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Communication is an important aspect of task allocation, but it has a cost and low 

communication restricts the information exchange needed for task allocation. As a 

result, a lot of decentralized task allocation algorithms perform worse as 

communication worsens.  

The contribution of this thesis is a method to improve the performance of a task 

allocation algorithm in low-communication environments and reduce the cost of 

communication by restricting communication. This method, applied to the Consensus 

Based Auction Algorithm (CBAA), determines when an agent should communicate 

and estimates the information that will be received from other agents. 

This method is compared to other decentralized task allocation algorithms at different 

levels of communication in a ship protection scenario. Results show that this method 

when applied to CBAA performs comparably to CBAA while reducing 

communication. 
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Chapter 1: Introduction 

 

This chapter contains sections that introduce several concepts that relate to the topic 

of this thesis and provides information on the organization of this thesis. Section 1.1. 

discusses multiagent systems including the different types while Section 1.2. defines 

the concept of metareasoning and discusses some metareasoning problems and 

techniques. Section 1.3. provides a brief overview of task allocation; Section 1.4. 

introduces the research question and Section 1.5. provides an overview of the 

subsequent chapters in this thesis. 

1.1 Multiagent Systems 

Multiagent systems are systems consisting of multiple agents. They are being 

increasingly used in search and rescue [1], surveillance, [2] and firefighting [3], 

because they can accomplish complex missions quickly, efficiently and cheaply. 

Multiagent systems can be divided into collaborative and non-collaborative 

multiagent systems. In collaborative multiagent systems, the agents in the system 

coordinate with each other to achieve a goal. However in non-collaborative 

multiagent systems, the agents in the system do not collaborate with each other. In 

some cases, the agents may have competing objectives.  Multiagent systems can be 

divided into heterogeneous and homogeneous multiagent systems. In homogeneous 

multiagent systems, the agents in the system are identical and can perform identical 

tasks. These systems are highly fungible, i.e., each agent can do the task of every 

other agent in an identical fashion. On the other hand, in heterogeneous multiagent 
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systems, the agents in the system are not identical. They may have different 

properties such as speed and size; different capabilities such as sensors, which can 

affect their ability to perform different tasks. In some cases, heterogeneous systems 

can have specialized agents, which are capable of performing certain tasks. Thus, not 

all tasks can be performed by all agents and agents can perform differently on 

identical tasks.  

1.2 Metareasoning 

Metareasoning can be defined as reasoning about reasoning [4]. It is a higher level of 

reasoning that aims to improve an agent’s performance by reasoning about and 

controlling the agent’s decision making processes. For example, consider a robot 

using a motion planning algorithm to find a valid path from its current location to a 

destination. Metareasoning can help the agent determine the right time to stop 

computing and start executing a plan. It can also help the agent identify ways to 

improve the performance of the algorithm. In a metareasoning context, an agent can 

be described as having three levels,  as shown in Figure 1.1. 

 
Figure 1.1: Duality in reasoning and acting [4] 
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The ground-level consists of actions that are taken directly by the agent to accomplish 

its goal. These actions influence the environment and can also change the state of the 

agent. In the example above, the movement of the robot along the path selected by the 

motion planning algorithm would be a ground-level action. Object-level actions are 

generally computations made by the agent to understand its environment and 

determine the configuration of ground-level actions to take that best achieves its goal. 

The computations performed by the motion planning algorithm would be the object-

level action. Meta-level actions are higher-level computations that the agent performs 

to improve the performance of its object-level actions. A meta-level action would be a 

computation performed by the agent to select a motion planning algorithm.  

 

Metareasoning can help agents adapt to dynamic and novel environments by 

improving the performance of different facets of its computations. Some 

metareasoning problems that have been studied in the literature include the algorithm 

selection problem [5], the deliberation problem [6], and the allocation problem [7]. 

The algorithm selection problem addresses the challenge of selecting the algorithm 

that performs best, out of a set of algorithms, for the given agent and scenario. The 

performance metric used to assess the algorithm will influence the choice of 

algorithm. The deliberation problem addresses sub-problems like should the agent 

think or act and should the agent gather more information or act that focus on the 

right time to transition from deliberation to execution. The allocation problem 

addresses sub-problems like allocating computational time to different problems and 
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allocating time to different computations the agent has to perform that focus on 

optimization of the agent’s resources.  

 

Metareasoning is not only useful for individual agents, but also for multiagent 

systems (MAS) as MAS presents a whole new set of challenges. In a collaborative 

MAS where agents work together to achieve a goal, agents face additional challenges 

like effective collaboration. Agents in a MAS have to reason about the actions and 

capabilities of other agents with respect to the goal and the environment. In addition, 

the agents have to coordinate their behaviors and achieve consensus in order to fulfil 

their goals. This can introduce further complexity into the agent’s computations. 

These present problems like the teaming problem [8], the task allocation problem [9], 

and the communication problem [10]. The teaming problem occurs in situations 

where agents team with a subset of other agents in order to achieve a goal. It 

addresses the problem of determining the best team for an agent. The task allocation 

problem, the focus of this paper, addresses the challenge of assigning tasks to the 

agents in the MAS. The communication problem addresses the challenge of sharing 

information with other agents when communication consumes resources.  

 

Different metareasoning techniques have been developed and studied in literature for 

tackling the litany of metareasoning problems [11]. These techniques include 

redefining relationships in MAS, modifying parameters of an algorithm, and 

modifying reasoning rules. 
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1.3 Task Allocation 

The task allocation problem is a problem that has been widely studied in literature. It 

can be described as follows: Given a certain number of agents and number of tasks, 

find the assignment of tasks to agents that conforms to the constraints of the system, 

e.g., some tasks can only be performed by certain agents, time limit on certain tasks 

and optimization of some metric, i.e., utility or cost.  

 

The tasks that are being assigned can take on different forms and have different 

constraints. These include tasks that require a single robot to be executed, tasks that 

require multiple robots to be executed and primitive tasks, i.e., tasks that cannot be 

further simplified [12]. Tasks can also have constraints such as the following: 

- Partial ordering i.e. which task must be completed before or after a set of 

others (but not necessarily immediately before or after),  

- Time windows, in which a task must be completed in a given time frame, or 

before a certain deadline,  

- Coupling, in which two or more tasks must be executed at the same time,  

- Incompatibility, in which executing one task may preclude or obsolete the 

execution of others. 

The system may also impose constraints on the task assignment problem such as the 

following: 

- Mobility interferences, due to narrow spaces in relation to robot size or 

numbers.  
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- Network range, due to limited coverage of infrastructure, ad-hoc devices with 

limited range or a need for line-of-sight.  

1.4 Research Question 

The task allocation problem is a problem that has been widely studied in literature. I 

researched different approaches to solving the problem when there is low 

communication and when communication has a cost. A lot of these approaches are 

explained in the next chapter. The question I seek to answer in this thesis is: Is 

metareasoning a viable approach to improving performance of a multiagent system in 

low communication while reducing communication costs? The contribution of this 

work is a metareasoning method to improve the performance of a task allocation 

algorithm in low-communication environments and reduce the cost of communication 

by restricting communication. 

 

 

1.5 Thesis Outline 

Chapter 2 of this thesis discusses work that has been done to solve the task allocation 

problem in the literature. It also discusses different approaches that have been taken 

to solve this problem for MAS in low or limited communication environments. 

 

Chapter 3 defines relevant terms, states the assumptions and defines the problem that 

is at the core of this thesis. It also discusses the communication model that was used 

for running experiments. 
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Chapter 4 describes and analyzes the proposed task allocation algorithm. Chapter 5 

describes 5 existing task allocation algorithms (CBAA, ACBBA, PIA, DHBA, HIPC) 

that have been compared with the new method applied to CBAA. 

 

Chapter 6 describes the experimental setup that was used to run simulations to 

compare the new method applied to CBAA with the existing task allocation 

algorithms. It provides a description of the simulation framework and the design of 

experiments. 

 

Chapter 7 provides the results of the comparison experiments that were run, and 

Chapter 8 discusses and analyzes the results including the limitations of these 

algorithm. Finally, Chapter 9 addresses conclusions based on the results of these 

paper and proposes future work of study. 
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Chapter 2: Literature Review 
 

 

This chapter describes the work that has been done in reviewing the literature. It starts 

off with describing different task allocation algorithms and approaches that have been 

used to solve the task allocation problem. Afterwards, it delves into research that has 

been done on the impact of communication on task allocation and explains some 

approaches that have been used to resolve this issue. Finally, it ends with a discussion 

of the contributions of this thesis. 

 

The task allocation problem has been widely studied in the literature and there have 

been numerous algorithms that have been proposed to solve this problem in many of 

its different contexts and forms as described in the previous chapter.  

 

One of the more common approaches to solving this problem is the auction approach. 

In this approach, agents in a MAS place bids on different tasks and the agent with the 

highest bid is awarded the task. This approach can be applied in a centralized fashion 

with a single agent acting as the auctioneer and awarding the tasks or in a 

decentralized fashion with agents receiving bid information from one another and 

determining the winning bids and agents for each task. Decentralized task allocation 

algorithms like the Consensus-Based Auction Algorithm (CBAA), the Consensus 

Based Bundle Algorithm (CBBA) [13], the Performance Impact Algorithm (PIA) 

[14], the Hybrid Information and Plan Consensus Algorithm (HIPC) [15] are based 

on this approach.  
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Another approach to solving the task allocation problem is the use of optimization 

techniques which can be deterministic or stochastic. The Decentralized Hungarian-

Based Algorithm (DHBA) [16] uses deterministic optimization techniques via the 

Hungarian method. On the other hand, the ant-colony optimization algorithm [17] and 

the decentralized genetic algorithm (GA) [18] employ stochastic optimization 

techniques for task allocation.  

 

A different approach employs metareasoning to select the algorithm, out of a set of 

algorithms, that is expected to perform best. Herrmann [19] employed data analysis 

and machine learning to predict the performance of different algorithms and then 

tested a metareasoning approach that selects the algorithm with the best predicted 

performance.  

 

Decentralized task allocation algorithms depend on communication between agents in 

order to assign tasks to each agent. As a result, different studies have been conducted 

to observe how a change in communication quality affects the performance of 

different task allocation algorithms. Nayak et al. [20] compared the performance of 5 

decentralized task allocation algorithms at different communication conditions in 

different scenarios using 3 different communication models. Their results show that 

the performance of different task allocation algorithms deteriorates at worse 

communication conditions and different algorithms perform better than others either 

at low or high communication. Otte et al. [21] compared different auction algorithms 

and found out that their performance degrades in different ways as communication 
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quality decreases. These studies show that algorithms that work well at perfect 

communication can perform poorly at low communication. As a result, work has been 

done to design algorithms for low communication conditions. Sujit et al. [22] 

proposed a team theory approach for task allocation under no communication and 

agents with limited sensor range. Dai et al. [23] presented an algorithm based on the 

principle of incomplete information game theory to solve the problem of task 

allocation under unreliable communication. Cheng et al. [24] presented an algorithm 

that employs a local sensing control law and time synchronization to distribute 

UAVs, with GPS and synchronized clocks but no communication, along a common 

curve such that consensus is achieved. Carrillo et al. [25] developed a metareasoning 

policy that switches the task allocation algorithm used by an individual agent as a 

function of the observed level of communication.  

 

Previous research has investigated the use of approaches like game theory [23] , team 

theory [22] and a switching policy [25] to enable agent to make the best decisions or 

select the best task allocation algorithms under low communication. Other approaches 

have used sensor information as a form of implicit communication i.e. agents can 

detect other agents and use this to obtain information about the agent and the 

environment. However, these approaches do not typically focus on optimizing the 

communication and do not consider the cost of communication.  

 

The main idea of this work is to use estimation as a substitute for communication so 

that the cost of communication can be reduced and the performance of a task 
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allocation algorithm in low communication can be improved. Consequently, a 

valuation function is developed to assesses the marginal utility of sending a message. 

Messages are sent when the marginal utility is above a defined threshold. In addition, 

each agent continuously estimates the states of other agents and uses this information 

in the absence of communication. The agent uses communication from other agents to 

improve its estimate and the cycle continues. This method is applied to an existing 

algorithm (the base algorithm) and its performance is compared with the base 

algorithm and other algorithms. 
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Chapter 3: Preliminaries 
 

 

In this chapter, the scenario studied in this thesis is described including any 

assumptions that were made. It also includes a definition of the task allocation 

problem, including a general case and the case relevant to this thesis. Lastly, it 

includes a discussion of the communication model that was used. 

3.1 Assumptions 

In the scenario considered in this thesis, given a set of autonomous agents and a set of 

tasks, each agent can be assigned to only one task, every task requires only one agent 

to be completed and the tasks can be performed concurrently. The scenario being 

considered is a ship protection scenario where agents have to search for and intercept 

targets to prevent them from hitting a ship moving through the workspace. Targets in 

the workspace can be classified as adversarial or non-adversarial targets. Adversarial 

targets are targets which have been programmed to hit the ship while non-adversarial 

targets are targets that move about randomly in the workspace and have not been 

programmed to hit the ship. Adversarial targets are considered neutralized when an 

agent tracks and then visits them. Targets are considered visited when an agent comes 

within a threshold distance from the target. The location of the targets is unknown to 

the agents; thus agents have to search for targets, and they have been equipped with 

sensors to detect and classify targets in the workspace. Although computational effort 

of an algorithm is important, in these experiments, it has a minimal impact on the 
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performance of the agents and is thus not considered. The metrics used to compare 

the algorithms are  

1. the number of hits to the ship  

2. the maximum distance needed to travel in order to track adversarial targets.  

The total number of messages sent by agents when utilizing each algorithm is also 

compared but is not defined as a formal metric. I have made the following 

assumptions about the problem: 

1 Every task can be performed by each agent and all tasks are compatible with 

each other. 

2 There are no collisions between agents or any other mobility considerations 

like robot size or restricted regions in the workspace. 

3 Agents have equal capabilities to perform a task and do not have any energy 

consumption constraints. 

4 There are no hard constraints on the timing and order of task completion. 

5 Agents do not experience failure of any kind and are able to complete the 

tasks assigned to them 

3.2. Problem Definition 

The general task allocation problem is defined as follows: 

Given a set of agents A = {a1, … , an} and a set of tasks T = {t1, … , tm}, find an 

assignment of tasks, Qi for each agent such that  𝑄1 ∪  𝑄2 ∪ . ..  ∪ 𝑄𝑛  =  𝑇 that is 

subject to the constraints of the system such as compatibility or coupling constraints.  

In the ship protection scenario, a ship moves through a workspace that contains 

different targets such as adversarial targets, which are targets that try to move to the 
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ship’s location and hit the ship. Other targets in the workspace are classified as non-

adversarial targets as they don’t try to hit the ship. Agents search for these adversarial 

targets and track them, so they do not hit the ship. The workspace is divided into 

different regions called cells that agents can search. 

 

The task allocation problem for the ship scenario is thus defined as follows: 

Given a ship moving through a workspace, a set of agents A = {a1, … , an} , a set of 

targets T = { t1, … , tm} with a subset of adversarial targets AD = {ad1, … , adn} with 

target locations unknown to agents, determine an assignment of tasks to agent that 

locates adversarial targets, minimizes the number of hits to the ship and minimizes 

the maximum distance it takes an agent to track adversarial targets. 

3.3 Communication Model 

The communication model being used to run experiments is the Rayleigh-Fading 

model [26] which attempts to model real world communication between agents. The 

Rayleigh-Fading model is a model of the propagation effects on a wireless signal. It is 

based on the assumption that the magnitude of a signal will vary randomly according 

to a Rayleigh distribution. In this model, there are two main parameters that affect 

signal strength: fading and path loss. Fading is the attenuation of the signal power due 

to objects, such as buildings in the environment that scatter the signal before it 

reaches the receiver. Interference from objects in the environment cause the signal to 

propagate along multiple paths that experience different shifts in amplitude, 

frequency and phase; thus, resulting in a constructive or destructive interference of 

the signal. 
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Path loss is the attenuation of the signal power due to increasing distance between the 

transmitter and the receiver. It is modeled by the equation below: 

𝑃𝑃𝐿  =  𝑃𝐿0
+  10 𝛾𝑙𝑜𝑔10

𝑑

𝑑0
 

where 𝑃𝑃𝐿 = path loss 

𝑃𝐿0
 = path loss at a reference distance, d0  

𝛾 = path loss exponent 

d = distance between transmitter and receiver 

d0 = reference distance 

Figure 3.1 shows the attenuation of signal power due to the path loss and fading 

components 

 
Figure 3.1: Attenuation of signal strength due to fading and path loss [20] 

 

The total power loss is a contribution of the fading power, PF and the path 

loss, PPL. The transmitted power, PT and the received power, PR are related by the 

below equation.  

PR = PT - PPL - PF 

In experiments, a sensitivity threshold, PS is defined such that the signal is received if 

the received power is greater than the sensitivity threshold.  
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Chapter 4: The Method Description 

 

In this chapter, I propose a method that can be used to improve the performance of a 

task allocation algorithm in low communication environments. The principle of the 

method is described in Section 4.1 while its implementation in a specific task 

allocation algorithm , the Consensus-Based Auction Algorithm (CBAA) is described 

in Section 4.2. Although the CBAA algorithm has been described in Chapter 5, it will 

be described again for the purpose of explaining the implementation of this method. 

The goal of this method is to optimize the communication between agents in a 

multiagent system.  

4.1 Method Motivation and Principles 

The method consists of two sub-methods which are listed below: 

1.  Sub-method 1 determines when the agents should communicate 

 

2. Sub-method 2 estimates the information of other agents. 

 

Sub-Method 1 (When should agents communicate) 

Motivation - Frequent communication helps agent in a multiagent system to achieve 

information consistency quickly. However, communication has a cost which can 

negate the advantage brought about by frequent communication.  

Principle - A function for computing the value of communication is developed. 

Value of communication is defined as the marginal utility of sending a message to 

other agents as measured by the last message sent. An agent runs the function to 
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compute the value of communication and sends a message only if the value of 

communication exceeds a threshold value. 

 

Sub-Method 2 (estimate information from other agents) 

Motivation - Different task allocation algorithms require agents to exchange different 

kinds of information that each agent can use to compute the allocation of tasks. In 

auction algorithms like CBAA, CBBA, the agents exchange information on their 

winning bids list, which contains the agent’s most up-to-date estimate of the highest 

bid made for each task thus far. In a multi-assignment algorithm like CBBA, the 

agents also exchange a winning agents list. In an optimization algorithm like the 

Decentralized Hungarian algorithm, the agents exchange information on their 

estimate of the global cost matrix. In a low communication environment, information 

from other agents is not readily available and this lack of information can impair the 

task allocation process 

Principle – An agent uses its knowledge base, including information previously 

received from other agents, to estimate the information of other agents. When the 

information can be expressed mathematically as a number, the agent computes a 

range for the mathematical value. For example, in an auction algorithm, an agent will 

compute a range for the bids other agents place on different tasks.  
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This method is different from CBAA in the following ways: 

1 In CBAA, each agent calculates its own bid on each incomplete task while in 

this method, agents also estimate the bids of other agents on each incomplete 

task 

2 In CBAA, agent sends message at the end of every iteration; in this method, 

agents only send messages when the current value of communication exceeds 

a message threshold. 

3 In CBAA, an agent determines task assignments by comparing its bids to bids 

in its winning bids list while in this method, task assignments are determined 

by comparing the bids to bids in the winning bids list and an agent’s estimate 

of the best bids of other agents. 

4.2 Method Implementation in a Task Allocation Algorithm 

This section describes the details of implementing the above two sub-methods in a 

task allocation algorithm. The chosen algorithm is the Consensus-Based Auction 

Algorithm (CBAA). CBAA consists of two phases: the auction phase and the 

consensus phase 

 

Auction Phase 

 

In this phase, agents place bids on tasks asynchronously (at different times). Bids are 

ordered from low to high with the best bid having the lowest value. An agent stores a 

winning bids list which contains what the agent believes are the current best bids for 

different tasks. These best bids can be bids placed by the agent or placed by other 

agents. Each agent maintains a task list, which contains a list of the tasks and the 
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current tasks assigned to the agent . An agent places bids on all the tasks and 

compares these bids to the bids in its winning bids list. The agent determines the 

available tasks as tasks for which it has a better bid than its winning bid estimate.  

The agent then assigns itself the task which has the best bid out of all its available 

tasks 

 

Consensus Phase 

In this phase, agents use the process of consensus to converge on the list of winning 

bids and determine the task assignment. Agents exchange their winning bids list with 

all other agents for which there exists a communication link. Each agent updates its 

winning bids list with the winning bids list received from other agents. An agent i 

performs this update process as follows: 

Given a set of agents A = {a1, a2, …, ai,  … , am}, a set of tasks T = {t1, t2, …, tj, …, tn} 

and a winning bids list Yi = {yi1, yi2, …,yij, …, yin} for agent i 

where yij is agent i’s estimate of the winning bid for task j 

 𝑦𝑖𝑗  =  𝑚𝑎𝑥𝑘  𝑦𝑘𝑗    

where  𝑎𝑘  ∈  𝐴  

The agent unassigns itself from a task for which another agent has a better bid.  

An iteration is a single run of the auction phase and the consensus phase. In this 

implementation of the algorithm, every agent has the same iteration count. 

 

Bid 

In the ship protection scenario, there are two types of tasks. The first task is visiting 

cells in the workspace to search for new moving targets while the second task is 
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tracking these moving targets. The functions used to compute the bids the agents 

place on each task is described below.  

If the task is searching cells 

𝐵𝑖𝑑 =  𝑘1𝑃𝑡𝑙𝑣 × 𝐷𝑇𝑆 + (𝑘0  +  0.1 × 𝑟𝑎𝑛𝑑𝑜𝑚) × 𝐷𝑇𝐴  

If the task is tracking moving targets 

𝐵𝑖𝑑 =  
−𝑘2

𝐷𝑇𝑆 +  𝑟𝑎𝑛𝑑𝑜𝑚
 + (𝑘0  +  0.1 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚) ∗ 𝐷𝑇𝐴 

where  DTS = distance from target to ship 

 DTA = distance from target to agent 

 tlv = the elapsed time since that cell was last visited by any agent 

 random = random number in [0 1) 

 P = probability term with a value of 0.9 

k0 is a function weight that places priority on the distance of an agent from a 

target. 

k1 is a function weight that places priority on visiting cells that have not been 

visited by an agent in a long time and that are close to the ship. 

k2 is a function weight that places priority on visiting moving targets that are 

closer to the ship. 

The cost function for searching cells drives agents search cells that have not been 

visited in a long time and that are close to the ship. It also drives agents that are 

closest to a cell to search that cell. The cost function for tracking targets drives agents 

that are closest to a target to search that target and drives agents to track targets close 

to the ship. These cost functions and their corresponding function weights were 

adapted from the work of Estefany et al. [25] 
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Sub-Method 1 

The value of communication (VOC) measures the marginal utility of new information 

obtained since the last message sent to other agents. Each agent estimates the bids of 

other agents and the marginal utility is the uncertainty in the estimate of the bids of 

the agent. The value of communication uses the cost function and the information 

obtained since the previous message sent to compute this marginal utility. The 

function used to calculate the value of communication is described below: 

  𝐷𝑇𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝐷𝑇𝑆(𝑖 − 1), 𝐷𝑇𝑆(𝑖))  

𝐷𝑇𝑆𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝐷𝑇𝑆(𝑖 − 1), 𝐷𝑇𝑆(𝑖)) 

𝑎1 =  𝑘1𝑃𝑡𝑙𝑣 ∗  𝐷𝑇𝑆𝑚𝑎𝑥 −  𝑘1𝑃𝑡𝑙𝑣 ∗  𝐷𝑇𝑆𝑚𝑖𝑛 

𝑎0 =  (𝑘0 +  0.1) ∗ 𝐷𝑇𝐴𝑚𝑎𝑥 −  (𝑘0) ∗ 𝐷𝑇𝐴𝑚𝑖𝑛 

𝑎2 =  
𝑘2

𝐷𝑇𝑆𝑚𝑎𝑥 + 1 
 −  

𝑘2

𝐷𝑇𝑆𝑚𝑖𝑛
 

where DTS(i-1) = distance of target from ship in the previous message sent 

 DTS(i) = current distance of target from ship 

 DTA(i-1) = distance of target from agent in the previous message sent 

 DTA(i) = current distance of target from agent 

If the task is searching cells 

𝑉𝑂𝐶 =  𝑎0 +  𝑎1 

If the task is tracking moving targets 

𝑉𝑂𝐶 =  𝑎0 −  𝑎2 

Agents exchange information on winning bids list, list of targets and latest visit times 

for cells in the workspace with each other. An agent sends a message if there have 



 

 

22 

 

been any changes in this information. If there has been no change in this information,  

an agent computes the VOC of sending a message at the current time and if the value 

of the VOC is greater than a threshold value, the message is sent. This threshold value 

represents the maximum uncertainty in the agent’s winning bids that is allowed. If the 

value was too small, it would hardly reduce the number of messages being sent and if 

it was too large, there would be a significant delay in information as the environment 

changes and messages get dropped. A value of 10 was chosen by trial and error as it 

was small enough to ensure a small delay in information and large enough to decrease 

the number of messages sent compared to a value of 0. 

 

Sub-Method 2 

In this method, an agent i estimates the range of local bids of other agents based on its 

current information. Agent i first determines its latest location update on each agent in 

its list of agents and the timestamp at which that information was received. It uses 

that information to estimate the maximum and minimum possible bid for each agent. 

The inputs to this method are the (1) distance of each incomplete target in an agent’s 

target list to the ship, (2) the last locations of other agents and (3) the latest visit times 

for cells in the workspace. An agent uses the equations below to compute the 

minimum and maximum bids for every other agent on each incomplete task. 

Incomplete tasks include all cells in the workspace and untracked moving targets. 

  𝑎1 =  𝑘1𝑃𝑡𝑙𝑣  ∗  𝐷𝑇𝑆  

𝑎0𝑚𝑖𝑛 =  (𝑘0) ∗ 𝐷𝑇𝐴𝑚𝑖𝑛  

𝑎0𝑚𝑎𝑥 =  (𝑘0  +  0.1) ∗ 𝐷𝑇𝐴𝑚𝑎𝑥 
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𝑎2𝑚𝑖𝑛 =  
𝑘2

𝐷𝑇𝑆 +  1
  

𝑎2𝑚𝑎𝑥 =  
𝑘2

𝐷𝑇𝑆
  

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑖𝑑 (𝑚𝑜𝑣𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) =  𝑎0 𝑚𝑖𝑛 +  𝑎1   

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑖𝑑 (𝑚𝑜𝑣𝑖𝑛𝑔 𝑡𝑎𝑟𝑔𝑒𝑡𝑠)  =  𝑎0 𝑚𝑎𝑥 +  𝑎1   

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐵𝑖𝑑 (𝑐𝑒𝑙𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠)  =  𝑎0 𝑚𝑖𝑛 −   𝑎2𝑚𝑎𝑥   

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑖𝑑 (𝑐𝑒𝑙𝑙 𝑡𝑎𝑟𝑔𝑒𝑡𝑠)  =  𝑎0 𝑚𝑎𝑥 −   𝑎2𝑚𝑖𝑛   

 

where DTAmax = maximum possible distance of target from agent 

           DTAmin = minimum possible distance of target from agent 

dt = current time – timestamp of latest location update for an agent 

 speed = speed of an agent (agents have the same speed) 

 DTAprev = distance of current location of target from last location of an agent  

The calculation of DTAmin and  DTAmax is beyond the scope of this paper  

 

After an agent computes the minimum and maximum bids for every other agent on 

each incomplete task, it computes a range for the best bids for each task below: 

 

Let LBEkj,min and LBEkj,max be the computed minimum and maximum local bid of 

agent k on task j. Then BBj,min and BBj,max the minimum and maximum value of the 

best bid other agents can place on task j is computed as follow 

 𝐵𝐵𝑗,𝑚𝑖𝑛  =  𝑚𝑖𝑛𝑘  𝐿𝐵𝐸𝑘𝑗,𝑚𝑖𝑛 , 𝐵𝐵𝑗,𝑚𝑎𝑥  =  𝑚𝑖𝑛𝑘  𝐿𝐵𝐸𝑘𝑗,𝑚𝑎𝑥 

The estimate of the best bids other agents can place on each task is discarded if the 

range of the estimate is greater than a threshold value of 60. A much larger value 

would been very similar to the reference case where there are no estimates because it 
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would hardly impact an agent’s task assignment. A much smaller value would have 

resulted in the estimates being discarded too frequently. 60 was chosen as a good 

number to balance these effects. An agent only assigns itself a task that has the 

smallest bid of all available tasks. Available tasks are tasks where the agent’s local 

bid for that task is greater than the believed winning bid for that task and a value X 

where  

X = minimum winning bid estimate  

+ 0.25*(maximum winning bid estimate – minimum winning bid estimate)  
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Chapter 5:  Existing Decentralized Task Allocation Algorithms 
 

 

This chapter describes the five task allocation algorithms that have been compared 

with the method applied to CBAA. It includes a discussion of the different phases and 

inputs of each algorithm. 

5.1 Consensus-Based Auction Algorithm (CBAA) 

The Consensus-Based Auction Algorithm [13] is a single-task allocation algorithm 

based on the principle of auctions. This algorithm has two phases: an assignment 

phase and a consensus phase. In the assignment phase, agents place bids on all tasks 

believed to be incomplete and assign themselves the lowest bid task. The agents then 

update their winning bids list with the lowest bid task and sends that list to other 

agents. In the consensus phase, agents receive winning bids lists from other agents 

and update their bids list with the lowest bids. Tasks are assigned to the agent that has 

the lowest bid.  

 

The algorithm has the following inputs: target list, current distance travelled by each 

agent and an iteration count (number of times the assignment phase and the consensus 

phase are run iteratively). 

5.2 Asynchronous Consensus-Based Bundle Algorithm (ACBBA) 

This algorithm [27] is an extension of the Consensus-Based Bundle Algorithm 

(CBBA) [13].  CBBA is a multi-task allocation algorithm that is based on the 

principle of auctions like CBAA and similarly has two phases: an assignment phase 
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and a consensus phase. In the assignment phase, each agent constructs an ordered 

bundle of tasks by adding tasks in a greedy fashion. The size of the bundle is 

restricted by the limit on the number of tasks an agent can perform. Agents place bids 

on tasks in their bundles and maintain a winning bids list which is updated with the 

bids on the task list. In the consensus phase, the agents broadcast their winning bids 

list along with the winning time stamps to other agents. They also receive messages 

from other agents and update their internal bid list. The algorithm has decision rules 

which specify how an agent updates its bid list after receiving a message from another 

agent and guarantees conflict-free assignments. ACBBA extends CBBA by allowing 

agents to communicate asynchronously in the consensus phase. 

 

The algorithm has the following inputs: target list, current distance travelled by each 

agent, bundle size (maximum number of tasks in the bundle) and an iteration count ( 

number of times the assignment phase and the consensus phase are run iteratively). 

5.3 Performance Impact Algorithm (PIA) 

This algorithm [14] is a heuristic multi-task allocation algorithm that introduces a 

concept called significance which measures the contribution of a task to the local cost 

generated by the agent. The algorithm has two phases: a task inclusion phase and a 

task removal and consensus phase. In the task inclusion phase, the agent calculates 

the significance of all tasks not included in its bundle and uses this to update the task 

bundle and the significance list. This significance list is broadcasted to other agents. 

In the task removal and consensus phase, the agent receives significance lists from 

other agents and tries to achieve consensus on the significance value of each task. The 
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agent updates its bundle by removing tasks for which another agent has a lower 

significance value.  

 

The algorithm has the following inputs: target list, current distance travelled by each 

agent, bundle size (maximum number of tasks in the bundle) and an iteration count ( 

number of times the assignment phase and the consensus phase are run iteratively). 

5.4 Decentralized Hungarian-Based Algorithm (DHBA) 

This algorithm [16] is a single-task allocation algorithm is based on the Hungarian 

algorithm, which generates an optimal solution for an assignment linear programming 

problem. The Hungarian algorithm is a centralized approach and DHBA extends it for 

decentralized applications. In DHBA, a cost matrix is initialized using the current 

distance traveled and the current cost of completing incomplete tasks. This algorithm 

has two phases: an assignment phase and an update phase. In the assignment phase, 

each agent runs the Hungarian algorithm on the cost matrix to get an incomplete task. 

In the update phase, each agent receives a cost matrix from other agents and updates 

its cost matrix with the costs of other agents. 

 

The algorithm has the following inputs: target list, current distance travelled by each 

agent, and an iteration count ( number of times the assignment phase and the 

consensus phase are run iteratively). 
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5.5 Hybrid Information and Plan Consensus Algorithm (HIPC) 

This algorithm [15] is a multi-task allocation algorithm in which agent create and 

update a bid space for all tasks and agents. The algorithm is initialized with an initial 

bid space, an available task set, and a neighborhood set, set of agents that each agent 

has situational awareness over. It has two phases: a local bid space creation phase and 

a consensus phase. In the local bid space creation phase, each agent computes an 

updated local bid space from the current bid space and the neighborhood set. In the 

consensus phase, each agent shares its bundle with its neighbors and checks if 

convergence has been achieved in its bid space.  

 

The algorithm has the following inputs: local bid space, neighborhood set, target list, 

current distance travelled by each agent, bundle size (maximum number of tasks in 

the bundle) and an iteration count ( number of times the assignment phase and the 

consensus phase are run iteratively). 
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Chapter 6:  Experimental Setup 
 

 

This Chapter provides in Section 6.1., a high level description of the simulation used 

to run the experiments. Section 6.2. specifies the parameters of the experiments that 

were ran and provides a range for those parameters. 

6.1 Experimental Framework 

 

In Nayak et al. [20], a multiagent simulation was developed in ROS (Robot Operating 

System) in a Linux environment to run experiments comparing the performance of 

different task allocation algorithms across different communication levels and 

scenarios. I have built upon this simulation by writing a program that implements this 

method to improve the task allocation process in the CBAA algorithm.  The 

combination of the CBAA algorithm and the new method is referred to as 

CBAA_comm. I have also run experiments to compare the performance of  the 

CBAA algorithm with the improved method and the task allocation algorithms 

described in Chapter 5. The code for the multiagent simulation was written using 

Python and C++. The simulation consisted of an agent module, a central simulation 

module and a communication module. The agent module was written in Python and 

implements the task allocation algorithms that were run in the comparison 

experiments. It also includes the launch files for running the experiment and the 

configuration files that contain information on the type and location of targets and the 

location of agents. The central simulation module was written in Python and 

implements information about an agent such as its target info list, current bid list in 
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the form of messages sent by the central simulation to the agent. It is important to 

note that this is still a decentralized system as the task allocation process is performed 

by all the agents and not by any single agent. The central simulation module also 

implements the dynamics of the agents and targets and is responsible for generating 

the plots of the workspace. The communication module was written in both Python 

and C++ and implements communication between the agents. It implements the 

Rayleigh-Fading model that was discussed in Chapter 3 and the messages that agents 

exchange with each other.  

The simulation records information such as the distances that agents traveled, the 

number of messages exchanged, and the tasks completed by the agents in log files 

which are later analyzed. 

 

6.2. Design of Experiments 

In the experiments, various scenarios are generated across multiple communication 

levels to compare the various task allocation algorithms. A scenario is defined as one 

instance of choosing a random number of agents, a random number of targets, a 

random number of adversarial targets, a random set of agent locations, a random set 

of target locations, and one Rayleigh-Fading power sensitivity threshold.  

Targets are modeled as clusters at different locations. This ensures targets are not 

concentrated in a single region of the workspace and are spread out like in real-world 

scenarios. The target cluster is modeled as a circular region with a specified radius 

centered around a location. The number of clusters and cluster radius are generated 

randomly and used to generate the cluster centers. Targets are then placed inside these 



 

 

31 

 

clusters based on a uniform distribution. Table 1 provides the constraints on the 

various parameters of the experiment. 

Since this thesis focuses on developing an algorithm for low communication 

environments, the existing task allocation algorithms are compared to CBAA_comm  

across six communication levels corresponding to six different Rayleigh-Fading 

power sensitivity thresholds. Comparison is also done at higher communication levels 

to determine how well CBAA_comm performs with respect to the existing ones. 

Table 2 provides the six different communication levels classified into low, medium 

and high communication and an index representing each level. 

 

Table 1: Ranges of the parameters of the experiment 

Parameter Range 

Number of agents Random integer between 5 and 10 

Number of targets 

Random float in the range [1, 4] representing the ratio of 

targets to agents. Calculate the number of targets using ratio 

and round to the nearest integer. 

Number of 

adversarial targets 

Random float in the range [1, 3] representing the ratio of 

adversarial targets to non-adversarial targets. Calculate the 

number of adversarial targets using ratio and round to the 

nearest integer. 

Number of clusters Random integer between 1 and 4 

Cluster radius Random integer between 5 and 25 

Agent locations Random integer between 0 and 100 for both x and y locations 
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Table 2: Communication levels 

Power sensitivity threshold Communication 

Index 

Communication 

-75 dB 6 High 

-65 dB 5 High 

-55 dB 4 Medium 

-45 dB 3 Medium 

-35 dB 2 Low 

-25 dB 1 Low 

 

The workspace is 100 units by 100 units and is divided into 25 square cells of size 20 

units. The origin of the workspace is defined at the bottom left corner. The ship is 

initialized at the bottom center of the workspace and moves upwards at a constant 

speed to the top center, after which the simulation ends. Each agent knows the  

dimensions of the workspace and its location but may not know the location of other 

agents. The agents do not know the location of the targets and acquire this 

information by searching for targets and communication with other agents. Figure 6.1 

shows the workspace for the ship protection scenario.  

 

Figure 6.1: Workspace for ship protection scenario 
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For a single task allocation algorithm, 50 scenarios are generated randomly for 6 

communication levels. Six algorithms were compared in these experiments, resulting 

in 1800 experiments being conducted.  
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Chapter 7:  Experimental Results 

 

This Chapter provides the results of the comparison experiments and identifies 

different trends and insights in the results for the total number of messages and the 

two  metrics identified in Chapter 3. 

 

As described in Chapter 6, experiments were run to compare the performance of the 5 

algorithms described in Chapter 5 with CBAA_comm. There are 3 metrics that are 

being assessed in these experiments. They are (1) total messages, (2) maximum 

distance to track adversarial targets, and (3) number of hits to the ship. The results of 

this experiment are described using box plots and plots of mean values of the 

following metrics across 6 communication levels for each of the 5 algorithms and the 

CBAA_comm.  

 

The boxes of the boxplots in Figures 7.1 represents the results of running 50 scenarios 

for each algorithm and communication level. From Figure 7.1, it can be seen that 

CBAA_comm has a lower median number of messages sent than CBAA at all 

communication levels. When compared to other algorithms, it is outperformed by 

CBBA and HIPC at the lowest communication levels of -25 and -35. However at 

higher communication levels, it has the smallest median number of messages. The 

same trend is also observed for the median number of messages. CBAA_comm 

significantly outperforms CBAA because it restricts communication between agents. 
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Figure 7.1: Box plots of the total number of messages, number of hits to ship 

and maximum distance to track adversarial targets across all communication 

levels when using each algorithm and CBAA_comm. 

 

When the performance of CBAA_comm is compared across communication levels, 

the median and standard deviation of the number of messages increases as 

communication improves. This trend can be explained by the higher proportion of 

messages sent at better communication.  

 

Inspecting the plot of number of hits to the ship in Figure 7.1, CBAA_comm has a 

comparable median number of hits to the ship to CBAA at most communication 

levels. However at the highest communication level of -75, CBAA_comm 
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significantly outperforms CBAA in terms of median number of hits to the ship but 

has a higher standard deviation. Observing the standard deviation in the number of 

hits to the ship, CBAA_comm has comparable performance to CBAA except at 2 

communication levels (-35 and -75). Comparing the performance of CBAA_comm 

across communication levels indicates that there is no significant improvement in  

performance.  

 

Finally, inspecting the plots of maximum distance to track adversarial targets in 

Figure 7.1, CBAA_comm has a comparable median maximum distance to track 

adversarial targets to CBAA at all communication levels. A similar trend occurs for 

the standard deviation of the maximum distance to track adversarial targets except at 

the lowest communication levels of -25 and -35 where CBAA_comm has a higher 

standard deviation  than CBAA. Comparing across communication levels shows that 

the maximum distance to track adversarial targets decreases as communication 

improves. When CBAA_comm is compared to other task allocation algorithms, 

results show that it has a comparable performance.  

 

The similar trends between the number of hits to the ship and the maximum distance 

to track adversarial targets suggest that the improvement in situational awareness due 

to estimation compensates for the reduced situational awareness due to reduced 

communication. Thus the quality of task assignments is not significantly affected. At 

higher communication levels, restricting communication has a minimal effect on the 
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situational awareness and the improved situational awareness due to estimation 

dominates and results in better performance than CBAA. 
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Chapter 8:  Discussion  
 

In this Chapter, I look at the impact of communication on the performance of 

CBAA_comm and compare its performance to that of the CBAA algorithm. Section 

8.1 discusses how the performance of CBAA_comm is affected by the quality of 

communication while Section 8.2 compares the performance of CBAA_comm to 

CBAA across different communication levels and with different metrics. In both 

sections, hypotheses are posed for observed trends. 

 

8.1. Impact of Communication on Performance of CBAA_comm 

It is observed that the total number of messages exchanged by agents increases as the 

communication quality improves. The same trend is also observed for the standard 

deviation of the total number of messages. There are two factors that affect the 

number of messages exchanged: the power sensitivity threshold and the message 

threshold value. Given that the message threshold is independent of the 

communication quality, it is expected that the proportion of messages with a VOC 

above the message threshold hardly changes. However, as communication improves, 

the power sensitivity threshold decreases which results in agents receiving more 

messages. Thus, the number of messages increases. 

 

Results indicate that the number of hits to the ship and the maximum distance to track 

adversarial targets decrease as communication quality improves. This points to an 

improvement in the quality of task assignments. Situational awareness characterizes 
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the information an agent has about its environment and other agents and it has an 

effect on the quality of task assignments. Restricting communication tends to lead to 

worse situational awareness as agents exchange information at a slower pace with the 

restriction. On the other hand, estimation improves situational awareness as agents 

are able to make more informed decisions based on good estimates. As 

communication improves, the number of messages increases, and situational 

awareness improves as agents obtain information more quickly and are able to 

improve their estimates with more information. This subsequent improvement in 

situational awareness manifests as better task assignments which lead to better 

performance. 

8.2. Comparison with CBAA 

 

The results showing that CBAA_comm sent a lower number of messages at all 

communication levels than CBAA were expected because CBAA_comm restricts the 

exchange of messages by defining a threshold value for the VOC of a message.  

 

In the scenarios tested, CBAA_comm has a comparable performance to CBAA in 

terms of number of hits to ship and maximum distance to track adversarial targets 

across all communication levels. Comparable performance means that CBAA_comm 

had a slightly better or worse performance in the number of hits to ship and maximum 

distance to track adversarial targets than CBAA across all communication levels. This 

can be explained by considering that communication and estimation are ways to 

improve situational awareness of agents and thus improve task assignment. 
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Estimation provides more uncertainty than communication about the state of an 

agent’s environment, including other agents. Given that CBAA_comm employs 

estimation and reduced communication, the results suggest that estimation is able to 

substitute for communication in providing information that is used to determine task 

assignments. It is also important to note that the estimate in CBAA_comm is only 

used if it has a certain range. This could lead to cases where CBAA_comm performs 

like CBAA but with reduced communication. It is theorized that these cases happen 

less frequently as this would tend to lead to worse task assignments due to the 

reduced communication. 
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Chapter 9:  Conclusions and Future Directions 
 

 

This chapter contains two sections. Section 9.1 summarizes the results of the 

comparison experiments and provides conclusions while Section 9.2 discusses ways 

to extend the current work and other areas that can be explored. 

9.1. Conclusion 

 

 

This thesis presented a new method that is designed to improve the performance of a 

decentralized task allocation algorithm in low communication environments and 

reduce the number of messages exchanged between agents in a ship protection 

scenario. This method was been implemented for the CBAA algorithm and is referred 

to as CBAA_comm. Experiments were run for a ship protection scenario where the 

goal is for agents to defend the ship from adversarial targets trying to hit it. The 

Rayleigh Fading communication model was used to vary communication quality and 

the performance of this method applied to CBAA was compared against five 

allocation algorithms : CBAA, CBBA, HIPC, PIA and DH. The performance was 

assessed using three metrics: number of messages, number of hits to the ship and the 

maximum distance to track adversarial targets. 

 

Experimental results show that CBAA_comm had a comparable performance in the 

number of hits to the ship and the maximum distance to track adversarial targets to 

the CBAA algorithm across most communication levels. This means it performed 

slightly better or worse than CBAA in these metrics across different communication 

levels.  Comparing CBAA_comm to other algorithms shows that it is outperformed 
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on both metrics by algorithms like DHBA and PIA across most communication 

levels. When comparing the number of messages exchanged by agents, CBAA_comm 

sends the least number of messages compared to CBAA and other algorithms. From 

these results, one can conclude that in the ship protection scenario, estimation can be 

a good substitute for communication in a ship protection scenario when 

communication is low or there is a need to restrict communication.  

 

9.2. Future Directions 

 

 

Future work includes extending this method to a heterogeneous multiagent system 

with agents and targets of diverse capabilities, implementing a more accurate 

prediction model to estimate other agent’s information and extending this method for 

other task allocation algorithms. Work can also be done on comparing the 

performance of this method as the sizes and speeds of agents and targets relative to 

the size of the workspace increase or decrease. 
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