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Abstract

In [1], Restrepo and Bovik developed an elegant mathematical framework in which they
studied locally monotonic regressions in RY. The drawback is that the complexity of their
algorithms is exponential in N. In this paper, we consider digital locally monotonic regressions,
in which the output symbols are drawn from a finite alphabet, and, by making a connection to
Viterbi decoding, provide a fast O(|.4|?aN) algorithm that computes any such regression, where
|A| is the size of the digital output alphabet, a stands for lomo-degree, and IV is sample size.

This is linear in N, and it renders the technique applicable in practice.
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I. INTRODUCTION

Local monotonicity is a property that appears in the study of the set of root signals of the
median filter [2], {3], [4], [5], [6], [7]; it constraints the roughness of a signal by limiting the rate at
which the signal undergoes changes of trend (increasing to decreasing or vice versa). In effect, it
limits the frequency of oscillations, without limiting the magnitude of jump level changes that the
signal exhibits. Local monotonicity implies a different notion of smoothness, as compared to e.g.,
limiting the support of the Fourier transform; the latter imposes a limit on both the frequency of
oscillations, and the magnitude of jump level changes.

A classic problem in the true spirit of nonlinear filtering is the recovery of a piecewise smooth
signal embedded in impulsive noise. In this paradigm, it is often natural to model the signal
as locally monotonic, and ask for optimal smoothing under an approximation or estimation
criterion. This amounts to picking a signal, from a given class of locally monotonic signals,
which minimizes a distortion measure between itself and the observation, and it is referred to
as locally monotonic regression. In [1], Restrepo and Bovik developed an elegant mathematical
framework in which they studied locally monotonic regressions in RY (throughout, R denotes
the set of real numbers, and |-| stands for set cardinality). Unfortunately, the complexity of their
algorithms is exponential in N. The authors admit that their algorithms are computationally
very expensive, even for signals of relatively short duration; this hampers potential applications
of the method.

Locally monotonic regression provides a median root which is optimal in a suitable sense,
e.g., closest to the observable data in some metric or semi-metric. It is meant as an “optimal
median”, while iterating the median may be thought of as a suboptimal “regression” which trades
optimality for simplicity. In practice, one usually deals with digital (finite-alphabet) data. If
the input (observable data) is finite-alphabet, then the output of any number of iterations of
the median is also finite-alphabet, and, in fact, of the same alphabet as the input; it is therefore
natural to consider digital locally monotonic regression, in which the output symbols are drawn
from a finite alphabet, as the optimal counterpart of median filtering of digital signals. Even
if the observable data is real-valued, one would probably still be interested in digital locally
monotonic regression, for, on one hand, by proper choice of quantization, it may provide an
answer which is sufficiently close to the underlying regression in R", and that may well be all

that one cares for; and, on the other hand, it provides a way to perform simultaneous smoothing,
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quantization, and compression of noisy discontinuous signals. In this paper, we consider digital
locally monotonic regression, and, by making a connection to Viterbi decoding®, provide a fast
O(|A|?aN) algorithm that computes any such regression, where |A| is the size of the digital
output alphabet, « is the lomo-degree (usually, the assumed lomotonicity of the signal, i.e., the
highest degree of local monotonicity that the signal possesses), and N is the size of the sample.
This is linear (as opposed to ezponential in the work of Restrepo and Bovik) in N, and it renders
the technique applicable in practice.

In more consice terms, we provide a fast O(|.A|?aN) Viterbi-type algorithm that solves the

following problem. Given a sequence of finite extent, y = {y(n)}.— € RY, find a finite-alphabet

n=0

N-1

sequence, X = {#(n)}) = € A", which minimizes d(x,y) = S dn(y(n), z(n)) subject to: x

is locally monotonic of degree «.

A. Organization

The rest of this paper is structured as follows. In section IT we provide some necessary def-
initions, and a formal statement of the problem. The reader is referred to [1] and references
therein for additional background and motivation. Our fast solution is presented in section III.
A discussion on implementation complexity is also included. A complete simulation experiment

is presented in section IV, and conclusions are drawn in section V.

II. THE PROBLEM
A. Background

If x is a real-valued sequence (string) of length N, and v is any integer less than or equal
to N, then a segment of x of length - is any substring of y consecutive components of x. Let

i+y—1
1

x::""’_l = {z(3), - ,z(t+v—-1)},4 >0, i +v < N, be any such segment. x is monotonic
if either z(4) < z(i + 1) < - <z(i+y—1),or2(@) > z(G+1) > 2 2@ +v-1).

Definition 1: A real-valued sequence, x, of length N, is locally monotonic of degree a < N (or
lomo-a, or simply lomo in case « is understood) if each and every one of its segments of length
« is monotonic.

Throughout the following, we assume that 3 < oo < N. A sequence x is said to exhibit an
increasing (resp. decreasing) transition at coordinate 4 if 2(i) < z(¢ + 1) (resp. z(¢) > z(i + 1)).

1Such a connection between optimal nonlinear filtering under local syntactic constraints and Viterbi decoding

algorithms has first been made in [8].
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If x is locally monotonic of degree «, then x has a constant segment (run of identical symbols)
of length at least o — 1 in between an increasing and a decreasing transition. The reverse is also
true. If 3 < o < 8 < N, then a sequence of length N that is lomo-£ is lomo-« as well; thus, the

lomotonicity of a sequence is defined as the highest degree of local monotonicity that it possesses.

B. Digital Locally Monotonic Regression

Given y(n) € R, n =0,1,---,N — 1, and A4, a finite subset of R (| 4| < 00). Let A(e, N, A)
denote the space of all sequences of N elements of A which are locally monotonic of degree a.

Digital locally monotonic regression is the following constrained optimization:

N-1
minimize Z dn(y(n), z(n)) (1)
n=0
subject to: x = {x(n)},]:;_ol € A(a, N, A) (2)

Here, d,(-,-) is any per-letter distortion measure; it can be a - possibly inhomogeneous in n -
metric, semi-metric, or arbitrary bounded cost measure. The “sum” may also be interpreted
liberally: it turns out that it can be replaced by a “max” operation to accommodate a minimax
(minimize sup-error) problem formulation, without affecting the structure of the fast computa-
tional algorithm which is developed below.

Observe that if 3 < a < 8 < N, then A(G, N, A) C A(a, N, A); thus, the above optimization
is defined over an element of a sequence of nested “approximation” spaces. This means that the

achievable minimum is a non-decreasing function of «.

IT1. SoLuTION

We show how a suitable reformulation of the problem naturally leads to a simple and efficient
Viterbi-type optimal algorithmic solution.

Definition 2: Given any sequence x = {w(n)},]::ol, z(n) e A, n=10,1,---,N — 1, define its
associated state sequence, sx = {[a;(’n), lx(n)]T}::_ll, where [z(=1), lx(-1)]F = [¢,a—1]T, ¢ ¢
A and, forn=-1,---,N -2

sgn(lx(n)) - min {abs(lx(n)) +1, o =1} , z(n+1) = z(n)
x(n+1)=1q 1 , (n+1) > z(n)

-1 , z(n+1) < z(n)
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5

where sgn(-) stands for the sign function, and abs(-) stands for absolute value. [z(n), Ix(n)]” is the
state at time n, and, forn = 0,1,..., N—1, it assumes values in Ax{— (o — 1),--+,-1,1,---,a — 1}.
Clearly, we can equivalently pose the optimization (1),(2) in terms of the associated state se-
quence.

Definition 3: A subsequence of state variables {[x(n), lx(n)]T}:=_1, v < N —1, is admissible

(with respect to constraint (2)) if and only if there exists a suffix string of state variables,
{l=(m), lx(n)]T}:___—:_’_l, such that {[a(n), be(n)]T}"___ followed by {[z(n), zx(n)]'-’“}:;l is the
associated state sequence of some sequence in A(e, N, A).
Let x = {Z ('n,)},],:]:_o1 be a solution (one always exists, although it may not necessarily be unique) of
(1),(2), and { [Z(n), l; (n)]T}:_____ll, be its associated state sequence. Clearly, {[ﬁ(n), ls ('n)]r‘r}::_l1
is admissible, and so is any subsequence {[&?(n),l;(n)]T}:=_1, v < N — 1. The following is a
key observation.

Claim 1: Optimality of { [Z(n), l;;(n)]T}::_ll implies optimality of { [Z(n), l;;(n)]T}Zz_l, v<
N — 1, among all admissible subsequences of the same length which lead to the same state at
time v, i.e., all admissible {[i(n), l;(n)]T};=_1 satisfying [Z(v), l;(u)]T = [B(v), lsz(y)]T

Proof: The argument goes as follows. Suppose that {[5(n),l§(n)]T}Z=_1 is an admis-
sible subsequence of states satisfying [5(1/),l§(1/)]T = [2),lz(¥)]". Tt is easy to see that
{[z’E(n),l;('rz)]"r}::_1 followed by {[Zz?(n),l;e(n)]T}:,:_:+1 is also admissible. The key point is
that any suffix string of state variables which makes {[z’E(n), le (’n)]T}Zz_1 admissible, will also
make {[ ) l~('n,)]:’1}l;=_1 admissible. If {[?15(71),l;(n)]T}::_1 has a smaller cost (distortion)
than {[ﬁ(n),l;;(n)]T V=_1
costs, {[ﬁ(n),l;(n)]T}:=_1 followed by {[ﬁ(n),l;(n)]T}
{[Zﬁ(n), lﬁ(n)]T}:’_—_ll, and this violates the optimality of the latter. [ |

Z(n),
, then, by virtue of the fact that the cost is a sum of per-letter
::Vl ) will have a smaller cost than
This is a particular instance of the principle of optimality of dynamic programming [9], [10], [11].
The following is an important Corollary.

Corollary 1: An optimal admissible path to any given state at time n+1 must be an admissible
one-step continuation of an optimal admissible path to some state at time n.
This Corollary leads to an efficient Viterbi-type [12], [13], [14] algorithmic implementation of any
digital locally monotonic regression. It remains to specify the costs associated with one-step state
transitions in a way that forces one-step optimality and admissibility. This is not very difficult.

Let ¢ (sx(n) — sx(n + 1)) denote the cost of a one-step state transition, and V, A denote logical
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OR, AND, respectively. Then,
if :

(x(n+1)=1) A (z(n) <z(n+1)) A [(Ix(n)>0) V (Ix(n) = —(a-1))]

/* To make an increasing transition, one of two things must hold: either you're currently in the
midst of an increasing trend, or, if in the midst of a decreasing trend, you've just completed a

constant run of at least o — 1 symbols following the latest decreasing transition. */
\%

Ux(n+1) =-1) A (z(n) >z +1)) A [(x(n) <0) V (x(n) =a—1)]

/* Similarly, to make a decreasing transition, one of two things must hold: either you’re currently
in the midst of a decreasing trend, or, if in the midst of an increasing trend, you've just completed

a constant run of at least & — 1 symbols following the latest increasing transition. */
V

Q<lix(n+1l)<a—-1) A (z(n)=z(n+1)) A (x(n+1) =Ix(n)+1)

/* If you are in a constant run following an increasing tramsition, and you receive one more

identical symbol, then the only thing you are allowed to do is increment your counter */
\%

(—(a-1) <ix(n+1) <~1) A (z(n)=2(n+1)) A (Ix(n+1)=Ik(n)~-1)

/* Similarly, if you are in a constant run following a decreasing transition, and you receive one

more identical symbol, then the only thing you are allowed to do is decrement your counter */
\Y

(xn+1) =a—1) A (@n)=sn+1) A [(Ixn)=a-1) V (Ix(n) = (@ —1) — 1)]

/* The only way you can reach a positive full count of o— 1 is to either have a positive full count,

or be just one sample short of a positive full count and receive one more identical symbol */
\%

Ux(n+1)=—(a-1)) A (2(n) =2(n+1)) A [(x(n) =—(~1)) V (Ix(n) = —(a—1) +1)]
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/* The only way you can reach a negative full count of —(a— 1) is to either have a negative full
count, or be just one sample short of a negative full count and receive one more identical symbol
*/
then : ¢ ([z(n), ke(n)]” = [p(n + 1), le(n + D7) = dnsr@(n+1),2(n +1))
else : ¢ ([z(n), lx(n)]” = [3(n + 1), lx(n + 1)]7) = o0 (3)

will do it. A formal proof can be easily constructed, and is hereby omitted.

A. Complezxity

Any Viterbi-type algorithm has computational complexity which is linear in the number of
observations, i.e., N. The number of computations per observation symbol depends on the
number of states, as well as state connectivity in the trellis. In the following, we derive the
required number of distance (branch metric) calculations and additions per observation symbol
(trellis stage) (the number of comparisons required per trellis stage is always less than this
number). Each stage in the trellis has a total of |A|2(« — 1) states, which can be classified as
follows:

o | A| state pairs of the form ([v, —1]7, [v,1]T), v € A. One can easily check that the combined
fun-in of each such pair (i.e., the number of states at the previous time instant from which such a
pair can be reached) is (|A| — 1)a. Thus, one needs (|.4| — 1)« distance calculations and additions
per pair, for a subtotal of |A|(|.4| — 1)a distance calculations and additions per stage, for this
class of states.

o |A|2(cx — 3) states of the form [v,{]T, v€ A, 1 <l <a—1,or —(a—1) <! < —1. Each such
state can only be reached by one state, namely [v,! — 1]T if I > 0, or [v,I + 1]7 otherwise. Thus,
one needs |A|2(a — 3) distance calculations and additions per stage, for this class of states.

o |A| state pairs of the form ([v, —(a—1)]T, [v,a —1]T), v € A. One can easily check that the
combined fun-in of each such pair is 4. Indeed, a state of type [v,a — 1]T can only be reached
from either itself or [v, (& — 1) — 1]T, and, similarly, a state of type [v, —(c —1)]7 can only be
reached from either itself or [v, —(a — 1) + 1]T. Therefore, one needs 4|.4| distance calculations
and additions per stage, for this class of states.

The total is |4|2a+|A|(a—2) distance calculations and additions per stage; this is tabulated in
Table I, for some typical parameter values, and it is of O(|.A|%c), for a grand total of O(|.A[2aN)

for the entire regression. Clearly, |A| (i.e., the size of the output alphabet) is the dominating
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factor.

The worst-case storage requirements of digital locally monotonic regression are O(|A|aN), but
actual storage requirements are much more modest, due to path merging.

The availability of VLSI Viterbi decoding chips, as well as several dedicated multiprocessor
architectures for Viterbi-type decoding, makes fast digital locally monotonic regression a realistic
alternative to standard nonlinear filtering, at least for moderate values of | A|, @. In the binary
case, current Viterbi technology [15], [16], [17], [18], [19] can handle 2!? states. Hardware capa-
bility is continuously improving, and at a rather healthy pace. Viterbi-type filtering techniques,

like the one described here, will certainly benefit from these developments.

IV. SIMULATION EXAMPLE

Let us now present a complete simulation experiment. Figure 2 depicts a typical input sequence.
This particular input has been generated by adding i.i.d. noise on some artificial “true” noise-free
test data, depicted in Figure 1. The noise has been generated according to a uniform distribution,
and most of the data points are contaminated. It should be stressed that this is a “distribution-
free” experiment, in that we do not use our prior knowledge of the noise model to match the
regression to the noise characteristics, which is certainly a possibility (cf. [1]: by proper choice
of dp(,*), locally monotonic regression can be tailored to provide Maximum Likelihood (ML)
estimates). The noise-free test data of Figure 1 is also overlaid on subsequent plots. This is
meant to help the reader judge filtering “quality”. Visual perception is arguably the ultimate
“gold standard”, and the reader is encouraged to attempt to trace the underlying signal visually.

For this example, we take d,(y(n), z(n)) = ly(n)—z(n)|, Vn € {0,1,--- ,N — 1}, A={0,---,99},
and N = 512. The resulting optimal approximation for oo = 5, 10, 15, 20, 25 is depicted in Figures
3, 4, 5, 6, and 7, respectively. The results look very promising. The overall run time is approxi-
mately equal to 2 minutes for o = 15, N = 512, | 4| = 100, on a SUN SPARC 10, using simple
C-code developed by the author, which certainly leaves much to be desired in terms of efficiency.
Much better benchmarks may be expected for smaller alphabets and/or by implementing the
algorithm in dedicated Viterbi hardware; e.g., for [A| = 32, and everything else as above, the

overall run time is approximately 12 seconds, for a throughput of 42 32-ary symbols per second.
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V. CONCLUSIONS AND FURTHER RESEARCH

Motivated in part by the work of Restrepo and Bovik [1], our own earlier work in [8], and the
fact that, in practice, one usually deals with digital (finite-alphabet) data, we have posed the
problem of digital locally monotonic regression, in which the output symbols are drawn from a
finite alphabet, as a natural optimal counterpart of median filtering of digital signals. Capitalizing
on a connection between optimal nonlinear filtering under local syntactic constraints and Viterbi
decoding algorithms, which has first been made in [8], we have provided a fast O(|.A[?aN)
algorithm that computes any such regression, where |.A4| is the size of the digital output alphabet,
« stands for lomo-degree, and N is sample size. This is linear (as opposed to ezponential in the
work of Restrepo and Bovik) in N, and it renders the technique applicable in practice.

The connection between optimal nonlinear filtering under local syntactic constraints and
Viterbi decoding algorithms seems to be strong and pervasive; it appears to provide a unify-
ing framework for the efficient computation of a rich class of nonlinear filtering techniques, some
of which were oftentimes deemed impractical, due to their complexity. This key element certainly

deserves further investigation, and several threads are currently being pursued.
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Fig. 1. The “true” noise-free test data Fig. 3. Output of digital locally monotonic regres-
sion of degree o = 5.
100 T T
90 A 100 r T T T T
b 901
460 sc':o 600 b“‘f' 1
cO 1(‘)0 2(‘)0 3(‘)0 4(‘)0 560 600
Fig. 2. Input sequence, {y(n)}il__lo

Fig. 4. Output of digital locally monotonic regres-

sion of degree o = 10.
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g
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0 100 200 300 400 500 600 0 100 200 300 400 500 600

Fig. 5. Output of digital locally monotonic regres- Fig. 7. Output of digital locally monotonic regres-

sion of degree o = 15. sion of degree a = 25.

Fig. 6. Output of digital locally monotonic regres-

sion of degree a = 20.
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a=5 [a=10|a=16| a=20 | a=25 [ =30
|A| =2 26 56 86 116 146 176
A =16 | 1328 2688 4048 5408 6768 8128
[A|=32 | 5216 | 10496 | 15776 | 21056 26336 31616
|[A| =64 | 20672 | 41472 | 62272 | 83072 | 103872 | 124672
|A| =128 | 82304 | 164864 | 247424 | 329984 | 412544 | 495104
|A| =256 | 328448 | 657408 | 986368 | 1315328 | 1644288 | 1973248

TABLE I

13

NUMBER OF DISTANCE CALCULATIONS AND ADDITIONS PER SYMBOL (I.E., PER TRELLIS STAGE). THE

NUMBER. OF COMPARISONS IS ALWAYS LESS THAN THIS NUMBER, AND THE COMPUTATIONAL

COMPLEXITY PER TRELLIS STAGE IS ALWAYS LESS THAN TWICE THIS NUMBER.
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