],deg f < k}.

23

In particular, if (v1,...,v,) = (1,...,1), then the GRS code is called the Reed-
Solomon (RS) code and is denoted by RSg(n,k,Q). It is a classic fact that the
dual code (RSp(n, k,Q))* is GRSg(n,n — k,v,9Q), where v € (F*)" is some vector.
In particular, if ¢ = (cy,...,¢,) € F™ is a vector such that > | ¢;h(a;) = 0 for
every polynomial h(z) of degree < k — 1, then ¢ is contained in a GRS code of
dimension n — k. Rephrasing this, we have the following obvious proposition that

will be frequently used below.

Proposition 1. Let ¢ = (c¢1,...,¢,) € F™ and suppose that Y | c;o = 0 for all
t =0,1,...,k — 1. Then the vector c is contained in a code GRSp(n,n — k,v,),

where v e (F*)" and Q = {aq, ..., a,}.

Let E be an algebraic extension of I’ of degree s. The trace mapping trg/r is
given by z — 1 + 2Fl 4 B o 2T For any basis g, ...,7Vs—1 of F over F
there exists a trace-dual basis 0o, . .., ds—1, which satisfies trg/p(7;0;) = Lg—jy for all
pairs 4, j. For an element x € E the coefficients of its expansion in the basis (;) are
found using the dual basis, specifically, z = Zf;(} trg/p(20;)y;. As a consequence,
for any basis (J;) the mapping E — F* given by x — (tr(xd;),i =0,...,s—1)is a
bijection.

2) Before we define the RS code that will be considered below, let us fix
the parameters of the repair scheme. We attempt to repair a failed node using
information from d helper nodes. Suppose that at most e of them provide erroneous
information. Assume that d—2e > k, and let s := d—2e—k+1. Let F be a finite field

of size |F'| = n — 1. Choose a set of distinct evaluation points Q := {ay, s, ..., @}

24

such that a; € F for all 2 <7 < n and «; is an algebraic element of degree s over
F (which means that the extension field E := F(«;) forms an s-dimensional vector

space over F'). Consider the code

C:= RSg(n, k, Q).

In this section we present a repair scheme of the code € that can repair the first
node of € over the field F'; in other words, we represent the coordinates of C as
s-dimensional vectors over F' in some basis of E over F. Thus, the node size of this
code is s. We note that the code € represented in this way is still a scalar code.

The repair scheme presented below has the following two properties:

e the optimal error correction capability, i.e., the repair bandwidth achieves the

bound (1.3) for any pair (d,e) such that d —2e = s + k — 1;

e in the absence of errors it has the optimal access property, i.e., the number of
symbols accessed during the repair process is d. Thus, in this case e = 0 and

s=d—k+ 1.

2.2.2 Repair scheme with optimal error correction capability

Let ¢ = (¢1,¢a,...,¢,) € C be a codeword and suppose that ¢ is erased. Since

€+ = GRSg(n,n — k,v, Q) for some v € (E*)", we have

t t t
V1Q € F Voinco + - +vpagc, =0, t=0,1,....n—k—1,

25

or

viate; = —veabey — - —wvpate,, t=0,1,...,n—k—1. (2.1)

Evaluating the trace tr = trg/p on both sides of (2.1), we obtain the relation

tr(viale;) = —tr(veabcy) — - - — tr(v,alc,)

= —abtr(vecy) — - — ol tr(vee,), t=0,1,....n—k—1, (2.2)

where the second equality follows from the fact that as,...,«, € F. Therefore,
knowing the values of (tr(vaca), ..., tr(v,c,)) enables us to compute tr(viatc;) for
all 0 <t < n—k—1 Since degp(a;) = s, the elements 1,aq,...,a5 " form
a basis of ¥ over F. As a consequence, one can recover ¢; from the values of
{tr(viater) : 0 < t < s —1}. By definition, s =1 =d—2e —k < n—Fk—1,
so {tr(viatecy) : 0 <t < s—1} € {tr(viade;) : 0 < ¢ < n—k — 1}. Combining
this with (2.2), we see that the value ¢; is fully determined by the set of elements
(tr(vaca), ..., tr(vacy)).

Recalling our problem, we will show that in order to repair ¢y, it suffices to
acquire the values tr(v;c;) from any d helper nodes provided that at least d — e =
(d+ s+ k —1)/2 of these values are correct. This will follow from the following

proposition.

Proposition 2. Let f(x) € F|x] be the minimal polynomial of ay. For any s <

n—k and any ¢ = (c1,...,¢,) € C the vectors (f(ag)tr(vaca), ..., f(an) tr(vac,))

26

are contained in an (n —1,s + k — 1) GRS code over F.

Proof. Let T:={0,1,...,n—k —s—1}. Since o; € F,i = 2,...,n by definition we

have f(a;) # 0 for all such 7. Next, deg(f) = s, and thus for all t € T

(v1ad f(on), vead f(ag), ..., 0l flay)) € G

This implies that for all t € T

Ul@if(al)ﬁ + Uzagf(%)@ + -+ UnOéif(an)Cn =0,

but f(ay) = 0, so taking the trace, we obtain

ab f(ag) tr(vacy) + - + a fay) tr(vee,) =0, teT. (2.3)

By Proposition 1, this implies that the vectors (f(az)tr(vacs), ..., f(an) tr(v,e,))

are contained in a GRS code of length n — 1 with n — s — k parities. n

The GRS code identified in this proposition can be punctured to any subset R
of d coordinates, retaining the dimension and the MDS property. This means that
the punctured code is capable of correcting any e = (d—s—k+1)/2 errors. Therefore,
as long as no more than e helper nodes provide incorrect information, we can always
recover (tr(vacs),...,tr(v,c,)) by acquiring a subset {tr(v;;c;;),7 = 1,...,d} from
any d helper nodes and correcting the errors based on any decoding procedure of

the underlying MDS code. Finally note that the case s = n — k can be added

27

trivially because then d = n —1 and e = 0, so all the helper nodes provide accurate

information, and no error correction is required (or possible).

2.2.3 Optimal access property

Following the discussion in the first part of this section, we show that the code
C = RSg(n, k, Q) defined above supports optimal-access repair of the node ¢;. In
this part we assume that the helper nodes provide accurate information about their
contents, and we do not attempt error correction.

To represent the code, we choose a pair of trace-dual bases (b;), (bF) of E over
F, where we assume w.l.o.g. that by = 1. Next, represent the ith coordinate of the
code, i € {1,...,n}, using the basis (v; ‘b,,,m = 0,...,s — 1), where (vy,...,v,) is

defined by the code C*. Namely, for a codeword ¢ € € we have

s—1
¢ =v; ! Z Cimbi,., (2.4)
m=0
where ¢;,, € F'forallm = 0,1,...,s—1. We assume that each storage node contains

the vector (Ci’o, Cily--- 7Ci,s—1)-
As discussed above, the value ¢; can be recovered from any d-subset of the set
of elements {tr(v;c;),j = 2,...,n}. Further, foralli =2,... . nand m =0,...,s—1

we have tr(v;c;by,) = ¢;m, so in particular,

tr (Uici) =G 0-

28

Thus, to repair ¢; it suffices to access and download a single symbol ¢; o from the cho-
sen subset of d helper nodes. According to the bound (1.1), the minimum number of
symbols downloaded from a helper node for optimal repair is the (1/s)th proportion
of the node’s contents. Overall this shows that the repair scheme considered above
has the optimal access property.

The above discussion sets the stage for constructing RS codes with optimal-
access repair for each of the n coordinates. Namely, we took a basis 1,by,...,bs_1 of
E over F and represented each ¢; in the basis (v; 'b?). The only element of the helper
coordinate that we access and download is ¢;¢. For more complicated constructions
of RS codes, e.g., the ones constructed in [77] and below in the chapter, we assume
that E is an [-degree extension of F'. The known repair schemes require to download
elements of the form tr(v;c;ap), tr(vicar), . . ., tr(viciaqs)—1), where ag, a1, . . ., ag/s)—1
are linearly independent over F'. In this case, we can extend the set ag, ay, ..., a@/s—1
to a basis (b;) of E over F. Following the approach in (2.4), we store the code
coordinate ¢; as the vector of its coefficients (c;o,¢i1,...,¢iy—1) in the dual basis
(br,1=0,...,1—1) of the basis (b;). Since ¢; ., = tr(vic;a,,) forallm = 0,1,...,1/s—
1, this choice of the basis enables one to achieve optimal access. This idea underlies

the construction presented below in Sec. 2.4.1.

2.2.4 Optimal access with error correction

Thus far, we have assumed that errors are absent for optimal-access repair.

To complete the picture, we address the case of codes with both optimal access and

29

optimal error correcting capability for the repair of node c¢;. It is easily seen that
both properties can be combined. Indeed, since tr(v;c;) = ¢;o for all i = 2,... n,
and since by Proposition 2 these elements form a codeword of a GRS code, it is
immediately clear that ¢; can be repaired with optimal error correction capability
and optimal access. To enable this property for any ¢;, below we add extra features
to the general repair scheme with optimal access. Specifically, error correction and
optimal access are based on two different structures supported by the code. We
show that it is possible to realize the error-correction structure in an extension field
located between the base field and the symbol field of the code. Further reduction
to the base field enables us to perform repair with optimal access. These ideas are

implemented in detail in Sec. 2.4.2 below.

2.3 Enabling error correction for repair of RS codes

In this section we propose a new repair scheme for the optimal-repair family

of RS codes of [77] that supports the optimal error correction capability.

2.3.1 Preliminaries

We begin with briefly recalling the definition of the subfamily of RS codes
of [77]. The construction depends on the number of helper nodes d used for the

purpose of repair of a single node, k < d <n — 1.

Definition 5 ([77]). Let p be a prime, let s := d—k+1, and let py, ..., p, be distinct

primes that satisfy the condition p; = 1 mods,i = 1,...,n, Let C := RSk(n, k, Q)

30

be a Reed-Solomon code, where

o QO ={ay,...,au}, where a;,i = 1,...,n is an algebraic element of degree p;
over I,
o K =F(8), where 3 is an algebraic element of degree s over F :=F,(aq, ..., o).

As shown in [77], this code supports optimal repair of any node ¢ from any set
of d helper nodes in [n]\{i}. Below we use this construction, choosing the value of
s based not only on the number of helpers but also on the target number of errors
tolerated by the repair procedure.

In this section we consider an RS code € given by Def. 5, where we take
s = d—2e — k + 1. For this code we will present a new repair scheme that has
the property of optimal error correction. This repair scheme as well as the original

repair scheme developed in [77] rely on the following lemma:

Lemma 3 ([77], Lemma 1). Let F' be a finite field. Let r be a prime such that
r =1 mods for some s = 1. Let a be an element of degree r over F and [be of
degree s over the field F(a). Let K = F(a,) be the extension field of degree rs.

Consider the F-linear subspace S of dimension r with the basis

s—1
E = {ﬁ“aqu|u:0,...,3—1;q=0,...,%—1}U{Zﬁuar71}.

u=0
Then S + Sa+ - -+ Sa*™' = K, and this is a direct sum.

Without loss of generality, we only present the repair scheme for the first
node ¢, and all the other nodes can be repaired in the same way (this is different

31

from the previous section where the code was designed to support optimal repair
only of the node ¢1). The scheme is complicated, and we take time to develop it,
occasionally repeating similar arguments more than once rather than compressing
the presentation.

The repair of ¢; is conducted over the field Fy := F,(aq, as, ..., o). It is clear
that F = Fi(o;) and K = F(3), where degp, (1) = p; and degg(3) = s. Below we
use tr = trg/p to denote the trace mapping from K to F.

Define the set

s—1
By o= {8l [u=0,... s—1;,q=0,... Bt 1}U{ Zﬁ“a’fl_l}. (2.5)
u=0
Clearly, |Ey| = p1, and we write the elements in E; as eg,ej,...,e,-1. Then
Lemma 3 implies that the set of elements
{e; :i=0,...,p1—1,j=0,...,5—1} (2.6)

forms a basis of K over Fj.
Let G+ = GRSk(n,n—k, v, Q) be the dual code. For every codeword (cy, ..., c,) €

€ we have

viale; + veakey + - +vpalc, =0, t=0,1,....,.n—k—1.

Multiplying by e; on both sides of the equation and evaluating the trace, we obtain

32

the relation

n
tr(e;viatc;) = — Z tr(e;v;a5c))
=2

= —Zaﬁtr(eivjcj), t=0,1,....,.n—k—1, (2.7)
j=2

where the second equality follows since a; € Fj for all 2 < j < n. Therefore,
the elements {tr(e;v;c;) : 2 < j < n} suffice to compute {tr(e;v104¢;) : 0 < ¢ <
n—k—1}. Since s =d—-—2e—k+1<d—-—k+1<n—k, wecan calculate
{tr(e;uiadcr) 1 0 <t < s—1} from {tr(e;v;¢;) : 2 < j < n}. Thus knowing the values

of {tr(e;vjcj) 12 < j <n,0<i<p — 1} suffices to find the set of elements
{tr(ejviate;) 1 0<t<s—1,0<i<p —1}. (2.8)

Since the set (2.6) forms a basis of K over Fj, the set {e;u1a’ : 0 < i < p; —
1,0 < t < s — 1} also forms a basis of K over F}, and therefore we can recover
¢ from (2.8). In conclusion, to recover ¢y, it suffices to know the set of elements

{tr(e;vjcj) :2<j<n,0<i<p —1}

2.3.2 The repair scheme

For j = 2,3,...,n define the vector r; := (tr(e;v;¢;),i = 0,...,p; —1). In this
section we design invertible linear transformations M; that send these vectors to a
set of vectors z; that support error correction. The following proposition underlies

our repair scheme.

33

Proposition 4. Consider the set of vectors z; = (2,0, 2j1s- -+, Zjpi—1),] = 2,3,...,n

defined by
zJT = Mjr;‘-r, (2.9)
where Mo, ..., M, are invertible matrices of order pi. Suppose that for every i =

0,1,...,p1 — 1, the vector (29, 234, - - -, Zni) 15 contained in an MDS code of length
n — 1 and dimension s + k — 1. Then there is a repair scheme of the code C that

supports recovery of the node c; with optimal error correction capability.

Note that, by the closing remark in Sec. 2.2.2, it suffices to assume that s <

n — k.

Proof. If (29,23,...,2,) is a codeword in an MDS array code of length n — 1 and
dimension s + k — 1, then the punctured codeword (z; : j € R) is contained in an
MDS array code of length d = |R| and dimension s + k — 1 = d — 2e, and such the
code can correct any e errors.

To repair the failed node c¢;, we download p;-dimensional vectors 7;,j € R,
where R < [n]\{1},|R| = d is a set of d helper nodes. For all but e or fewer values

of j, we have 7; = r;. The repair scheme consists of the following steps:
(i) Find the vectors] = M;rT,j € R,

(ii) Find the vectors z;,j € R using the error correction procedures of the under-

lying MDS codes,

(ili) Foreveryi =0,...,p;—1 use the d-subset {z;;, 7 € R} to recover the codeword
(22,0 23,05+ - - » Znsi)

34

(iv) Find the vectors 7 = M:'2T,j = 2,...,n — 1 and finally recover ¢;.

Step (ii) is justified by the fact that, by assumption, at most e of the elements Z;
are incorrect. In step (iii) we rely on the fact that d symbols of the MDS codeword
suffice to recover the remaining n—1—d symbols, and in step (iv) we use invertibility
of the matrices M; and recover ¢; using (2.7), (2.8).

The total number of downloaded symbols of Fi equals pid, and it is easy to
verify that the repair bandwidth of our scheme meets the bound (1.3) with equality.

]

Why do we need the matrices M; and why were they not involved in the
example in Sec. 2.2.27 The answer is related to the fact that we need to remove
the failed node from consideration and obtain a codeword of the MDS code that
contains all the other nodes. In the example the degree of the minimal polynomial
of ay, denoted f(z), is s < n — k, so the evaluations of z'f are dual codewords (see
(2.3) in Prop. 2). This implies that the downloaded symbols form a codeword in an
MDS code over F' which supports error correction. Importantly, this codeword does
not involve the erased coordinate.

Switching to the RS codes of [77] considered here, the element a4 is of degree
p1 over the repair field F(ag, ..., q,), and generally py > n — k — 1, so the minimal
polynomial of oy is not a dual codeword. This requires us to modify the above idea.
In general terms, we will find suitable elements of the set E; such that Eq. (2.7)
yields linear relations between the entries of the form tr(e;v;c;). The coefficients of

these relations form the rows of the matrix M;.

35

2.3.3 The matrices M,

In this section we will construct the matrices M; and the vector z;, and also
prove the full rank condition. Rather than writing the expressions at this point in the
text, We proceed in stages, by deriving p; linear relations involving components of
the vectors on both sides of (2.9). (the notation is rather complicated and would not
be intuitive; if desired, the reader may nevertheless consult Sec. 2.3.4, particularly,

Eq.(2.24)).

2.3.3.1 The first p; — s — 1 relations

Proposition 5. Forall0 <u<s—1and0<qg< — 2, the vector

(a8 tr(8"ay ™ vje;) — tr(B%ay WIS) =2, ,n) (2.10)

s a codeword in a GRS code of length n — 1 and dimension s + k — 1.

Proof. Let us write (2.7) for e; of the form e; = f%a} ™% :

tr(tay Za T A I N

(See also (2.5).) Writing this as

tr(ﬂ“&iﬁ(qﬂ)s“ “viey) = 2 (Bl i), t=0,1,...,n—k—1,
Jj=2

36

and performing the change of variable (t — s) — t, we obtain the relation

tr(BUa T Ty o) = — Zaj” tr(8"ay P v,e;), (2.11)
i=2

t=—-s,—s+1,...,—s+n—k—1.
On the other hand, substituting e; = "o, ARt (2.7), we obtain

tr(ﬁ“offﬂﬁl)sﬂ Zoz tr(B%ay” (g+D)s “vic)), (2.12)

t=0,1,....n—k—1.

Note that the left-hand sides of (2.11) and (2.12) conicide for t = 0,1, ..., n—k—s—1,

and thus so do the right-hand sides. We obtain

n
u+(g+1)s
Z s+t tI‘ Bu u+qs'UjC] Za tI’ Bu (q U]Cj>

7j=2

or

Z a tr(8ay v;c;) — tr(8"a; ut(gtl)s v]cj)) =0,
j=2

fort =0,1,...,n — k — s — 1. On account of Proposition 1 this implies the claim
about the GRS code; moreover, since there are n — k — s independent parity-check

equations, the dimension of this codeis (n —1) = (n —k —s) = s+ k — 1. O

We note that the components of the vector (2.10) are formed as linear combi-

nations of the elements tr(e;v;c;), and so this gives us p; — s — 1 vectors z;.

37

2.3.3.2 One more relation

Proposition 6. The vector

s—1

(Z (B T T) — <Z,B" P1- lvjc]> ':2,...,n> (2.13)

u=0
1s a codeword in a GRS code of length n — 1 and dimension s + k — 1.

Proof. Going back to (2.7), take e; = %™ ! for u = 0,1,...,5— 1. We obtain

the relation

tr(BUal TP T) = Za tr(Bta) ™" 12;]0]) t=0,1,...,n—k—1.
Jj=2

Changing the variable (t + u — s) — t in the above equation, we obtain that for

every u=0,1,...,5 —1,

(ﬁu p1— 1+t,U Cl) _ Zazfqus tr(/BuO/lHrplfsfl,chj)’ (214)

t=u—s,u—s+1,....,u—s+n—k—1.
Since

(Nu—s,u—s+1,...,u—s+n—k—1}={-1,0,1,....n—k—s—1}, (2.15)

38

we have

Taking the cue from (2.15), let us sum these equations on v = 0,1,...,s — 1, and
we obtain
s—1 n s—1
tr (Z ﬁ“a{’rl”vlcl) =— Z ol (B ey T T ey, (2.16)
u=0 j=2u=0

—1<t<n—k—-—s—1.

Turning to (2.5) again, let us substitute the element Z o into (2.7):
s—1
<ZB“ D=1ty 01> = 2@ tr(Z a'” IUJC]‘>7 0<t<n—k—1. (2.17)
u=0 u=0

From (2.16) and (2.17) we deduce the equality

n

t—u+s u, utpi—s—1_ U pl 1 .
Z 2 a; tr (6 o ch]> Z aj tr (Z Bhaqt ey),
j=2u=0

'y

or

n s—1 s—1
Z (2“5 “r(Btal T IUJCJ) (Zﬁu 1 1“]%)) =0
j=2 u=0 u=0

39

for 0 <t <n—k—s— 1. By Proposition 1, the proof is complete. n

2.3.3.3 The remaining s relations

Following the plan outlined in Sec. 2.3.2, we have constructed p; — s vectors
z;, listed in (2.10) and (2.13). In order to find the remaining s linear combinations
of the elements r; ;, we develop the idea used in the example in Sec. 2.2.2.

We begin with introducing some notation. Let f(x) be the minimal polynomial

of a; over Fi. For h=0,1,...,s — 1 define

fu(z) = 2P (mod f(x)), (2.18)

then deg f, < deg f = p; and a1f1+h = fulan). Let fr, € Fi[z],q = 0,...,(p1 —

1)/s — 1 be the (uniquely defined) polynomials such that
(i) deg frg<s—1,¢=0,1,..., 221 —2

(ii) deg fh(pr-1)/s—1 < 8;

(iii)
(1—1)/s—1

ful@) = > @ fagla). (2.19)

q=0

Proposition 7. For every h =0,1,...,s — 1, the vector

(p1—1)/s—1 h s—1
Do D Feualag) (@i TR) + Y Al (Bl T yey)
q=0 u=0 u=h+1

40

s—1

— CY;H_I tI‘(Z ﬂuaﬁn_lvjcj)aj = 27 3’ T 7n> (220)
u=0

1s contained i a GRS code of length n — 1 and dimension s + k — 1.

The proof of this proposition is rather long and technical, and is given in
Appendix A.1.

Concluding, expressions (2.10), (2.13), and (2.20) yield p; linear combinations

of the elements (tr(egv;c;), tr(e1vjcj), ..., tr(ey,—1v;¢;)) for every j € {2,3,...,n}.
It is these linear combinations that we denote by z; = (250, 2.1, - - -, Zjp—1) in (2.9).
We have shown that for every i € {0,1,...,p; — 1}, the vector (224, 234, 2ni)

is contained in an MDS code of length n — 1 and dimension s + k — 1. The next

subsection treats the remaining part of the assumptions in Proposition 4 above.

2.3.4 The matrices M; are invertible

The object of this section is to show that the mapping

(tr(eovjcy), tr(eivicy), - ., tr(ep, 1v5¢5)) = 25 = (25,0, 215 - -+ Zjipr—1)

is invertible. In other words, we will show that rank(A/;) = p; for all j. Let us first
simplify the notation. Recall the set £y = {eq,e1,...,€p, -1} in (2.5) and let us order

its elements in the order of increase of the powers of a; :

€u+QS ::Bua/llt—‘rqs foru:oala'”as_]-andq:(]’]‘""’plTil_l’

41

€p1— 1:—Zﬁu . 1-

Using the notation r; ; = tr(e;v;¢;) introduced above, the vectors in (2.10) can be

written as
(ajru+qs,j - Tu+qs+s,j7j = 27 s 7n)
for0<u<s—land 0<¢g< — 2, or, writing ¢« = u + ¢s, as
(O[;-TZ‘J‘ — ri+s,j;j = 2, e ,TL) (221)

for 0 <i < p; — s — 2. Similarly, the vector in (2.13) can be written as

s—1

(N O o1~ Tp—1ge] = 2, n) (2.22)

u=0

and the vectors in (2.20) can be written as

(p1—1)/s—1 h s—1
h+1—u+s
(Z Z fh u,q 04] Tu+qs,j + Z OC Tu4pr—s—1,j
q=0 u=0 u=h+1

— a1 =2 m), (2:23)

42

for 0 < h < s—1. For a fixed value of j, the entries in (2.21)—(2.23) form the vector

z; = (20,21, - -+ Zip—1), and we list its coordinates according to the chosen order:

Zji = ajrm —Tiysy for 0<i<p —s—2,

»
|
—

g

P S—Uu
Rjpr—s—1 = Q5 Tutpr—s—1,5 — T'pi—1,5s

~0
h (p1—1)/s—1 > (2.24)

Zjpr—sth 1= Z Z Sn—uq(j)Turqs,s
9=

s—1

h+1l—u+s h+1
+ Z a; Tutpi—s—1,j — O Tpi—1;
u=h+1 y

S

for 0 < h < s — 1. Our objective is to show that the linear mapping

M.
(0> "1 s Tpi—1,5) = (25,00 Zj,1, -+ Zjipy—1)

is invertible. This will follow once we show that its kernel is trivial, i.e., that if
(2j,0: 2j1s - - -5 Zjpy—1) 1s an all-zeros vector, then so is (1,71, ..., "p—14)- If 2, =
Oé‘;-?”i’j — Tits,j = 0for0<i< pP1r—S— 2, then

p1—1

S
Tutgsj = QGTur(g-1)sg = - = 1yy for 0<u<s—Tand 1<¢q< T—l.

(2.25)

Using (2.25) in the expression for z;,, 54,0 < h < s — 1, we obtain the following s

relations:

(p1—1)/s—1

h+l—u+s pl—s 1 h+1
Zjp1—s+h = 2 Z Jn— UQ(QJ)Q Tu,j + 2 a; Tuj = @ Tpi—1j
u=h+1

43

s—1

h
p1t+h—u h+1
Z w0 + Z o Tug — O Tpi 15, (2.26)
u=0 u=h+1

where the second equality follows from (2.19). Using (2.25) in the expression for

Zjp1—s—1, We obtain

. _ s—u, p1—s—1 o o p1—u—1 ' '

Zjpi—s—1 = 2%‘ o Tuj = Tpi—15 = Zaj Tuj — Tp—1g- (2.27)
u=0 u=0

Since we assumed that the z-vector is zero, coordinates z,, _,,u = s +1,s,...,1

that appear in (2.26), (2.27) are zero. Writing these conditions in matrix form using
the above order, we obtain relation (2.28). We aim to show that the matrix on the

left-hand side is invertible.

Oé?l*l a?l*Q a§173 o &5?1*5 1 ro
fO(@j) O[?l—l a§1—2 o a;gl—s-&-l — L
fileg) folay) o Th T o T2

—0, (2.28)
f2(aj> fl (Oéj) fo(a]) ‘1771 s+3 _Oé?

Ts—1,5

_fsfl(%‘) fo2(ay) foos(ay) ... folay) —aj Tpi—1,

Recall that f(z) is the minimal polynomial of a; and from (2.19), f(x) +
fo(x) = aP*. Since f(z) is irreducible over F} and «; € Fi, we have f(«a;) # 0 for all
j=2,...,n.

Multiplying the first row of the matrix in (2.28) by «; and then subtracting

44

the second row from the first row, we obtain

f(aj) 0 0 0 0

folay) a§1—1 a§1—2 a§1—s+1 o
filag) folay) ol ot —ag
falay) filey) foloy) o T —ad

fsm1(ay) fomo(ay) fs—sl(ey) oo folay) —of

Since f(a;) # 0, we can use elementary row operations to erase the first column,

obtaining)
fley) 0 0 0 0
0 agyl—l a?—z §1—s+1 —a
0 folay) o o —af
0 fileg) folay) o' o

0 foalay) foslay) -o folay) —af

Proceeding analogously, let us multiply the second row of this matrix by «; and

45

then subtract the third row from the second one to obtain

fla) 0 0 0 0
0 flay) 0 0 0
0 folay) ot o —aj
0 filey) folay) o —af

0 foolay) foslay) .o folay) —af

As above, we can eliminate all the nonzeros in the second column except for f(co;),
and so on. In the end we obtain the matrix diag(f(«;), ..., f(a;), —aj) with nonzero
diagonal. This proves that the matrix in (2.28) is invertible. Therefore, r¢; = 71 ; =

- =Ts_1j = Tp—1; = 0. Combining this with (2.25), we conclude that r;; = 0
for all 0 < ¢ < p; — 1. This proves that the matrices M;,j = 2,...,n in (2.9)
are invertible, providing the last missing element to the justification of the repair

scheme with optimal error correction.

2.4 A family of optimal-access RS codes

In this section, we construct a new family of RS codes that is similar to the
construction in [77] but affords repair with optimal access.
The input-output cost of node repair for the RS codes of [77] was analyzed in
[45] for d = n — 1. According to (1.2), in this case the minimum access cost per
l

helper node equals —. The authors of [45] showed that it is possible to adjust

46

the repair scheme so that the access cost is (1 + "’p—kfl)#, i.e., at most twice the
optimal value. However, more is true: namely, it turns out that any fized node in the
construction of [77] (Def. 5) can be repaired with optimal access. This observation,
which is the starting point of the new construction, is based on the fact that it is
possible to construct a basis of the field K over the base field that reduces the access
cost of the repair of the chosen node. If the option of choosing the basis for each
erased node were available, we could use the arguments in Sec. 2.2.3 to perform
repair with optimal access. The difficulty arises because this would entail rewriting
the storage contents, which should be avoided. To address this issue, we construct

the code over a field that contains n elements [3; instead of a single element 3, and

this supports efficient repair of any single failed node. This idea is developed below.

2.4.1 New construction

Consider the following sequence of algebraic extensions of F, : let Ky = F,
and fori =1,...,n let

F; = Kio1(oy), K; = Fi(6:), (2.29)

where «; is an algebraic element of degree p; over F, and 3; is an element of degree

s=d—k+1over F;. In the end we obtain the field

K:= K, =F,(, ..., B, .. 5B) (2.30)

47

We still assume that pq,...,p, are distinct primes satisfying the condition p; =
1 mods for all i = 1,...,n. Consider the code € := RSk(n, k, (), where as before,
the set of evaluation points is given by Q = {ay,...,a,}. We will show that the
code € affords optimal-access repair.

The repair scheme follows the general approach of [28] and its implementation
in [77]. Let ¢ = (¢1,...,¢,) € € be a codeword. Suppose that the node ¢ has failed
(coordinate ¢; is erased), and we would like to repair it from a set of helper nodes

R < {1,...,n}\{i} with |R| = d. Let

h(zx) = I[[@-a

Je{1,...n\(Ru{i})

Clearly, we have deg(z'h(x)) < n—kfort = 0,...,s—1. Therefore, for some nonzero
vector v = (vy, ..., v,), we have (viath(ay),. .., vpal h(ay)) € Cfort =0,...,5—1,

where €t = GRSk (n, k,v,Q). In other words, we have

viath(a;)c Z ozhoz]c],t=0,...,s—1. (2.31)

The repair scheme in [77] as well as in this chapter relies on this set of s dual

codewords to recover the value of ¢;.

Remark 1. The dual codewords x'h(x) have zero values in the complement of the set
R := R U {i}. In other words, they are contained in the shortened code (C1)® of the
dual code. Thinking dually, we can start with the code C* and construct a repair

scheme for its coordinates based on the punctured code Cj4 (coordinate projection of

48

@ on R). This approach is equivalent to the scheme used in [77] and in this chapter
because (€))L~ Cs.
Let us establish a few simple properties of the tower of fields defined above in

(2.29), (2.30).

Lemma 8. The extension degrees in the field tower F, = Ky < --- < K; < --- C

K, = K are as follows:

Proof. The proof is obvious from the definition: for each i we adjoin two elements
a;, B; to K;_1, and their degrees over K;_; are coprime, so they contribute sp; to

the result. O

We will use an explicit form of the basis of K over F,. For m = 0,...,[-1,

let us write

m o= My, My_1, ..oy M, My, M1, ..,) (2.32)

where m; =0,...,p;—1land m; =0,...,s—1fore=1,...,n.

Lemma 9. Let
Az{am:zna?”nﬁ;nj |m;=0,....,p;—1,m; =0,...,s —1;m=0,1,...,0 — 1}.
i=1 j=1

Then A is a basis for K over F,,.

49

Proof. By co-primality, for i = 1,...,n we have degy, (a;) = p;, and by construc-
tion, we have degr. (5;) = s. Thus, the elements a,,,m = 0,...,l — 1 are linearly

independent over F,,. O]

Lemma 10. Form =0,...,l—1letd={je[n]: (m;,m;) = (s—1,p; — 1)} and

let
n s—1
b= Tor TT(X 5) 115
i=1 jed u=0 J¢d

Then the set B := {b,, | m =0,...,0l —1} is a basis of K over F,,.
Furthermore, for i = 1,...,n, let A; = {am € A | (m;,;m;) = (0,0)} and

Spang, A; = Spang, B;.

Proof. Since |B| = [, to prove that B is a basis it suffices to show that the elements
an, can be expressed as linear combinations of the elements in B. Let § < [n] and let
A(d) = {am € A: (my,m;) = (s = 1,p; —1),5 € J; (my,m;) # (s —1,p; = 1),5 ¢ 3}
We argue by induction on |J|. If m is such that J = ¢, then a,, € B, and there is
nothing to prove. Now assume that for all J < [n],|d| < J — 1 the elements a,, are

linearly generated by the elements in B, and let m be such that |J| = J. We have

an =] [[[5"][57

i=1 J¢d Jed

20

and

=TT T TS - T () 8 T10%)

i=1 j#d i=1 itd T tie, t7=0u=1

Multiplying out the sums on right-hand side, we note that the term with all ¢; = s—1
equals a,,, while the remaining terms contain fewer than J factors of the form
" ﬁs . Bach of such terms is contained in some A(J) with |J| < J — 1, and
is linearly generated by the elements b, by the induction hypothesis. This implies
that a,, is also expressible as a linear combination of the elements in B.
To prove the second claim, note that Spang A; = Spang B;. Therefore, to
show that Span]F A = Spang B;, it suffices to show that for any a = 0,...,n—1and
any J < {1,...,n}\{i}, the set A;(J) can be generated linearly by the set B;. This

proof amounts essentially to the same calculation as above, and will be omitted. [

The role of the basis (b,,) is to eliminate as many terms on the right-hand
side of (2.31) as possible. To repair the node ¢; we use the dual basis (b,) of (b,),

writing
ci = v; ! Z Cimby,.- (2.33)
m=0

Below tr = trg/p, denotes the absolute trace.

Lemmas 8 and 3 immediately imply the following.

Proposition 11. For:¢ = 1,...,n, there exists vector space S; over K;_1 such that

dimg, , S; = p; and S; + S;a; + -+ + S;os~t = K. Furthermore, a basis for S; over

7

o1

K,y 1s given by

s—1
E; z{ﬁfoz?ﬂs|u:O,...,s—l;q:O,...,piT_l—I}U{afiflzﬁg‘}.
u=0

We continue with the description of the repair scheme where we left in (2.31).
As a remark, below we write the scheme over F, rather than over its extensions
(the latter approach was chosen in [77]). Multiplying both sides of (2.31) by
[Tioier [T a 7, where e; € Ey and ¢ty = 0,...,s — 1, and evaluating the trace,

we obtain

o (e[Tof weintee) = —ee([Tee T Smegpicor)

=1

(
- _Ztr (ﬁei/ ﬁaé{'vjai-h(aj)cj). (2.34)

On account of Proposition 11 and the fact that v;h(q;) # 0, the set

{ﬁ ﬁ T viath(a; } (2.35)

=1

where ey € Ey,i' € [n];t=0,...,s—1;t; =0,...,s — 1,5 € [n]\{i}, is a basis of K
over F,. Therefore, we can recover ¢; once we know the right-hand side of (2.34).

For j € R, from (2.33) we have

n n -1

tr(nezfna vijash(ag)c;) —tr(ﬁ H ' ath(a;) ch,mbfn)
i"=1

/=1 J'#i J'#1 m=0

52

-1

m=0 =1 J'#i

From (2.36), we see that in order to recover ¢; we need to access only those symbols

¢;m for which

tr(l_[e H a;i/a;h(aj)b;) # 0.

i'=1 j'si

Now, the element [[},

eir [[si a 7 ath(a;) does not include a;, §;, and thus
it can be written as an Fj-linear combination of the elements in the set A;. By
Lemma 10, it can further be expressed as an F,-linear combination of the elements

in the set B;. Therefore, the elements [[},_, es [% a a]h(aj) for ey € E; and

J'#i
ty =0,...,5—1 can be linearly generated over [, by the set
eieEi

Since B and B* are dual bases,

if and only if b, € UeieEi e;B;. It follows that to calculate the left hand side of
(2.34), we need to access D, p |eiBi| = pil/sp; = [/s symbols on each helper node
7 € R, which implies that the node ¢; affords optimal-access repair.

In conclusion, we note that the repair scheme of each of the nodes ¢ relies
on its own element f3;. Looking back at the construction of [77], Sec. 2.3 above, it

contains one such (. Thus, these codes can be furnished with a repair scheme that

93

has the optimal access property for any one (fixed) node in the encoding; see also

the discussion at the end of Sec. 2.2.3.

2.4.2 Error correction with optimal access

In this section we present a repair scheme of the RS codes defined in the
beginning of Sec. 2.4.1 that supports both the optimal access and optimal error
correction properties. The scheme relies on a combination of ideas of Sections 2.4.1
and 2.3. A full presentation of the proof would require us to repeat the arguments
in Sec. 2.3.3; we shall instead confine ourselves to pointing to the similarity of
the starting point and argue that once this is recognized, the remaining part is
reproduced directly following the proof in Sec. 2.3.3.

Let us modify the construction of RS codes of Sec. 2.4.1 as follows. Let us
assume that the number of helper nodes is d. We will construct our RS code over the
symbol field K = Fy(a1, ..., 0y, B1,.. ., Bs) (2.30), where as before, degp. (a;) = p;
but degy (3;) = s := d —2e — k + 1. Define the code C := RSk(n,k,2), where
Q={o,...,an}.

Without loss of generality suppose that the failed node is the first one and let
R < {2,3,...,n} with |R| = d,2e + k < d < n — 1 be the subset of helper nodes.

Consider a basis of K over F, given by | Ji—, ot A, where

Az{ € ozt-j|eieEi,ie[n];tj=0,...,s—1,je[n]\{1}}.

j
=1 j=2
That this is a basis is apparent from (2.35).

o4

Next, note that (vial,...,v,al) € €+ for some v = (vy,...,v,) € (K*)" and

fort =0,...,n—k — 1. Therefore, for every A € A we have
\vjade = —Zz\vjoz;-cj, t=0,....n—k—1.
j=2

Let Gy :=F,(ag, as, ..., a,). Evaluating the trace tri/q, on both sides of the above

equation, we obtain

tri g, (Avadfer) = — Z 045- trx/q, (Avje;), t=0,...,n—k—1 (2.37)

j=2

The repair scheme for the code € is based on (2.37) in exactly the same way as the
repair scheme of Proposition 4 is based on (2.7). Namely, suppose that there are
invertible linear transformations that map the vectors (trg/q, (Avjcj), A € A),j =
2,3,...,n to codevectors in an MDS code of length n — 1 and dimension s + k —
1. Then it is possible to correct e errors in the information collected from the
helper nodes upon puncturing of this code to any d coordinates in the same way
as is done in Proposition 4. Thus, the main step is to prove existence of such
transformations. Here we observe that the terms involved in (2.37) are formed of e,
times the remaining factors in A\. The element e; plays the same role as e; in (2.7),
and the multiplier in front of it in A does not affect the proof. For this reason, the
required proof closely follows the proof in Sec. 2.3.3, and we do not repeat it here.

Thus, the vectors (trg/q, (Avjc;), A € A), j € R suffice to recover the value of the

failed node. We argue that these values can be calculated by accessing the smallest

95

possible number of symbols on the helper nodes, and thus support the claim of
optimal access. Let B = (b,,) be the basis of K over I, defined in Lemma 10, let
B* = (b%)) be its dual basis, and let By = {b,, € b|(my,m;) = (0,0)}. From (2.33),

for every A€ A and all j = 2,3,...,n we have the equality

-1

tri/c, (Avjes) = trse, <)\ 2 bfn) Ciim-

m=0

Let I' be a basis for Gy over F,,. Then from the above equation, for every v e I' we

have

-1
tra, r, (7 trr/a, (Avjc;)) = tra,r, (7 tre /e, ()\ Z bfn>>cz~7m.

m=0
Since v € G and trg, r, o trx/q, = trg/r,, it follows that
-1
trgm, (YAv;¢5) = trie, <7)\ >, b:;) Cim- (2.38)
m=0

Note that the elements YA = v[[iL, e [[}, Oz;-j can be written as F,-linecar combi-
nations of the elements in the set | J, .p e1B1 S B. By the duality of B and B*,
the number of symbols that each helper node accesses to calculate the left hand side

of (2.38) equals | e1B1| = l/s, which, as remarked in the introduction, is the

61€E1

smallest possible number of symbols. Further, since I' is a basis of G over F,, we

can recover trg,q, (Avjc;) from the set {trg/r, (7Av;c;) | v € I'}.

o6

Finally, evaluating the trace trg, &, on both sides of (2.37), we obtain

tric/m, (Aviader) = — Z tI‘Gl/Fp(a; try/q, (Avje;)), t=0,...,s =1 (2.39)
=2

Since the set {Avaf | A € Ajt = 0,...,s — 1} forms a basis for K over F,, we
conclude from (2.39) that we can perform optimal error correction for the code €
with optimal access. As a final remark, the locations of the entries accessed on each
helper node depend only on the index of the failed node, and are independent of the

index of the helpers.

2.5 Every scalar MSR code affords optimal-access repair

This section is devoted to establishing the claim in the title. We begin with
a discussion of repair schemes with a particular property of having constant repair
subspaces and use it to show that every MSR code with this property can be repaired
with optimal access. In the last part of the section we remove this assumption,

establishing the general result, which is stated as follows.

Theorem 12. Let C be an (n,k) scalar MDS code over a finite field K of length
n such that any single failed node can be optimally repaired from any subset of d
helper nodes, k + 1 < d < n — 1 with optimal repair bandwidth. Then there exists
an explicit procedure that supports optimal-access repair of any single node from any

subset of d helpers, k +1<d<n—1.

o7

2.5.1 Constant repair subspaces

Observe that the repair scheme presented above in Sec. 2.4 has the property
that for a given index of the failed node 7, the procedure for recovering the node
contents does not depend on the chosen subset of d helper nodes. Indeed, to repair
node i, the scheme accesses symbols {¢;j, | m : by, € UeieEi e;B;} on the node j, i.e.,

the symbols ¢;,, with m = (m;,m;) and

(my,m;) e {(u+gqs,u) |lu=0,....,s—1;g=0,...,(p;—1)/s =1} u {(p; — 1,s — 1)}.

Clearly the values of m are independent of j € R. This simplifies the implementation,
and therefore represents a desirable property of the scheme. In this section, we
generalize this observation and give conditions for it to hold.

Let € be an (n, k) linear scalar MDS code of length n over finite field K, and
let r = n — k be the number of parity nodes. Let F' be a subfield of K such that
[K : F] = 1. For a subset M < K we write dimg(M) to refer to the dimension
of the subspace spanned by the elements of M over F. The following result is a

starting point of our considerations.

Theorem 13 ([28]). The code C has an optimal linear repair scheme over F with
repair degree d = n — 1 if and only if for every i = 1,...,n there exist | codewords

(ctl’l,...,cin)eel,tz 1,...,1 such that

dimp(cyy, ..., c5) =1,

n
Z dimp(cij, . ,cij) =-—"

J#i
We go on to define the main object of this section.

Definition 6. Let C be a scalar MDS code that has a linear repair scheme for repair
of a single node with optimal bandwidth, based on dual codewords ci,. .., cj. The
scheme is said to have constant repair subspaces if for every 1 =1,...,n and every
R < [n]\{i},|R| = d, the information downloaded from a helper node cj,j € R
to repair the failed node c; does not depend on the index j. Namely, the subspace
Sgi) := Spang(ciy, ..., ¢5),J € R is independent of the index j, i.e., Sg.i) = 80 for

some linear subspace 8% < K.

The notion of constant repair subspaces was mentioned earlier in the literature
on general MSR codes, for instance, see [75].
The algorithms below in this section rely on a proposition which we cite from

7).

Proposition 14. Let C be an (n,n — r) MDS code and let [n] = J u J¢, where
J,|J| = r is the set of parity coordinates. Let H = (hq,...,h,) be a parity-check
matrix of C, where h; denote its columns. The code C has an optimal linear repair

scheme over F with repair degree d = n — 1 if and only if for each j € J¢ there exist

r vectors a, € KY",u=1,...,r such that
dimp(Ahj) =1, (2.40)
l
r

29

where A := Diag(ay,...,a,) is an | x v block-diagonal matriz with blocks formed by
single columns. Furthermore for every subspace A, = Spang(a,),u = 1,... 1 (the

F-linear span of the entries of a,) we have

dimp(A,) = - (2.42)

Remark 2. The matrix A in Proposition 14 depends on the matrix H and the choice

of J, but we suppress this dependence from the notation for simplicity.
Before presenting the algorithms for finding a basis for optimal-access repair

we briefly digress to state some conditions for an optimal linear repair scheme to have

constant repair subspaces. First, we rephrase their definition based Proposition 14.

Definition 7. An optimal linear repair scheme for the code C is said to have constant

repair subspaces if for every j = 1,...,n there exists a vector h € K" such that

Spang(Ah;) = Spang(Ah)

for every i € {1,...,n}\{j}. Here the matriz A is as in Proposition 14, and it

depends on H and the particular choice of the information coordinates.

Proposition 15. Suppose that Ay = Ay = --- = A, for each v = 1,...,n, and
that for every j € {1,...,n}\{i} there exists v e {1,...,r} such that h,; € F, then
there exists an optimal linear repair scheme for the code C which has constant repair

subspaces.

Proof. Let 'V denote any of the (coinciding) repair subspaces. By Proposition 14,

60

we have dimg(V) = [/r. Suppose that J is the subset of parity coordinates, and the
matrix H is represented in systematic form. In this case, for every j € J¢, h,; # 0

for all w =1...,r, and we have dimp(Vh, ;) = [/r. Note that

Spang(Ahy) = > Auhug = > Vhay, je {1, nh\{i}, (2.43)
u=1 u=1

where the sum on the right is a sum of linear spaces. By Proposition 14, we also

have [/r = dimp(Ah;) = dimp (3] _, Vh, ;). Therefore,
Vhl’j = VhQJ' == VhT,ja] S JC\{Z} (244)

Since for each j # i there exists v € {1,...,r} such that h,; € F, it follows that
Vh, ; = V. On account of (2.43) and (2.44), we have Spany(Ah;) =V = Spanp(A-1)
for every j € {1,...,n}\{i}, where 1 is the all-ones column vector of length r. By

Definition 7 this completes the proof. O

The assumptions of this proposition are satisfied, for instance, for the RS
subfamily of [77], which therefore have constant repair subspaces (this observation

was previously not stated in published literature).

Proposition 16. If there exists an optimal linear repair scheme for the code C which

has constant repair subspaces, then Ay = Ay = --- = A, for every j =1,...,n.

Proof. Indeed, since H; is the identity, for j € J we have Spany(Ah;) = A, for some

te{l,...,r}. It follows that A; = Ay = --- = A,. O

61

2.5.2 Optimal access for the case of constant repair subspaces

The codes constructed in Sec. 2.4 above form essentially the only known exam-
ple of RS codes that afford repair with optimal access. For instance, the optimal-
repair RS codes in [77] are not known to support optimal access, and the repair
scheme in [77] is far from having this property. Prior works on the problem of
access cost for RS repair [16, 19, 45] also do not give examples of repair schemes
with optimal access. In this section we show that any family of scalar MDS codes
with optimal repair can be furnished with a repair scheme with optimal access, and
this includes the code family in [77]. Unfortunately, our results are not explicit;
rather, we present an algorithm that produces a basis for representing nodes of the
codeword that supports optimal-access repair.

As in Sec. 2.5.1, let F' be a subfield of K such that [K : F| = [. Let C be an
(n,k = n — r) linear scalar MDS code of length n over K equipped with a repair
scheme over F' that attains the bound (1.2) for repair of a single node. Let us
represent € in systematic form, choosing a subset J < {1,...,n},|J| = r for the
parity symbols and J¢ for the data symbols. Let H be an r x n parity-check matrix
for € such that H; is the r x r identity matrix,

In this section we assume that there exists an optimal repair scheme over F
for € that has constant repair subspaces, and that the repair degree is d = n — 1.
We will lift both assumptions and show that our result holds in general in the next
section. For a given j = 1,...,n consider the subspaces A;,7 = 1,...,r defined in

Proposition 14. Under the assumption of constant repair subspaces, they coincide,

62

and we use the notation V; to refer to any of them.
Consider the following procedure (Algorithm 1) that interatively collects vec-

tors to form a basis of K/F that supports optimal-access repair.

Algorithm 1: Construction of an optimal basis
Input: Subspaces Vq,...,V,.
Output: A basis B for K over F'.
1 for j — 1 tondo
2 | By
3 | B — {0}
fori<—0ton—1do
foreach I < {1,...,n} such that |I| =i do
I {1,....,n}\I;
Ur < ;er Vis
for j — 1 ton do
if j e I then
10 B —B; +Urp
11 Extend the set B, to a basis of B, over F;

© 00 N o OBk

12 B« Ui=1 Bj;
13 Extend the set B to a basis B of K over F:

Proposition 17. Upon completion of Algorithm 1 we have B; =V, forj =1,...,n,

and thus B; is a basis for V; over F.
Proof. From Algorithm 1, we have

-1

BJ‘:Z 2]l{jef}ﬂ\?t, (2.45)

=0 |I|=i, tel
Ic{1,...,n}

so clearly B; = V;. Suppose that v € V;\B;, then there exists a subset I < {1,...,n}

63

with 1 < |I| < n such that j € I and that

v¢ﬂ\7t.

However, B; 2 (,.;V: for every I with 1 < |I| < n such that j € I, which is a

contradiction. Hence, B; = V;. n
Proposition 18. Algorithm 1 returns a basis B for K over F.

Proof. From Algorithm 1, for every I < {1,...,n} with 1 < |I| < n and for every
j € I, the set B; contains a basis of the subspace U; = [),.; V¢. It follows that for
every I € {1,...,n} with 1 < |I| < n, the set [,.; B is a basis for (),.; Vi

Now by Proposition 17, By, By are bases for Vi, Vs over F', respectively. From
the above, we have By n By is a basis of Vi n Vs over F. It follows that dimg(V; N

VQ) = |Bl M BQ‘ Then

dlmF<V1 + VQ) = dlmF(Vl) + dlmF(VQ) — dlmF(Vl M VQ)
= ‘Bl‘ + |BQ‘ - |Bl M BQ‘

= |Bl & BQ‘

By definition, Spany(B; U Bs) = V1 + Vs, and so the set By U By is a basis of Vi +V,
over I'. By a straightforward induction argument, we conclude that U?:I Bj is a
basis for }7_, V; over F.

Since >77_, V; < K, we have | Jj_, Bj| < [K : F] = . It follows that we can
extend the set B = U;L:I B; to a basis B of K over F. O

64

Now we are ready to present a repair scheme for the code € with the optimal
access property. Let B = (b,,) be the basis of K over F' constructed above and let
B* = (b%)) be its dual basis. Given a codeword ¢ = (cy,...,¢,) € €, we expand its

coordinates in the basis B*, writing

-1

Ci=) Cimby (2.46)

m=0

Suppose that ¢; is the erased coordinate of ¢ (the “failed node”). The starting point,
as above, is Eq. (2.31), and our first step is to choose [dual codewords ¢it, t = 1, ...,

that support the repair. Construct the [xn matrix C*+ = AH and take the rows of C

to be the needed codewords c;. Since ¢; -¢ = 0 for all ¢, we have ctfici =—>i ctfjcj
J#i
forallt =1,...,1. Computing the trace trx /r, we obtain
trK/F(c#ici) = — ZtrK/F(c#jcj)
J#i
n -1
= —ZtrK/F(c#j Z cimbr,)
j#i m=0
n -1
= —Z Z trK/F(ctfjb;)cj,m. (2.47)
j#i m=0
Note that for each j € {1,...,n}\{i}, we have
SpanF(ij, . ,clfj) = Spanp(Ah;) =V;, (2.48)

where the last equality follows by the assumption of constant repair subspaces. By

1

Proposition 17, the set B; S B is a basis for V; over F'. Therefore, ¢

can be linearly

65

generated by the set B; for every t = 1,...,l. More precisely, let B; = {b;,|u =

1,...,1/r}, then we have

Ur
et = D Yiabia (2.49)
u=1

for some 7;,,w = 1,...,1/r. Substituting into (2.47), we obtain the equality

n I—-1 l/r

tI'K/F(Ctl’Z»CZ‘) = —Z Z Z trK/F(bi,ub:»L)’Yj,qu,m- (250)

Jj#im=0u=1

It follows that to determine the left-hand side of (2.50), on each node c¢;, j # @ the
repair procedure needs to access the set of symbols {¢;m | trx/p(b;,b%) = 1}. Since
B; <€ B and B* is the dual basis of B for K over F, the cardinality of this subset
equals |B;| = [/r, verifying that the repair can be accomplished with the minimum

possible access cost.

2.5.3 Optimal-access repair for general scalar MSR codes

In this section we extend the above arguments for optimal repair schemes that
do not necessarily have constant repair subspaces. This is done by a simple extension

of Algorithm 1. We use the same notation as in Sec. 2.5.2.

2.5.3.1 Repair degree d =n — 1

66

Assume that the index of the failed node is i € {1,...,n}. By Proposition 14, for

each j e {1,...,n}\{i}, we have

It follows that for j € J°\{i} we have

.Alhj,l = .Aghjg == .Arhjﬂﬂ.

Let J = (i1,...,4,) be the set of parity nodes written in increasing order of their

indices, and for i; € J let o(i;) = t. Define

" Arhjr je JO|il,
Vo) — (2.51)

‘Ao'(j)] e J.

Proposition 19. When Algorithm 2 terminates, we have 3§j) = ng) for i e

{1,...,n} and j € {1,...,n}\{i}, and thus Bi(j) is a basis for VZ(-j) over F.
Proposition 20. Algorithm 2 returns a basis B for K over F.

The proofs of Propositions 19 and 20 follow closely the proofs of Proposition 17
and 18 and will be omitted.

Now it is not difficult to see that we can repair the failed node ¢; with optimal

67

Algorithm 2: Construction of an optimal basis; repair degree d = n — 1

Input: Subspaces ng),z' e{l,...,n},je{l,...,n}\{i}.
Output: A basis B for K over F'.

1 for i — 1 ton do
2 foreach j e {1,...,n}\{i} do
3 BZ.(]) — ;
4 By {0};
5 Q< {1,...,n}2\{(4,7) |i=1,...,n};
6 foru<—0ton?*—n—1do
7 | foreach I < Q such that |I| = u do
8 I O\I;
).
9 Uy < ﬂ(i,j)eI_ Vz(])
10 for + < 1 ton do
11 foreach j e {1,...,n}\{i} do
12 if (i,7) € I then
13 BEJ) <—B§j) + Ur;
14 Extend the set Bi(j) to be a basis of Bl(-j) over F

15 B — Ui U;L;m ?z‘(j)?
16 Extend the set B to be a basis B for K over F’

68

access cost relying on the basis B. Indeed, for each j € {1,...,n}\{i}, we have

Span(ci ., ... ,clfj) = Spany(Ah;) = ng). (2.52)

17]’

By Algorithm 2 and Proposition 19, the set Bi(j) € B is a basis for \71@ over F.

1

i; can be linearly generated by the set Bi(j) for every t = 1,...,[. Let

Therefore, ¢

BY = {(0) | w=1,...,1/r}. Then, similarly to (2.49) and (2.50), we have

lr
Ciy = Z ’Yj,ubz(,]u)? (2.53)
u=1
n -1 Il/r '
tI"K/F(Cé:Z-Ci) = —Z Z Z trK/F(bl(»’ngfn)'ymcj,m. (2.54)
j#itm=0u=1

Therefore, each node ¢;, j # i needs to access the set of symbols {c;, | tr K/F(bEbefn) =

1}, whose cardinality is given by |BZ~(j)| = [/r. Tt follows that the repair scheme has

the optimal access property.

2.5.3.2 Arbitrary repair degree

So far we assumed that the repair relies on all the surviving nodes except for
the single failed node, i.e., |R| = n — 1. In this section we derive the most general
version of the result of this section, that any scalar MDS code can be repaired with
optimal access from any subset of helper nodes R of size d,k +1 < d <n — 1. Let
s:=d—Fk+1.

Let G = [g1|g2|---|gn] be a k x n generator matrix of €, where g; is a k-

column over K. Let i € {1,...,n} and let R 3 {i} be a subset of d helper nodes. Let

69

R=RuU{i} and G4 be the k x (d + 1) submatrix formed by the columns g;,j € R.
Clearly, G4 defines a (d + 1, k) punctured code C4 of the code €. Since € is MDS,
the code Cj is itself MDS. Let H* = (hl@),i =1,...,d+ 1) be an the s x (d + 1)
parity-check matrix of the code C4. Recalling Remark 1, the code generated by H R
is a shortened code (GL)j{, i.e., a subcode of C* formed of the codewords with zeros
in the coordinates in R¢.

Suppose that the code € can optimally repair any single failed node i from
the coordinates in R = R\{i}. This means that the MDS code C4 can optimally
repair any single failed node 4 from the helper nodes R\{i}. Let J = R,|[J| = s
and ¢ ¢ J and assume without loss of generality that the submatrix H?} is an
s x s identity matrix. Now Proposition 14 applied for the code €4 guarantees
that there exist vectors a, € K¥*,u = 1,...,s such that the block-diagonal matrix

A = Diag(ay, .. .,as) satisfies

dimp(ARP) = 1, (2.55)
: (R) l A
dimp(Ah;™) = o JE R\{i}, (2.56)
dimp(A,) = i, u=1,...,s, (2.57)
s

where A, := Spang(a,).

It follows from (2.56) and (2.57) that for j € R\(J U {i}), we have

Ay = Al = = AR,

70

Let us define

9= (2.58)

where o is a bijection between J and {1,..., s} defined as before (2.51).
The procedure to construct a basis for optimal-access repair in this case is

constructed as a modification of Algorithm 2, and is given in Algorithm 3.

Algorithm 3: Construction of an optimal basis; arbitrary repair degree

Input: Subspaces Vg)i for each R = {1,...,n} such that |R| = d + 1 and
i€ R, jeR\{i}.
Output: A basis B for K over F.
1 foreach R < {1,...,n} such that |R| =d+ 1 do

2 foreach i € R do

3 foreach j € R\{i} do

4 ng — ;

5 Bg{; — {0};

6 Qe {(R,i,j) [RS {l,...,n},ie R jeR\{i}};

7 for u — 0 to (,},)((d+1)*—(d+1))—1do

8 foreach I < Q such that |I| = u do

9 I < O\,
10 Ur — (Vg jyer v,
11 foreach R < {1,...,n} such that |R| =d+ 1 do
12 foreach i € R do
13 foreach j € R\{i} do
14 if (R,4,7) € I then

15 Bgi)i — B% + Uy; | |
16 Extend the set Bj({i to be a basis of fB%)i over F’;

L ().
17 B « Uﬁ%g{l,...,n}ﬁﬂ:d-ﬁ-l Uz’eﬁz Uj;éj?\{i} Bﬁii’

18 Extend the set B to be a basis B of K over F;

71

Similarly to the previous sections, we have the following propositions, whose

proofs are analogous to the proofs of Propositions 17 and 18.

Proposition 21. When Algorithm 3 terminates, we have Bg)i = Vg)i for R c
{1,...,n} with |9§| —d+1,ieR, and j e ﬁ%\{z}, and thus Bgi is a basis of V:(g)i

over F'.
Proposition 22. Algorithm 3 returns a basis B of K over F.

The basis of K over F' constructed in the algorithm enables us to construct an
optimal-access repair scheme for the code C. Let d € {k+1,...,n— 1} be the repair
degree. Let (cy,...,¢,) be a codeword of the code € written on the storage nodes,
and suppose that the failed node is 7 and that R be the set of d helper nodes. Let A
be the block-diagonal matrix defined above, constructed with respect to ¢ and H R,
Define the matrix C+ = AH® and note that its rows ct,t=1,...,1 form codewords

of the code dual to the punctured code Cj. Letting ¢ = (c#i)iegq, we can write

c#ici = — Z ctfjcj. (2.59)
JER
Similarly to (2.47), we have
-1
trie/e(cic) = = D0 Y triymp(el b5, (2.60)
jeER m=0

where B* = (b*) is the dual basis of the basis B. Note that for j € R we have

Spang(ci, ..., ;) = Spang(Ah;) \75(,{7)14. (2.61)

72

By Algorithm 3 and Proposition 21, the set Bé{ Z c B forms a basis for the subspace
V‘ER) over F. Therefore, the element c;- ; can be linearly generated by the set B for
every t =1,. lLtB]) b = imi

yt=1, et By, = { j“u|u =1,...,1/s}. Then, similarly to (2.49) and

(2.50), we have

l/s
ot = Z VDD (2.62)
-1 /s
trK/F(C#:ici) = _Z Z Z trK/F Rzu m)7] uCjm (263)
JjERM=0u=1

Therefore, each node ¢;, j € R needs to access the set of symbols {¢; ,, | trK/F(b_rR iubm) =
1}, whose cardinality equals |BJ(§; Z| = [/s. Tt follows that the constructed repair

scheme has the optimal access property.

This completes the proof of Theorem 12.

73

Chapter 3: Explicit Constructions of MSR Codes for the Rack-aware

Storage Model

3.1 Introduction

In this chapter we consider a model of storage that assumes that nodes are
organized into equally sized groups, called racks, that within each group the nodes
can communicate freely without taxing the system bandwidth, and that the only
information transmission that counts is the one between the racks. This assumption
implies that the nodes within each of the racks can collaborate before providing
information to the failed node. The main emphasis of the chapter is on code con-
struction for this storage model. We present an explicit family of MDS array codes
that support recovery of a single failed node from any number of helper racks using
the minimum possible amount of inter-rack communication (such codes are said to
provide optimal repair). The codes are constructed over finite fields of size compa-
rable to the code length.

We also derive a bound on the number of symbols accessed at helper nodes
for the purposes of repair, and construct a code family that approaches this bound,

while still maintaining the optimal repair property.

74

Finally, we present a construction of scalar Reed-Solomon codes that support
optimal repair for the rack-oriented storage model. We also show how the RS code
families and repair schemes presented in Chapter 2 can be modified to enable optimal

error correction and low access for the rack-aware storage model.

3.1.1 Organization

We start with the problem statement of the rack-aware storage model and
some structural lemmas for the model in Sec. 3.2, and then move on to present the
first explicit construction of rack-aware MSR code for all admissible parameters in
Sec. 3.3. In Sec. 3.4, we construct a family rack-aware MSR code with low access.

In Sec. 3.5 we extend our approach of constructing rack-aware vector MSR codes to

(scalar) RS codes.

3.2 Problem statement and structural lemmas

Assume that the data file of size M is divided into k blocks and encoded using
an array code C of length n over some finite field F'. Each symbol of the codeword
is represented by an [-dimensional vector over F' and is placed on a separate storage
node. We assume that the code is MDS, i.e., the entire codeword can be recovered
from any k of its coordinates (from the encoding stored on any k out of the n nodes).

According to the cut-set bound of [20], the amount of information required for repair

5

of a single node from d helper nodes satisfies the inequality

dl

Bld) = o——7 (3.1)

where k <d <n—1.

Suppose that information is encoded with an MDS array code C of length
n = nu over a finite field F. If the size of the code is ¢, we refer to it as a
C(n, k,l) code. The set of nodes [n] = {1,2,...,n} is partitioned into n subsets
(racks) of size u each. Accordingly, the coordinates of the codeword ¢ € € are
partitioned into segments of length u, and we label them as ¢;,t = 1,...,n, where
t=(m-—1Du+j1<m<n, 1<j<u Wedo not distinguish between the nodes
and the coordinates of the codeword, and refer to both of them as nodes. Each node
is an element in F', and when needed, we denote its entries as ¢;;,7 = 1,..., L.

Denote by R < {1,...,7} the set of d helper racks and let m* be the index
of the host rack. To repair the failed node, information is generated in the helper
racks and is combined with the contents of the local nodes to perform the repair.
This is modeled by computing a linear function of the contents of the nodes within
each helper rack (the function depends on the contents of all the nodes in the rack,
and can in principle also depend on the rack index), and sending this information

to rack m*.

Definition 8 (REPAIR SCHEME). Let C(n, k,l) be an array code. Suppose that node
Clm*—1)u+j* 15 erased (has failed). To recover the lost data, we rely on the values of

the symbols in coordinates ciy4;, where i € R and j = 1,...,u. A repair scheme §

76

with repair degree d < n — 1 is formed of d functions f; : F*' — FP% i e R and a
function g : FXiexPi x =Dl Bl For o given i € R the function f; maps ¢
(the nodes in rack i) to some B; symbols of F. The function g accepts these symbols

together with the available nodes in the host rack as arguments, and returns the value

of the failed node:

g({ filci—1yurs, 1 < j <u),i € R}, {cmr—1)usrjn J € {1, -, u\{J}}) = cims—1yusj*-

In general the function f;,1 € R depends on i, m* and 7%, and the function g depends
on R,m*, j*.

The quantity B(R,m*, j*) = >.cx Bi ts called the repair bandwidth of the node
Cim*—1)u+j* from the helper racks in R and from the available nodes in the host rack

m*.

The repair scheme can be defined in a more general way: for instance, each
of the functions f; that form the information downloaded by the failed node could
depend on the entire set R (and not just on the contents of the node i) and the
function ¢ could depend on the labels of the helper nodes in addition to the infor-
mation downloaded from them. At the same time, all our results as well as all the
results in the earlier literature are well described by this definition, which therefore
suffices for our purposes. If the functions f;, g are F-linear, the repair scheme itself
is called linear. Only such schemes will be considered below.

Let

Bu(d) :== min max [(R,m*, j¥)

cFnl Rm* j*

7

where the minimum is taken over all (n, M = ¢*) MDS array codes and the max-
imum over the index of the host rack, the failed node in the rack, and the choice
of the set of the helper racks R. To rule out the trivial case, we assume throughout

that k& > w.

3.2.1 Optimal repair

Suppose that k& = ku 4+ v, where 0 < v < u — 1. A necessary condition for
successful repair of a single node is given by a version of the cut-set bound [32], [31]
which states that for any (n, k,1) MDS array code, the (inter-rack) repair bandwidth

is at least

Bu(d) > ——— (3.2)

The code that attains this bound with equality is said to have the optimal repair
property.
The arguments below are based on the following obvious (and well-known)

observation.

Lemma 23. Let C(n, k,l) be an MDS array code. Suppose that a failed node is
repaired using a set Z,|Z| = d of helper nodes. The number of symbols of F' down-
loaded for the repair task from any subset ' < I of size |Z'| = d — k + 1 is at least

L.

To prove this it suffices to observe that, because of the MDS property, no
subset of k£ — 1 nodes carries any information about the value of any other node.

78

We note that this lemma applies to the rack model (i.e., allowing processing
of the information obtained from the nodes in 7). It also applies if the count of
downloaded symbols is replaced by the count of symbols accessed on the helper
nodes.

The next statement, called the uniform download property, is well known for
the case of homogeneous storage. Its proof for the rack-aware storage is not much

different, and is given for completeness in Appendix B.1.

Proposition 24. Let € be an MSR code and suppose that k > 1. Let R be the set

of helper racks used to repair a single failed node. Then B; =1/(d — k +1),i e R.

We note that both the bound (3.2) and this proposition can be generalized to
the case of 2 < h < r failed nodes located on the same rack without any difficulty;

hdl

for instance, the bound takes the form § > -2

Next, observe that if k is divisible by the rack size u, then any MSR code for
the standard model will be optimal for the rack model, i.e., cooperation between
the nodes within the rack does not help to reduce the repair bandwidth (this has

been first observed in [31, Thm. 4]).

Proposition 25. Let k = ku, and let C be an MSR code of length n = fau with
optimal repair of a single node for the homogeneous storage model. Then C attains

the cut-set bound (3.2) for repair of any single node in the rack-aware model.

Proof: Take an MSR code of length n and assume that v = 0. Suppose that

the number of helper nodes is d, and this includes the v — 1 local nodes. By (3.1),

_d

i1l In accordance with the model, take

the repair bandwidth necessary equals

79

d=du+ (u—1), then

d d u—1
d—k+1l:<d—k+1+d—k+1)l (3.3)

and this achieves the bound (3.2) if the second term is discounted (which is possible
because of the uniform download property and because intra-rack communication
is free). O

Note that in the case of v # 0, optimal codes for the rack model perform repair
using a strictly smaller repair bandwidth than optimal codes for the homogeneous
model. This also suggests that the number of symbols downloaded from a helper rack
is strictly smaller than the number of accessed symbols, i.e., intra-rack processing is
necessary for optimal repair (this will be made rigorous once we establish Prop. 26
below).

For reader’s convenience, let us summarize the code parameters: We consider
(n,k,l) array codes used in a system where the nodes are arranged in racks of
size u. The codes are designed to repair a single node. We further assume that
n = au,k = ku + v, where 0 < v < v — 1, and the number of helper racks is d,

n — k for the number

where k < d <7 — 1. We also use the notation r = n — k, 7
of parity nodes and parity racks, respectively. Finally, to shorten the formulas we

denote

el

d—

s=d—k+1, 5 + 1,

80

where d is the total number of helper nodes accessed for repair, and d is the repair

degree, i.e., number of helper racks (not counting the host rack).

3.2.2 Optimal access

Some of the constructions of codes for the homogeneous case have the ad-
ditional property that the information accessed on the helper nodes is the same
as the information that is downloaded by the helper node (no processing is per-
formed before downloading). This property, also called repair by transfer, reduces
the implementation overhead, and is therefore desirable in the code construction.
Structure and constructions of optimal access (OA) codes for the homogeneous case

were addressed in [75, 81, 85] among others.

Definition 9. Let C(n = nu, k,l) be a code that supports optimal repair of a sin-
gle failed node with repair degree d. Suppose that each of the helper racks provides
/s field symbols and these symbols are generated by accessing the smallest possible
number of symbols of the nodes in the rack. In this case we say that C has the OA

property.

To motivate this definition, we draw an analogy with the homogeneous case.
In this case, on account of the bound (3.1) and the uniform download property,
the system accesses [/s symbols at each of the helper nodes, and these symbols are
downloaded to accomplish the repair. As a consequence, a group of u > 1 helper
nodes provides ul/s symbols. This observation also extends to the rack-aware model

in the case that u|k. Indeed, in this case the number of symbols downloaded from,

81

and accessed on, each rack equals [/s = ul/s.
In the next proposition (proved in Appendix B.2) we derive a lower bound on

the number of accessed symbols and establish the uniform access condition.

Proposition 26. Let C be an (n,k,l) optimal-repair MDS array code for the rack
model with repair degree d = k+1 and u < k. The total number of symbols accessed

on the helper racks for repair of a single node satisfies

az=—. (3.4)

Equality holds if and only if the number of symbols accessed on node e satisfies

Qe =1/s forallmeR;e=1,..., u.

As noted above, if u|k, the symbols accessed on the helper nodes can be down-
loaded without processing, accounting for optimal repair. At the same time, if u 1 k,
and the code meets the bound (3.4), then processing is necessary because dul/s is

strictly greater than the optimal bandwidth in (3.2).

3.2.3 A lower bound on the sub-packetization of rack-aware optimal-

access MSR codes

In this section we present a lower bound on the value of the node size in MSR
codes for the rack model, which will be implicitly assumed throughout without
further mention. Similarly to [3, 75], we limit ourselves to systematic codes and

linear repair schemes. Let C be an (n = nu,k = ku,l) systematic optimal-access

82

MSR array code over F'. Let A = (A;;) be the ((n — k)l x kl) encoding matrix of C;

in other words, the parity symbols c;,;,7 = 1...,r = n — k are obtained from the
data symbols ¢;,7 = 1,...,k according to the relation
k
Ckti = Z Ai,jcja (3'5)
j=1

where each A; ; is an [x invertible matrix over F'. Assume without loss of generality
that the k systematic nodes are located on racks 1,...,k, called systematic racks
below. Racks k+1,...,7n will be called parity racks. Let c,, = (Clm—1)ut1, - s Conu) ¥
be the data vector stored in the m-th rack, 1 < m < k, where each component is an
[-vector over F. Suppose for definiteness that the failed node is located in rack my,
where 1 < my < k. Suppose further that the set of d helper racks is formed of the
remaining k — 1 systematic racks and some § = d — k + 1 parity racks.

We assume throughout that the repair scheme is independent of the index of
the failed node in its rack.

The main result of this section is given in the following theorem, whose proof

is modeled on the result of [3] and generalizes its main ideas to the case of u > 2.

Theorem 27. Let C be an (n = nu,k = ku,l) optimal-access MSR array code,
k>wu, and let d,k < d <7 —1 be the size of the helper set R. Suppose further that
there is a linear repair scheme that supports repair of a single failed node from any
d helper racks.

(a) Suppose that the repair scheme depends on the choice of the helper racks

83

as well as on the index of the host rack. Then

[> min{s® D/ g5, (3.6)

where 5 =d —k + 1 and s = 5u.
(b) Suppose that the repair scheme depends on the index of the host rack but

not on the choice of the helper racks, then

I > min{s"*, 5" '}. (3.7)

A proof of this theorem is given in the Appendix. Here let us make the
following remark. The theorem is proved under the assumption that u|k, in which
case any optimal-access MSR code for the homogeneous storage model supports
optimal repair for the rack model. The smallest possible value of sub-packetization

n—1

for such codes is [= 771 [3, 85]. Thus, this theorem says that it is possible that

there exist optimal-access rack codes that have smaller node size than OA codes for

homogeneous storage even in the case when k is a multiple of u.

3.3 Rack-aware codes with optimal repair for all parameters

Let 5 =d—k+ 1 and let F,|F| > 5n be a finite field. The code that we
construct is formed as an F-linear array MDS code € of length n, dimension k,
and sub-packetization [= §". We denote a codeword of € by (¢1,¢a,...,¢,), where

¢ = (cig,...,ciy) forall i = 1,...,n. Suppose that sn|(|F| — 1) and let A € F' be

84

an element of multiplicative order sn. Finally, given j € {0, 1,...1— 1}, consider the

base § expansion j = (ja, ja_1,---,J1) and let

j(p,a) = (j’r_w‘"7jp+17a7jp—17"'7j1)7 (38)

where 0 < a <s—1.

Construction 3.3.1. Consider an (n,k,l = 5") code € = {c = (¢;;)1<i<n0<j<i—1}

defined by the following set of rl parity-check equations over F':

n u

Z (e—1)5+je) Z (i— 1)sn Cle—1)u+ti,j = 0 (39)

e=1 =1
forallt=0,....,r—1;7=0,...,1 —1.

We will show that the code defined in (3.9) is an MDS code that has the
smallest possible repair bandwidth according to the bound (3.2). Before stating the
main theorem that proves these claims let us comment on the origin as well as the
new elements in this construction. The code is formed of two levels, the algebraic
one, which accounts for the repair of a node in any fized rack, say p,1 < p < n, and
a stacking construction which makes the code universal (i.e., rack-independent).
The second part is accomplished by representing the index j of the parity check
equation as an s-ary number (3.8). This expansion enables us to isolate the parities
that are used to perform repair of any failed node in rack p, specifically, they are
the equations in (3.9) whose label j is obtained by varying the value of the entry j,
in the expansion (3.8) and fixing all the remaining values.

85

The algebraic development represents the main part of the proof of Theorem
28 and accounts for the optimal-bandwidth repair scheme. The key new idea utilized
in the proof is the choice of A based on the multiplicative structure of F' and using

the evaluation points given by the powers of \.

Theorem 28. Let k < d < n — 1. The (n,k,l = 5") code C defined by the parity-
check equations (3.9) is an MDS code that supports optimal repair of any single node

from any d helper racks, under the rack-aware storage model.

Proof. We begin with proving the part of the claim about the repair properties of
the code C. Suppose that the index of the rack that contains the failed node is
pe{l,...,n}. We have fu = r + v and since 0 < v < u—1, (T— Du < r — 1.

Rewriting (3.9), we have:

U u
t p— 1 5+] _ t 6 1 S+]
A (« P Z C(p Du+i,j — — Z)\ c (e=1)u+i,j

e;ép
forallt =0,...,r—1;7 = 0,...,l — 1. We will use a subset of the parity-check

equations with indices t of the form t = wu :

n u

A\ ((e=1)5+3p) W“ZC(p Dutij = — Z AllemDstie)w Z (e—1)u+ti,j

=1 e#p =1

forall =0,...,l—1;w=0,1,...,7—1, where we have used the fact that A" = 1.

Denoting a@ = A* and summing these equations on j, = 0,1,...,5 — 1, we obtain

86

the following set of conditions:

5—1 u
2 (=15 +5p)w Z Clot)utij = — 2 q((e=D)5+je)w Z ZC(E_I)HZ.J (3.10)

Jp=0 =1 e#p Jp=01i=1
forallw =0,1,...,7—1and all jz,...,jp+1,Jp—1,-- -, J1, where each of these values

ranges over {0,1,...,5—1}. Let R = {q1,...,q;} be the set of helper racks and let

[\R = {p,p1,...,pr—s}. Then (3.10) can be written as follows:

-1 wu
1)s5+7 ((a—1)5+j
37 a0 g+ 3]l ZZ

Jp=0 i=1 ae[a]\R Jp=01

a#p
_ 3 gl 2 Z Cotpuris. (3.11)

beR

In matrix form these equations are shown in (3.12) below, where

- u
0-37317, = ZZ e l’ll,-‘,-Z,‘j’ 621,-..,7_1’

and j is as given above after (3.10).

241 Cp—1)u+i,5(p,0)

1 . 1 1 . 1
asP=1) . gSlp-D+s—t QFer=D+ipy e Dt u '
2im1 Sp—Du+ij(p,5—1)
: : : : : Ip1,5(p,*)
(ag(p—l))F—l L (ag(p—1)+§—l)i—1 (a§(p171)+jp1 Y=l (e S(Pr—€*1)+ﬂpp s)r=1 :
Opr_5,5(p,%)
1 . 1
oFl@a—1D)+ig; o oSlaa—D ey Taq1,5(p,%)
- . . . : (3.12)
Q@D Glag-DriaE-1 | L Taaie)

We claim that Equations (3.12) suffice to recover one failed node in rack p.

87

Indeed, suppose that the d-dimensional vector on the right-hand side of (3.12) is
made available to the failed node by transmitting one symbol of F' from each of the
helper racks. Let us check that the matrix on the left-hand side is Vandermonde,
i.e., that the defining elements in the second row are distinct. To see this, note that

sle=l)+m m —0,...,5 —

ord(a)) = sn, and the maximum degree of « in the set {a
Lia=1,...,a}is

s(h—1)+5—1< sn.

Moreover, each of the first § coordinates of the multiplier vector on the left-hand

side of (3.12)

(Zulc(p Du+i,j(p,0 zul Clp—1)u+i,j(p,5— 1)>T
contains only one unknown term which corresponds to the failed node. Thus, if
the values ¢(p—1)u+i j(p,x) Of all the functional local nodes are made available to the
failed node (recall that this does not count toward the repair bandwidth), then
system (3.12) can be solved to find the entries of the missing node. This calculation
is repeated "' times for each assignment of the values ja, ..., Jpi1, Jp—1,---,J1s
thereby completing the repair procedure.

Let us compute the inter-rack repair bandwidth of the described procedure.
To repair the entries of the single failed node in the pth rack with indices in the
subset {j(p,a),a = 0,1,...,5 — 1} we download one symbol of F' from each of the
d helper racks. There are 57! subsets of the above form, and thus the total repair

bandwidth is

ds" ! =

ol | S

88

proving the optimality claim of the code according to (3.2).

Finally let us prove that the code C is MDS. This is immediate upon ob-
serving that each subset of parity-check equations isolated by fixing the value of
j =0,1,...,1 — 1 defines an MDS code. To check this, observe that the set of
rows of the parity-check matrix of € for a fixed value j = (jz,...,71) forms a set of
parities of a generalized Reed-Solomon codes (i.e., each column is a set of powers of

an element of F'), and the defining row of this set of parities is shown below,

‘)\h’)\j1+§ﬁ’ .)\j1+(u—1)§ﬁ‘>\j2+§’)\j2+§(1+ﬁ)’ e)\j2+§(l+(u—1)ﬁ)‘ o

RS JnSER) s T D) (3 13)

where each group between the vertical bars corresponds to a fixed value of s =
1,...,nin (3.9). It suffices to show that all these elements are distinct or that these

groups do not overlap. Note that the largest power in (3.13) is

Jat+sn—14(u—1)n)<5—1+uns—3§ < sn=ord(\). (3.14)

Now consider two groups and let their numbers be a and b, where 1 < b < a < n.

Then the difference between the exponents of the first elements in the two groups is

(@—=0)5+ (Jo—Jjb) = 1

so the first elements are obviously distinct. Further, the exponents of the elements

89

in each of the groups are obtained by adding a multiple of sn to the exponent of the
first element, which together with (3.14) implies that the groups are disjoint. This

shows that the code € is MDS, and the proof is complete. m

We remark that the repair procedure relies on a subset of the parity-check
equations of the code €. Namely, the only rows of the parity-check matrix that we
use are the rows whose numbers are integer multiples of the size of the rack u. It
suffices to use only these parities because the assumptions of the rack model are
relaxed compared to the standard definition of regenerating codes. The remaining
parities support the MDS property of the code € and do not contribute to the repair
procedure.

In Sec. 3.4.2 we construct codes with somewhat better parameters than the
codes given by Construction 3.3.1. Specifically, the smallest field size required for the
code family in Sec. 3.4.2 is n + § — 1 (as opposed to sn), and the repair procedure
accesses fewer symbols on the helper nodes than the procedure presented in the
above proof. At the same time, the codes presented in this section have the optimal
update property. Namely, a codeword of the code € can be viewed as an [x n
array, and for a given row index j € {1,...,l — 1} the n symbols are encoded with a
generalized RS code independently of the other rows. Thus, if some k symbols are
taken as information symbols, then the change of one symbol in the data requires
to change r parity symbols, which is also the smallest possible number [75]. At the
same time, the codes in the family of Sec. 3.4.2 do not have optimal update, and

are in this respect inferior to the present construction.

90

3.4 Low-access codes for the rack model

This section aims at constructing an optimal-repair MSR code for the rack
model that accesses a reduced number of symbols on the nodes in the helper racks.
Our presentation is formed of two parts. In the first part we construct an optimal-
access MSR code for arbitrary repair degree k < d < n — 1 without assuming the
rack model of storage. The code has subpacketization | = (d — k + 1)".

In the second part we present a modification of this construction for the rack
model, attaining subpacketization | = 5". Note that this value is smaller than the
smallest node size of known constructions of OA codes for the homogeneous model,

which is s™ [85].

3.4.1 Optimal-access MSR codes with arbitrary repair degree for ho-
mogeneous storage

In this section we present a family of OA codes for any repair degree k <
d<n-—1TLet s =d—k+1andlet F,|F| > n+s—1 be a finite field. Let
A0y« -y An—1s fl1, - - -5 fhs—1 be n + s — 1 distinct elements of F'. Let ¢ = (i,,_1,. .., %0)

be the s-ary representation of i = 0,...,l — 1 and (as before) let

i(aab> = (infla s 7ia+1ab7 la—1y- - - 77;[))

91

for0<a<n-—1and 0<b<s— 1. For brevity below we use the notation
6(2) = 1{i=0}~

Construction 3.4.1. Define an (n,k = n —r,l = s") array code C = {c =
(¢ji)o<j<n—1:0<i<i—1}, where the codeword ¢ satisfies the following parity check equa-

tions over F':

n—1 n—1 s—1
Z)\ECjJ—I—Z6(ij)zuécjvi(jvp) :0, ZZO,,Z—L t:O,...,T‘—l. (315)
7=0 j=0 p=1

Since later in this section we rely on multiplicative structure of F', we label the nodes
0,...,n—1 and not 1,...,n as in Construction 3.3.1. In the next subsection we

will also label the racks from 0 to n — 1 for the same reason.
Theorem 29. The code C defined in (3.15) is an optimal-access MDS array code.

The proof will be omitted because in principle it can be obtained from the
proof of Theorem 30 below upon taking the size of the rack w = 1. This is however
not entirely immediate, and interested readers can consult the arXiv posting of a
preprint of this chapter (arXiv:1901.04419, January 2019) which contains a complete

and independent proof of Theorem 29.

3.4.2 Rack-aware MSR codes with low access

In this section we adapt the code family constructed in Sec. 3.4.1 for the rack-
aware storage model. This result is obtained by adjusting the sub-packetization and

92

by carefully choosing the elements \g, ..., \,_1.

We aim to construct an (n, k,) MDS array code over F', where n = nu, and u
is the size of the rack. Recall that 5 =d—k+1 where k <d <n—1, and k = |k/u].
Let |[F| = n+5—1and n|(|F|—1). Let A € F' be an element of multiplicative order
n, and let py,. .., us—1 be § — 1 distinct elements in F\{\ | =0,...,n — 1}. For
7=0,...,n—1, let us write j = eu+ g where 0 < e <n and 0 < g < u.

We construct an rack-aware low-access MSR code over F' that can repair any

single node from any d helper racks.

Construction 3.4.2. Define an (n,k = n —r,l = §") array code C = {c =

(¢ji)o<j<n—1:0<i<i—1} by the following parity-check equations over F':

n—1 n—1 5—1
DI Nicji+ D1 0() D ihejiten) = 0, (3.16)
j=0 j=0 p=1

where \j = XT9" 1 =0,...,l—1andt=0,...,r — 1.

We will show that this code family supports optimal repair while accessing [/s
symbols on each of the nodes in the helper racks, which is by a factor of s/5 ~ u
greater than the bound in Prop. 26. While these codes stop short of attaining the
bound (3.4), they have lower access requirement than the codes given by Construc-
tion 3.3.1, which access all symbols of the helper nodes, i.e., § times more symbols

than the current construction.

Theorem 30. The code C defined in (3.16) is an optimal-repair MDS array code.

The repair procedure accesses 1/5 symbols on each of the nodes in d helper racks.

93

The repair scheme does not depend on the choice of the subset of d helper racks.

Proof. 1. OPTIMAL-ACCESS PROPERTY. Suppose ¢;, is the failed node, where j; =
eiu + g1. Let R be the set of helper racks and let J = {0,...,7n — 1}\R. We write
this set as § = {e1,ea,...,¢e;_g}. For a given a,1 < a < — d we will need a-
subsets of J, which we denote by J,. We always assume that e; € J,. As before, let

Z < {0,1,...,1— 1} be the subset of indices such that i., = 0; let

Il:{i:(iﬁ—lw--aio)e{07"'al_1}|i61 :O;ie7é0a668\31}

and define

3
|
&

7, = Uz(ga), a=2,...,

Jasd

where

Z(da) = {i = (in-1,...,30) €{0,...,0 =1} | ic = 0,e € Ju;ic # 0,e € \Ju}-

Recall that 7 = 7 — k. We will use the parity check equations corresponding
to 7 € Z and all powers t = uw,w = 0,...,7 — 1 to repair ¢;,. To show that the

repair is possible, we argue by induction ona =1,...,n —d.

To prove the induction basis, we show that it is possible to recover the values

{¢jriterp) | P=0,...,5—1} and {ZZ;(l) Ceutrgi | € € J\J1} for every i € 7, from the

94

helper racks R. From (3.16), for i € Z;, we have

u—1 u—135—1
t t
2 Z)\equgCequg,i + Z 2 HpCeiu+tg,i(er,p)

eed g=0 g=0p=1

u—1 5—1

t . t
S O 3000 S i)
eeR g=0 p=1

Using t = uw, Aeysg = AT, and A™ = 1, we obtain

u—1 5—1 u—1
euw uw
2 A Z Ceutg,i + Z Hy Z Ceru+tg,i(er,p)
9=0 p=1 g=0

ecd
u—1 5—1 u—1
= — Z ()\euw Z Ceutgi T (5(i6) Z M;w Z Ceu+g’i(e7p)>7 (3.17)
g=0 p=1 g=0

eeR

i€Zy,w=0,...,7—1. To shorten our notation, denote the right-hand side of (3.17)

by ;.,(d1) and let

Note that the value of 0;,,(d;) only depends on the helper racks. Fori =1,...,a—d

define «; := A\%". Let us write equations (3.17) for all w = 0,...,7 — 1 in matrix

95

form:

7Ti,el
_ 7 7T'(61,1) 1 [7]
1 1 .. 1 1 - 1 i,0(d1)
o M1 Ms—1 Q2 o Qg 0i1(Jd1)
Titers-t)er | = . (3.18)
. .) B ~ Tieo
0/1:71 Mr{—l . Iugj 0/2"*1 - a;:z_ ' Ui,f—l(gl)
Tien_q

Observe that the matrix on the left-hand side of (3.18) is invertible. Therefore, the

values {¢;, iyp) | P =0,...,5—1} and {Zg 0 Ceutg,i | € € J\J1} can be found from
the values {0;,(d1) | w = 0,...,7 — 1} and the local nodes {ce,uty | g # g1} for
every i € Z;. This completes the proof of the induction basis.

Now let us fix a € {2,...,7—d} and suppose that we have recovered the values
{¢jiterpy | P =0,...,5 =1} and {ZZ;ol Ceutgyi | € € 3\31}, i€ly; 1<d <a-1

from the information downloaded from the helper racks R.

Fix a subset d,,|da| = a, and let i € Z(J,). From (3.16), we have

u—15—1
Z Z)‘eu+gceu+gl + Z Z Z ,upceu-i-gz e,p)
eed g=0 eega g=0p=1
- Z Z >‘eu+gceu+9ﬂ + Z Np Z Z Ceutg,i(e,p)
el g=0 = e€3a9 0
- Z (Z Aot gCeutgi + 0 (lc Z 4 Z Ceutgi(,p)>. (3.19)
eeR g=0 p=1 g=0

96

Using t = uw, Aeysg = AT, and A™ = 1, we obtain

u—1 5—1 u—1
euw uw
PIPCED IR 31D 3D YO
g9=0 p=1

eed e€dq g=0

u—1 5—1 u—1
= — Z ()\euw Z Ceutgi T (5(i6) Z /ﬂ}jw Z ceu+g’i(€7p)>. (3.20)
g=0 p=1 g=0

eeR

Again for notational convenience denote the right-hand side of (3.20) by 0;4,(da)

and let

u—1
Pip = Z Z Ceutg,i(e,p)-

e€dq 9=0

Note that the value of o;,,(d,) depends only on the information in the helper racks.

Let us write Equations (3.20) for all w = 0,...,7 — 1 in matrix form:
Pi1
1 - 1 1 .- 1 : :0(da)
M1 o M1 Q1 ot Qg Pis—1 Uz',l(ga)
_ . (3.21)
Tieq :
AT It R B B N POCR
ﬂ-iveﬁ—i

Therefore, for any J, < J and every i € Z(J,), the values {p;, | p = 1,...,5— 1}

and {Z;:é Ceutq,i | € € J} can be found from the values {0;,,(d,) | w =0,...,7—1}.

It follows that we can recover the values {p;, | p=1,...,5— 1} and {ZZ;& Ceutg,i

ee} forallieZ,.

97

Note that for i € Z(d,), e € d,\d1, and for p # 0, we have i(e,p) € Z,_1. By the
induction hypothesis, we have recovered the values {ZZ;S Ceutgi | 1 € Za—1;e € I\J1},
and therefore, we know the values {Z;:é Ceutgii(ep) | J € 3a\d1,p # 0} for each i € Z,.
With these values and {p(i,p) | i € Z,,p = 1,...,s — 1}, we can obtain the values

{Zg;é Cel U+g,l

p=1,...,s —1}. Since the values of local nodes {ce,utg4i | 9 # 91}
are available, we can further recover the value c;, ;.

Thus, we can obtain the values {¢;, i, ») | p=0,...,5—1} and {ZZ;S Cerutgyi |
e € J\J1} for every i € Z,,. It follows that we can recover these values for every i € Z,
and 1 < a < 72 —d from the helper racks R. In conclusion, we can recover the values
{Cjriterp) |1 €L, p=0,...,5 =1} = {¢j,; | i = 0,...,1 — 1} from the information
obtained from the helper racks in R.

Now let us count the number of symbols we access in each helper rack. It is
clear from the definition of 0;,,(d,) (see (3.20)) that we need to access the symbols
{Ceutgi | 0 < g < w,i € I} for each e € R. In other words, we need to access
§"~1 = [/5 symbols on each node in the helper racks; thus, the total number of
accessed symbols equals dul/5. Moreover, the set of symbols we access in each helper
rack depends on index of the host rack but not the index of the helper rack.

Note also that the symbols downloaded to the rack e; from any helper rack
e € R form the subset {Z;:é Ceutg,i | © € I}. Thus, the total amount of information

downloaded for the purposes of repair equals

JT|=dst= 2
d

98

This is the smallest possible number according to the bound (3.2), and thus the

codes support optimal repair.

II. MDS PROPERTY. We will show that the contents of any n — r nodes
suffices to find the values of the remaining r nodes.

Let X = {j1,...,jr-} € {0,...,n—1} be the set of r nodes to be recovered from
the set of n—r nodes in [0,n—1]\X. Let us write j, = eyu+ g, where 0 < g, < u—1
forb=1,...,r.

Let J be the set of distinct e, b=1...,7. For 1 <a < ||, let d, < J be such
that |J.| = a.

Let Zy = {i = (ip—1,...,70) € {0,...,0 =1} | ic # 0,e € J}. For 1 < a < |J|
and J, < 7, let Z(J,) = {i = (ia—1,.--,%0) € {0,..., 01 =1} | 4. = 0,€ € Ju;i #
0,e' € \Ja}. Let Z(a) = (J;,cyZ(da) where 1 < a < |J]. Observe that the sets
1,,0 < a < |J| partition the set {0,1,...,1—1}.

We will prove by induction that we can recover the nodes in J from the nodes
in {0,1,...,n—1}\J. First, let us establish the induction basis, i.e., we can recover
the values {c;; | j € d} for every i € Z from the nodes {c; | j € §°}. From (3.16), for

1 € 1y, we have

5—1
Z /\;'Cj’i = — Z ()\;-Cjﬂ' + 5(7,6) Z ,U/;Cj,i(e,p))' (322)
p=1

jed Jjege

To simplify notation, denote the right-hand side of (3.22) by o,; = 0;:().

Note that the value of 0;; only depends on the nodes {c; | j € J°}. Writing (3.22)

99

in matrix form, we have

L1 Cji Ti0
v A || G Tia
- . (3.23)
r—1 r—1
)\jl T)\jT Cir i Oir—1

Therefore, the values {c¢;; | j € J} can be calculated from the values {0;; | t =
0,...,7— 1} for every i € Zy.

Now let us establish the induction step. Suppose we recover the values {c;; |
j € d} for every i € T, and 0 < @’ < a — 1 from the nodes {c; | j € J°}, where
1<a<|dl

Now let us fix a set J, < J and let i € Z(J,). From (3.16), we have

5—1 5—1
DNz == DL Citen —), (Aécj,i +6(ic) Y MZCj,z'(e,p))
jed p=1 jed: e€da Jege p=1
=t —pis — 014(da), (3.24)

where the last line serves to introduce the shorthand notation. Note that we know
the values {0;+(d.) | t = 0,...,7 — 1} since the value 0;(d,) only depends on the
nodes {c; | j € J°}. Furthermore, we also know the values {p;, |t =0,...,r — 1}.
Indeed, for i € Z(d,), e € da, and p # 0, we have i(e,p) € Z,_1. By the induction
hypothesis, we have recovered the values {¢;; | i € Z,_1,j € J}, and therefore, we

know the values {c;jiep) | J € d: € € Ja,p # 0} for each i € Z,. It follows that we

100

know the values {p}, |t =0,...,7 — 1}. Writing (3.24) in matrix form, we have

L1 Cj i Pio + 0i0(da)
)\jl U AJT Cia i pfi,l + Ui,l(ga)
- . (3.25)
)\;;1 T)\g:l _Cj"“ﬂ'_ _p;,rfl + Ui,?‘*l(ga)_

Therefore, the values {c;; | j € d} can be recovered for every i € Z(J,) and g, < J.
It follows that we can recover the values {c;; | j € J} for every i € Z,. Thus, all
the values {c¢;; | j€d,1€Z,,0 < a < |J|} = {c;; | j€d,1€{0,...,1 —1} can be
recovered from the nodes {c; | j € 3°}.

Since J is arbitrary, we conclude that any n — r nodes can recover the entire

codeword, i.e., the code is MDS. O]

3.5 A construction of Reed-Solomon codes with optimal repair

In this section we present a family of scalar MDS codes that support optimal
repair of a single node from an arbitrary subset of d helper racks. We still use
the same notation as in the previous parts of this chapter. As noted earlier, the
construction is a modification of the RS code family in [77]. The new element of the
construction is the idea of coupling the code family of [77] and the multiplicative
structure that matches the grouping of the nodes into racks. This latter part is

similar to the idea of Sec. 3.3.

101

3.5.1 Rack-aware RS codes with optimal repair

Let g be a power of a prime, let u be the size of the rack, and suppose that
ul(g—1). Let k = ku+v,0<v<u—1,5=d—k+1. Let p;,i = 1,...,7n be distinct
primes such that p; = 1mod s and p; > u for ¢ = 1, ..., n; for instance, we can take
the smallest n primes with these properties. For ¢ = 1,...,n let A\; be an element

of degree p; over F,. Let

Fi=F,(\,jel{l,....a\{i}), i=1,....n

F:=TF,(A1, ..., An).

Let K be an extension of F of degree 5 and let ;1 € K be a generating element of K

over F. Thus, for any ¢ = 1,...,n we have the chain of inclusions
F,c F, cK;

so K is the [-th degree extension of F,, where [= [K : F,] = 5] _; Pm.
Further, let A € F, be an element of multiplicative order u. Consider the set

of elements

)\ij:/\i)\j—17i:1,...,7_L;j:1,...,u.

Consider an RS code € = RSk(n, k,2) where the set of evaluation points €2 is as
follows:

0=

Q;, where Q; = {\;;,7 =1,...,u}.

1=1

102

A codeword of € has the form ¢ = (¢, ¢a,...,¢,), where the coordinate ¢,,,m =
(i —1Du+j,1 <i<n;l<j<ucorresponds to the evaluation point \;;.
To describe the repair procedure, we will need the following easy modification

of Lemma 1 of [77].

Lemma 31. Forie {1,...,n}, there exists subspace S; of K such that
dimp, S; = pi, S+ SiAL 4+ SAETY — K (3.26)

where S;8 = {vB,v € S;} and the operation + is the Minkowski sum of sets, Ty +

Ty = {n + 7271 €Ti,v € Th}.

Proof. The space S; is constructed as follows. Define the following vector spaces

over Fj:

Sz(l) = SpanFi(Mt)‘;+eg7t:07]-7"'75_1;620’1""’%7771_1)

5-1
@ - Spanpi<2 ,ut)\ffl)
t=0

and take

S = SN 4+ 5%,
Now the proof of [77, Lemma 1] can be followed step by step, using the fact that
{1, ..., (AY)Pi~1} forms a basis for IF over F;, and we do not repeat it here. [
The main result of this section is given in the following proposition.

Proposition 32. The code C supports optimal repair of a single failed node in any

103

rack from any d helper racks.

The proof follows the scheme in [77] which is itself an implementation of the

framework for repair of RS codes proposed in [28].

Proof. Let

€= ((C(i—l)U+j)1<i<ﬁ;1<j<u)

be a codeword of €. Suppose that c(_1),4;+ is the failed node, i.e., the index of
the host rack is ¢*,1 < ¢* < n, and the index of the failed node in this rack is
j*,1 < j* < u. Denote by R < {1,...,n}\{i*},|R| = d the set of helper racks.
The repair relies on the information downloaded from all the nodes in R and the
functional nodes in the host rack. Define the annihilator polynomial of the set of

locators of all the nodes in R:

h(z) =] (z — \ij).- (3.27)

ie{l,...n}\(Ru{i*}),
1<j<u

Let t = uw, where w =0,...,5 — 1. Since

degz'h(z) < (5—Nu+(n—d—1Nu=F—-NDu<iu—v=n—k (3.28)

evaluations of the polynomials z'h(x) are contained in the dual code C*.
Since Gt itself is a (generalized) RS code, there is a vector a = (ay,...,a,) €
(K*)™ such that any codeword of € has the form (ai;f(\ij))i<i<ii<j<u, Where

f € Klz] is a polynomial of degree < r — 1. Thus, by (3.28), we have the vec-

104

an Al Jh(Anw)) € €1, so the inner product of this vector and

tor (a1 A3 h(A11), ...,

the codeword c is zero. In other words, we have

Z Q(i— 1)u+] /\ j)C(i—l)u-i-j'

1, j=1
*

Ms.

Z i*— 1)u+]>\z*jh(/\ *]) i*—Du+j =

7=1

iﬁ

Let Si be the subspace defined in Lemma 31 and let {ey, ..., e, } be a basis of S

over Fj«. Then for m = 1,... p;*, we have

Z (i —1yusj N (N) (o _1yusj = — Z Z m(i—1yu+j Nij P Ni) Cli—1yuts-

]:1 =1,
i#i ¥

Evaluating the trace from K to Fj« on both sides of the last equation, we obtain

u

trK) s < Zema(i*71)u+j)‘§*jh()‘i*j)c(i**1)U+j>

j=1

Z)\ h ij trK/F*(ema(z DutjC— l)u-‘rj)
, =1

Mm

-

*

= .

7

D AN T (€G24 1) (3.29)

i€ER j=1

=

where we used (3.27), the fact that \;; € Fi« for all ¢ # ¢*, and where ¢t = vw,w =

0,....,5—landm=1,...,p.

Recall that \;; = A M1 and * = 1. From (3.29) we have

£/ <€mV¥“” 2 a(i**l)qujh()‘i*j)c(i**l)quj)

j=1
= = DAY RNtk F (€mA -1y C- Dyt (3.30)
1€ER j=1

105

where the parameters ¢, m are as above. By (3.26) in Lemma 31 and the definition
of the set {e,,}, the set {e %" | 1 < m < pi#,0 < w < § — 1} forms a basis for K

over Fjx. Therefore, the mapping
B = trg/py (emAi’B), 1 <m < px, 0 <w <5—1 (3.31)

is a bijection.

The repair procedure is accomplished as follows. For every ¢ € R, the elements

Z zg tI‘]K/F* EmA(i—1)ut;5C(i— 1)u+]> = 17 <oy Dix (332)
J=1

are downloaded from helper rack 7. By (3.30) this enables us to find the elements

tr]K/Fi* <€m>\§i§" a(i*—1)u+jh()\i*j)c(i*—1)u+j)7
j=1

1,...,ps. Next, on account of (3.31) we can find the value of the sum

3
I

u
Z i*—1) u_,_] *j)C(i*_l)qH_j.
Jj=1

Finally, since the values of the coordinates c(#_1yu+j,J # J* stored on the
functional nodes in the host rack * are available and the entires of the vector a are
nonzero, we can find c¢(#_1y,4;+, completing the repair.

The number of field symbols of Fj« (3.32) transmitted from the helper racks

to the host rack equals dp;«. Therefore, we conclude that the repair bandwidth of

106

Cis

(3.33)

This meets the bound (3.2) with equality, and proves the claim of optimal repair. [

3.5.2 Rack-aware RS codes with optimal error correction and low
access

The repair schemes and constructions of the RS code families with optimal
error correction and optimal access for the homogeneous storage model in Chapter 2
can also be modified by incorporating the ideas of constructing rack-aware MSR
codes we presented in this chapter, resulting in rack-aware RS codes with optimal
error correction and low access. Below we briefly sketch the basic ideas.

First, we need a bound for the repair bandwidth when there are unreliable
helper racks that provide erroneous information. Suppose there are € > 0 unreliable
helper racks such that d > k + 2é. Let 3,(d, &) be the minimum number of symbols
needed to repair a failed node in the host rack from d helper racks (and from the
local nodes in the host rack), of which e racks provide incorrect information. The
bound (3.2) can be generalized by extending the argument in Appendix B.1 to show

that for d > k + 2e,

Buld,e) = = —. (3.34)

Next, we present a repair scheme that enables error correction for the rack-

107

aware RS code construction we saw in this chapter and that achieves the above
lower bound for the repair bandwidth. Indeed, with a moment of retrospection, this
goal can be accomplished as follows. Instead of using n minimal polynomials for
each of the n evaluation points of the code as in Sec 2.3, under the setting of the
rack-aware storage model, one only needs n minimal polynomials for the evaluation
points \;,;72 = 1,...,7n. Then one can establish a proposition analogous to Prop. 4
by repeating arguments similar to those in Sec. 2.3 and applying the techniques we
used in this chapter. More precisely, one can show that the information provided by
the helper racks can be transformed by linear maps into vectors contained in certain
(7 — 1,d — 2€) MDS code. Thus, as long as there are no more than € helper racks
that provide erroneous information, one can repair the failed node with the smallest
possible bandwidth given by (3.34).

Lastly, we can also construct a family of rack-aware RS codes that support low
access cost (and optimal error correction). Similarly to Sec. 2.4, we need additional
structures of the underlying finite field to reduce the access cost. This can be
done by a sequence of algebraic extensions of F, similar to (2.29) and (2.30). In
short, let p; an element of degree 5 over F, for i = 1,...,n and define E :=
F,(A1,.. ., Aas 1, - -, fs). The low-access rack-aware RS code is then defined over
E with evaluation points A\;j,i =1,...,7,5 = 1,...,u. The access cost of this code
can be shown to equal dul/5. Moreover, it is possible to adopt the approach of
Sec. 2.4.2 to demonstrate a repair scheme for this code that supports both optimal

error correction and low access cost but we leave it to interested readers.

108

Chapter 4: Cyclic and Convolutional Codes with Locality

4.1 Introduction

LRC codes and their variants have been extensively studied in recent years.
In this chapter we focus on cyclic constructions of LRC codes and derive conditions
on the zeros of the code that support the property of hierarchical locality. As a
result, we obtain a general family of hierarchical LRC codes for a new range of
code parameters. We also observe that our approach enables one to represent an
LRC code in quasicyclic form, and use this representation to construct tail-biting
convolutional LRC codes with locality. Among other results, we extend the general
approach to cyclic codes with locality to multidimensional cyclic codes, yielding
new families of LRC codes with availability, and construct a family of g-ary cyclic

hierarchical LRC codes of unbounded length.

4.1.1 Organization

We begin with a characterization of the structure of the zeros of cyclic codes
in Sec. 4.2, which plays a fundamental role in the results of this chapter. Then we

present our results on cyclic H-LRC codes in Sec. 4.3, including families of cyclic H-

109

LRC codes and conditions for which the cyclic H-LRC codes are strong optimal. In
Sec. 4.3, we also address the problem of maximum length of optimal H-LRC codes,
wherein the main question is constructing such codes of length larger than the size
of the code alphabet.

Next, we derive an upper bound on the column distance of convolutional codes
with locality and present a family of tailbiting convolutional codes with row locality
in Sec. 4.4. The construction of the code family is done by exploiting a classic
link between quasicyclic codes and convolutional codes [70], whose parameters are
controlled by the set of zeros of the underlying quasicyclic code.

In Sec. 4.5 we study another variant of codes with locality, namely, LRC codes
with availability. Specifically, building upon the characterization of zeros of cyclic
codes and the technique of code concatenation, we construct a family of bi-cyclic
codes with availability whose rate is higher than that of product codes of LRC codes

with the same distance guarantee.

4.2 The structure of zeros of cyclic codes with locality

In this section, we characterize the structure of zeros of cyclic codes with
locality, which relates to the local dimension, the local distance, and the (global)

distance of the code.

110

4.2.1 Optimal cyclic LRC codes

Let € be a cyclic code of length n with generator polynomial g(x) and check

z"—1

polynomial h(z) = OR The dual code €' has generator polynomial ge(z) =

pdeer@) (1) and the code €’ generated by h(z) is obtained from €' by inverting
the order of the coordinates. A codeword a(x) € €' of weight r + 1 defines a repair
group of the code €, and so does the reversed codeword a(z) € €. For this reason
below in this section we argue about the code € rather than € , which makes the
writing more compact without affecting the conclusions.

Let us recall a connection between cyclic codes and LRC codes of [73], which we
present in the form close to the earlier works [6, 50]. The following lemma underlies
constructions of cyclic LRC codes in this chapter and elsewhere, and it represents
a mild extension of Lemma 3.3 in [73]. In the statement as well as elsewhere in
the chapter we do not distinguish between zeros of the code and their exponents in

terms of some fixed primitive nth root of unity in F,.

Lemma 33. Let C be a cyclic code overF, of length n|(¢—1) and let « be a primitive
nth root of unity in IF,. Suppose that n = vm for some integers v,m. Then the code

@' contains a vector
m—1) A
b(x) = Z gV M= e 0, m — 1} (4.1)
i=0

if and only if the set L ={u+im,i =0,1,...,v — 1} is among the zeros of C.

z"—1
TV —alu)

Proof. Notice that the polynomial b(x) can be equivalently written as b(x) =

111

where

¥ — o = H(a: — ot (4.2)

is the annihilator polynomial of the set £. Thus, b(a') # 0 for all t € £. If b(z) € @,
this implies that £ is a subset of the set of zeros of C.

Conversely, let g(x) = (¥ — a”")p(x) be the generator polynomial of €. Then

O

This lemma immediately yields the cyclic codes from [73] (the cyclic case of

the codes from [71]).

Theorem 34 ([73]). Let (r+1)|n,r|k,n|(¢—1). Let a € F, be a primitive n-th root

of unity, and let € be an (n, k) cyclic code with zeros o',i € Z := L U D, where

L={1+1(r+1),1=0,... -2 —1}

P r+4+1

k
D={1,2,....n——(r+1)+1}.
r
Then C is an (n, k,r) optimal LRC' code.

Proof. Since £ < Z, Lemma 33 implies that

b(x) = Z alrigr)
i=0

is a codeword in €. This codeword is of weight 7 + 1, and its cyclic shifts give -2

112

disjoint repair groups, supporting the locality claim. At the same time, the BCH
bound implies that d(C) > n— %(r+1) + 2, so the code is optimal by (1.4) once one

observes |Z| = n — k and dim(C) = n — |Z| = k. O

This construction extends without difficulty to codes with (r, §) locality for any
d = 2. A family of optimal codes in the sense of the bound (1.6) was constructed
in [71], Construction 8 (see also [11]). The codes in this family are constructed as
certain subcodes of Reed-Solomon codes that rely on piecewise-constant polynomials
over [F,. In the particular case that the code length n divides ¢ — 1 it is possible to
represent these codes in cyclic form. For this, we assume that r|k, take m = r+0—1,
and take the zeros of the code to be

L={i+lm|l=0,...,v—1i=1,...,6-1}
(4.4)

D={1,2,....n—k—((k/r)—1)(6 — 1)}.
As will be apparent from the proof of Lemma 35, the condition about zeros given
by the set £ translates into conditions on the dual code that support the locality

claim. The distance of the code € clearly meets the bound (1.6) with equality.

4.2.2 Cyclic codes with locality

In the next lemma we present a slightly more general view of the method in
Theorem 34 that will be instrumental in the code constructions below in this work.
The main element of the construction is code €(©) defined in (4.5), which isolates a

repair group in the code € and supports local correction of several erasures.

113

Lemma 35. Let n|(¢ — 1),n = vm. Let o be a primitive n-th root of unity in F,,

and fiz § € {2,...,m}. Let Z be a subset of size Z such that
{1,...,0—-1}cZc{0,...,m—1}

and let £ = U:;é(z, + sm). Consider a cyclic code C = {g(z)) of length n, where

and p(z) € F,[x] is some polynomial. Let

G(O) = {(007 Cyy. .. 7C(m—1)V) ‘ (CO? ce 70”_1) € e} (45)

Then dim(C®) < m — Z, d(€®) > §, and thus, the code € is an LRC code with
(m — Z,0) locality.
Further, if for every u € {0,...,m—1}\Z there exists s € {0,1,...,v—1} such

that g(a"+™) # 0, then dim(C®) =m — Z.

Proof. We proceed similarly to Theorem 34. Let

(@) =[x - o) =[] T= -) = [T i)

tel s=0 1€Z 1€Z

where [;(x) := 2¥ — o”’. Let h(z) = xg?;)l and consider a subset of Z codewords of

114

—/

C given by

bi(x) = h(z)p(z) [l(z), ie2.

JEZ\{i}
A codeword b; has the form
n -1
bi(z) = a" —1 _ a(m—l—j)iz/xjy7
L(z) =

Hamming weight m, and contains v — 1 zero coordinates after every nonzero entry.

To prove the statement about locality, let us form a Z x m matrix H obtained
by inverting the order of coordinates in the codewords b;, 7 € Z, writing the resulting
vectors as rows, and discarding all the zero columns. By construction, every row
of H is a parity-check equation of the code C(¥). Any submatrix of § — 1 columns
of H has rank § — 1 (its first 6 — 1 rows form a Vandermonde determinant), and
thus, d(C®) > §. Since the rows of H give Z independent parity-check equations
for the code €, we also have dim(C®) < m — Z. This argument exhibits a local
code in the coordinates that are integer multiples of v, and by cyclic shifts we can
partition the set {0,1,...,n — 1} into supports of disjoint local codes of length m
and distance at least 8. Furthermore, we note that the punctured code € is itself
a cyclic code of length m|n. Let go(x) be its generator polynomial. Since each row
of H is a parity-check equation for the code C®, we have go(a™) = 0 for every
i € Z and thus deg(go(x)) = Z. Together these arguments prove the claim about
(m — Z,0) locality of the code C.

Next we show that if deg(go(x)) > Z, then necessarily there exists u € {0, ..., m—

115

1}\Z such that g(a®**™) = 0 for all s = 0,...,v — 1. Suppose that there exists
u e {0,...,m — 1}\Z such that go(a™) = 0. By Eq. (4.2) in the proof Lemma 33
there exists a codeword b, € ¢ given by

" —1

m—1
- Juv . (m=1—j)v _
bu(x) = Z oz = —.
¥ —«
=0

On the other hand, e = (h(x)), so h(x)|b,(x) and therefore (z¥—a**)|g(x). Noticing
that ¥ — o = [[/Zy(x — a***™) (cf. (4.2)), we conclude that g(z) is divisible by
x—a"t™ forall s = 0,...,v—1. Hence, if for every u € {0,..., m—1}\Z there exists

0 < s < v—1such that (z —a*"*™) 1 g(x), i.e., g(a""*™) # 0, then deg(go(z)) = Z,

and thus dim(€®) =m — Z. O

4.3 Codes with hierarchical locality

4.3.1 Optimal cyclic codes with hierarchy

In this section we construct a family of H-LRC cyclic codes with h > 1 levels
of hierarchy and derive sufficient conditions for their optimality. Suppose that A is
fixed and we are given the local dimension r; (the dimension of the first, innermost
local code), and the designed local distances 1 = §y < §; < ... <), < Op41, where
On11 is the designed distance of the overall code C.

We will assume that the first local code is MDS and thus its length is n; =
r1 + 01 — 1. For 1 <i < h, let n;11 = v;n; be the length of the code in the (i 4+ 1)st

level of hierarchy, where v; > 1 is an integer. Let F, be a finite field and suppose

116

that np.1|(¢ — 1).

We construct a cyclic H-LRC code € over F, of length n = nj; and designed
(local) distances 6y,...,0,4+1 as follows. Let o € F, be a primitive n-th root of
unity. The code € will be given by its defining set of zeros Z which we specify via
a recursive procedure. Consider the set of exponents Dy = {1,...,0; — 1} of the

primitive element «. Further, let £; = & and

Z;l = Ll U Dl. (46)

Having (4.3) in mind, for 1 <i < h let

vi—1

Liy1 = U (Zit+sni), Diyr ={1,...,0i11 — 1},
s=0 (47)

Ziz1 = Liy1 U Digr.

Finally, put Z = Zp,,1.

The generator polynomial of the cyclic code € of length n is given by

g() =] [(@—a"). (4.8)

The parameters of the code € are estimated as follows.

Proposition 36. (i) The dimension of the code C is n — |Z| and the distance d >

On+1- (1) The code C is an h-level H-LRC code with locality (n;—|Z;|,0;),i = 1,..., h.

Proof. (i) The value of the dimension is clear from the construction, and the estimate
for the distance comes from the BCH bound.

117

(77) The statement about the locality parameters follows by Lemma 35 once we

observe that g(z) is divisible by [| forevery i =1,...,h. O

teln i (2 +smi) (z—a)

Next we examine the conditions that suffice for the distance of € to meet the
bound (1.5) with equality. We build up the optimality of our code in an incremental
manner in the sense that we first ensure that the first local codes are optimal (i.e.,
MDS codes), and relying on these optimal local codes we make sure that the second
local codes are optimal (i.e., optimal LRC codes), and so forth until we reach the
outermost code.

Let ry <re < ... <1y <rpyq = dim(C) be the chosen values of the dimensions
of the local codes. As before, we set ny = r1+9d;—9dp and let n; ;1 = yn; for1 <i < h
where the integer number v; satisfies v; > [r;11/r;|. Note that this assumption does
not entail a loss of generality since, assuming the i¢th and (i + 1)st local codes
are optimal, by (4.7) we have |L;11| = (n; — ry)v;, and 141 = nipq — 2] <
Nj41 — |’Ci+1‘ = Tils.

To show optimality of the code, we connect the target values of the local
distances 09,03, ...,0,+1 with the dimension values through several auxiliary pa-
rameters. For 1 < ¢ < h, let us write ;1 = a;7; — b; where 0 < b; < r;. Further, let

b

)

=b;and for j =d,0—1,...,2, let

118

Put b(()o) =0and for 1 <i<hlet

)) b(i) + b(ifl)
b = 0 + 5§ mod r, w(’ = |2 0 (4.9)
(A
Finally, for 1 <17 < h, let
i_l . . o .
0iv1 = (Vi —ay)n; + 6; + Z ug-z)nj + u((f)nl + b((f) — b(()l_l). (4.10)

J=1

The high-level ideas behind these parameters are as follows. By Lemma 35, the
quantities 1, ..., d,41 control the distances via the BCH bound and we would like
to make these quantities as large as possible given the target dimensions. We need
to make sure that the ith local code has a run of consecutive zeros of length 6; — 1,
and our budget of creating such a run is limited by the dimension. Therefore, we
seek to rely on the already present runs of zeros of the jth local codes, 7 < 7, and
spend the budget frugally on the way to optimality. The quantities bg-i) serve the
purpose bridging the “distance gap” (the gaps between runs of zeros) between the
local codes in levels j and j + 1 on the way to ensure the distance of the ith code.

As for the dimensions of the local codes, by Lemma 35 they are determined

by Z;,1 <i < h+ 1. The cardinality of Z; is established in the next claim.
Proposition 37. For 1 <i < h+ 1, we have |Z;| = n; — r;.

The proof of this proposition proceeds by induction and is given in Appendix C.1.
An examination of the proof also gives a better understanding of the parameters

a;, b; introduced above.

119

On account of Proposition 37, the locality parameters of the code C are
(ri,0;),1 < i < h. Furthermore, dim (€) = rj,41, and by the BCH bound d(€) = 0p,41.
Sufficient conditions for optimality of the code € are given in the following

lemma whose proof is given in Appendix C.2.

Lemma 38. Suppose that for i = 2 and 2 < s < i the following conditions are

satisfied:

s—1
Ts+1 Ts Ts+1 (s) (s) () | Ty
B - + + , _J
[rs } L‘l} { r } foo ;gu] Ll}
s—1
T's+1 Ts Ts41 (s) (s) | T3
LA — + L
[rs } Lz} [ry } w2 sz

j=l+1

(4.11)

where the first condition holds for s = 2 and the second for 2 <1< s—1. Then for

1 <11 < h, we have

.
041 = Mig1 — Tig1 + 05 — Z [H} (01 — 01-1).

e

It follows from Lemma 35, Lemma 38, and the bound (1.5) that the code € is an
(n = npy1, k = rpp1) optimal H-LRC code with local parameters (r;,d;),1 < i < h.
Clearly, when h = 0 our construction gives an (ny, ;) MDS code and when h = 1,
it gives an (ng,79) optimal LRC code of [73]. For h = 2, conditions (4.11) take a

simpler form:

HIENE w2
T2 1|7 1 r1
We note that the condition of [63, Theorem 2.6] is easily seen to be equivalent to

120

(4.12). Another known case of optimality, the divisibility conditions r;|r;41,1 =
1,...,h, is also covered by Lemma 38 (in this case both the left-hand sides and the
right-hand sides of (4.11) are zero).

Let us give a general example of the choice of parameters that ensures optimal-
ity. Suppose that r; > 2" and 7;,; = 2r; — 1 for 1 <4 < h. Then conditions (4.11)
are satisfied. Indeed, we have r; = 2°71(r; — 1) + 1 for 1 <4 < h + 1. Therefore, for

1<j<i<h+1we have

r; . 2i=3 — 1 .
[— = 21 ‘7 _—_—— = 21 ‘7
T 27 (7’1 - 1) +1 ’

where the last equality follows because r; > 2". It follows that the left-hand sides
of conditions (4.11) are zero. On the other hand, we have b; = 1 for all 1 < i < h.
Since r; > 2", we have ul(s) =0foralll <s<hand0<1[<s—1,and thus, the

right-hand sides are also zero, which confirms the optimality claim.

Proposition 39. Suppose that the conditions (4.11) are satisfied, then the code C

1s a strongly optimal H-LRC' code in the sense of Sec. 1.2.5.

Proof. 1t suffices to show that the dimension of the ¢-th local code equals r; for all

By assumption, we have r;;; > r; and thus a; > 2 for 1 < ¢ < h. It is not
difficult to verify from (4.10) that 6;11 < (v; —a;+ 1)n; < nyp—n; forall 1 <i < h.

We claim that g(a™ ") 5 0 for every t; € T;,1 < i < h where

To={n} o ({1,...,n — 1NZi +n —ny).

121

Then by the second part of Lemma 35 the dimension of the i-th local code equals
r; and the strong optimality follows.

Now let us show n—n; +t; ¢ Z. Observe that the set Z contains n/n; copies of
Z; and the set T; is the complement to the last one of those copies with respect to
{1,...,n;}. Indeed, we have n—n; +t; = t;+ (n/n; —1)n; ¢ {n} v (Z; + (n/n; —1)n;).
Now consider the last copy of Z;,1 contained in Z. Obviously, it contains the last
copy of Z;. To establish n —n; +t; ¢ Z, it remains to show n —n; + t; is not in the
last copy of D;,1, namely, n —n; +t; ¢ D1 +n—n; 1. Since d;41 < N1 —n; as we
observed above and n;;1 —n; +t; = n;1 —n; +0;, we have n;.1 —n; +t; ¢ Diq. It
follows that n—n; +t; ¢ D;,1+n—n;,1. Therefore, n—n;+t; ¢ Z and g(a™ ") £ 0
for every t; € T;,1 < i < h.

In the case that ;.1 = r; for some 1 < i < h (although we rule out this trivial
case in Definition 3), the code C is still strongly optimal if the optimality conditions
are satisfied. In fact, if ;.1 = r; then from (4.10) we have ;41 = (v; — a;)n; + 6; =
niy1 — n; + 0; ¢ D; 1. By similar arguments as above, we have n —n; + t; ¢ Z for

every t; € J;, 1 < i < h, and thus establish the strong optimality of the code. n

We conclude with a numerical example that shows that the assumptions on
the parameters can be simultaneously satisfied for moderate values of the length

and alphabet size.

Example 1. Consider the case h = 3. Let ri = 2 and 0; = 2. Then ny = 3. Let
(na,m2) = (9,3), (n3,r3) = (27,5), and (ng,r4) = (81,7). Then our construction

(with designed distances found from (4.10)) gives rise to a strongly optimal H-LRC

122

code of length n = ny and dimension k = r4 with local distances 05 = 6,03 = 17 and
distance d = 04 = 53 over a finite field F, where 81|(q — 1) (for example, we can

take ¢ = 163).

4.3.2 Hierarchical cyclic codes of unbounded length

In this section we construct a family of H-LRC codes with distance d = § +
1,h > 1 and unbounded length. The construction combines the idea of [50] with
H-LRC codes of the previous section.

Let 1 <ry <7y <...<r, beintegers. Let 1 = §yp < 0; and let d5,93,...,0,
be as in (4.10). Again, we put ny = r; +0; —dp and let n;1 = vyn; for 1 <i < h—1,
where v; > [r;41/r;| is an integer. Let Fym,m > 1 be a finite field and let ny|(g—1).
Let n = ¢ —1 and observe that ny|n. Let a € Fym be a primitive n-th root of unity.

Let Zj, be constructed by the procedure in (4.6) and (4.7). Finally, define

n/np—1

L= |J @n+sm), Z=2Lu{0} (4.13)

s=0

Consider a cyclic code € with generator polynomial

g(z) =] [(z = o). (4.14)

As is easily seen, g(z) € F,[z]. Indeed,

g(@) = (=1] [(x —a")

tel

123

For the last equality we note that z™/™ — o™/ = H:i "l — @ tt). Observe
that for t € Z;, we have (a/™)9=! = 1 since ny|(g — 1). It follows that a™/™ € F,

for t € Z;, and thus g(x) € F,[].
Proposition 40. Let € = {g(x)) € F [z]/(z" — 1) be a cyclic code. Then dim(C) =
nrp/ny — 1, d(€) = 6, + 1, and the locality parameters are (r;,9;) for 1 < i < h.

Proof. The dimension of € is found as

k;zn—deg(g(x))zn—l—wzg—l,
np np

where the last equality follows by Proposition 37. The distance of the code C is
d = 0y, + 1 since g(z) has consecutive roots o, t = 0,...,d, — 1.
The locality parameters of the code € follow immediately by Lemma 35 and

Proposition 37. O

The next lemma provides the conditions when the code € is optimal. Its proof

amounts to a calculation based on Lemma 38 and Proposition 40.

Lemma 41. Suppose that for 1 <i < h—1, conditions (4.11) are satisfied. Further,

suppose that

E[T_ﬂ:[q, 1 <l<h-1. (4.15)

Then the code € is optimal.

Proof. By Lemma 38, we have

h—1
Op =np — 1y + 0p_1 — Z ’VT—h} ((55 — 51_1). (416)

= T

By Proposition 40, we have k = nrp/n, — 1. Using the bound (1.5), the

distance of the code cannot exceed

h—1
nry, n k
—n——t41 (=) = Y | = (6= 4.1
= +1+0, nh(h— On_1) ; LJ(& -1) (417)
h—1 - h—1 /{3
=146, + - ; L—J (6, — 1) — 2, L—J (6, — 611 (4.18)
=1+ 8, (4.19)

where (4.17) follows since r;, > 1 implies [k/ry| = n/ny, in (4.18) we used (4.16),
and (4.19) follows by (4.15). Hence, the code C has the largest possible distance

d= 0+ 1.]

In particular, the conditions in Lemma 41 are satisfied when r;|r; 1,1 =
L,...,h—1 and 7|k.

As in Sec. 4.3.1, the code € constructed above in this section has the strong
optimality property if the optimality conditions in Lemma 41 are satisfied. Specif-
ically, the main difference between the construction in this section and the one in
the previous section is in the final step of constructing the defining set Z, which also

125

includes element 0 (i.e., a’). By an argument similar to Sec. 4.3.1, one can show
n—n;+t; ¢ Z for every t; € ({0,...,n, — 1}\Z;) + (n — n;), 1 < i < h and so strong

optimality follows.

Example 2. Consider the case h = 3. Let ry = 2 and 6; = 2. Then ny = 3.
Let (ng,r9) = (9,3) and (ng,rs) = (27,5). Let m = 1 be an arbitrary integer and
q = 163. Then our construction (with designed local distances given by (4.10))
gives rise to a strongly optimal H-LRC' code of length n = 163™ — 1 and dimension

k =2(163™ —1)/9 with local distances dy = 6,03 = 17 and distance d = 18 over F,.

Recall that [6] shows that the length of an optimal LRC code in the general
case cannot be greater than a certain power of the alphabet size q. Using similar
arguments, it might be possible to derive upper bounds on the length of optimal
H-LRC codes in the general case; however already in the case of (r,d) locality
addressed in [10] (with just a single level of hierarchy), following this route requires

cumbersome calculations.

4.4 Convolutional codes with locality

It has been recognized a long while ago that quasi-cyclic codes can be encoded
convolutionally, and multiple papers constructed families of convolutional codes from
their quasicyclic counterparts [21, 38, 78]. In this section, we present a family of
convolutional codes with locality by relying on the tailbiting version of convolutional
codes [70]. We single out this approach because it enables us to establish the locality

properties of convolutional codes based on the properties of cyclic H-LRC codes

126

constructed above in this chapter.

We begin with a brief reminder of the basic notions for convolutional codes
[37]. Let D be an indeterminate and let F,(D) be the field of rational functions of
one variable over F,. A ¢g-ary (n, k) convolutional code € is a linear k-dimensional
subspace of F,(D)". A generator matrix G(D) = (g,;(D)) of the code Cis a k x n
matrix with entries in F (D) whose rows form a basis of €. Thus, the code C is a
linear space {u(D)G(D) | u(D) € F,(D)*}. The matrix G(D) can be transformed to
the polynomial form by multiplying every element by the least common denominator
of its entries. The transformed matrix generates the same code €, and so in the
sequel we will consider only polynomial generator matrices. Below we will assume
that the generator matrix G(D) is a k x n matrix with entries in F,[D], where F,[D]
is the ring of polynomials over F,.

For 1 <i < k, the degree m; of the i-th row of G(D) is the maximum degree of
the entries in row ¢, namely, m; = max;<;<, deg(g;;(D)). As with linear block codes,
the encoding of a convolutional code depends on the choice of a generator matrix.
The maximum degree M := max;<;<x m; is called the memory of the encoder. The

generator matrix of the code € can also be written in the form

Go G1 GM

G = Gy Gi ... Gu , (4.20)

where each G| is a k x n matrix over IF,. The codeword of the code € is obtained as

127

a product uG, where u is a semi-infinite input sequence of symbols of F,.

With a given convolutional code € one can associate a multitude of distance
measures. In direct analogy with block codes, one defines the free distance of the
code € as the minimum Hamming weight of the Laurent expansions of the nonzero
codewords.

Another distance measure of interest is the so-called column distance of the
code [37, p.162]. To define it, let Cpo; be the truncated code of € at the j-th time

instant, j > 0, namely,

J
Cog) = {cp (D) = Y D' | (D) = Y ;D' € €}
=0

=0

This is a linear block code of length n(j + 1), and by (4.20) its generator matrix can

be written in the form

Go Gi ... G,

. Go ijl
G = | (4.21)

Go

where we put G; = 0 for | > M. Clearly, the code Cjp; is obtained by truncating

the code € to its first j + 1 entries. A codeword of Cpg ;; has the form (co, ¢y, ..., ¢;),

where for j < M and each [= 0,1,...,

l
C, = Z uiGl_i, (4.22)
1=0

128

where ¢; = (cV, ..., ™) for cach I.
We assume throughout that Gy has full rank, so the mapping F’; < [, given

by ugGg — ¢¢ is injective.

Definition 10. For j = 0 the j-th column distance of C is given by

dj = min{wt(cp;1(D)) | cfo1(D) € €05, co # 0}.

Clearly, the value of dj is at least the minimum distance of the truncated
code €[p ;1. This follows because for the column distance we seek the minimum of
pairwise distances of codewords that differ in the first coordinate, while the standard
minimum distance computation does not involve this assumption. In many cases the
column distance is in fact strictly greater. This remark is important for the sliding
window repair which enables one to correct more erasures than would be possible
for block codes relying on their minimum distance.

Convolutional codes support several forms of erasure repair. One of them,
called the sliding window repair [52, 80], is based on the column distance and is
used to correct erasures in streaming applications [80]. We illustrate the idea of
sliding window repair in Fig. 4.1, representing a code sequence of the code € as a
semi-infinite matrix whose columns are length n vectors ¢;,l > 0, and whose row
c¢® i =1,...,n represents the stream formed by the ith coordinates of the symbols
a,l=0,1,.... We begin with fixing j based on the value of the column distance dj
of the code. The box in the figure shown with dashed lines represents the window of

length 7 + 1 that contains the truncated code at time [> j. The erasures within the

129

sliding window can clearly be repaired as long as their number at no point exceeds
di — 1.

Having in mind streaming applications, one may argue that a more efficient
way of repairing erasures is to rely either on the symbols at a fixed time instant, or
on a small group of symbols contained within the same stream . Accordingly, in the
next two subsections we define two types of locality for convolutional codes, calling

them the column and row localities.

=2 =3
C(l)i ---------- ""-i D E ---------- ""-i
2 X | o 1 x| x|

Figure 4.1: SLIDING WINDOW REPAIR. Suppose C is an (3,2) convolutional code
with d§ = 4. Let (¢, @, ¢®) € @ be a codeword, where the crosses denote erasures.
At time instant [= 2, there are two erasures in the window of length three (dashed
box in the left figure), which is less than the 2nd column distance. However, neither
of the two erasures are in the first column of the window, and thus their recovery
is postponed until later. At time [= 3 (right figure), the sliding window contains
3 erasures, of which one is in the first column. This erasure can be recovered from
the other symbols in the window. The remaining erasures are corrected in the next
steps as long as the number of erasures in the window does not exceed d§ — 1.

4.4.1 Convolutional codes with column locality

Column locality was introduced in [52]. First let us define the ith column code

C;,1 = 0 of a convolutional code C as a block code of length n given by

Gi = {Ci ‘ C(D) € (‘3}

130

We say that a convolutional code € has (r,d) column locality if for all i the codes
C; have the (r,) locality property.

The results in [52] are based on a version of this definition that requires that
only the code Cy; support (r,d) locality. This restriction may seem too narrow until
one realizes that if locality is present in the code €j;, then every code C;,7 > 0 has
the (r,0) locality property. This follows immediately from (4.22) and the definition
of G; because C; = C,s for © > M and C; forms a linear subcode of C;; otherwise.
The only difference between this definition and the one given above is that under
the approach of [52], every code C; has similarly aligned repair groups which are
propagated from the repair groups of €,;, while our definition allows differently
aligned repair groups for different values of i.

To enable local repair, we simply assume that every column of the codeword
forms a block code with (7,) locality. An example is given in Fig 4.2, demonstrating

sliding window repair combined with column locality.

4.4.2 Convolutional codes with row locality

In this section we introduce and study another notion of locality for convolu-

tional codes. Given a convolutional code C, define the ith row code GEé)j], 1<i<n

truncated at jth time instant, 7 > 0, as follows:

GEZ)) {cfé{j] = (c(()l), . ,C;-Z)) | ce C}. (4.23)

gl =

Definition 11. We say that C has (r,d) row locality if for all t = 0 the codes

131

1=2 1=3

ol | ol 1 [><
x X | E
ol x| o Tl Tx
WIX | X || | X X |

Figure 4.2: SLIDING WINDOW REPAIR WITH COLUMN LOCALITY. Suppose
C is a (4,2) convolutional code with (1,2) column locality and d§ = 6. Let
(D, c? B ™) e € be a codeword, where the crosses denote erasures, and dif-

ferent repair groups in the columns are shown in different colors. At time [= 2,

the window of length j + 1 = 3 contains 4 erasures. Of these, the symbols 084), cf)

can be recovered within their repair groups. Then for [= 3 the window contains 5
erasures, of which two in the first column can be repaired from the other symbols
in the window, while the symbol cgl) can be recovered locally.

Gg?tﬂ.], 1 < i < n have the (r,0) locality property, where j = 0 is fived.

In the case of tailbiting codes, it is more convenient to give this definition in

the following form, which will also be used in our constructions below.

Definition 12. Let j > 0 be fized. A convolutional code C has (r,d) row locality at

time j if every code Gfé)j], 1 <i<n has (r,0) locality.

We give two examples of repair with row locality. Namely, Figure 4.3 illustrates
Def. 11 while Figure 4.4 applies to the case of tailbiting codes and Def. 12. Let us
stress that whenever local repair by rows is not possible, we fall back on sliding
window repair relying on the column distance of the truncated code.

The problem that we address is to construct convolutional codes with locality
and large column distance. This is similar to the problem studied in [52] and also
to the case of block codes with locality and large minimum distance. We begin with
deriving an upper bound on the column distance of the truncated code with either

132

l= l=

i x| [xi wf Ix] Ix]
e X x| o | ;
wi % X | w1 x| |
Wi X |IX| | o

Figure 4.3: SLIDING WINDOW REPAIR WITH ROW LOCALITY. Suppose C is a (4, 2)
convolutional code with (1,2) row locality d5 = 8. Let (cV),c® ¢c® c®) e € be
a codeword, where the crosses denote erasures, and different repair groups in the
rows are shown in different colors. At time [= 3, by row locality, the symbols
c(()Q) , c§2) , c§4) , cgl) can be recovered from the other symbols in their respective repair
groups. At time [= 4 there are four erasures in the window of length four, which is
smaller than dg, so they are recoverable. Thereafter the two remaining erasures can

be recovered relying on row locality.

Sliding window starting from time [= 0 Sliding window starting from time [= 2
oiX| [x| X x|t £ X X
i X | | X X | X | e % X
1 X X X X| | X X
i X X X|X| | i X X

Figure 4.4: SLIDING WINDOW REPAIR WITH ROW LOCALITY FOR TAILBITING
CODES. Suppose C is a (4, 2) unit memory tailbiting convolutional code with (1,2)
row locality and d2 = 16. Let (¢, c® ¢ c®) e € be a codeword, where the
crosses denote erasures, and different repair groups in the rows are shown in differ-
ent colors. There are a total of 16 erasures. First we engage row locality to repair
symbols 082),022),084),024), whereupon 12 erasures remain. In the sliding window
starting from time [= 0, the remaining two erasures in the first column can be
recovered. After that, cfll), Cf’) can be recovered locally.

Next, we move the sliding window to start at time [= 2. (Note that the window
is wrapped around.) The erasures in the first column of this window can be recov-
ered since the number of erasures is smaller than the column distance, and after

that the remaining erasures can be recovered relying on row locality.

133

column or row locality property.

Proposition 42. (a) Let C be an (n,k) convolutional code with (r,d0) (column or
row) locality. Then for any j = 0, the j-th column distance satisfies

E<(n—k)G+1)+05— M (6—1). (4.24)

J r

(b) Equality in (4.24) implies that for all i < j, the i-th column distance

satisfies

A= (n—k)(i+1)+d— M (6 —1). (4.25)

¢ r

The proof of Proposition 42 is given in Appendix C.3.

Part (b) of Proposition 42 is similar to the propagation of the column dis-
tance optimality property in the case of general convolutional codes proved in [24].
Namely, the Singleton bound implies that the column distance for all j satisfies

d; < (n—k)(j+1)+1, (4.26)

J

and equality for a given j implies that all the other distances df,7 < j also attain

their versions of the Singleton bound with equality.

134

4.4.3 Convolutional codes and quasicyclic codes

A transformation between these two code families was constructed in [70], and
it has led to a broader family of convolutional codes and trellises now known as
tailbiting codes (tailbiting trellises) [37]. An (n(m + 1), k(m + 1)) quasicyclic code

can be defined by a generator matrix
G=(Gy),i=0,....k—1,7=0,....,n—1

where each G;; is an (m + 1) x (m + 1) circulant matrix. With a given matrix G;;
we associate a polynomial g;;(D) = >, ¢.D', where (go, ..., gm) is the first row
of the matrix. Then the k x n generator matrix G(D) = (g;;(D)) defines an (n, k)
convolutional code. The authors of [70] showed that if one takes the input sequences

of the convolutional code in the form

u(D) = Z w D' such that u_y = U1 for s =1,..., M, (4.27)

l=—M

then the convolutional code is equivalent to the quasicyclic code defined above. In
other words, the quasicyclic code can be encoded convolutionally, and the convolu-
tional code with “symmetric” input sequences as in (4.27) is exactly the quasicyclic

code.

135

4.4.4 A family of tailbiting convolutional codes with row locality

We come to the main result of this section, which is a construction of a family
of convolutional codes with (r,d) row locality. This family of codes has the largest
possible minimum distance for the truncated code Cp j), however we stop short of
showing that the j-th column distance attains (4.24) with equality. The construction
is achieved by exploiting a connection between quasi-cyclic codes and convolutional
codes discussed above. In high-level terms, our plan is to construct a cyclic code
from its set of zeros chosen according to the procedure in Sec. 4.3, writing it in a
quasicyclic form (via a circulant generator matrix) and to construct a convolutional
code using the technique discussed above. We note that the lower bounds on the
column distance of the codes constructed here and in [52] coincide. At the same
time, the field size needed for our construction is linear in the output length n of
the code at each time instant whereas the construction in [52] requires exponentially
sized alphabet.

Let us first construct an (n(j+1), k(j+1)) cyclic LRC codes with (7, §) locality.
We proceed similarly to Sec. 4.3.1. We will need a few assumptions regarding the
parameters of the code. Let j > 0 be such that £k < 7 +1 < n and that j +1 =
(r+ 9 —1)v where v > 1. Let F, be a finite field such that n(j +1) | (¢ — 1) and let
a € [F, be a primitive root of unity of order n(j + 1) in F,.

The set of zeros of the code is obtained as follows. let Z; = {1,...,6 — 1}.

136

Using (4.7) and setting Dy = Z, we have

v—1

2o = @i +ir+6-1)). (4.28)

=0

Further, let L5 = ?:_01(2,2 +1(j+ 1)) and let D3 = {1,...,035 — 1}, where

5y = (n—k)(j+ 1)+ [’“(ﬁl)}(a_n. (4.29)

r

Finally, put Z = L3 u D3 and let B be the cyclic code with generator polynomial
g3(x) = [;e (x — a"). Note for future use that the complement of the set D3 in the

set of exponents of o has cardinality

Dyl = n(j+1)— (55— 1) = k(j + 1) + ([k(j s 1)])61 (@0

In the next theorem we give an explicit representation of the code B in qua-

sicyclic form, and we also specify its locality properties.

Theorem 43. (a) The code B is an (n(j+1),k(j+1)) optimal LRC code with (r,6)

locality, and the punctured codes

Bl = {(clacl-i-nv s acl-l-nj) | (007 s 7Cn(j+1)71) € B}7 [= 07 s, —]-7

are LRC' codes of length j + 1 with (r,9) locality.

(b) Furthermore, if k|n, then the code B is equivalent to a code with generator

137

matriz G given by

G:(Gil),iZO,...,I{Z—LZZO,...H—L

where every Gy is a (j + 1) x (j + 1) circulant matriz. For everyi=0,1,...,k—1

the matrices Gy satisfy

]}+1 ifl Ziin/k
Gi =

0 ifle{0,n/k,...,n—n/k}\{in/k}.

Proof. (a) We note that the set of zeros of the code B is partitioned into segments
of length r + § — 1, i.e., has the structure of the set £ in (4.4). In other words, the

generator polynomial of B satisfies

nv—1

H(az —al)|gs(z), where £ = U (Z1+s(r+6—-1)).

tel s=0

Therefore, Lemma 35 implies that the code B has (r,d) locality. To compute the
dimension of the code B we count the number of its nonzeros. They are all located
in D3. This is a consecutive segment of exponents, and by (4.28), within each whole
subsegment of length » + 9 — 1 in it there are r nonzeros. Once all such segments are
accounted for, there may be an incomplete segment left, which contains min(|Ds| —

=3 |(r+d—1),r) zeros. As easily checked, the total number of nonzeros in either
case is k(j + 1), which is therefore the dimension of the code B. The distance of B

is at least d3, and the bound (1.6) implies that the code B has the largest possible

138

distance for the chosen locality parameters.

Examining the structure of zeros of the punctured codes B,;, we observe that
they satisfy the assumptions of Lemma 35, and thus the punctured codes B; also
have (r,9) locality. Indeed, let [= 0. By Lemma 35, Eq. (4.5), the code B® given

by

B(O) = {(C()a Cnuy - - - 7C(r+672)nu) | (Co, s 7Cn(j+1)71) € B}

has dimension at most » and minimum distance at least 6. This implies that the
coordinates that are multiples of nv isolate a repair group of the code By. By shifting
this set of coordinates to the right by n positions, we obtain another repair group of
By, which is disjoint from the first one. After several more shifts we will reach the
set of coordinates {n(v—1),n(rv—1)+nv,...,n(v—1)+(r+06—2)nv}. The collection
of the sets constructed along the way forms a partition of the support of By into
disjoint repair groups. The same argument works for every code B;,1 <l <n—1
whose repair groups are formed by shifting the repair groups of Bq to the right by
[positions. This concludes the proof of Part (a).

Let us prove Part (b). Recalling the discussion in the beginning of Sec. 4.2.1,
it is possible to represent the generator matrix G of the code to have rows of the

form

((Oét)n(j-i-l)—l’ (at)n(j-&-l)—?’ e 1), te {0, . ,n(] + 1) - 1}\2'; (431)

139

(note the inverse order of the exponents). Let

Z={0,n/k,....,n(j+1)—n/k}

be a subset of coordinates. As before, we label the columns of G by the exponents
of a from 0 to n(j + 1) — 1 and consider a square k(j + 1) x k(j + 1) submatrix Gz
formed of the columns with indices in Z. We claim that Gz is invertible. Indeed,

the rows of Gz have the form

a (@RI, (@RI e {0, + 1)~ 1N,

9o ooy

and thus it forms a Vandermonde matrix generated by the set (a/™/*) for all ¢ outside
the set of zeros Z. We will assume that the submatrix Gz = Iy(j+1) (the identity
matrix) and continue to use the notation G for the resulting generator matrix of the
code.

Let 6i0,Gi1s-- -, Gin(j+1)—1 be the ith row of G, where i € {0,...,k —1}. With
an outlook of constructing convolutional codes later in this section, define the poly-

nomials

n(j+1)—1
g(D)= >, gisD°
s=0
j .
9it(D) = > GinssiD', 1=01,...,n—1. (4.32)
s=0

140

Then we have

n—1 7 n—1
gz(D) = 2 Dl Z gi,nerans = Z Dlgi,l<Dn)7
=0 =0

=0

Since Gz is the identity matrix, we have g;;,x(D) = 1 and g;;(D) = 0 for [€
{0,n/k,...,n—n/k}\{in/k}.

To write the generator matrix in the circulant form given in the statement, we
need to form the matrices G;. This is accomplished by writing the coefficients of
gi.;(D) as the first row of G and filling the rest of this matrix by consecutive cyclic

shifts to the right. This yields the following (j 4+ 1) x n(j + 1) matrix

(GLQ G@l Gi,n—l)' (433)

Note that each row in this matrix is a codeword of the code (equivalent to) B.

Finally, the matrix

GO,O GO,l e GO,nfl

Giyp Gip - Gipa
G =) (4.34)

Gr-10 Gr-11 - Gr_1pa1

formed of the rows (4.33) for i = 0,..., k—1 generates a code equivalent to the code

B.]

This theorem gives an explicit representation of B as a quasicyclic code, and we

141

can use this representation to construct a convolutional code following the method
in Sec. 4.4.3. Let G(D) = (gi;(D)) be a k x n generator matrix where g;;(D)
is defined in (4.32). Since deg(g;;(D)) < j, we conclude that the memory of the
generator matrix G(D) is M < j. Having (4.27) in mind, define an (n, k) tailbiting

convolutional code over € = Cp ;1 € F,[D] as a set of sequences

s=—M

C= {C(D) | (D) = w(D)G(D);u(D) = > D% u_y =uji1g5=1,... ,M} .

Here j,k — 1 < j < n —1is any integer such that (r + ¢ — 1)|[(j + 1) and k|n.

The next theorem states the main properties our construction.

Theorem 44. The code C has (r,0) row locality. When viewed as a block code, the

minimum distance of C attains the bound (1.6).

Proof. For [=0,...,n— 1, we have

Zu gzl

Furthermore, since u_g = u;41-s for s = 1,..., M, we have the following relation
Z u(D)g; (D) mod (D7 —1).

In other words, we have

<c(0)c(1) . .c(”_l)) = <u(0)u(1) . .u(k_1)> G,

142

where the matrix G is defined in (4.34). This implies that the codes C1) are exactly
the codes B; defined in Theorem 43(a), viz., GV = B, for [= 0,...,n — 1. Since
the code B; has (r,6) locality for [= 0,...,n — 1, we conclude that the code € has
(r,d) row locality. Concluding, we have established that the convolutional code €
has (r,d) row locality.

As a block code, € is equivalent to the code B, which proves the last claim of

the theorem. O

The large minimum distance of the code C is related to the performance of
the (hard decision) Viterbi decoding of the code €, and is therefore of interest in
applications.

As remarked earlier, the constructed codes stop short of attaining the bound
(4.24), and thus cannot be claimed to be optimal. Of course, as observed after
Def. 10, the jth column distance of the code € is at least the minimum distance of
the code B, given by (4.29), but a more precise estimate remains an open question.
Nevertheless, we believe that extension of the basic construction of LRC codes to the
case of convolutional codes carries potential for future research into their structure.
In particular, the algebraic machinery of quasicyclic codes of [42, 48] could lead to
new constructions, and it may also be possible to further extend these studies to

codes over ring alphabets [49].

143

4.5 Bi-cyclic codes with availability

The H-LRC codes constructed in Sec. 4.3 rely on h embedded recovering sets
for each code coordinate, which are not disjoint. In this section we consider LRC
codes with ¢ disjoint recovering sets for each code coordinate, i.e., LRC codes with
availability ¢ (here we do not pursue a hierarchy of locality). This arises when the
data is simultaneously requested by a large number of users, which suggests that
the erased coordinate afford recovery from several nonoverlaping recovering sets in
order to increase data availability.

Below we limit ourselves to the case t = 2. We say that two partitions P;, Py
of the coordinates of the code are orthogonal (or transversal) if |P, n Py| < 1 for
any P, € Py, P, € Py and every coordinate is contained in a pair of subsets X €
P1,Y € Py. Orthogonal partitions enable multiple disjoint recovering sets and were
used in [71] to construct codes with availability. A simple observation made in [71]
is that product codes naturally yield orthogonal partitions, and it is possible to use
products of one-dimensional cyclic codes to support this structure. A drawback of
this approach is that product codes result in rather poor parameters of LRC codes
with availability, in particular the rate of the resulting codes is low (although the
alphabet is small compared to the code length [34, 71]). It is well known that the
rate of product codes can be increased with no loss to the distance by passing to
generalized concatenations of codes [7]. In this section we use a particular case of
this construction given in [62] and sometimes called hyperbolic codes. The resulting

LRC codes with availability have the same distance guarantee as simple product

144

codes while having a much higher rate. As above, our starting point is the general
method of Theorem 34, and we proceed similarly to Eq. (4.7).

We start with a finite field F, and assume that the code length n divides
q — 1. We further choose the size of the repair groups to be 71,75 and suppose
that 0 < 7 < 79 and (r; + 1)|n and (ro + 1)|n. Further, let vy = n/(r; + 1)
and vy = n/(r2 +1). Let a € F, be a primitive n-th root of unity. To simplify
the expressions below, we will construct codes with §; = do = 2. To construct the

defining set Z of our code, let

£;1 = @, @1 = {(0,0)}, Z’l = Ll) Dl- (435)

Let us fix the designed distance of the code € to be § > 2. Define

vi—1ln—1

Lon = J @i+ (i +1),9)),
1h=0 j=0
n—1uve—1
Loog = U U (Z1 4 (1, 12(ra + 1)), Lo = Loy U Lo,

i=0 15=0

Dy ={(0,0) [G+ DG +1) <8}, 22 = Ly u Dy,

Note that zeros are now indexed by pairs of exponents, and pairs are added element-
wise. Finally, put Z = Zs.

Consider a two-dimensional cyclic code € = {g(z,y)) of length n? where

9(z,y) = (z —a')(y — o). (4.36)
(3,5)€Z

145

Lemma 45. The code C has two disjoint recovering sets of size r1 and ry for every

coordinate.

Proof. The proof relies on Lemma 35. For ¢ € C, let us write ¢ = (¢; ;) where
0<i<n—1,0<j<n—1 Fixjandlet CV = {(co,Cpjs---»Cr) | c € C}and
let L%yl = 1”11:_01(21 + (l1(r1 + 1),4)). The generator polynomial for the punctured
code {(coj,C14y---1Cn-1,4) | c € C} is given by 3’ [T jpex(z — a'), which is divisible
by H(i,j)e 5, (x—a'). Then, by arguments similar to Lemma 35 we conclude that the
code @Y has dimension at most r; and distance at least 2. Since the code is cyclic
in both dimensions, we also claim that every symbol of the code € has a recovering
set of size at most r; for one erasure.

Repeating the above arguments for a fixed index i, we isolate another recover-
ing of size ry for every coordinate. Furthermore, the two recovering sets are disjoint

by construction. O]
To estimate the distance, recall the following result about bicyclic codes.

Lemma 46 (HYPERBOLIC BOUND [62]). Suppose that the defining set of zeros of
an n x n bicyclic code contains a subset given by Z = {(i,7) : (i +1)(j + 1) < d}.

Then the distance of the code is at least d.

Thus, the distance of the code € constructed above is at least d, and its di-

mension dim(€) = n* — |Z|. Let us estimate the dimension from below. We have

0—2 5
2= 37| <033

146

<90 (1 + f_l In(z — 1)da:>

<o(l+In(d—1)).
Therefore, we have

n® —|Z| = n® — |La| — | Dy

=n?—(ri+ro+ Dy — (1 +1In (6 — 1))

- 1)(1r2 vie §(1+1In(6—1)) (4.37)

To compare this estimate of the dimension with product codes, let €' be a
direct product of two cyclic LRC codes of length n with locality r and distance /3.

The defining set of this code are given by Z' = £’ U D', where

L' ={(i,7) | i,j = 1 mod (r + 1)},

D ={(i,5) |i,j=1,...,v/6 —1}.

Choosing 1 = ry = r in our construction, we have Ly + (1,1) = £’. It is also easy
to see that |Z| < |2| and thus, dim(C) = dim(¢).

Let us write out an estimate for the rate of the constructed codes. Putting
r1 = re = r in (4.37), we obtain for the rate of the code € the following estimate in

terms of the relative distance 6 = §/n*:

2 1

e e U L)}

=

147

The best known upper bound on the rate of LRC codes with locality r, availability

t, and relative distance 6 [41] has the form

The gap between this bound and the lower estimate implied by our construction is

roughly O(+ + 01nd).

Example 3. Let ri1 =2, 15 =6, and 6 = 9. Our construction gives rise to an LRC
code with availability two, of length n* = 441, dimension k = 246, and distance
d =9, over a finite field F, such that 21|(qg — 1) (for example, we can take g = 64).
To compare these codes with the product construction, let us choose the column codes
and row codes of length 21 and distance 3, and let us take the maximum dimension
of codes as given by the bound (1.4) for locality 2 and 6. This gives ky = 13, ko = 17

and the overall dimension k = 221, lower than above.

An extension of the construction in this section to the case of t > 2 can be
easily obtained via t-dimensional cyclic codes and the general hyperbolic bound
(the generalized concatenation of codes). Furthermore, using procedures similar to
those used in (4.6) and (4.7), our construction can be generalized to h = 2 levels of

hierarchy such that the local codes in each of the h levels have availability ¢ > 2.

148

Chapter 5: Conclusion

We conclude the dissertation with some open problems. Specifically, Sec. 5.1
mentions a few open questions for the repair problem of RS codes and Sec. 5.2 points
out some future directions for rack-aware MSR codes. In Sec. 5.3, we discuss the

problem of convolutional codes with locality, which remains largely open.

5.1 RS codes with optimal repair

In Chapter 2 we showed that error correction is feasible in the original code
family of [77] without the increase of the extension degree of the symbol field of the
code (the node size). Namely, codes from [77] use extension degree | = (d—k+ 1)L,

where L is the product of the first n distinct primes in an arithmetic progression,

L n)

d—k+1)
The lower bound on [from [77], necessary for repair of a single node, has the form

—.

—

1=
pi=1 mod

[> Hf:ll p;i, Where p; is the i-th smallest prime. Asymptotically for fixed d — k and
growing n we obtain the following bounds on the node size: Q(k*) <1 < O(n™).

Essentially the same node size is used in this chapter for repair with error correction.

149

At the same time, the explicit RS code family with optimal access that we construct
comes at the expense of larger node size, namely | = (d — k + 1) L. Since there is an
optimal-access repair scheme for every scalar MSR code, this leaves a gap between
what is known explicitly and what is shown to be possible, which represents a
remaining open question related to the task of optimal repair of RS codes.
Another direction of interest is to extend our approach to optimal error correc-

tion and optimal access to the problem of repairing RS codes with multiple erasures.

5.2 Rack-aware MSR codes

In Chapter 3 we presented various families of rack-aware MSR codes, including
both vector codes, scalar codes, and low-access codes. Nevertheless, a few problems
remain open.

Following the discussion in Sec. 3.5.2, one open problem is to extend vector
MSR code constructions in the literature that support optimal error correction for
the homogeneous model to the rack-aware storage model or to come up with novel
constructions that afford optimal error correction for the rack model.

More importantly, it would be interesting to close the gap of the access cost
between the constructions and the bound for the rack-aware storage model, in par-
ticular, for the case when the rack size u does not divide the code dimension k.

Another direction worth further investigating is to understand the case of
multiple erasures (node failures). When there are two or more failed nodes in the

rack model, one has to distinguish cases between the failed nodes located in a single

150

rack and dispersed among multiple racks, which would give rise to a delicate bound
for the repair bandwidth. However, we believe that our ideas presented in this
chapter will serve a starting point even for constructing rack-aware MSR codes for

multiple erasures.

5.3 Codes with locality

In Chapter 4 we addressed several variants of the problem of codes with lo-
cality. In particular, we constructed a family of tailbiting convolutional codes with
row locality.

Apart from understanding the optimal trade-off among the parameters for
codes with availability, convolutional codes with locality form an interesting direc-
tion for future work. In particular, it would be of interest to understand if the
upper bound (4.24) for the column distance is tight or not for convolutional code
with locality. It would be of great interest even if one could only prove existence of
convolutional codes with locality attaining the column distance in (4.24).

Moreover, in addition to column and row locality, can one construct convo-
lutional codes with a general type of locality? Further, as there are various types
of distance measures for convolutional codes for different motivations (see [37] for
more details), can one derive bounds for other types of distance measures and con-
struct codes to meet these bounds? Would the connection between quasicyclic codes
and convolutional codes we utilized herein be helpful for constructing convolutional

codes with locality for other types of distance measures?

151

Appendix A: Omitted Proofs in Chapter 2

A.1 Proof of Proposition 7

First we present the proof for the case h = 0 (strictly speaking, we do not
have to isolate it, but it makes understanding the general case much easier). In this

case, definition (2.18), (2.19) simplifies as follows. Let fo(x) = 2P — f(x). Write f

as
fo(®) = ap + a1z + agx® + -+ + a,, 2!
(p1—1)/s—1
= > 1 fogla),
q=0
where

foolz) =ap+ax+ -+ TRT A

foJ(SL’) = a5 + As41T + -+ a23,1x371
(A1)

fopr—1)/s-1(2) = apy 15 + py_sT + - + ap, 177,

152

so that the degree of the last polynomial is < s and the degrees of the remaining

ones are < s — 1. Obviously, we have

ar' = fo(on) (A2)
(p1—1)/s—1
= Z af’ foqlaq). (A.3)
q=0

As before, we start with (2.7), which implies that for any polynomial g € F}[x]

of degree degg < n — k — 1, we have

n

tr(e;u1g(cy)er) = — Z g(a;) tr(evjcy). (A.4)

j=2

Take e; = of® and g(z) = 2'fy ,(1) and sum on ¢ on the left, then from (A.3) we
obtain tr(viat fo(ay)er). Summing on g on the right of (A.4) and using (A.2), we

conclude that

1
tr(vlocfﬁtcl) = — Z

qg=0 j

o foq(ay) tr(af*vjc)) (A.5)

(p1—1)/s=1 n
= =2

forallt =0,1,...,n—k—s—1, Note that the constraint t <n—k—s—1 is implied
by the condition deg(g) = deg(z’fo4(x)) < n —k — 1 needed in order to use (A.4)

(and (2.7)). Change the variable ¢ — (¢ — 1) to write the last equation as

(pl—l)/S—l n
tr(vyod" ey = — Z Z o foglag)tr(afvie), t=1,2,...,n—k—s.
q=0 j=2

(A.6)

153

From (2.14) and the fact that
ﬂ{u—s,u—s—i—1,...,u—3+n—k—1}z{—l,O,l,...,n—k’—s},

we obtain

n
(6u p1— 1+tvlcl> _ _Zaz u+str<ﬁu u+pr—s— 1UJCj),
j=2

—1<t<n—k—-—s, 1<u<s-—1.

Summing these equations on v =1,2,...,s — 1, we obtain the relation

s—1

n s
<Zﬁ“ pi=ltty, cl> ZZ bruts tr(BUa) T lvjcj), —-1<t<n—k-—s.

u=1

Foreacht =1,2,...,n—k—slet us add this equation and (A.6). This givesn—k—s

relations of the form

s—1

(Zﬁu pi—1tt,) Zn: (Z s (Gug e 1,chj)

Jj=2 wu=l
(p1—1)/s—

¥ o7 foglay) tr(advey)).
q=0

Observe that the left-hand side of this equation is the same as the left-hand side of

(2.17). Therefore,

Za tr(Zﬁ“ - lv]cj>

154

s—1 (p1—-1)/s—1
=) (Z AT (BT T)+ Y ol fog(ey) tl‘(agsvjcj)»
j=2 u=l1 q=0

for 1 <t <n—k—s. Replacing t — 1 with ¢ in this equation, we obtain that

n s—1 (p1—1)/s—1
ot (D ey (Bl) + foa(ay) tr(afv;c;)
=2 u=1 7=0
s—1
— ajtr (Zﬁuo/frlvjcj>> =0, 0<t<n—-k-—s—1.
u=0

s—1 (p1—1)/s—1
(Z as " gy (B"afrprs*lvjcj) + Jog(ay) tr(afv;c))
u=1 q=0
s—1
— ajtr (Buaﬁ'lflvjcj»j =2,... ,n) (A.7)
u=0

is contained in a GRS code of length n — 1 and dimension s + k£ — 1. This proves
the case h = 0 of the proposition.
Now let us consider the general case 0 < h < s — 1. From (2.18) and (2.19) we
obtain
(p1—1)/s—1
o= fular) = D af fug(on). (A.8)
q=0
This relation enables us to use the argument that yielded (A.5) above: Take e; =

" B% and g(z) = 2t fy4(z) in (A4) and sum on ¢ = 0,1,...,(p; —1)/s — 1. We

obtain for h=0,...,s—landu=0,...,s—1—h
(pr1—1)/s—1
tr(azlo1+h+u+t6uvlcl) _ Z tI‘(O/{S—Hﬁ_tﬂufh,q(Oq)Ulc1)

q=0

155

(p1—1)/s—1 n
- — Z Z o frq(0) tr(T B ;ic;),

q=0

t=0,1,....,.n—k—s—1.

The restriction ¢ < n —k — s — 1 is imposed in the same way as in (A.5) (namely,
it is necessary that deg(z'fn,(x)) < n—k —1). Replacing h + u with h in the last

equation, we obtain that

(P1—1)/s—1 n
tr(a By 0y) = — Za Froug(ay) tr(ay ™ B v e;),
q=0 7j=2

0<h<s—1, 0O0<u<h, 0<t<n—k—-—s—1

Let us sum these equations on v = 0,1,...,h to obtain

-1

h
2 O‘;fh—u,q@{j) tr(a u+qsﬂu7}]cj)
u=0

h n (p1—1)/s
tr(azliﬁh—s-t Z ﬁuvlcl) —_ Z Z
u=0 Jj=2 q=0

0<h

VAN
Va)
|
\:—‘
@)
N
~
VAN
S
|
o
|
V2)
|
—_

Replacing ¢ with ¢ — 1, we obtain that

—1)/s—1

h n_ (p1
tr (azlal—1+h+t 2 5“U1C1> — Z

u=0 j=2 q=0 u=0

156

According to (2.14) and the fact that

ﬂ {fu—s,u—s+1,...,u—s+n—k—1}={-1,0,1,...,n—k — s + h},

u=h+1

for 0 < h < s—1, we have

n
(ﬁu p1— 1+tvlcl _ Z t— u+str Bu u+pr—Ss— 1chj)’
j=2

—1<t<n—-k—s+h, h+1<u<s—1.

Replacing ¢ with ¢ + h, we have

n
tr(ﬁu&]f1*1+h+t Z htt—u+s tI‘ ﬁu u+p;—s— 1chj)7

Jj=2

—h—-1<t<n—-k—s,h+1<u<s—1.

Summing these equations on u =h+ 1,h +2,...,5 — 1, we obtain
s—1 n s—1
u p1 1+h+t o h+t—u+s u U+P1 s—1
2 B« 'Ulcl) = — Z % tr(f a v;¢5),
u=h+1 j=2u=h+1

—h—-1<t<n—-k—s.

Finally, adding together this equation and (A.9), we obtain that

s—1

1+h+t
<Zﬁu p1— ++U101>

u=0

157

h
Z at L wq(j) tr(a “+q56“v]c])
7j=2 q=0 u=0

n s
_ Z a?+t—u+s tr(ﬁuaif+p1 78711]]‘0]')7

0<h<s—1,1<t<n—-k-—s (A10)

Going back to (2.17), let us perform the change t — t + h, then we obtain

s—1 n s—1
u p171+h+t h+t p1—1
tr(ZB oy) Z tr(Z “aq chj),
u=0 j=2 u=0

—h<t<n—k-h—1. (All)

For t = 1,2,...,n — k — s the left-hand sides of (A.10) and (A.11) coincide, and

therefore,
n s—1
h+t u, p1—1
Za] tr(ZB o v]cj>
Jj=2 u=0

n
+ Z a?—l—t—u—i—s tr(ﬁua’tlﬁ-pl—s—lvjcj)’

1<t<n—-k-s.

Replacing ¢ by ¢ + 1, we obtain that

n (p1—1)/s=1 h
Z O‘; (Z Z Frug(g) tr(ay ™ Bv c;)
j=2 g=0 u=0

158

s—1 s—1

h+1l—u+s u+pr—s—1 h+1 u p1—1 —
+ 2 o T (B g v;cj) — tr(E phad vjcj>> =0,

u=h+1 u=0

0<t<n—-k—-—s—1.

The proof is complete.

159

Appendix B: Omitted Proofs in Chapter 3

B.1 Proof of Proposition 24

Let T < R,|Z| = k — 1 be a subset of helper racks. Since

Lemma 23 implies that

Mogi=l. (B.1)

ER\Z

Let us sum the left-hand side on all Z = R, |Z| = k — 1:

S Ta-Sxa-(i0,)on

|‘IC33 1€R\Z ZGZRZCCR 1ER
T

Together with (B.1) we obtain

() e (5)

a2

iER -

160

i.e., (3.2). Moveover, this bound holds with equality if and only if (B.1) holds with
equality for every Z = R,|Z| = k — 1. Suppose for the sake of contradiction that
the uniform download claim does not hold, and there is a rack i such that 3; # /s,
for instance, 3; < /5, where 5 = d —k + 1. Let J = R,|J| = 5,5 € J. There must
be a rack i; € J that contributes more than the average number of symbols, i.e.,
Bi, > 1/s. Consider the subset (J\{i}) U {i2}, where i5 # i is another element of R
(which exists since k& > 1 implies |J| < |R|). We have that 3;, < [/5. Now take the
subset I = (J\{i1}) U {i2} and note that for it, (B.1) fails to hold with equality, a

contradiction.

B.2 Proof of Proposition 26

Proof. Let m’ € R and let Z be a subset of u—v nodes in rack m’, where 0 < v < u—1.
Let J € R\{m'},|d| = d — k be a subset of helper racks. These racks contain
u(d—k) =d—k+1— (u—1v) nodes in these racks, and together with the nodes in

the set Z this forms a group of d — k£ + 1 nodes. Using Lemma 23, we have

Z i Qe + Zam@e > 1. (B.2)

mej e=1 eel

Let us average over the (uﬁv) choices of the set 7 :

() B 3 Towes ()

med e=1 Z:|Z|=u—v e€T

161

Interchanging the sums in the second term on the left, we obtain

or

uﬁyZZamq—i-Zozme/ufvl. (B.3)

med e=1

Now let us average over the choice of § = R\{m’}. Noting that

S Syewe=(i03) B Yew

JeR\{m'} med e=1 meR\{m'} e=1
|g|l=5—-1

we obtain from (B.3)

(67 B Yewer (T Do (01) i

meR\{m'} e=1

On account of the assumption that d > 2,5 > 2 we find

2 Zame+ Zame/%ugvl. (B.4)

mER\{m’} e=1

Now let us average on the choice of m' € R :

_ I i
uU—v Zzame+s Zzame/ —1uﬁvdl

meR e=1 me’Re 1

162

or

- dul dul
= = = —.
“ Zzam’e u(s—1)4+u—wv s

meR e=1
Equality holds if and only if it holds in (B.2). This implies the uniform access con-
dition, which is proved in exactly the same way as the uniform download condition

in Prop. 24. O

B.3 Proof of Theorem 27

Proof of Part (a): The proof will be given for the repair of a node in a sys-
tematic rack. In the end we will argue that the claimed bound also applies to the
repair of nodes in parity racks.

Without loss of generality, assume {k + 1,...,k + 5} to be the 5 parity racks
that are involved in the repair of the failed node. Let k +14,7 = 1,...,5 be a helper
rack. Since the repair scheme is linear, the information that this rack provides is
obtained through a linear transformation of its contents. Denote the matrix of this
transformation by Sg,;,,, and call it the repair matriz for repairing a failed node in
rack m; from rack k+1 (and call its row space the repair subspace of the node. Note

that it is an

W) |~

x ul matrix over F’; moreover, for optimal repair, the rank of S, ; .,
necessarily is [/5 for all i € [5]. The information that parity rack k + i transmits to

repair the failed node in rack my is given by

T
Sl_chi,ml Chtvi = Sl'c+i,m1 (Ck+(i—1)u+17 s 7Ck+m>

163

k
= SE+Z',T)’L1 (

J

k T
A(i—l)u+1,jcj7 NN Z Azu,jcj) y 1= 1, e ,g. (B5)
j=1

1

For given 4,7 let us define the block matrix A; ; = (Au_1yus1s---» Aiuj)’ (a
part of column j in the encoding matrix that corresponds to rack m). Suppose that
the index of the failed node in rack m; is j;, and note that (m; —1)u+1 < j; < myu.

Then from (B.5) we obtain

k
SE+i,mlcE+i = SE+i,m1‘Ai,jlcj1 + SE+i,m1 Z ‘Amdcj? i=1,...,5 (B'G)
j=1
J#n

From (B.6) we observe that the information that parity rack k 4 i provides for the
repair of node ¢;, contains interference from the other systematic nodes c;, j # ji.
Moreover, as rack m; collects all the information sent from the helper racks k41,1 <

¢ < 5, in order to repair node c;, it is necessary that

Ska1.m A1,

rank : =1. (B.7)

SE+§,m1‘A§7j1

This relation holds true because Equations (B.6) evaluate a linear combination of
the contents of the nodes in the host rack. To retrieve the [symbols of the failed
node from this linear combination, condition (B.7) is necessary.

Let us further define the ul x ul matrix D;, = (Ai m-1)ut1s - - - Aimu) Dy

assembling together u columns of the form A. ., i.e., D; ., = (Aap), (i —Du+1 <

164

a <iu, (m—1)u+1 < B < mu. These matrices are defined for notational convenience
and enable us to argue about entire racks rather than their elements. Since the code
C is MDS, the matrix D, ,, is invertible for all 1 <¢ <7 and 1 <m < k. Rewriting

(B.6) with this notation, we obtain

k
Sl%+i,mlcfc+z‘ = SIE+i,m1®i,mlcm1 + SE+i,m1 2 DimCm- (B.8)
m=1
m#my
Since (m; — Du+ 1 < 71 < myu, from (B.7) we have
SE+1,m1®1,m1
rank : =1l (B.9)

S];?+§,m1 Dg,ml

So far we have only considered the information provided by the parity racks. It
remains to characterize the information transmitted by the systematic racks. From
(B.8), in order to cancel out the interference from systematic rack m # my, rack my
needs to download from systematic rack m the vector

_ _ T
(Skﬂ,ml@lmcmv R Sk+§,m1D§,mcm)

165

By Proposition 24, for optimal repair we necessarily have

Sk+1,m1 D1m

rank : =

(B.10)

W | =~

SI?:+§,m1®§7m

The rank conditions (B.9) and (B.10) give rise to the following subspace conditions.

For any m; € [k],

DSk rimi Dimi) = F, (B.11)
1=1
<SE+17m1D17m> B <Sf€+§,m1‘D§,m>7 m # my. <B12>

The proof of the lower bounds in the theorem relies on these necessary conditions.

Let us first bound the dimension of the intersection of the row spaces of the repair

matrices.

Lemma 47. Let J < [k] be a subset of systematic nodes such that |J] < k — 1 and

my € J. Then for any i,i' > 1

dim [\(Skspmy = dim [(S i m)- (B.13)

megd med

Proof. Let a € [k]\J. Since D;, is nonsingular, for each i € [5] we have

(¢SkeimDia> = ([VSkrim)) Dic

me] me]

166

On the previous line we take the intersection of the subspaces as indicated, then
write a basis of the resulting subspace into rows of a matrix, which has ul columns.
Since this is also the number of rows of D, ,, this operation is well defined.

Since a ¢ g, for any ¢, € [5], from (B.12) we have

ﬂ <SE+i,sz’,a> = ﬂ <Sk+i’,m®i',a>'

meg megd

Therefore, for any 4,4’ € [§]

(N¢Sksimn) Dia = ((N(Skrim?) Dira (B.14)

meJ megd

Since D, , and Dy, are invertible, (B.13) follows. O

Now consider the subspace (1),,cs{Sk+imDim,), where J is as in Lemma 47.

mej

For any i’ € [§], we have

NSkt Dim) = Srim Dimd (V) SrimDims))

med med\{m1}

= (Steim Dima) (V[() S Dims))

med\{m1}

c () SiiomDom): (B.15)
meg\{m1}

Summing on ¢ € [§] on both sides of (B.15), we obtain

S

(N<SerimDimd) € [StemDoms) (B.16)

=1 "meg meg\{m1}

167

Note that this is a direct sum because the subspaces (7),,c;(Sk1imDim,) form a

subset of the set of subspaces on the left-hand side of (B.11) and therefore (for

different 7) are disjoint.

Since D, ,,, and Dy ,,,, are invertible, we conclude that

Zdlm ﬂ<5k+lm> dim ﬂ (St m)-

med med\{m1}

Note that from (B.13), we have

Z dim ﬂ<Sk+zm> 5dim ﬂ<Sk+Zm>

meg me(d

Therefore,

—_

dim ﬂ<SlE+i,m> < —dim ﬂ <SE+i’,m>

mej med\{m1}

.
S St dim{Sy 4 4n)

l
%.

»

(B.17)

N

If [> 51, then (3.6) is proved, so let us assume that [< 5571,

Lemma 48. Let T < [a]\{k + i} be a subset such that
e 1 <|T|<n—1,
® My € ‘I,

e T contains min(k — 1,|T|) systematic racks.

168

Then

. l
dim () {Sgpimy < - (B.18)

meT

Remark: Some of the repair matrices in (B.18) refer to the repair scheme
of a parity node (a node in a parity rack) using information from another parity
rack. These matrices exist and are well defined because by assumption, the code C

supports optimal repair of any node from any set of d helper racks.

Proof. By the assumption before the lemma, Eq. (B.17) holds for any J of size
< k — 1, which proves the claim for the case |T| < k — 1. At the same time, if
|T| > k — 1, take |J| = k& — 1 in (B.17) and note that J = T. In this case (B.17)

implies (B.18) and the proof is complete. O

From (B.18) we observe that the subspaces (St,;,,),m € T have a vector in
common if and only if |T| < log; . Now consider a ul x (i — 1) matrix V' whose rows
correspond to the ul vectors in the standard basis of F'* and columns to the repair
matrices Sg ;. m € [A|\{k + i}. Put Vi, = 1 if the ith vector is one of the rows of
the mth repair matrix and 0 otherwise. The code has the optimal access property
if and only if the rows of the repair matrices are formed of standard basis vectors.
Every column of V' contains [/5 ones, and if |T| < log; [, then every row contains at
most log; | ones; thus

i(ﬁ —1) < wullog; .

V2]

169

It follows that

l>5 -+, (B.19)

where we used s = su. This concludes the proof of Part (a).

Proof of Part (b): We closely follow the arguments in Part (a) with the only
difference that the set T can now be of size n, which is possible because the repair
matrices are independent of the choice of the helper racks.

Let us outline the argument. Let |J] = k — 1 and [< 5!, In this case (B.17)

implies that

dim [)(Sm) = 0

med

(even in the case when the repair scheme is chosen based on the location of the
helpers, and all the more so in the current case). It follows that, for any T < [n]

such that T 2 J, we have

dim () S = 0.
meT
Therefore, for [< s=1 we have
l
meT

for 1 < |T| < n. For the left-hand side of the above inequality to be greater than 1,

170

we necessarily have |T| < log; (.

Repeating the argument that led to (B.19), we obtain
=35 (B.21)

Thus, we have proved cases (a) and (b) of the theorem for repairing a failed
node in a systematic rack. The same bounds hold for repairing a failed node in any
of the parity racks. Indeed, note that a parity rack cz,,,@ = 1,...,7 is computed

from the systematic racks as follows:

k
Ck+i = Z DE+i,jCj (B.22)
j=1

If a node in rack k+i has failed, we first choose d helper racks and isolate any (k—1)-
subset of the chosen d-set. Then we write equations of the form (B.22) where on
the right we use these k — 1 racks together with the host rack to express the code
symbols in the remaining 7 racks. These equations are obtained from (B.22) using
obvious matrix transformations (no complications arise because the code € is MDS).

After that, we can repeat the proofs given above, which establishes our claim.

171

Appendix C: Omitted Proofs in Chapter 4

C.1 Proof of Proposition 37

Let us first prove a technical claim.
Claim 49. For 1 <i < h+ 1, we have 6; = (6; — béiil)) mod n;.

Proof. We prove the claim by induction. Clearly, for ¢ = 1 we have §; = (6; —
béo)) mod ny. Next suppose that for a given i,1 < i < h + 1 we have §; = (J; —
b(()i_l)) mod n;. Reducing (4.10) modulo ny, we obtain the equality (6; — b(()i_l)) =
(0ir1 — b((f)) mod ny. Thus also 0, = (641 — bg)) mod ny, and this completes the

proof. O

Now we are ready to prove Proposition 37. Clearly, for i = 1 we have |Z4| =
91 —1 =ny —ry. Suppose for 1 <’ < i we have |Zy| = ny —ry, where 1 <i < h+1.
Let us establish the induction step.

By the definition of Z;,; and (4.10), we have |Z;+1| = (v; — a;)n;. Consider

the set

A1 = (i — a;)n; + {6; — b(()ifl) — 0+ 1,0 — b(()iil) =01 +2,...,n}

172

formed by adding (v; — a;)n; to every element of the subset above, and let B;,; =
Air1 0 Dyyq. Since UZV;_Oai_l(Zi +In;) € D;.1, we have
i—1

Bl = s = ani + [Bua\ %+ (4 —an) [+| [(i +in)

l:l/i—ai

. ()

Next, we would like to determine the cardinality of the set B, 1\(Z; + (v; — a;)n;).

By Claim 49, we have §; = (9; — b(()ifl)) mod ny. Therefore, |A;1]| is divisible by n;.

(@)

Note that B, 1 < A;1. Moreover, among the first uii_lni_l elements of A;, 1 there

are ul(-i)lri_l — b((f_l) elements that are in B;,; but not in Z; + (v; — a;)n;. For the

(@) (@)

next uil_2ni,2 elements in A; ., there are uil_27"@-,2 elements that are in B;,; but not

in Z; + (v; — a;)n;, and so forth. Hence, we have

i—1
|fBz+1\(Z,z + (l/i - az)n,)| = Z u;Z)T'j + U(()Z)T1 + b(()z) - béz_l)
j=1

— b,

It follows that

v;i—1
’Z’i+1| = (I/i — ai)ni + bl + ‘ U (ZZ + lnl)

l=v;—a;

= (Vi — ai)ni + bl + CLZ|Z;1|
= Nip1 — an; + b + ai(n; — ;) (C.2)
= nir1 — (air; — by)

= Nj+1 — Ti+1,

173

where (C.2) uses |Z;| = n; — r;, which is the induction hypothesis. This completes

the proof.

C.2 Proof of Lemma 38

We again argue by induction on i. For i = 1, by (4.10) we have

8y = (1 — a))my + 6+ uiny + b5 — b
=ny —an; +0; + u(()l)(nl — 1)+ by (C.3)
=ng—ay(ry +901 —d) + 91 + u(()l)(nl —r)+ b
= ng — 1+ 01— ay(61 — &) + uf (51 — d) (C.4)
=ng —7ry+ 0 — (a1 — uél))(él — o)

T
_n2_702+51_’7_2

} (01 — do),

1

where (C.3) follows from ny = njv; and (4.9), in (C.4) we used a 71 = r9 + by, and
: _ @ _ @ (0) _
the last equality follows from a; = [ro/r1] and ug’ = | (b7 + by ’)/r1] = 0.

For the induction step, let us fix 7,1 < ¢ < h and suppose that

i .
dit1 = Mjp1 — Tip1 +0; — Z [H} (01 — 0i—1), (C.5)

Pl

provided that conditions (4.11) are satisfied. Observe that

i
5i+2 = (l/i+1 — aiH)niH + 6i+1 + Z ué”l)nj + u(()lﬂ)nl + b(()H_l) — b[()l)
j=1

174

(z+1

= Njto — Ajp1Mip1 + Oip1 + Z w; O (ny —rj) + u(()Z+)(m —r)+ by (C.6)

7j=1

Substituting n;,; from (C.5), we obtain

Ai+1Mi+1 = Qjy1 (Tiﬂ + 0j11 — 0; + Zl: [THI](@ - 514))- (C.7)

- T

In addition, also by the induction hypothesis, we have

u ™ (ny =) = w61 —),

Therefore,

2 Z+1)) + u(()l-i—)(nl . Tl)

) i < (i+1) 2 (i+1) V]D((sz—fsl—ﬁ#—ugﬂ (61 — 60). (C.8)

I=1 j=l+1 T

Substituting (C.7) and (C.8) into (C.6), we obtain

Oito = Niya—Tiva + 0ix1 — i1 (0ip1 — ;)

+Z (V) + Z] P R e [GE Y

j=l+1 !

n ((i+1) _|_ulz+1 n Zuwrl [Tﬂ _ @leiﬂ])((sl —).
= T1 T

1

175

Thus, if the corresponding conditions of (4.11) are satisfied, then we have

i+1
Tiy2
Oi+2 = Mita — Tita + 0iy1 — Z [- —‘(5141 —0;).
R

This completes the induction step.

C.3 Proof of Proposition 42

Part (a): The generator matrix of the truncated code €y is given in (4.21), where
rank(Gy) = k.

Since G has full rank, by Definition 10, the j-th column distance of € is equal
to

d; = min{wt(up;G5) | uo # 0},

where up) = (uo, ..., u;) € IFZUH) is an input sequence truncated at the j-th time

instant. Obviously,

dj < min{wt(upoG5) | uo # 0,u; = ug = ... = u; = 0}. (C.9)

Consider the kxn(j+1) submatrix [Go, Gy, . . ., G;] that forms the first k rows of G5.
By elementary row operations it is possible to make some, say first, k columns of G,
be all-zero, and the same is true for some k columns of the matrices G;,7 = 2,..., 7.

(Note that to accomplish this, we use all the rows of G and not just the rows of

176

the submatrix [Gy, Gy, ..., G,].) As a result, the vector b(ug) := uo|Go, G, . .., Gj]
will contain at least kj zero coordinates for any choice of ugy €]F’;, and so the
effective length of the set of vectors {b(ug)} is n(j + 1) — kj. The set of vectors
{b(uo) | uo € FF} is a subset of the code Cp ;) and it forms a linear code X of
effective length n(j + 1) — kj with (r,9) locality if the original convolutional code
C has (column or row) (r,d) locality. The distance of the code X gives an upper
bound on d§, and is itself bounded above as in (1.6). Substituting the parameters
of the code X, we obtain the bound (4.24) for the distance d5. Part (a) is proved.
Remark: Without the locality assumption the above argument proves the

Singleton bound (4.26) for the column distance of the code C.

Part (b): Recall the following observation (e.g., [24]):

Proposition 50. Let j > 0. Let Hj be the parity check matrixz for the truncated

convolutional code Co 5. Then the following properties are equivalent:

1. d$ =d;

yi)

2. none of the first n columns of Hf is contained in the span of any other d — 2

columns and one of the first n columns of H7 is in the span of some other

d —1 columns of H;.

Now suppose that dj attains (4.24) with equality while df_; < (n —k)j +6 —
[£] (6 — 1). By Proposition 50, there exists a column among the first n columns of

H_; such that it is in the span of some other dj_; — 1 columns of H;_;. Note that

177

HY_, is a submatrix of Hj. Specifically, we have

0
H]c 1 :
HS = ,
0
Hj Hj—l H1 HO

where H;,1 < i < j are (n— k) x n matrices and rank(Hy) = n — k. Because of this,
there exists a column among the first n columns of Hf such that it is in the span
of some other d5_; —1+n —k < dj —1 columns of Hf, which by Proposition 50
contradicts our assumption about dj. Hence, it follows that the optimality of the
7-th column distance implies the optimality of the ¢-th column distance for all i < j

for convolutional codes with (column or row) locality.

178

1]

Bibliography

S. Akhlagi, A. Kiani, and M. R. Ghabavati. Cost-bandwidth tradeoff in
distributed storage systems. Computer Commuunications, 33(17):2105-2115,
2010.

S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and
P. V. Kumar. Erasure coding for distributed storage: An overview. Science
China Information Sciences, 61(100301):1-45, 2018.

S. B. Balaji and P. V. Kumar. A tight lower bound on the sub-packetization
level of optimal-access MSR and MDS codes. In 2018 IEEE International
Symposium on Information Theory (ISIT), pages 2381-2385, 2018. Expanded
version available online as arXiv:1710.05876.

S. Ballentine, A. Barg, and S. Vladut. Codes with hierarchical locality from
covering maps of curves. IEEE Trans. Inf. Theory, 65(10):6056-6071, 2019.

A. Barg, I. Tamo, and S. Vladut. Locally recoverable codes on algebraic curves.
IEEE Trans. Inform. Theory, 63(8):4928-4939, 2017.

A. Beemer, R. Coatney, V. Guruswami, H. H. Lopez, and F. Pinero. Explicit
optimal-length locally repairable codes of distance 5. In 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
pages 800-804, 2018.

E. L. Blokh and V. V. Zyablov. Coding of generalized cascade codes. Probl.
Inform. Trans., 10(3):218-222, 1974.

V. R. Cadambe, C. Huang, and J. Li. Permutation code: Optimal exact-
repair of a single failed node in MDS code based distributed storage systems.
In 2011 IEEE International Symposium on Information Theory (ISIT), pages
1225-1229, 2011.

V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh. Asymp-
totic interference alignment for optimal repair of MDS codes in distributed
storage. IEEE Trans. Inf. Theory, 59(5):2974-2987, 2013.

179

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

H. Cai, Y. Miao, M. Schwartz, and X. Tang. On optimal locally repairable codes
with super-linear length. IEEE Trans. Inf. Theory, 66(8):4853-4868, 2020.

B. Chen, S.-T. Xia, J. Hao, and F.-W. Fu. Constructions of optimal (r,?)
locally repairable codes. IEEE Trans. Inf. Theory, 64(4):2499-2511, 2018.

Z. Chen and A. Barg. Cyclic and convolutional codes with locality. [EFFE
Trans. Inf. Thoery, 2020. DOIL: 10.1109/TIT.2020.3031207.

Z. Chen and A. Barg. Explicit constructions of MSR codes for clustered dis-
tributed storage: The rack-aware storage model. [EEFE Trans. Inf. Theory,
66(2):886-899, 2020.

Z. Chen, M. Ye, and A. Barg. Enabling optimal access and error correction
for the repair of Reed-Solomon codes. IEEE Trans. Inf. Theory, 2020. DOI:
10.1109/TTT.2020.3017666.

A. Datta. Locally repairable rapidRAID systematic codes—one simple convo-
luted way to get it all. In 2014 IEEE Information Theory Workshop (ITW
2014), pages 60-64, 2014.

H. Dau, I. Duursma, and H. Chu. On the I/O costs of some repair schemes
for full-length Reed-Solomon codes. In 2018 IEEE International Symposium
Information Theory, pages 1700-1704, 2018.

H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic. Repairing Reed-Solomon
codes with multiple erasures. IEEE Trans. Inf. Theory, 54(10):6567-6582, 2018.

H. Dau and O. Milenkovic. Optimal repair schemes for some families of Reed-
Solomon codes. In 2017 IEEE International Symposium on Information Theory,
pages 346-350, 2017.

H. Dau and E. Viterbo. Repair schemes with optimal I/O costs for full-length
Reed-Solomon codes with two parities. In 2018 IEEE Information Theory
Workshop (ITW), pages 1-5, 2018.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. [EEE Trans. Inf. Theory,
56(9):4539-4551, 2010.

M. Esmaeili, T. A. Gulliver, N. P. Secord, and S. A. Mahmoud. A link be-
tween quasi-cyclic codes and convolutional codes. IEEFE Trans. Inf. Theory,
44(1):431-435, 1998.

R. Freij-Hollanti, T. Westerback, and C. Hollanti. Locally repairable codes
with availability and hierarchy: Matroid theory via examples. In 2/th Interna-
tional Zirich Seminar on Communications (1ZS), Zurich, Switzerland, March
2-4, 2016, pages 45-49. ETH-Ziirich, 2016. https://doi.org/10.3929/ethz-a-
010645448.

180

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

B. Gastén, J. Pujol, and M. Villanueva. A realistic distributed storage system
that minimizes data storage and repair bandwidth. In Proc. Data Compression
Conf, 2013. Preprint: arXiv:1301.1549.

H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. Strongly-MDS con-
volutional codes. IEEE Trans. Inf. Theory, 52(2):584-598, 2006.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword
symbols. IEEE Trans. Inf. Theory, 58(11):6925-6934, 2012.

S. Goparaju, A. Fazeli, and A. Vardy. Minimum storage regenerating codes for
all parameters. IEEE Trans. Inf. Theory, 63(10):6318-6328, 2017.

M. Grezet and C. Hollanti. The complete hierarchical locality of the punctured
simplex code. In 2019 IEEFE International Symposium on Information Theory
(ISIT), pages 2833-2837, 2019.

V. Guruswami and M. Wootters. Repairing Reed-Solomon codes. IEFEE Trans.
Inf. Theory, 63(9):5684-5698, 2017.

V. Guruswami, C. Xing, and C. Yuan. How long can optimal locally repairable
codes be? IEEE Trans. Inf. Theory, 6(6):3662-3670, 2019.

L. Holzbaur, R. Freij-Hollanti, and A. Wachter-Zeh. Cyclic codes with locality
and availability, 2018. arXiv preprint arXiv:1812.06897.

H. Hou, P. P. C. Lee, K. W. Shum, and Y. Hu. Rack-aware regenerating codes
for data centers. IEEE Trans. Inf. Theory, 65(8):4730-4745, 2019.

Y. Hu, P. P. C. Lee, and X. Zhang. Double regenerating codes for hierarchical
data centers. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 245-249. IEEE, 2016.

Y. Hu, X. Li, M. Zhang, P. Lee, X. Zhang, P. Zhou, and D. Feng. Optimal
repair layering for erasure-coded data centers: From theory to practice. ACM
Transactions on Storage (TOS), 13(4), 2017. Article #33.

P. Huang, E. Yaakobi, and P. H. Siegel. Multi-erasure locally recoverable
codes over small fields: A tensor product approach. IEEE Trans. Inf. The-
ory, 66(5):2609-2624, 2020.

F. Ivanov, A. Kreshchuk, and V. Zyablov. On the local erasure correction ca-
pacity of convolutional codes. In 2018 International Symposium on Information
Theory and Its Applications (ISITA), Singapore, pages 296-300, 2018.

L. Jin, G. Luo, and C. Xing. Optimal repairing schemes for Reed-Solomon
cods with alphabet sizes linear in lengths under the rack-aware model.
arXiv:1911.08016, Nov. 2019.

181

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Johannesson and K. S. Zigangirov. Fundamentals of Convolutional Coding.
J. Wiley & Sons, Inc., Hoboken, NJ, 2nd edition, 2015.

J. Justesen, E. Paaske, and M. Ballan. Quasi-cyclic unit memory convolutional
codes. IEEFE Trans. Inf. Theory, 36(3):540-547, 1990.

G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar. Codes with local
regeneration and erasure correction. IEEE Trans. Inform. Theory, 60(8):4637—
4660, 2014.

A. M. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing multiple fail-
ures with coordinated and adaptive regenerating codes. In 2011 Int. Sympos.
Network Coding (NetCod), pages 1-6. IEEE, 2011.

S. Kruglik, K. Nazirkhanova, and A. Frolov. New bounds and generaliza-
tions of locally recoverable codes with availability. IEEE Trans. Inf. Theory,
65(7):4156-4166, 2019.

K. Lally and P. Fitzpatrick. Algebraic structure of quasicyclic codes. Discrete
Applied Mathematics, 111:157-175, 2001.

J. Li and B. Li. Cooperative repair with minimum-storage regenerating codes
for distributed storage. In Proc. IEEE INFOCOM, pages 316-324. IEEE, 2014.

J. Li, X. Tang, and C. Tian. A generic transformation to enable optimal re-
pair in mds codes for distributed storage systems. IEEE Trans. Inf. Theory,
64(9):6257-6267, 2018.

W. Li, H. Dau, Z. Wang, H. Jafarkhani, and E. Viterbo. On the 1/O costs
in repairing short-length Reed-Solomon codes. In 2019 IEEE International
Symposium Information Theory, pages 1087-1091, 2019.

X. Li, L. Ma, and C. Xing. Construction of asymptotically good locally re-
pairable codes via automorphism groups of function fields. IEEE Trans. Inf.
Theory, 65(11):7087-7094, 2019.

X. Li, L. Ma, and C. Xing. Optimal locally repairable codes via elliptic curves.
IEEE Trans. Inform. Theory, 65(1):108-117, 2019.

S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes, I. IEEE
Trans. Inf. Theory, 47(7):2751-2760, 2001.

S. Ling and P. Solé. On the algebraic structure of quasi-cyclic codes II: Chain
rings. Designs, Codes and Cryptography, 30:113-130, 2003.

Y. Luo, C. Xing, and C. Yuan. Optimal locally repairable codes of distance 3
and 4 via cyclic codes. IEEE Trans. Inf. Theory, 65(2):1048-1053, 2018.

J. Mardia, B. Bartan, and M. Wootters. Repairing multiple failures for scalar
MDS codes. IEEE Trans. Inf. Theory, 65(5):2661-2672, 2019.

182

[52]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

U. Martinez-Penas and D. Napp. Locally repairable convolutional codes with
sliding window repair. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2838-2842, 2019. expanded version in arXiv preprint
arXiv:1901.02073.

S. Pawar, S. El Rouayheb, and K. Ramchandran. Securing dynamic distributed
storage systems against eavesdropping and adversarial attacks. IEEE Trans.
Inf. Theory, 57(10):6734-6753, 2011.

J. Pernas, C. Yuen, B. Gastén, and J. Pujol. Non-homogeneous two-rack model
for distributed storage systems. In 2013 IEEE International Symposium on
Information Theory (ISIT), pages 12371241, 2013.

N. Prakash, V. Abdrashitov, and M. Medard. The storage vs repair bandwidth
trade-offs for clustered storage systems. IEEE Trans. Inf. Theory, 64(8):5783—
5805, 2018.

K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-matrix
construction. IEEE Trans. Inf. Theory, 57(8):5227-5239, 2011.

K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar. Regenerating
codes for errors and erasures in distributed storage. In 2017 IEEE International
Symposium on Information Theory (ISIT), pages 1202-1206, 2012.

N. Raviv, N. Silberstein, and T. Etzion. Constructions of high-rate mini-
mum storage regenerating codes over small fields. IEEFE Trans. Inf. Theory,
63(4):2015-2038, 2017.

A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Centralized repair of mul-
tiple node failures with applications to communication efficient secret sharing.
IEEFE Trans. Inf. Theory, 64(12):7529-7550, 2018.

A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath. Locality
and availability in distributed storage. IEEE Trans. inf. theory, 62(8):4481—
4493, 2016.

S. Sahraei and M. Gastpar. Increasing availability in distributed storage systems
via clustering. In 2018 IEEE International Symposium on Information Theory
(ISIT), pages 1705-1709, 2018. Preprint: arXiv:1710.02653v2.

K. Saints and C. Heegard. On hyperbolic cascaded Reed-Solomon codes. In
International Symposium on Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, pages 291-303. Springer, 1993.

B. Sasidharan, G. K. Agarwal, and P. V. Kumar. Codes with hierarchical
locality. In 2015 IEEE International Symposium on Information Theory (ISIT),
pages 12571261, 2015. Expanded version in arXiv preprint arXiv:1501.06683.

183

[64]

[65]

B. Sasidharan, M. Vajha, and P. V. Kumar. An explicit, coupled-layer con-
struction of a high-rate MSR code with low sub-packetization level, small field
size and all-node repair, 2016. Preprint: arXiv:1607.07335.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Distributed
storage codes with repair-by-transfer and nonachievability of interior points on
the storage-bandwidth tradeoff. IEEE Trans. Inf. Theory, 58(3):1837-1852,
2012.

K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire. A repair
framework for scalar MDS codes. IEEE Journal on Selected Areas in Commu-
nications, 32(5):998-1007, 2014.

K. W. Shum and Y. Hu. Cooperative regenerating codes. IEEE Trans. Inf.
Theory, 59(11):7229-7258, 2013.

J.-y. Sohn, B. Choi, and J. Moon. A class of MSR codes for clustered distributed
storage. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 2366-2370, 2018.

J.-y. Sohn, B. Choi, S. W. Yoon, and J. Moon. Capacity of clustered distributed
storage. IEEE Trans. Inf. Theory, 65(1):81-107, 2019.

G. Solomon and H. C. A. van Tilborg. A connection between block and con-
volutional codes. SIAM J. Appl. Math., 37(2):358-369, 1979.

I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE
Trans. Inf. Theory, 60(8):4661-4676, 2014.

I. Tamo, A. Barg, and A. Frolov. Bounds on the parameters of locally recover-
able codes. IEEE Trans. inf. theory, 62(6):3070-3083, 2016.

I. Tamo, A. Barg, S. Goparaju, and R. Calderbank. Cyclic LRC codes, binary
LRC codes, and upper bounds on the distance of cyclic codes. International
Journal of Information and Coding Theory, 3(4):345-364, 2016.

I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with optimal
rebuilding. IEEE Trans. Inf. Theory, 59(3):1597-1616, 2013.

I. Tamo, Z. Wang, and J. Bruck. Access versus bandwidth in codes for storage.
IEEFE Trans. Inf. Theory, 60(4):2028-2037, 2014.

I. Tamo, M. Ye, and A. Barg. Optimal repair of Reed-Solomon codes: Achieving
the cut-set bound. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 216-227, 2017.

I. Tamo, M. Ye, and A. Barg. The repair problem for Reed-Solomon codes:
Optimal repair of single and multiple erasures with almost optimal node size.
IEEE Trans. Inf. Theory, 65(5):2673-2695, 2019.

184

[78]

[79]

[80]

[81]

82]

[33]

[84]

[85]

R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello. LDPC
block and convolutional codes based on circulant matrices. IEEE Trans. Inf.
Theory, 50(12):2966-2984, 2004.

M. A. Tebbi, T. H. Chan, and C. W. Sung. A code design framework for multi-
rack distributed storage. In Proc. IEEE Information Theory Workshop (ITW
201/), pages 55-59, 2014.

V. Tomas, J. Rosenthal, and R. Smarandache. Decoding of convolutional codes
over the erasure channel. IEEE Trans. Inf. Theory, 58(1):90-108, 2012.

M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan, P. V.
Kumar, A. Barg, M. Ye, S. Hussain, S. Narayanamurthy, and S. Nandi. Clay
codes: Moulding MDS codes to yield an MSR code. In 16th USENIX Con-
ference on File and Storage Technologies (FAST 2018), Oakland, CA, pages
139-154, Feb. 2018.

A. Wang and Z. Zhang. Repair locality with multiple erasure tolerance. IEEE
Trans. Inf. Theory, 60(11):6979-6987, 2014.

S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek. Hierarchical coding to
enable scalability and flexibility in heterogeneous cloud storage. In 2019 IEFEFE
Global Communications Conference (GLOBECOM), pages 1-6, 2019. arXiv
preprint arXiv:1905.02279.

M. Ye and A. Barg. Explicit constructions of high-rate MDS array codes with
optimal repair bandwidth. IEEE Trans. Inf. Theory, 63(4):2001-2014, 2017.

M. Ye and A. Barg. Explicit constructions of optimal-access MDS codes with
nearly optimal sub-packetization. IEEE Trans. Inf. Theory, 63(10):6307-6317,
2017.

M. Ye and A. Barg. Cooperative repair: Constructions of optimal MDS codes
for all admissible parameters. IEEE Trans. Inf. Theory, 65(3):1639-1656, 2019.

B. Zhu, X. Li, H. Li, and K. W. Shum. Replicated convolutional codes: A design
framework for repair-efficient distributed storage codes. In 2016 5/th Annual
Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1018-1024, 2016.

185

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Preliminaries and prior work
	Efficiency in terms of bandwidth
	Stronger notions of optimal repair
	Optimal repair under connectivity constraints
	Efficiency in terms of locality
	Further extensions of local repair
	LRC convolutional codes

	Contributions
	Codes with optimal repair bandwidth
	Codes with locality

	Organization

	Enabling Optimal Access and Error Correction for the Repair of Reed-Solomon Codes
	Introduction
	Organization

	A simple example
	Preliminaries
	Repair scheme with optimal error correction capability
	Optimal access property
	Optimal access with error correction

	Enabling error correction for repair of RS codes
	Preliminaries
	The repair scheme
	The matrices Mj
	The matrices Mj are invertible

	A family of optimal-access RS codes
	New construction
	Error correction with optimal access

	Every scalar MSR code affords optimal-access repair
	Constant repair subspaces
	Optimal access for the case of constant repair subspaces
	Optimal-access repair for general scalar MSR codes

	Explicit Constructions of MSR Codes for the Rack-aware Storage Model
	Introduction
	Organization

	Problem statement and structural lemmas
	Optimal repair
	Optimal access
	A lower bound on the sub-packetization of rack-aware optimal-access MSR codes

	Rack-aware codes with optimal repair for all parameters
	Low-access codes for the rack model
	Optimal-access MSR codes with arbitrary repair degree for homogeneous storage
	Rack-aware MSR codes with low access

	A construction of Reed-Solomon codes with optimal repair
	Rack-aware RS codes with optimal repair
	Rack-aware RS codes with optimal error correction and low access

	Cyclic and Convolutional Codes with Locality
	Introduction
	Organization

	The structure of zeros of cyclic codes with locality
	Optimal cyclic LRC codes
	Cyclic codes with locality

	Codes with hierarchical locality
	Optimal cyclic codes with hierarchy
	Hierarchical cyclic codes of unbounded length

	Convolutional codes with locality
	Convolutional codes with column locality
	Convolutional codes with row locality
	Convolutional codes and quasicyclic codes
	A family of tailbiting convolutional codes with row locality

	Bi-cyclic codes with availability

	Conclusion
	RS codes with optimal repair
	Rack-aware MSR codes
	Codes with locality

	Omitted Proofs in Chapter 2
	Proof of Proposition 7

	Omitted Proofs in Chapter 3
	Proof of Proposition 24
	Proof of Proposition 26
	Proof of Theorem 27

	Omitted Proofs in Chapter 4
	Proof of Proposition 37
	Proof of Lemma 38
	Proof of Proposition 42

	Bibliography

