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Preface

In this dissertation, I consider aspects of flocking — or swarm — theory. It is

a relatively new field, and it is my belief that the main ideas remain undiscovered.

One very influential idea that has been identified, and permeates the field, is that

of behavioral modeling. Using behavioral modeling, researchers have a paradigm

through which questions may be attacked. In this dissertation, we investigate the

specific questions of obstacle avoidance, equilibria solutions, and stability within the

framework of a continuum model.

I do not produce a perfect, general answer to these problems, but rather, I

provide a direction toward attacking some of these issues. The utility of this disser-

tation is as a guide to possible methods of answering questions related to flocking. It

is through the use of a specific model, with specific predictions, that general results

may be investigated and predicted. It is through general, model-independent results

that progress can be made in understanding the true relationships of this field.
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Chapter 1

Introduction

1.1 Group Dynamics

Groups of autonomous organisms, interacting with each other and the environ-

ment, can produce collective behavior. There are many examples in nature. Flocks

of birds, schools of fish, herds of quadrupeds, swarms of insects, bacterial colonies,

and crowds of people are just some of the many examples of this type of phenomenon

[28, 5, 35, 17, 44, 14, 4, 45]. Even collections of certain robots and unmanned aerial

vehicles (UAVs) can exhibit this behavior by design or sometimes as an unexpected

consequence of underlying programming [19]. In this discussion, we refer to each of

these groups as ‘flocks’. Even though this type of group behavior may have always

existed, it has been only recently that scientists outside of biology have turned their

attention to flocks. Mathematical biologist have been modeling group dynamics for

many years, most notably Akira Okubo [30, 31], but it seems that only recently have

physicists and engineers been interested in the basic questions of flocking. Perhaps a

key paper to throw light on this phenomenon from a more abstract perspective was

a paper by a computer scientist, Craig Reynolds, interested in producing animations

of realistic flocks of birds. In his paper, Reynolds [36] used the familiar concept —to

mathematical biologists, anyway— of a behavioral force to produce the dynamics of

his flocks. Three ‘steering behaviors’, separation, alignment, and cohesion, allowed
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the individuals of his flock to avoid close neighbors, move in a common direction,

and keep the collective from breaking apart. This initial model started a wave of

interest in several fields; physics, mathematical biology, and engineering, to name a

few. Each of these areas had their own perspective on the problem and importance

of group dynamics. There were, and are still, many questions to be answered. What

types of flocks can be formed? What determines when the flock will break apart?

What forces or behaviors are necessary for flocking? How can we predict the behav-

ior of groups just knowing the individual’s behavior? How will the flock respond to

an obstacle or a predator? This dissertation is a partial answer to the first and last

questions.

In the decade after Reynolds’ paper, seminal papers in mathematical biology,

physics, and engineering were published to answer some of these questions. Tomas

Vicsek, et al. [43], a group of physicists, simulated autonomous agents in a two-

dimensional geometry and added noise to the trajectories of individual agents to

find a phase transition from a flock to scattered individuals. Iain Couzin, et al.

[7], produced a phase diagram that predicted four types of flocks in his model;

a ‘swarm’, a ‘torus’, a ‘dynamic parallel group’, and the ‘highly parallel group’.

The paper further described that by changing the parameters of the basic laws that

produced the flock, a flock may be able to transition between types of flocks. Hence,

by changing the individual’s local behavior, the global behavior might be modified.

Other papers in physics [8, 25, 9, 2, 40, 43, 12, 33], mathematical biology [7, 15], and

engineering [20, 38, 16, 35, 24, 29], provided answers to some questions and opened

plenty of other questions using a variety of approaches to modeling flock behavior.
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Since then, papers on many other areas related to collective behavior have

appeared. However, even with all of this work, we are still far from a theory that

unifies it all. With many different fields come many different notations, perspectives,

and directions. Even within the field of physics, there are many approaches to

modeling flocking.

1.2 Approaches to Modeling Flocking Behavior

There are several important classifications for flock modeling, two of which are

1. Discrete vs. Continuous

2. Stochastic vs. Deterministic

We will discuss these classifications briefly below. In the first case, there are

two main approaches to flocks modeling: discrete models, and continuum models.

Both are important for the full description of flocking, but they involve very different

paradigms and can answer different questions.

In discrete models, each individual is given its own position and velocity. Some

examples of discrete modeling can be seen in [30, 36, 43, 7]. There is a finite number

of individuals. This makes it relatively straight-forward to simulate. Additionally,

since real flocks have discrete members, it is more realistic than a continuum ap-

proach. However, there are some drawbacks to discrete models. Large flocks are

computationally difficult to simulate. Also, for most models, a simulation run needs

specific parameters. Initial conditions must be chosen, and, depending on the ap-

plication, a large number of simulations must be undertaken. For example, in [7]
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each point in the parameter-space phase diagram needed to be averaged over 30

separate runs of random initial condition that would eventually settle down to a

specific equilibrium. Continuum models mitigate some of these problems.

Continuous models have the distinct disadvantage that taking the continuum

limit is an abstraction from the real case of discrete flock members. However, models

that are continuous in space as well as time provide a framework for studying flocking

that allows much work to be done at once. The continuum description economically

treats very large numbers of individuals and is, in some cases, easier to manipulate

analytically than the discrete description. Some examples of this type of model can

be found in [39, 42, 25]. This dissertation will adopt the continuum perspective.

Another major classification between models is the introduction or exclusion

of stochastic terms. In a continuum description, stochastic terms necessitate more

complicated and cumbersome mathematical machinery than a deterministic descrip-

tion. Okubo et al., in [31], provide the example of swarming mosquitoes that shows

that the stochastic paradigm was present from the earliest mathematical models.

The seemingly random flight paths are not in fact completely random since ran-

dom paths would disperse the swarm, whereas a mosquito swarm can persist for

quite a long time. They conclude that an “unknown factor operates against the

power of diffusion” to produce statistically stationary swarms. Most randomness

enters through an assumption of the individuals behavior, for example in [43, 27].

Either the individual has imperfect faculties or it has an imperfect locomotion, ac-

counted for by adding some noise to the model. It would seem that stochasticity is

a fundamental part of any biological flock. However, Chapter 3 investigates velocity
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dispersion that is the result of a pressure-like term in the continuum model, which

creates stochastic effects without the use of stochastic terms. Thus even though ran-

domness might be an integral part of an individual, it may not mean that stochastic

differential equations are necessarily needed. Thus, the models developed in this

dissertation will be deterministic.

1.3 Outline of Dissertation

Chapter 2 will investigate obstacle avoidance of a flock using a continuum

model and identify the key features avoidance. Our goal in this chapter is to pro-

vide some model independent features through which we can understand obstacle

avoidance. To accomplish this, we first identify the dispersion relation of waves

through this model to identify the modes by which information may be propagated.

Using a construction analogous to the Mach construction for supersonic flows, we

derive a simple result that provides basic information about the avoidance event.

Numeric and analytic work provide a solid foundation for this prediction which is

relatively independent of parameters. Because of the insensitivity to the parameters,

we may conclude that the result is more universal than our original model that it

came from.

Chapter 3 investigates the affect of a repulsive potential and pressure terms

in a model for flocking. First, with the pressure term off, but a repulsive potential

added to an attractive potential, a flock with a finite extent is found analytically.

A parameter space for this type of equilibrium is identified. Finally, the equilibria
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for a model with a non-zero temperature (a finite pressure) is found and shown to

limit to the case of the localized zero-temperature (no pressure) solution.

Chapter 4 compares a theory of a linear pressure with a repulsive potential to a

theory with a nonlinear pressure and no repulsive potential. The goal of this chapter

is to begin to identify the key features of comparing different models. The equilibria

for a linear pressure theory with both attractive and repulsive potentials and a

nonlinear pressure theory with only an attractive term are examined. A general

procedure that fits both models is presented, and it is claimed that a general class

of models can be analyzed with this approach. Finally a comparison between the

equilibria of the nonlinear and linear models is completed to identify parameters

where both models produce the same equilibria.

Chapter 5 investigates stability of equilibria. Through the full dispersion re-

lation, we are able to do a linear stability analysis to investigate which constant

density solutions are unstable to long-wavelength perturbations. Finally, the non-

constant density solutions of the model are briefly analyzed. A numerical scheme is

developed to check the analytic work throughout the chapter.
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Chapter 2

Obstacle and Predator Avoidance by a Flock

2.1 Introduction

In this chapter, we will consider the response of a flock to a stationary or

moving ‘obstacle’. In the case of a moving obstacle, our considerations might also be

considered as modeling the avoidance response of a flock to a predator. Past research

investigating obstacle avoidance has employed a discrete approach [36, 23, 22, 49].

As compared to a discrete description, the continuum description has the advantage

of economically treating very large numbers of individuals and is, in some cases,

easier to treat analytically and to interpret. Its disadvantage is primarily that taking

the continuum limit is an abstraction from the real case of discrete flock members.

The current chapter introduces a moving obstacle into a large flock and studied

the effect of this obstacle on the flow around the obstacle. We model the obstacle as

a localized region exerting a repulsive ‘pseudo-force’ on the flock continuum. Using

our description, we are able to describe the propagation of information in terms

of a few parameters in the model. To do this, we use a fluid characterization of a

flock. For a review of this type of approach, as well as other approaches to modelling

flocks, see [39].

To facilitate our analysis we will utilize a linearized theory in which the flock

response to the obstacle/predator pseudo-force is assumed to be proportional to
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the pseudo-force strength. That is, the obstacle/predator is treated as a linear

perturbation. Results obtained through this type of analysis are expected to yield

qualitative insights to the dynamics of the full nonlinear problem, and may also

yield quantitative understanding in the region far enough from the obstacle/predator

where the perturbations become small. In the next section, we will introduce our

continuum description of the flock. In the following sections, we explore the small

amplitude wave dispersion relation and derive an expression for the disturbances

that propagate through the flock. Next, a linearized response is investigated and the

resulting density perturbation is analyzed analytically. Finally, results of numerical

evaluation of the density perturbation are presented and compared to the theory.

2.2 Continuum Flocking Equations

The equations we consider for flocking in three dimensions are

∂v

∂t
+ v · ∇v =

1

τ

(

1 − v2

v2
0

)

v − 1

ρ
∇P (ρ) −∇U − W(v) (2.1)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.2)

where ρ is the number density of flocking individuals, v is the macroscopic vector

velocity field of the flock, v is its magnitude, and v0 and τ are constants. The

basic structure of these partial-differential equations includes terms that define the

acceleration of the fluid density of the flock, along with continuity of flock members.

The right-hand side of Eq. (2.1) consists of four ‘pseudo-forces’ representing speed

regulation, pressure, pairwise attraction, and a ‘non-local viscosity’ term. These

terms are discussed below.
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The first term on the right-hand side of Eq. (2.1) acts as a speed-regulation

term used commonly in the literature [10, 11, 26] and apparently first used by

Rayleigh [34] as cited by [11]. This term either increases or reduces the magnitude

of the velocity depending on how the velocity compares to v0. If v > v0, the

acceleration is negative in the direction of v, and thus |v| = v is reduced. If v < v0,

the acceleration is positive in the direction of v, hence v is increased. Thus v0 can be

regarded as modeling the average preferred natural speed of an individual. The time

scale for this velocity clamping is τ . Note that this speed-regulation term is frame

dependent and applies when considering the frame in which the medium (e.g., air

for birds, water for fish, or land for ungulates), through which the flock individuals

move, is stationary.

In order to model the presumed tendency of nearby flock members to repel

each other to avoid collision, some past models have introduced a pressure-like term,

as in the second term on the right-hand side of Eq. (2.1). Examples can be found

in [39]. In addition, another means to model repulsion is via a general repulsive

potential; i.e., a pairwise non-local soft-core potential (see [29, 25, 9]). We model

repulsion using a pressure term, P (ρ). For future reference, we write the pressure

as a Taylor series around a density ρ0 as

P (ρ) = c2sδρ+
∂2P

∂ρ2

∣

∣

∣

∣

ρ=ρ0

δρ2 + . . . (2.3)

where c2s = ∂P
∂ρ

∣

∣

ρ=ρ0
and δρ = ρ− ρ0.

The third term on the right-hand side of Eq. (2.1) is a long-range attractive

pseudo-force where long-range attraction is used to model the tendency for flocks
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to form. This force is taken to be due to an attractive pseudo-potential, U , which

is of the form

U(x) =

∫

û(x − x′)ρ(x′)dx′. (2.4)

It proves convenient to choose the kernel û(x−x′) to satisfy the modified Helmholtz

equation,

(

∇2 − κ2
ρ

)

û(x − x′) = u0δ (x − x′) , (2.5)

where u0 > 0 is the strength of the potential. In three dimensions u(x−x′) has the

form of an attractive exponentially-screened Coulomb potential,

û(x − x′) = −u0

4π

e−κρ|x−x
′|

|x − x′| . (2.6)

The quantity κ−1
ρ provides a long-distance cutoff to the attractive pseudo-force. This

type of attractive potential has been used in previous continuum flocking models

[29, 25, 9].

Similar to the non-local attractive potential, we model the presumed tendency

for nearby flock members to attempt to align their velocities by use of the term

W(x) =

∫

ŵ(x − x′)[v(x′) − v(x)]dx′, (2.7)

with the kernel ŵ(x − x′) satisfying an equation similar to that for the attractive

kernel,

(

∇2 − κ2
w

)

ŵ(x − x′) = w0δ (x − x′) , (2.8)

with strength w0 > 0 and screening length scale κ−1
w . This term reorients the veloc-

ity vector, v(x), toward the average velocity of the other flock members, weighting

velocities of flock members closer to x more strongly than those farther away. These

10



are our general equations that model flocking. Various dynamical behaviors and

flocking equilibria can be explored using this framework. In the rest of the disser-

tation, this basic model gives us the means to attack the problems introduced in

Chapter 1. To that end, in the rest of this chapter we consider perturbations around

a specific equilibrium density defined below.

We consider the following simplified situation. A particular spatially- homo-

geneous steady-state solution to Eqs. (2.1) and (2.2) is

ρ(x) = ρ0 = const. and v(x) = v0 = const. (2.9)

Alternatively, we may think of this equilibrium as a localized approximation of

a more complicated solution where the density is not everywhere constant. For

example, in the middle of a nonuniform flock, the density in equilibrium will be

nearly constant (see [25]).

To the general equations Eqs. (2.1) and (2.2), we will add an additional,

external, localized, repulsive potential that we view as modeling the effect of a

stationary obstacle or a predator moving through the flock with velocity vp. In the

next section, we treat this problem within the framework of linearized theory and

consider how perturbations propagate through the flock.

11



2.3 Heuristic Discussion of Interaction with an Obstacle

2.3.1 Dispersion Relation and Plane Waves

By looking at the dispersion relation of linear waves in the full system, we

may determine how such waves propagate within the flock. This will inform us as

to the relationship between the frequency, wavelength, and propagation direction

of the waves. In our case, we will find that this will predict a disturbance cone

when an obstacle or predator is encountered by a flock. For convenience we make a

transformation of independent variables such that x′ = x−vpt and t′ = t where vp is

the velocity of the obstacle or predator relative to the stationary frame in which the

preferred flock speed is v0. This is similar to a Galilean frame transformation except

that the velocity v remains the velocity in the stationary frame. After making this

transformation we drop the primes on x′ and t′. Writing Eqs. (2.1) and (2.2) in this

new frame gives

∂v

∂t
− vp · ∇v + v · ∇v =

1

τ

(

1 − v2

v2
0

)

v − 1

ρ
∇P (ρ) −∇U − W (2.10)

∂ρ

∂t
− vp · ∇ρ+ ∇ · (ρv) = 0. (2.11)

Setting ρ = ρ0 + δρ and v = v0 + δv, with |δρ| ≪ ρ0 and |δv| ≪ v0, we substitute

these into Eqs. (2.10) and (2.11) and only keep linear terms in δρ and δv. Taking

Fourier transforms in both space and time we obtain

−iωδṽ + ik · vr δṽ = − 2

τv2
0

(v0 · δṽ)v0 − ik

(

c2s
δρ̃

ρ0

+ ũδρ̃

)

− νwδṽ (2.12)

0 = −iωδρ̃+ ik · vr δρ̃+ ρ0ik · δṽ, (2.13)
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where we define vr = v0 − vp, and f̃ = f̃(k, ω) denotes the Fourier transform of

f(x, t) given by

f̃ = f̃(k, ω) =

∫

f(x, t) exp(iωt− ik · x)dxdt. (2.14)

Hence we have

ũ(k2) =
−u0

k2 + κ2
ρ

, (2.15)

w̃(k2) =
−w0

k2 + κ2
w

, (2.16)

νw(k2) = w̃(k2) − w̃(0) =

(

w0

κ2
w

)

k2

k2 + κ2
w

, (2.17)

c2s =
∂P

∂ρ

∣

∣

∣

∣

ρ=ρ0

. (2.18)

Using Eq. (2.13) to eliminate δρ̃/ρ0 from Eq. (2.12), we arrive at

[(ω − k · vr) + iνw] δṽ = −2iv0 · δṽ
τv2

0

v0 +
(c2s + ρ0ũ)k · δṽ
ω − k · vr

k. (2.19)

Restricting our attention to the case where τ → 0 and νw → 0 (the limit in which

speed regulation occurs instantaneously and the non-local viscosity is absent), we

obtain particularly simple results describing the propagation of waves within the

flock. Note that to accommodate the τ → 0 limit in Eq. (2.19), we must have that

v0 · δṽ → 0. Without loss of generality, we choose v0 to be in the x direction,

which means that δṽ = δṽy ŷ + δṽz ẑ. If we now project Eq. (2.19) onto the y and z

directions, we get two coupled equations for δṽy and δṽz. These yield the dispersion

relation,

(ω − k · vr)
2 = k2

⊥c
2
s, (2.20)

where we have taken νw → 0, and defined k⊥ = kyŷ + kzẑ giving the magnitude as

k2
⊥ = k2

y + k2
z . Also, we have replaced c2s + ρ0ũ → c2s, which is true for large k. We

13



can write the final dispersion relation as

ω = k · vr ± k⊥ cs. (2.21)

Thus, the group velocity of waves, in the frame moving at a velocity vp, within the

flock is given by

vg =
∂ω

∂k
= vr +

k⊥
k⊥
cs, (2.22)

In the next section, we use this result to derive a disturbance cone that propagates

through the flock when the flock encounters an obstacle or predator.

2.3.2 Mach Cones

Following Mach’s well-known construction (see for example [13]) for the cone

produced in supersonic velocities through a fluid, we may develop a prediction for

the information cone that is propagating though the flock using the dispersion re-

lation derived above. In the case of a stationary object (Fig. 2.1(a)), the only way

that information can travel is perpendicular to the direction of motion with the

propagation speed of cs, in the frame of the obstacle, as can be seen in Eq. (2.22)

with vr = v0 (or equivalently vp = 0). Accordingly, we get a right-circular cone in

three dimensions (a wedge in two dimensions) of cone angle θ, measured from the

direction of the flock, given by

tan θ =
cs
v0

, (2.23)

where cs is defined above (Eq. (2.18)). Notice that this is valid for all velocities,

contrary to a usual acoustic Mach cone which only exists for velocities of the moving
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object that are above the sound speed. Equation 2.23 limits to an angle of θ = π/2

for small v0, and θ ∼= 0 for large v0 ≫ cs.

v0

cs

cs

vr
vp

Ψ
Θ+
Θ-O

aL bL
v0

cs

cs

Θ

O

Figure 2.1: Diagram for a density disturbance caused by flock moving
past an obstacle in steady state. a) Static obstacle: Obstacle is station-
ary (at point O), the dashed red lines indicate the intersection of a plane
passing through the axis of the cone of disturbance and a large-density
fluctuation wake that would exist downstream of the flock/obstacle in-
teraction. The angle θ is referred to as the ‘wedge’ angle. b) Moving
obstacle: In the frame of the obstacle at point O, the density disturbance
is indicated by the dashed lines. v0 is the velocity of the flock and vp is
the velocity of the obstacle, both in the frame of the medium.

For the case of a moving obstacle or predator, Eq. (2.22) implies the construc-

tion shown in Fig. 2.1(b). From this construction, we obtain the wedge angles, θ±,
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in a plane passing through the cone’s axis (defined by v0 and vp), given by

tan θ± = ± 1

cos(ψ)

(

cs
vr

)

+ tan(ψ). (2.24)

Cross sections for the wedge shapes of both the static and moving obstacle are shown

in Fig. 2.1. In three dimensions, a moving obstacle produces an oblique circular cone

as illustrated in Fig. 2.2. If v0 and vp are co-linear, the the cone is a right-circular

cone with θ+ = θ−, and ψ = 0.

2.4 Linearized Theory in a Two-Dimensional Flock

In order to assess the extent to which these predictions apply more generally,

we consider a two-dimensional case for both the static and moving obstacle situa-

tions. We first solve a linearized version of Eqs. (2.10) and (2.11) for the density

fluctuation δρ/ρ0 in terms of an integral. We then specialize to a static case to

analyze δρ/ρ0 analytically. Following that, we numerically evaluate our integral-

expression solution for both the static and moving cases and compare the results to

our simple predictions above.

To specialize to two dimensions, we consider a flock equilibrium that is spa-

tially uniform in the z direction. Suppose that an obstacle (call it a predator) is

moving through the flock at constant velocity, vp, relative to the fixed frame of the

medium (e.g. air or water) in which the flock moves. We assume that there is no

motion in the z direction. We model the obstacle by a moving, localized, repulsive

potential, η(x, t), and add the term −∇η to the right-hand side of Eq. (2.10). We
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Figure 2.2: An oblique circular cone.
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take η to be Gaussian in space and given by

η = η(x, t) = η0 exp

[

−(x− vp xt)
2 + (y − vp yt)

2

l2

]

, (2.25)

where η0 is the strength of the obstacle, l is the length scale over which the obstacle

acts, and vp x and vp y are the components of is the predator’s velocity, vp, in the

x-y plane. In two dimensions, this can roughly be thought of as a kind of moving

flagpole around which the flock must navigate. Without loss of generality, we set

v0 = v0 x̂. Given this situation we consider the steady-state flock response in the

approximation of infinite flock size. The dynamics of a finite-size flock as it impinges

on an obstacle hitting a flock has not been considered in the present work. For a

simulation of such a situation, see [23].

We add the obstacle potential to Eq. (2.10) and, in the frame of the obstacle,

linearize around the constant density, as we did in §2.3.1. Taking a spatial Fourier

transform of Eqs. (2.10) and (2.11) (including the obstacle), we obtain the following

steady-state (i.e., ∂/∂t = 0) equations,

(−ik · vp + ik · v0) δṽ = − 2

τv2
0

(v0 · δṽ)v0 − ik

(

c2s
δρ̃

ρ0

+ ũδρ̃+ η̃

)

− νwδṽ (2.26)

−ik · vp δρ̃+ ik · v0 δρ̃+ ρ0ik · δṽ = 0, (2.27)

with

η̃(k2) = η0l
2πe−

1
4(k2

x+k2
y)l2 , (2.28)

and the other quantities defined in Eqs. (2.15 - 2.18). Using Eq. (2.27) to eliminate

δρ̃/ρ0 from Eq. (2.26), we arrive at

ik · vr δṽ +
2

v2
0τ

(v0 · δṽ)v0 + νw δṽ − ik
(

c2s + ρũ
) k · δv

k · vr

= −ikη̃. (2.29)
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where, again, vr = v0 − vp. Since there is no disturbance along the z-direction, we

set k = kxx̂ + kyŷ. Introducing an orthonormal basis {â1, â2, â3} such that

â1 = k̂ =
k

k
, â2 · ẑ = 0, â3 = ẑ, (2.30)

we project Eq. (2.29) onto these three directions. Defining

δṽ = δṽ1 â1 + δṽ2 â2 + δṽ3 â3, (2.31)

Eq. (2.29) yields

ikvr cos(ψ − φ)δṽ1 +
2

τv2
0

v0 cos(φ) (v0 cos(φ)δṽ1 − v0 sin(φ)δṽ2)

+ νwδṽ1 − ik(c2s + ρ0ũ)
δṽ1

vr cos(ψ − φ)
= −ikη̃ (2.32)

ikvr cos(ψ − φ)δṽ2 −
2

τv2
0

v0 sin(φ) (v0 cos(φ)δṽ1 − v0 sin(φ)δṽ2) + νwδṽ2 = 0 (2.33)

and δṽ3 = 0, where we have changed coordinates from (kx, ky) to (k, φ). Here φ is the

angular orientation of k, measured from the x axis, and ψ is the angle between vr and

the x axis. We can obtain general results for δv(x, y) and δρ(x, y) by solving Eqs.

(2.32), (2.33), and (2.27) for δṽ1, δṽ2, and δρ̃ and then inverse Fourier transforming

the result. However, for simplicity in what follows, we again take τ → 0, clamping

all of the flocking individuals to the same speed. Equations (2.32), (2.33), and (2.27)

then yield

δρ̃(k, φ)

ρ0

=
k2η̃ sin2(φ)

k2v2
r cos2(ψ − φ) − k2c̄2 sin2(φ) − ikνwvr cos(ψ − φ)

, (2.34)

with

c̄2(k) = c2s + ρ0ũ(k) = c2s +
ρ0u0

k2 + κ2
ρ

. (2.35)

19



By inverse Fourier transforming, we obtain the density perturbation at any point

(r, θ) in the flock,

δρ(r, θ)

ρ0

=
1

(2π)2

∫ ∞

0

∫ 2π

0

δρ̃(k, φ)

ρ0

eikr cos(φ−θ)kdφdk, (2.36)

where δρ̃(k, φ)/ρ0 is defined in Eq. (2.34). In the next section, we explore Eq. (2.36)

analytically in the case of a static obstacle. After that, we evaluate Eq. (2.36)

numerically for both a static and a moving obstacle/predator.

2.5 Analytical Results for a Static Obstacle

To evaluate the integral, we consider the following illustrative case. We take

vr = v0, which corresponds to a stationary obstacle or predator. This implies that

ψ = 0. Also, assume that the parameters are such that for most values of k, the

quantities c̄ and νw can be approximated by their large k limits. We have

c̄ ≈ lim
k→∞

c̄(k) = cs, (2.37)

νw ≈ lim
k→∞

νw(k) =
w0

κ2
w

. (2.38)

The range over which this approximation is good will be investigated in §2.6. With

these approximations we can integrate (2.36) to obtain the density perturbation

δρ/ρ0. The full analysis is done in Appendix A. Fig. 2.3 displays the density

perturbation for a particular choice of the parameters. Note that the main feature

is a wedge formed from the information of the obstacle propagating through the

flock. We find, in Appendix A, that density will be large when y is near ±y0, where

y0(x) =
1

γ

(

x− l2

2γ
ǫ

)

. (2.39)
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Figure 2.3: Plot of the density fluctuations. Parameters used for the
figure are: cs = 15, η0 = 1, ǫ = 0.838, γ = 2, and l = 0.1. The x axis is
horizontal, the y axis is vertical.

where we have introduced the quantities ǫ = νw/2c̄ and γ = v0/c̄. The first term in

Eq. (2.39), x/γ, corresponds to the wedge condition, Eq. (2.23).

Figure 2.4 shows δρ(x, y)/ρ0 versus y for several fixed values of x. Numerical

data (computed in §2.6) are plotted as open circles, and the theory obtained in

Appendix A is plotted as a solid curve. They agree well. Further approximations

(see Appendix A) result in analytic expressions for the height, H, and width, W , of

these profiles (illustrated in Fig. 2.4(a)). The height, H (δρ/ρ0 at maximum), and

width, W (distance between maximum and minimum), are

H(x) =
η0γ

c̄2(1 + γ2)

√

π

2
exp

[

−1

2
+
ǫ2l2 − 4xγǫ

4γ2

]

(2.40)

W =
2√
2

√

1 + γ2

γ
l. (2.41)
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Figure 2.4: Plot of the density fluctuation for constant values of x for
the same parameters in Fig. 2.3. The red circles are numerical values
(computed via §2.6 methods) and the solid curve is the theory. a) x = 2.
The definitions for height and width are displayed on the plot. b) shows
x = 1.25, and c) x = 0.5.
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From these expressions we see that the width is predicted to be insensitive to

many of the parameters of our problem except l and γ. For example, the width

does not increase far from the source of the disturbance (i.e., W in Eq. (2.41) does

not depend on x). A main feature of Eq. (2.40) is its prediction of the exponential

decay of the height of the disturbance with increasing x. In the next section, we

compare numerical simulations with these predictions.

2.6 Numerical Results

0 3 6 9 12

cs

v0
0

3

6

9

12
tan Θ

Figure 2.5: Plot showing the wedge angle θ vs. the quantity cs

v0
, for

cs = 15. This shows the agreement of the numerical data for w0/4π =
0.001 (red circles), w0/4π = 0.01 (green boxes), and w0/4π = 0.1 (blue
crosses). The solid line is the theoretical prediction for the wedge angle
from Eq. (2.24). The other parameters for the plot are u0/4π = 0.1,
κρ = 0.1, and κw = 0.5, l = 0.1, η0 = 1, and ρ0 = 0.8.
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Figure 2.6: Graphs showing the dependence of the width on various
parameters of the model. The solid curves is the expression in Eq. (2.41).
The colored markers are numerical values obtained using the processes
described in §2.6. a) W/l vs. κρ (squares), κw (circles), u0 (crosses), and
η0 (triangles). b) W/l vs. γ. If a parameter is not varied then it has the
value: ρ0 = 0.8, cs = 15, γ = 2, η0 = 1, u0/4π = 0.001, w0/4π = 0.5,
κw = 0.5, κρ = 0.1, l = 0.1, and x = 2.
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Figure 2.7: Various graphs showing the dependence of the height of
the wedge on various parameters of the model. The solid curves is the
expressions in Eq. (2.40). The colored markers are numerical values
obtained using the processes in §2.6. a) H vs. κw. b) H vs. w0. c) H
vs. η0. d) H vs. γ. e) H vs. κρ (boxes), and u0 (circles). f) H vs. x.
g) H vs. l. If a parameter is not varied then it has the value: ρ0 = 0.8,
cs = 15, γ = 2, η0 = 1, u0/4π = 0.001, w0/4π = 0.5, κw = 0.5, κρ = 0.1,
l = 0.5, and x = 2.
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2.6.1 The Static Obstacle

In order to evaluate the integral in Eq. (2.36) numerically, we need to do a

two-dimensional infinite integral at each point in physical space. To do this, we

express the kernel of the inverse Fourier transform as a sum of Bessel functions

using the Jacobi-Anger expansion (see, for example, [1]). This allows us to do one

of the iterated integrals via contour integration. We then obtain an infinite sum of

single integrals at each real space point that we evaluate numerically. An example

of the density fluctuation evaluated using these methods looks very similar to Fig.

2.3. Similar to the analytic result in Appendix A, the numerical density fluctuation

shows a prominent wedge emanating from near the origin. The correspondence to

the analytic work is excellent and can be seen in Fig. 2.4. We now compare the

numerical results to theoretical predictions for θ±, H, and W .

Using the relation in Eq. (2.23), we can test the above results to determine

the accuracy of the numerical fit to the wedge angle predicted earlier. Visually

determining the angle from the numerical output gives a well defined wedge angle

to about 0.5◦ accuracy. The tangent of this angle, Eq. (2.23), can then be compared

with the quantity cs/v0. Figure 2.5 shows that this comparison yields very good

agreement for the static case. The parameters used in Fig. 2.5 are w0/4π = 0.1

(blue crosses), w0/4π = 0.01 (green boxes), and w0/4π = 0.001 (red circles). It is

seen that changing w0 leaves the wedge angle essentially unchanged.

Figure 2.6 shows comparisons between results for W from the numerical sim-

ulations (colored markers) with the predictions given in Eq. (2.41) (solid curves).
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Figure 2.6(a) and shows that, as predicted by the theory, W/l is insensitive to the

values of κρ, κw, u0, and η0. The only important dependence of the width was on

the parameter γ as seen in Fig. 2.6(b). Here we see that the wedge width approaches

a constant value for large γ. Figure 2.7(a-d) show the dependence of the height,

H, on κw, w0, η0, and γ, respectively. In these figures, as well as in Fig. 2.6, if a

parameter is not varied, then it has the value: ρ0 = 0.8, cs = 15, γ = 2, η0 = 1,

u0/4π = 0.001, w0/4π = 0.5, κw = 0.5, κρ = 0.1, l = 0.1, and x = 2. As predicted

by Eq. (2.40), H is linear in η0. Figure 2.7(e) shows that the height is insensitive

to both κρ and u0. The theoretical prediction for the dependence of the height on

position, x, is verified in Fig. 2.7(f). Figure 2.7(g) shows that there is agreement

with Eq. (2.40) for l & 0.15, but breaks down at small l since the width is predicted

to go to zero in that case. Additionally, the expansion in Appendix A used to obtain

Eq. (A.9) implies that our approximations are expected to become invalid at large

ǫ/γ = w0/2κ
2
wv0. For example, at very low κw, the width starts deviating from the

prediction (Fig. 2.6(a), circles).

2.6.2 The Moving Obstacle

We numerically evaluated Eq. (2.36) using the same method as §2.6.1, but with

non-zero predator angle, ψ. The results of the comparison between the theoretical

prediction of the wedge angles and the numerics can be seen in Fig. 2.8. The

theory, Eq. (2.24), predicts the wedge angles as a function of predator angle, ψ. The

figure shows the correspondence to the numerical data for two angles, ψ = π/3 and
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ψ = π/6, versus various values of cs/v0. The agreement is excellent, and, similar to

the static case, the wedge angles are insensitive to parameters such as the nonlinear

viscosity parameters, w0 and κw.

2.7 Conclusions

In this chapter we have explored the response of a flock to static and mov-

ing obstacles. The obstacle is introduced into a flock and the fluctuations about

an equilibrium are analyzed. We find that with both the static and the moving

obstacles, the flock produces a prominent wedge where the information is propa-

gating away from the disturbance, as shown by Fig. 2.3. The wedge angles can

be predicted using a simple geometric construction. The information/disturbance

propagates asymmetrically (unless ψ = 0), with two angles, θ+ and θ−, given by Eq.

(2.24). We tested this analytically as well as numerically, and the result is found to

agree well with the theoretical prediction. The wedge angles are insensitive to most

physical parameters, most notably the velocity viscosity term, W, and, unlike the

well-known Mach cone in acoustics, there is no threshold speed for existence. Specif-

ically, the angles only depend on the speed of sound in the flock, cs, the speed of the

flock, v0, the relative speed of the obstacle to the flock, vr, and the angle between

them ψ. Heights and widths of the Mach cones for ψ = 0 are given by the analytic

expression in Eq. (2.40) and Eq. (2.41). Numerical results are in good agreement

with these expressions. It is also noteworthy that the wedge width, defined in Fig.

2.4(a), is insensitive to many parameters in the model as can be seen in Fig. 2.6(a).
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Figure 2.8: Plot showing the wedge angles θ± vs the quantity cs

vr
. This

shows the agreement of the numerical data for two choices of predator
angle ψ. The solid lines are the prediction of Eq. (2.24) for ψ = π/3,
whereas the dashed lines are for ψ = π/6. The lines with the positive
slope correspond to θ+ (blue crosses), and the lines with the negative
slope correspond to θ− (red circles). The lines are the theoretical pre-
diction for the wedge angles. The other parameters for these plots were
w0/4π = 0.001, u0/4π = 0.1, κρ = 0.1, and κw = 0.1.
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Future work should include the dynamics of an obstacle hitting a flock, ex-

tension to τ 6= 0, and a physical explanation of the wedge shape and offset from

the origin. Finally, the extension to a fully nonlinear treatment of the obstacle is of

interest.
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Chapter 3

Temperature Effects in a Continuum Model for Flock Equilibria

3.1 Introduction

In this chapter and in the following chapter we will study one-dimensional

flock equilibria. That is, in a frame moving with the flock, we will look for one-

dimensional steady-state solutions of model equations for flocking. Although un-

realistic, one-dimensional equilibria may provide useful insights into the more real-

istic, but analytically and numerically less accessible, three-dimensional equilibria.

In particular, in this chapter, motivated somewhat by previous works of others

[25, 7, 41, 6, 21, 33, 37], we consider a simple generalization of our model in Chapter

2, whereby we replace U by the sum of two potentials, U = Ua + Ur, where Ua is

attractive and Ur is repulsive, and each is linearly related to ρ by an equation of the

form of Eq. (2.4) (although the equation for Ur has a minus sign on the right-hand

side of Eq. (2.4)). If one regards the attractive potential as spatially longer-range

than the repulsive potential, then this corresponds to the idea of Reynolds [36] that

flocking individuals experience nearby repulsion to avoid collisions and long-range

attraction to preserve cohesion of the flock. Our work in Chapter 2 corresponds

to setting Ur = 0. To some extent, the pressure term in Chapter 2 acts similarly

to Ur in that it creates a repulsive force countering any tendency for high densities

to form. For the linearized treatment employed in Chapter 2, any specific nonlin-
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ear pressure can be shown to yield the same effect as a very short-range repulsive

potential. This will be explicitly demonstrated in Chapter 4. However, when con-

sidering the nonlinear problems of obtaining equilibria, as we shall see, there is an

important qualitative difference between the effects of Ur and a pressure term. The

first part of this chapter (§3.1 – §3.2) studies the limit of zero pressure, P (ρ) ≡ 0,

with one-dimensional variations in the spatial coordinate, x. This case turns out to

be equivalent to previous work in [25] where they solved the problem numerically.

We, on the other hand, will show that the problem can be solved analytically. Our

solution will yield flock density profiles that go to zero density with a discontinu-

ity at the flock boundary. In the second part of this chapter, §3.3, we introduce

a pressure linearly related to the density, P = Tρ, with T > 0 (which might be

regarded macroscopically as modeling random motions of the flocking individuals).

We find that the introduction of positive T regularized the T = 0 solution, i.e.,

ρ(x) now becomes everywhere smooth. However, with T > 0, we will also find that

ρ(x) does not decay to zero far from the flock, but instead approaches a (possibly

small) constant value, ρ(±∞) = ρ∞ > 0. Furthermore, it can be argued (§3.4) that

this result is not an artifact of the one-dimensional setting employed, and can be

expected to persist for 2D and 3D flock equilibria solutions of our basic flocking

model with T > 0. The situations for T = 0 and T > 0 are shown schematically

in Fig. 3.1(a) and (b), respectively, and the result for T > 0 approaches the T = 0

result as T → 0+. The result that ρ(±∞) > 0 for T > 0 is, perhaps, undesirable

in that flocks are commonly believed to be of finite extent. However, if ρ becomes

sufficiently small, the continuum approach we employ may be expected to break
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down, and it can be argued that our results should only be taken seriously when ρ

is not too small.

3.1.1 Continuum Equations of Motion

Following the spirit of Eq. (2.4) in one dimension, our attractive and repulsive

potentials are

Ua,r(x) =

∫

ûa,r(x− x′)ρ(x′)dx′, (3.1)

where the subscripts a and r denote attractive and repulsive, respectively. As in

[25, 9] we take

ûa,r(x) = ∓ ua,r

2κa,r

exp(−κa,r|x|), (3.2)

where κ−1
a (κ−1

r ) is the spatial range of attraction (repulsion) and ua (ur) character-

izes the strength of the attraction (repulsion). Inserting Eq. (3.2) into Eq. (3.1) and

differentiating the result twice with respect to x, we find that Ua and Ur satisfy the

differential equations,

d2

dx2
Ua − κ2

aUa = uaρ, (3.3)

d2

dx2
Ur − κ2

rUr = −urρ. (3.4)

Additionally, we restrict our attention to a linear pressure, P (ρ) = Tρ, and v in the

direction, x, of the flock’s spatial dependence, v = vx̂. Thus, similar to Eqns. (2.1)

and (2.2), we have

∂ρ

∂t
= − ∂

∂x
(ρ v) (3.5)

∂v

∂t
+ v

∂v

∂x
= −T

ρ

∂ρ

∂x
− ∂

∂x
(Ua + Ur) +

1

τ
(1 − v2

v2
0

)v, (3.6)
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Figure 3.1: Illustration of a density profile for a) T = 0 and b) T > 0.
In (b), ρ∞ = ρ(±∞).
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where we have omitted the term W(v) which will be zero for the equilibria we will

investigate.

Various types of flock equilibria have been noted in [7, 41, 6, 21, 33, 37]. This

chapter will study the simplest type of equilibrium; a constant-velocity flock. Taking

v as constant and equal to v0, and changing to a frame moving with velocity v0,

Eqns. (3.5) and (3.6) are satisfied for ∂ρ/∂t = 0. Thus Eq. (3.6) yields a balance

equation between the pressure P (ρ) and the total potential Ua + Ur,

T
dρ

dx
+ ρ

d

dx
(Ua + Ur) = 0. (3.7)

Our flock equilibria model thus consists of the three equations, (3.3), (3.4) and (3.7),

for the three functions Ua(x), Ur(x), and ρ(x).

3.2 Cold Equilibrium Solution

For T = 0, Eq. (3.7) yields the result that the total potential is constant,

Ua(x) + Ur(x) = U0, (3.8)

inside the flock (ρ > 0). Reference [25] considered the same pressure-less case that

we consider here. Their approach was to use Eq. (3.8) and the integral equations

Ua,r(x) = ∓ ua,r

2κa,r

∫

exp(−κa,r|x− x′|)ρ(x′)dx′, (3.9)

(see Eq. (3.1)). They then solved these numerically, obtaining solutions like that

shown in Fig. 3.1(a) with zero density outside the flock. Apparently, the authors of

Ref. [25] did not notice that Eq. (3.9) implies that Ua(x) and Ur(x) satisfy Eqns.
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(3.3) and (3.4), and this may be the reason that they did not realize that their

problem could be solved analytically.

We seek equilibria that are even about x = 0 and are such that the flock has

boundaries at x = ±l, outside of which the density, ρ, is zero. Outside the flock

(i.e., for |x| > l), the potentials satisfy Eqns. (3.3) and (3.4) with ρ = 0, but the

force-balance constraint, Eq. (3.8), is absent, since, with ρ = 0, Eq. (3.7) is trivially

satisfied. Thus Ua + Ur is not constrained by Eq. (3.7) to be constant outside the

flock (|x| > l). We also note that Eq. (3.9) implies that if ρ(x) = 0 for |x| > l,

then Ua,r(x) decay with increasing |x| as exp(−κa,r|x|) for |x| > l. Hence, the total

potential, Ua + Ur, should form a potential well with a flat region in |x| < l. We

thus require a negative total potential at x = l that, outside the flock boundaries,

smoothly increases to zero with increasing |x|. Hence, U0 is a negative constant.

The situation is illustrated in Fig. 3.2.

Dividing Eq. (3.3) by ua, and Eq. (3.4) by ur and adding the two equations,

we obtain

d2

dx2

(

Ua(x)

ua

+
Ur(x)

ur

)

−
(

κ2
a

Ua(x)

ua

+ κ2
r

Ur(x)

ur

)

= 0. (3.10)

Using Eq. (3.8) to eliminate Ur(x) or Ua(x) from Eq. (3.10), we get

d2Ua,r(x)

dx2
+ κ2Ua,r(x) = ∓

ua,rκ
2
r,a

ua − ur

U0, (3.11)

where

κ2 =
κ2

aur − κ2
rua

ua − ur

. (3.12)

Thus the even solution of Eq. (3.11) for Ua,r has the form Ua,r = (constant) cos(κx)+

(constant) if κ2 > 0 and Ua,r = (constant) cosh(κ′2x) + (constant) if 0 > κ2 = −κ′2.
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Figure 3.2: a) Illustration of the variation of Ua(x) and Ur(x) versus x.
b) Ua(x) + Ur(x) ≡ U(x) versus x.
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It then follows from Eq. (3.3) or (3.4) that ρ(x) also has this form, which we write

as

ρ(x) = ρ0 [1 − q(1 − cos(κx))] , κ2 > 0, (3.13)

ρ(x) = ρ0 [1 − q(cosh(κ′x) − 1)] , κ2 < 0, (3.14)

where we have introduced the two constants ρ0 ≡ ρ(0) and q. To avoid repetition,

we concentrate on the case κ2 > 0, since it will turn out that only in this case do

solutions exist. For our considerations of the case κ2 > 0, we require the parameter

q to the range q > 0 to make Eq. (3.13) consistent with Fig. 3.1 (a). Substituting

Eq. (3.13) into Eqns. (3.3) and (3.4), we obtain

Ua = −ρ0

[

ur − ua

κ2
r − κ2

a

q cos(κx) +
ua

κ2
a

(1 − q)

]

(3.15)

Ur = ρ0

[

ur − ua

κ2
r − κ2

a

q cos(κx) +
ur

κ2
r

(1 − q)

]

, (3.16)

U0 ≡ Ua + Ur = −ρ0

(

ua

κ2
a

− ur

κ2
r

)

(1 − q). (3.17)

We emphasize that Eqns. (3.13) – (3.17) apply only in the flock, |x| < l, and not in

|x| > l.

In the range |x| > l, the relevant solutions to Eqns. (3.3) and (3.4) are Ua,r(x) ∼

exp(−κa,r|x|). Furthermore, integration of Eqns. (3.3) and (3.4) across the flock

boundary (i.e., from x = l − ǫ to x = l + ǫ with ǫ → 0+) shows that Ua,r and

dUa,r/dx are continuous across the flock boundary. Thus

dUa,r(x)

dx

∣

∣

∣

∣

x=l

= −κa,rUa,r(l). (3.18)

As x increases through l, the density goes to zero, in general, discontinuously (as

illustrated in Fig. 3.1(a)). Inserting solutions (3.15) and (3.16) for Ua and Ur into
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Eq. (3.18), we arrive at two equations for the two unknowns, κl and q,

κ sin(κl) = κa cos(κl) +
ua

ua − ur

κ2
a − κ2

r

κa

(

q−1 − 1
)

, (3.19)

κ sin(κl) = κr cos(κl) +
ur

ua − ur

κ2
a − κ2

r

κr

(

q−1 − 1
)

. (3.20)

Combining Eqns. (3.19) and (3.20) to eliminate the factor (q−1 − 1), we arrive at

the following equation for the flock half-width, l,

tan(κl)

κ
=

ur − ua

κrua − κaur

. (3.21)

Similarly, if κ2 < 0, we obtain

tanh(κ′l)

κ′
=

ur − ua

κrua − κaur

. (3.22)

We now introduce the two positive dimensionless parameters,

α∗ =
κa

κr

and β∗ =
κ2

r/ur

κ2
a/ua

, (3.23)

in terms of which, κ2 can be expressed as

κ2/κ2
r = α2

∗

(

β∗ − 1

1 − α2
∗β∗

)

, (3.24)

which conveniently splits α∗ − β∗ space into four regions where κ2 has a definite

sign. The regions are listed below for reference and are shown in Fig. 3.3.

Region I: β∗ < 1 and α∗ >
1√
β∗

(or α2
∗β∗ > 1), for which κ2 > 0.

Region II: β∗ > 1 and α∗ <
1√
β∗

(or α2
∗β∗ < 1), for which κ2 > 0.

Region III: β∗ < 1 and α∗ <
1√
β∗

, for which κ2 < 0.

Region IV: β∗ > 1 and α∗ >
1√
β∗

, for which κ2 < 0.
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Figure 3.3: Graph of parameter space showing Regions I, II, III, and IV
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We note that [tanh(κ′l)]/κ′ > 0 for all l > 0, while the right-hand side of Eq.

(3.22) can be shown to be negative in Regions III and IV. Thus no solutions exist

in Regions III and IV. Now considering Regions I and II for which κ2 > 0, we write

Eq. (3.21) in terms of the dimensionless variables α∗ and β∗, and solve Eqns. (3.19)

and (3.20) for the other unknown, q, to give

tan(κl)2 =
(1 − α2

∗β∗)(β∗ − 1)

(α∗β∗ − 1)2
, (3.25)

(

1 − q

q

)2

=
(1 − α2

∗β∗)
2

β∗(α2
∗ − 1)2

. (3.26)

In Regions I and II, the right-hand side of Eq. (3.26) is always less than one. Thus

(1 − q)2 < q2 which implies that q > 1/2. Note that since q is positive, Eq. (3.13)

implies that ρ(x) is maximum at x = 0, as drawn in Fig. 3.1 (a). Setting κx = π in

Eq. (3.13) yields ρ = ρ0(1− 2q) < 0 (since q > 1/2). Thus, starting from x = 0, the

expression, Eq. (3.13), crosses zero before the argument of the cosine, κx, reaches

π. Hence in order to avoid negative density, κl must be restricted to the range

0 < κl ≤ π. (3.27)

We eliminate cos(κl) from Eqns. (3.19) and (3.20) to obtain

sin(κl) = (1 − q)κ
κa + κr

qκaκr

. (3.28)

Since 0 < κl ≤ π and q > 1/2, the right-hand side of Eq. (3.28) is positive, and hence

1/2 < q < 1. In addition, we require that U0 < 0 (e.g., see Fig. 3.2), which, with

q < 1 and by use of Eq. (3.17), implies that β∗ > 1. Thus, of the four regions shown

in Fig. 3.3, the only region for which valid solutions exist is Region II. We also note
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that Region II is the only region that explicitly enforces Reynolds’ conditions of long-

range attraction and short-range repulsion by requiring α∗ = κa/κr < 1. Plots of the

density ρ(x)/ρ0 as a function of x/l are shown in Fig. 3.4 for different α∗ values with

β∗ = 4 fixed. Note, from Fig. 3.3, that the largest α∗ can be is α∗ = 1/
√
β∗ = 0.5.

Except for the case α∗ = 0, the flock density jumps discontinuously from a positive

value at x = l− to zero at x = l+.

What happens to our T = 0 solution with a sharp discontinuity when a positive

temperature, T > 0, is introduced? The rest of this chapter investigates solutions

of Eqns. (3.3) – (3.7) for low temperature, T .
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Figure 3.4: ρ(x)/ρ0 versus x/l from solutions of the cold equations (T =
0) for various values of the parameter α∗ = κa/κr and β∗ = κ2

rua/κ
2
aur =

4. The flock density at x = l− is ρ(l−)/ρ0 = α∗(β∗−1)

1−α2
∗
β∗+(1−α2

∗
)
√

β∗

.
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3.3 Including Pressure

Rewriting Eq. (3.7) in terms of derivatives of ρ, we get

1

ρ

dP

dρ
= −dU

dρ
, (3.29)

where U is the sum of the attractive and repulsive potentials. Thus,

U = const. −
∫

P

ρ2
dρ. (3.30)

For our specific pressure, P = ρT , this gives

U = Ua + Ur = U∞ − T ln(ρ/ρ∞), (3.31)

where U∞ = U(±∞) and ρ∞ = ρ(±∞). Solving Eq. (3.31) for ρ(x) we obtain

ρ(x) = ρ∞ exp

(

U∞ − (Ua(x) + Ur(x))

T

)

. (3.32)

Defining

Ûa,r(x̂) = Ua,r(
x̂

κa

)/T, (3.33)

ur∗ =
urρ∞ exp(U∞/T )

Tκ2
r

, (3.34)

x̂ = κax, (3.35)

we rewrite Eqns. (3.3) and (3.4) using the relation for the density (Eq. (3.32)),

obtaining the following coupled equations for equilibrium,

(

α2
∗
d2

dx̂2
− 1

)

Ûr = −ur∗ exp
(

−Ûa − Ûr

)

, (3.36)

(

d2

dx̂2
− 1

)

Ûa = β∗ur∗ exp
(

−Ûa − Ûr

)

. (3.37)
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3.3.1 Analytical Solution in the Limit of Small α∗ = κa/κr

We can solve Eqns. (3.36) and (3.37) in the limit of a short-range repulsive

potential, and a much longer-range, stronger, attractive potential, corresponding to

α∗ = 0. In this limit, Eqns. (3.36) and (3.37) yield

Ûr exp
(

Ûr

)

= ur∗ exp
(

−Ûa

)

(3.38)

(

d2

dx̂2
− 1

)

Ûa = β∗Ûr. (3.39)

For |x|/l ≫ 1, Ûa(x) and Ûr(x) become constants denoted Ûa∞ and Ûr∞. From Eq.

(3.39),

Ûa∞ = −β∗Ûr∞, (3.40)

Û∞ = Ûa∞ + Ûr∞ = −(β∗ − 1)Ûr∞. (3.41)

Equation (3.38) then gives

ur∗ = Ûr∞ exp(Û∞) = Ûr∞ exp
(

−(β∗ − 1) Ûr∞

)

, (3.42)

where we recall from §3.2 that β∗ > 1, and from Eq. (3.34) that ur∗ > 0. As Ûr∞

increases from zero, the right-hand side of Eq. (3.42) increases from zero, reaches a

maximum value, umax
r∗ , and then decreases to zero as Ûr∞ → ∞. See Fig. 3.5. Thus,

ur∗ <
e−1

β∗ − 1
= umax

r∗ . (3.43)

For 0 < ur∗ < umax
r∗ , Eq. (3.42) has two solutions for Ûr∞. We choose the solution

that has a stable density at infinity. In Appendix C, using a linear stability analysis,

we find that stability at |x| = ∞ requires that

ρ∞ <
Tκ2

r

ur

(

1

β∗ − 1

)

, (3.44)
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which, from Eqns. (3.34) and (3.42), becomes

(β∗ − 1)Ûr∞ < 1. (3.45)

Now, taking the derivative of Eq. (3.42), we obtain

dur∗

dÛr∞
=
[

1 − (β∗ − 1)Ûr∞

]

eÛ∞ . (3.46)

Thus, referring to Fig. 3.5, we see that the solution with dur∗/dÛr∞ > 0 is stable,

U
�

r¥

ur*
max

ur*

Stable

Unstable

Figure 3.5: Graph of intersection of ur∗ = const and Ũr∞ exp
(

−(β∗ − 1) Ũr∞

)

.

while the solution with dur∗/dÛr∞ < 0 is unstable.
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We now solve Eqns. (3.38), (3.39), and (3.32) for the density via quadrature

(See Appendix D). Integrating Eq. (3.39) once, with respect Ûa,

1

2

(

dÛa

dx̂

)2

− Û2
a − Û2

a∞
2

= β∗

∫ Ûa

Ûa∞

Ûr dÛa. (3.47)

From Eq. (3.38),

dÛa

dÛr

= −
(

1 +
1

Ûr

)

. (3.48)

Using this in Eq. (3.47),

1

2

(

1 +
1

Ûr

)2
(

dÛr

dx̂

)2

− 1

2





(

Ûr + log

(

Ûr

ur∗

))2

− Û2
a∞





= β∗

∫ Ûr

Ûr∞

ÛrdÛr

(

−
(

1 +
1

Ûr

))

= −β∗
(

Û2
r

2
+ Ûr

)

∣

∣

∣

∣

Ûr

Ûr∞

. (3.49)

At the maximum, Ûrm, of the potential, Ûr, the derivative is zero and thus Eq.

(3.49) reduces to

−1

2





(

Ûrm + log

(

Ûrm

ur∗

))2

− β2
∗Û

2
r∞



 = −β∗
(

Û2
rm

2
+ Ûrm

)

− β∗

(

Û2
r∞
2

+ Ûr∞

)

(3.50)

where we have used Eq. (3.40). Thus, for fixed β∗ and ur∗, Eqns. (3.50) and (3.42)

can be numerically solved for Ûr∞ and Ûrm. Once we have these, we solve Eq. (3.49)

for dÛr/dx̂ and integrate the result from Ûr∞ to Ûr(x̂). Hence, the solution for the

potential is given implicitly by

x̂ =

∫ Ûr(x̂)

Ûr∞

(1 + Û−1
r ) dÛr

(

2C∞ + (1 − β∗)Û2
r − 2Ûr(β∗ − log Ûr/ur∗) +

(

log Ûr/ur∗

)2
)1/2

,

(3.51)

where

C∞ = β∗(1 − β∗)
Û2

r∞
2

+ β∗Ûr∞. (3.52)
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We integrate Eq. (3.51) numerically to obtain Ûr(x̂). We then use Eqns. (3.38),

(3.39), and (3.32) to find the density as a function of position.

By decreasing ur∗, we effectively decrease the temperature, and slowly turn off

the pressure term. This can be seen through the definition of ur∗ in Eq. (3.34),

ur∗ =
urρ∞ exp(U∞/T )

Tκ2
r

. (3.53)

Since U∞ is negative (see §3.2), as ur∗ goes to zero, the temperature, T , will go to

zero. In Fig. 3.6, we see that, as we decrease the temperature by decreasing the

parameter ur∗, the T 6= 0 curves approach the cold solution, a cosine, in the limit

where T → 0. However, the approach only becomes apparent at extremely low

values of T.
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Figure 3.6: Correspondence to zero temperature limit with α∗ = 0, and
β∗ = 4. The convergence is convincing, but slow in ur∗.
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3.3.2 Numerical Solutions for α∗ 6= 0

For the case of α∗ 6= 0, we must resort to numerical methods to find the density

profile.

For this purpose, we now modify Eq. (3.6) by the introduction of a fictitious

frictional force, νv, replacing the inertial term on the left-hand side,

ν v = − ∂

∂x
(Ua + Ur) −

T

ρ

∂

∂x
ρ, (3.54)

where, as before, the velocity regulation term (proportional to τ−1) has been omit-

ted. We then numerically solve the time evolution for the system (with ∂ρ/∂t

included); Eqns. (3.3), (3.4), (3.5), and (3.54). We find that numerical solutions

of this fictitious dynamics produce solutions that rapidly relax to the equilibrium

solutions. Using the method described in Appendix E, we evolve from a slightly

perturbed initial constant density solution that is unstable according to Appendix

C.

As we reduce the temperature, T , we are able to determine the nature of the

approach to the cold solution. Figure 3.7(a) shows ρ(x) versus x for successively

smaller values of T . In the cold case, at the boundary of the flock, the density’s

derivative is a delta function. The approach to this situation is illustrated in Fig.

3.7(b) which shows −dρ/dx versus x for successively smaller values of T .

3.4 Discussion of Two and Three-Dimensional Equilibria

The main conclusions from our study of one-dimensional flock equilibria solu-

tions of our continuum model are as follows.

48



1 2 3 4 x
`

0.2

0.4

0.6

0.8

1

Ρ

ΡH0L

1 2 3 4 x
`

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-
d Ρ

d x
`

ΡH0L

aL

bL

T = 0.01

T = 0.001

T = 0.0001

T = 0

Figure 3.7: The correspondence to zero-temperature theory for α∗ =
0.1 and β∗ = 4. T is labeled by color. a) ρ/ρ(0) versus x̂ = κax, b)
−(dρ/dx̂)/ρ(0) versus x̂.
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1. In the absence of the isothermal pressure term (i.e., T = 0), we find equilibria

with positive flock density in a finite region, |x| < l, and zero flock density in

|x| > l.

2. For T = 0, the density at the flock edge, in general, jumps discontinuously to

zero, ρ(l−) > 0, ρ(l+) = 0.

3. When an isothermal pressure is included (T > 0), the T = 0 solution is

regularized in the sense that the discontinuity in ρ(x) is removed and ρ(x)

now varies smoothly everywhere. However, now ρ(x) remains positive for all

x, decreasing monotonically from its maximum value to a positive (possibly

small) value at |x| = ∞, ρ(±∞) = ρ∞ > 0.

In the next Chapter, we will show that conclusion (3) above also holds for

another (non-isothermal) assumed form of the pressure P (ρ). In the rest of this

section, we argue that conclusions (1) – (3), obtained in our one-dimensional study,

are also expected to apply for two-dimensional and three-dimensional equilibria.

To formulate models for flock equilibria in two-dimensions and in three-dimensions

that are analogous to our one-dimensional model equations (Eqns. (3.1)–(3.4), (3.7)),

we replace d/dx in Eq. (3.7) by the gradient operator, ∇, and we replace d2/dx2 in

Eqns. (3.3) and (3.4) by the Laplacian operator, ∇2. Denoting the radial coordinate

in two-dimensions by r =
√

x2 + y2 and the radial coordinate in three-dimensions by
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R =
√

x2 + y2 + z2, we seek cylindrically- and spherically-symmetric flocks. Thus

∇ =



















r̂
d

dr
in two dimensions,

R̂
d

dR
in three dimensions.

(3.55)

∇2 =



















1

r

d

dr
r
d

dr
in two dimensions,

1

R2

d

dR
R2 d

dR
in three dimensions.

(3.56)

With these choices, Eq. (3.9) becomes

Ua,r =



























































∫∞
0
ûa,r(r − r′) ρ(r′) 2πr′ dr′

in two dimensions,

∫∞
0
ûa,r(R−R′) ρ(R′) 4πR′2 dR′

in three dimensions,

(3.57)

where

ûa,r =



















∓ua,r

2π
K0(κa,rr) in two dimensions

∓ ua,r

4πR
exp(−κa,rR) in three dimensions.

(3.58)

Here K0(u) denotes a modified Bessel function of order zero (K0(u) ∼ e−u/
√
u for

u ≫ 1). Note that these choices for ûa,r correspond to the Green functions of the

operator (∇2−κ2
a,r) in two and three dimensions, thus yielding Eqns. (3.3) and (3.4)

with d2/dx2 replaced by ∇2 (see, for example, [3] pg. 554).

We first outline how flock equilibria solutions can be obtained in the case

T = 0 for two-dimensional, cylindrically-symmetric flocks and for three-dimensional,

spherically-symmetric flocks. With T = 0, the analog of Eq. (3.7) is

ρ∇(Ua + Ur) = 0. (3.59)
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Thus, we can again seek solutions where Ua + Ur = U0 = constant (analogous to

Eq. (3.8)) inside the flock (r < l or R < l) and ρ = 0 outside the flock (r > l or

R > l). Equations (3.10) – (3.12) still apply with the replacement d2/dx2 → ∇2.

The analogs of the expressions for Ua and Ur, Eqns. (3.15) and (3.16), within the

flock are

Ua = −ρ0

[

ur − ua

κ2
r − κ2

a

qJ0(κr) +
ua

κ2
a

(1 − q)

]

, (3.60)

Ur = ρ0

[

ur − ua

κ2
r − κ2

a

qJ0(κr) +
ur

κ2
r

(1 − q)

]

, (3.61)

in two dimensions, and

Ua = −ρ0

[

ur − ua

κ2
r − κ2

a

q
sin(κR)

R
+
ua

κ2
a

(1 − q)

]

, (3.62)

Ur = ρ0

[

ur − ua

κ2
r − κ2

a

q
sin(κR)

R
+
ur

κ2
r

(1 − q)

]

, (3.63)

in three dimensions where J0(u) denotes the Bessel function of order zero. Outside

the flock, solutions of the equations for Ua and Ur with ρ = 0 (i.e., the modified

Helmholtz equation, ∇2Ua,r −κ2
a,rUa,r = 0) show that, for r > l or R > l, Ua and Ur

behave like

Ua,r(r) ∼ K0(κa,rr), (3.64)

Ua,r(R) ∼ R−1 exp(−κa,rR). (3.65)

As before, we can now match the boundary conditions to obtain flock equilibria.

The detailed analysis is not attempted here, but it can be expected that solutions

qualitatively similar to our T = 0, one-dimensional analysis (e.g., Fig. 3.4) will

result.
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We now consider the introduction of the isothermal pressure term (T > 0).

Since the term T∇ρ is present in the equation analogous to Eq. (3.7), ρ cannot

go discontinuously to zero, since this would imply a discontinuity in Ua + Ur, and

such a discontinuity would be incompatible with Eqns. (3.57), which imply smooth

variation of Ua,r for bounded ρ. One might ask if it is possible to have a finite

flock,
∫∞

0
ρ(r) 2πr dr <∞ or

∫∞
0
ρ(R) 4πR2 dR <∞. We note that these finite-ness

conditions imply that ρ → 0 as r or R → ∞. However, this is not possible. In

particular, since ρ > 0 everywhere for r or R <∞, application of the force balance

equation yields ρ ∼ exp(−U/T ). Thus, in order for ρ → 0 as r or R → ∞, we

require that U → ∞ as r or R → ∞. But this is inconsistent with our integral

equations for Ua and Ur for given bounded ρ, since, with our kernels, Eq. (3.58),

these yield that Ua and Ur approach constants as r or R → ∞ if the flock is confined

(
∫∞
0
ρ(r) 2πr dr <∞ or

∫∞
0
ρ(R) 4πR2 dR <∞).

We conclude that the three major qualitative results applying for one-dimensional

equilibria of our model, as listed at the beginning of this section, persist for equilibria

in two or three dimensions.

3.5 Conclusions

If a pressure term is absent from the equilibrium flocking equations, we can

solve explicitly for a solution. This solution generally exhibits a possible discontinu-

ity at the edge of the flock. In addition, a specific region of phase space determines

the only valid solutions for this type of equilibrium; β∗ > 1, and α2
∗β∗ < 1, which
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corresponds to long-range attraction and short-range repulsion.

In the second part of this chapter, we introduced a linear pressure, P (ρ) = Tρ.

We find that this pressure regularizes the cold solution, i.e., the density becomes

everywhere smooth. However, with finite temperature, the density does not decay

to zero far from the flock, but instead approaches a (possibly small) constant value.

In the limit of a very short, repulsion length scale relative to the attractive

length scale (α∗ = κa/κr → 0), we find an analytical solution to the equilibrium

equations with a pressure term and show that as the temperature is reduced, the

solution approaches the cold solution. For non-zero α∗, we numerically converge

on the equilibrium solution using a fictitious frictional dynamical process. These

solutions also approach the cold solutions as the temperature is reduced. In this

case (non-zero α∗), the zero-temperature density solution has a discontinuity, and

the finite-temperature density solution has a sharper and sharper derivative near

the flock boundary. In the next chapter, we find that, away from zero, larger tem-

peratures give rise to multiple solution types, unlike the case for small temperatures.
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Chapter 4

An Approach Toward Unifying Equilibria in Continuum Models for

Flocking

4.1 Comparing two Models for Flocking

In this chapter, we investigate flock equilibria in two different continuum mod-

els of the interaction between members of the flock. In the first model there is an

attractive potential between flock members and a pressure that depends nonlinearly

on density that resists attraction. In the second model there is both an attractive

and a repulsive potential as well as a pressure that depends linearly on density. We

find that for some parameters, these two models coincide. Further, we show that

both models admit solutions in the form of isolated flocks and nonlinear wave trains.

We first consider a nonlinear model with a flock pressure given by

Pnl(ρ) =
Tρ

1 − ρ/ρ∗
, (4.1)

where ρ < ρ∗, and ρ∗ is a constant upper bound on the density. As ρ → ρ∗, the

pressure diverges and the flock behaves incompressibly. The equations for a flock

equilibrium are now (from Chapter 2)

d2U

dx2
− κ2

ρU = u0ρ, (4.2)
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describing the attractive potential, and

dU

dx
= −1

ρ

dPnl

dx
(4.3)

describing force balance. Here the pressure is defined in Eq. (4.1).

We can rewrite these equations as a dimensionless set of equations with a

single dimensionless parameter α̂nl as

d2Û

dx̂2
− Û = α̂nlρ̂, (4.4)

dÛ

dx̂
= −1

ρ̂

d

dx̂

(

ρ̂

1 − ρ̂

)

(4.5)

where ρ̂ = ρ/ρ∗, x̂ = κρx, Û = U/T , and

α̂nl = u0ρ∗/κ
2
ρT. (4.6)

This gives us the general form,

d2Û

dx̂2
− Û = α̂nlρ̂, (4.7)

dÛ

dx̂
= −1

ρ̂

d

dx̂
P̂nl(ρ̂) (4.8)

with

P̂nl(ρ̂) =
ρ̂

1 − ρ̂
. (4.9)

We now compare the above formulation to the model we encountered in the last

chapter (Eqns. (3.3) – (3.7)). There we considered a model for flocking that involved

both a long-range attractive and short-range repulsive potential. The governing

equilibrium equations in this model are

d2Ua

dx2
− κ2

aUa = ua0ρ, (4.10)

d2Ur

dx2
− κ2

rUr = −ur0ρ, (4.11)
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and

d

dx
(Ua + Ur) = −1

ρ

d

dx
P (ρ). (4.12)

Here, Ua and Ur are the attractive and repulsive potentials respectively and P (ρ) =

Tρ, an ideal-gas flock pressure. As before, the parameters ua0 and ur0 are the

strengths of the potentials and κ−1
a and κ−1

r are the respective screening length

scales. We are interested in the limit where the repulsive potential has a short-

range compared with the attractive potential, i.e., κa/κr → 0. In this limit the

equations reduce to

d2Ua

dx̂2
− Ua =

ua0

κ2
a

ρ (4.13)

Ur =
ur0

κ2
r

ρ (4.14)

d

dx̂
(Ua + Ur) = −1

ρ

d

dx̂
Pl(ρ). (4.15)

where we have made the change of independent variable x̂ = κax. Substituting Eq.

(4.14) and Pl(ρ) = Tρ into Eq. (4.15), we obtain

dUa

dx̂
= −T 1

ρ

dρ

dx̂
− ur0

κ2
r

dρ

dx̂
. (4.16)

Here, similar to the nonlinear model, we may non-dimensionalize using x̂ = κax,

Û = Ua/T . We normalize the density such that

ρ̂ = ρur0/2κ
2
rT, (4.17)

which results in the pair of equations,

d2Û

dx̂2
− Û = α̂lρ̂, (4.18)
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and

dÛ

dx̂
= −1

ρ̂

dρ̂

dx̂
− 2

dρ̂

dx̂
, (4.19)

where α̂l is given by

α̂l = 2ua0κ
2
r/ur0κ

2
a. (4.20)

From Eq. (4.19) we may identify an effective pressure,

P̂eff(ρ̂) = ρ̂+ ρ̂2, (4.21)

such that

dÛ

dx̂
= −1

ρ̂

dP̂eff

dx̂
. (4.22)

The choice of normalizing density in this model was made so that the effective

pressure in this model corresponds to the low-density limit of the nonlinear pressure

model, Eq. (4.9). This suggests the two models should agree in the low-density limit

when α̂nl = α̂l, where α̂nl and α̂l are given by Eqns. (4.6) and (4.20).

Since we have reduced the two models to the same general form we can now

analyze them together.

4.2 General Method

We solve for the flock density in a general class of one-dimensional models that

contain a differentiable pressure and an attractive, pairwise potential. Suppose we

have a model that can be expressed as the set of dimensionless differential equations

d2U

dx2
− U = αρ (4.23)

dU

dx
= −1

ρ

dP (ρ)

dx
. (4.24)
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where the first equation describes the pairwise attraction between flock members

and the second equation describes the force balance between this potential and the

pressure. Here, ρ measures the number density of flock members, and the dimen-

sionless parameter α measures relative strength of the pressure to the potential. To

find a solution of this system, we write the second equation as

dU

dρ
= −1

ρ

dP

dρ
. (4.25)

Integrating this once we get

U = −
∫ ρ 1

ρ

dP

dρ
dρ+ C1 = Uρ(ρ) + C1. (4.26)

with one constant of integration C1. Additionally, we define Uρ as

Uρ = −
∫ ρ 1

ρ

dP

dρ
dρ. (4.27)

We now solve the second-order differential equation, Eq. (4.23), by quadrature

(see Appendix D). We rewrite Eq. (4.23) using the fundamental theorem of calculus

and the chain rule to give

d

dx

1

2

(

dU

dx

)2

=
dU

dx

d

dU

(

U2

2
+ α

∫ U

ρ dU

)

. (4.28)

This gives

d

dx

[

1

2

(

dU

dx

)2
]

=
d

dx

[

U2

2
+ α

∫ U

ρ dU

]

. (4.29)

Integrating once, we get

1

2

(

dU

dx

)2

=
U2

2
+ α

∫ U

ρdU + C2, (4.30)
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where C2 is another constant of integration. Using Eq. (4.25) we can rewrite the

integral as

α

∫ U

ρdU = −α
∫ ρ dP (ρ)

dρ
dρ = −αP (ρ). (4.31)

Substituting this back into Eq. (4.30), we get

1

2

(

dU

dx

)2

=
U2

2
− αP (ρ) + C2. (4.32)

We can express the derivative on the left-hand side using Eq. (4.25) as,

dU

dx
=
dU

dρ

dρ

dx
= −1

ρ

dP

dρ

dρ

dx
, (4.33)

which then gives us

1

2

(

1

ρ

dP

dρ

)2(
dρ

dx

)2

=
U2

2
− αP (ρ) + C2. (4.34)

If we isolate the derivative and using the definition of U , Eq. (4.26), we arrive at

1

2

(

dρ

dx

)2

= Φ(ρ;α,C1, C2) ≡
[

(Uρ(ρ) + C1)
2 /2 − αP (ρ) + C2

]

ρ2

(dP/dρ)2 , (4.35)

with Uρ(ρ) given by Eq. (4.27).

We have indicated the parametric dependence of the potential, Φ, on α, C1,

and C2 by a semicolon. Equation (4.35) is a first-order, second-degree, nonlinear,

autonomous differential equation that is formally identical to that of a particle

moving in a one-dimensional potential, −Φ. The density, ρ, plays the role of the

position of the particle, and x acts as time. In the next section we explicitly integrate

Eq. (4.35) for the two models introduced earlier in this chapter.

60



4.2.1 Boundary Conditions and Equilibria

In order to specify a unique potential, Φ, in Eq. (4.35), the three parameters

α, C1, and C2 need to be specified. For the two specific models above, α is a

dimensionless parameter that compares the strength of the attraction to that of

the pressure and is determined by the properties of the members of the flock. The

integration constants C1 and C2 are, in principle, determined by boundary conditions

and the total number of individuals in the flock. Alternatively, if we consider two

densities ρ1 and ρ2 that are roots of Φ = 0, we can specify the constants C1 and

C2 in terms of these densities. Through Eq. (4.35), we see that if at a density ρ1,

Φ(ρ1) = 0, then the derivative of the density is zero at the specific position, x, that

corresponds to ρ1. Hence, the densities ρ1 and ρ2 correspond to maxima and minima

of the density profile.

To convert Eq. (4.35) from Φ(ρ;α,C1, C2) to Φ(ρ;α, ρ1, ρ2), we force Φ to be

zero at these specific densities. First we choose

C2(ρ1, ρ2) = − [Uρ(ρ1) + C1(ρ1, ρ2)]
2

2
+ αP (ρ1), (4.36)

so that Φ(ρ1) = 0. Similarly, we may plug this into Eq. (4.35), with ρ = ρ2, to get

a condition on C1,

[Uρ(ρ2) + C1(ρ1, ρ2)]
2

2
− αP (ρ2) −

[Uρ(ρ1) + C1(ρ1, ρ2)]
2

2
+ αP (ρ1) = 0, (4.37)

which gives

C1(ρ1, ρ2) =
Uρ(ρ1)

2/2 − Uρ(ρ2)
2/2 − αP (ρ1) + αP (ρ2)

Uρ(ρ2) − Uρ(ρ1)
. (4.38)
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Equation (4.38) applies to the case where ρ1 and ρ2 are distinct. The solutions for

ρ(x) in this case are of the form of nonlinear waves where ρ(x) varies periodically

between ρ1 and ρ2. Because the potential has a simple root at these densities, the

distance between the maxima and minima is finite. For a solution to have a single

maximum, the value of density as x → ∞ must correspond to a double root of Φ.

Thus, when ρ1 = ρ2 = ρ∞, we can solve for the constants

C1∞(α, ρ∞) = −αρ∞ − Uρ(ρ∞), (4.39)

C2∞(α, ρ∞) = −(αρ∞)2

2
+ αP (ρ∞), (4.40)

where ρ∞ is the double root of Φ.

An example of the potential in the form of a plot of dρ/dx =
√

2Φ is shown in

Fig. 4.1 for the nonlinear pressure model (Eq. (4.9)). In this figure, ρ1 = ρ2 = 0.1

and several values of α are considered. Note that in this case, depending on the

value of α, there are a number of other values of ρ where Φ(ρ) vanishes. These

values will be important in determining the nature of the solution, ρ(x).

Determination of the density profile, ρ(x), requires integrating the square root

of Eq. (4.35) over a range of ρ values for which Φ(ρ) > 0,

(x− x0) = ±
∫ ρc

ρ

dρ

(2Φ(ρ;α, ρ1, ρ2))
1/2
. (4.41)

Equation (4.41) must then be inverted to find ρ(x− x0). Here ρc is a root of Φ(ρ);

an upper endpoint for a region of positive Φ(ρ). The value of x0 is arbitrary because

the solution of the autonomous differential equation, Eq. (4.35), may be shifted with

respect to the x coordinate resulting in another solution.
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Figure 4.1: This shows several valid potentials,
√

2Φ, for a model with
a nonlinear pressure. Here we have chosen ρ1 = ρ2 = ρ∞ = 0.1.
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In general, a solution is generated by integrating Eq. (4.41) from one root of

Φ to another root of Φ in a region of positive Φ. The nature of the solution depends

on the way Φ → 0 as ρ approaches a root of Φ.

One of two types of endpoints can be encountered. First, if the limit

x = lim
R→ρ−c

∫ R

ρ

dρ

(2Φ(ρ;α, ρ1, ρ2))
1/2

(4.42)

converges, then the position coordinate, x, will be finite and the density will reach

ρc in finite spatial extent. This coordinate can, without loss of generality, be taken

as the origin. We will call these endpoints ‘convergent’.

If the limit diverges, then the density takes an infinite spatial extent to reach

ρc. In this case we refer to these endpoints as ‘divergent’.

In practice, we start the integration in the middle of two endpoints, integrate

away from the midpoint, and piece the solution together depending on the types of

endpoints.

There are, in general, four types of non-constant, bounded solutions, enumer-

ated by dc, dd, cd, and cc. These are shown in Fig. 4.2, and we will briefly describe

them below.

dc This type of equilibrium, seen in Fig. 4.2 (a), consists of a divergent endpoint at

a lower density and a convergent endpoint at a higher density. This produces a

type of solution that reaches the higher density in finite spatial extent. Hence,

without loss of generality, solutions of this form will start at the lower density

at x = −∞, and reach the higher density at the origin. At this classical turning

point, the solution the descends back down to the lower value of ρ at x = ∞.
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Ρ
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Ρ
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Figure 4.2: The four density profile solution types. a) This solution
has a divergent lower endpoint and a convergent upper endpoint. b)
This solution is a shock produced from a divergent endpoint at both
the upper and lower endpoint densities. The red curve is the equivalent
solution using the other sign of the square root. c) This solution is
a depression in the middle of a constant density solution. The upper
endpoint is divergent whereas the lower endpoint is convergent. d) This
solution produces waves generated by a convergent upper endpoint and
a convergent lower endpoint.
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The descending part of the equilibrium is obtained by taking the negative

root when separating Eq. (4.35). A solution of this type with the divergent

endpoint at ρ = 0 is technically a solution to the differential equation, but not

a physical solution because the potential U must, necessarily, go to infinity

where the density goes to zero for this type of solution. A physical attractive

potential must go to a constant, so solutions with lower endpoints of ρ = 0

are unphysical.

dd This type of equilibrium, seen in Fig. 4.2 (b), starts at a lower divergent

endpoint at x = −∞, pass through the midpoint of the endpoints at x = 0,

and approach the upper divergent endpoint at x = ∞. Conversely, there is

another solution that starts at the upper endpoint and descends to the lower

endpoint.

cd This type of equilibrium, seen in Fig. 4.2 (c), is very similar to dc in that it

is composed of a convergent and a divergent endpoint, but in this case, the

convergent endpoint is lower than the divergent endpoint. This means that

solutions of this form start at the upper endpoint at x = −∞, and descend to

the lower density endpoint at the origin. At this classical turning point, the

solution ascends till x = ∞, approaching the upper endpoint.

cc This is perhaps the most interesting type of equilibrium. At both upper and

lower density endpoints, the solution has two classical turning points, one

at the lower density, and one at the upper density. The solution oscillates

between these turning points, representing waves within the flock equilibrium.
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An example of this can be seen in Fig. 4.2 (d).

Although it seems plausible that a solution might exist that starts in one

region between two endpoints, reaches a convergent endpoint in finite extent, and

then continues through the convergent endpoint point into a higher (or lower) region

of solution space; this does not occur. The reason for this is as follows. In order for

the integral to converge at that point, Φ must cross through the root, and cannot

stay positive past the root. If it were to be a root of Φ and also stay positive past

the root, it must be at least quadratic near the root, and thus the integral of 1/
√

2Φ

would diverge at this point.

Given a set of parameters, Φ might have several roots, and thus a variety of

solution types might be possible at different densities.

Below, we explore the two one-dimensional models we introduced in the be-

ginning of the chapter. The first was a model with a nonlinear pressure.

4.3 Nonlinear Pressure

Using the general procedure, we identify Uρ as

Uρ = −
∫ ρ 1

ρ

dPnl

dρ
dρ = −

∫

1

ρ

d

dρ

(

ρ

1 − ρ

)

dρ (4.43)

using the dimensionless form for the pressure,

Pnl =
ρ

1 − ρ
, (4.44)
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where we have dropped the ŝ. We can integrate this by parts to get an explicit

expression for Uρ(ρ),

Uρ(ρ) = −
∫

1

ρ

d

dρ

(

ρ

1 − ρ

)

dρ (4.45)

= −1

ρ

(

ρ

1 − ρ

)

∣

∣

∣

∣

∣

ρ

+

∫

1

ρ2

(

ρ

1 − ρ

)

dρ (4.46)

= −
(

1

1 − ρ

)

∣

∣

∣

∣

∣

ρ

−
∫ (

1

ρ
+

1

1 − ρ

)

dρ (4.47)

= −
(

1

1 − ρ
+ log

(

ρ

1 − ρ

))

. (4.48)

Using

∂

∂ρ

ρ

1 − ρ
=

1

(1 − ρ)2
(4.49)

we now explicitly write the potential Φ for this model. Plugging in the appropriate

definitions into Eq. (4.35), we get

Φnl(ρ;α, ρ1, ρ2) =

[

(Uρ(ρ) + C1(ρ1, ρ2)))
2

2
− α

ρ

1 − ρ
+ C2(ρ1, ρ2)

]

ρ2(1 − ρ)4,

(4.50)

with

Uρ(ρ) = −
(

1

1 − ρ
+ log

(

ρ

1 − ρ

))

. (4.51)

Examples of this potential for various parameters (α, ρ1, and ρ2) can be seen

in Fig. 4.1.

In Fig. 4.3, 4.4, 4.5, and 4.6, we see various slices of parameter space. The

regions in parameters space correspond to the number of solution regions.

Most of the richness of solutions can be seen in the subspace where ρ1 = ρ2.

In this case, we use C1∞ and C2∞ from Eqns. (4.39) and (4.40). For what follows,
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Figure 4.3: Cross section of parameter space of nonlinear model where
ρ1 = 0.25. The vertical axis is the parameter α = α̂nl = u0ρ∗/κ

2
ρT (Eq.

(4.6)), and the horizontal axis is ρ2. Black corresponds to no solutions,
blue corresponds to one solution, red corresponds to two solutions, and
green corresponds to three solutions present for the parameter set.
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Figure 4.4: Cross section of parameter space of nonlinear model where
ρ1 = 0.5. The vertical axis is the parameter α = α̂nl = u0ρ∗/κ

2
ρT (Eq.

(4.6)), and the horizontal axis is ρ2. Black corresponds to no solutions,
blue corresponds to one solution, red corresponds to two solutions, and
green corresponds to three solutions present for the parameter set.
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Figure 4.5: Cross section of parameter space of nonlinear model where
ρ1 = 0.75. The vertical axis is the parameter α = α̂nl = u0ρ∗/κ

2
ρT (Eq.

(4.6)), and the horizontal axis is ρ2. Black corresponds to no solutions,
blue corresponds to one solution, red corresponds to two solutions, and
green corresponds to three solutions present for the parameter set.
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Figure 4.6: Cross section of parameter space of nonlinear model where
ρ1 = ρ2 = ρ∞. The vertical axis is the parameter α = α̂nl = u0ρ∗/κ

2
ρT

(Eq. (4.6)), and the horizontal axis is ρ∞. Black corresponds to no solu-
tions, blue corresponds to one solution, red corresponds to two solutions,
and green corresponds to three solutions present for the parameter set.
Regions I-VI are labeled for identification purposes.
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we analyze this special case. Examples of the potentials and the corresponding

equilibria for each region of parameter space can be seen in Figs. 4.7 and 4.8. The

only type of solution not found in this parameter space is the cc type. That case

will be treated shortly.
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Figure 4.7: Plots of representative potentials
√

2Φ, (black curves), and
Φ, (red curves), for the regions of nonlinear model parameter space iden-
tified in Fig. 4.6. The potentials within a single region are fundamentally
the same in that they produce similar solution types.

73



I

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

II

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

III

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

IV

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

V

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

VI

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

Ρ

Figure 4.8: Plots of solutions for the potentials in the nonlinear case
in Fig. 4.7. This shows which solutions are possible within the regions
labeled in Fig. 4.6.
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For each root of Φnl, including ρ = 0 and ρ = 1, we must determine if it is

convergent or divergent. Recall that we fix one double root at ρ∞. One way to

check divergence is to find Taylor series near those roots. If this cannot be done,

asymptotic expansions are used. We can do this analytically for the whole phase

space for the case of ρ = 0, ρ = ρ∞, and ρ = 1. All are divergent points, and we list

these expansions below.

The reciprocal of the integrand in Eq. (4.41) near 0, ρ∞, and 1 behave like

√

2Φnl(δρ) ∼
√

2

[

αρ∞
1 − ρ∞

− α2ρ2
∞

1
+

1

2

(

ρ∞(α− 1 − αρ∞)

1 − ρ∞
+ log

(1 − ρ∞)δρ

ρ∞

)2
]

δρ (4.52)

√

2Φnl(ρ∞ + δρ) ∼
√

1 − αρ∞ + 2αρ2
∞ − αρ3

∞δρ (4.53)

√

2Φnl(1 − δρ) ∼ −δρ, (4.54)

where δρ is a small quantity. The endpoints other than these three endpoints are

found to be convergent roots. Using an asymptotic expansions of
√

2Φ given nu-

merically by the well- ordered scale functions φn = (ρ− ρc)
n/2, we find that at these

points

√

2Φnl(ρc − δρ) ∼ a1(δρ)
1/2 + a2(δρ)

2/2 + a3(δρ)
3/2 + · · · , (4.55)

where ρc is the root found by numerically solving Φnl(ρ) = 0 near ρc. The numerical

scheme to find the coefficients was that given by [18]. This asymptotic expansion

ensures that the integral of the reciprocal of
√

2Φnl(ρ) in Eq. (4.41) will converge,

and thus the endpoints are convergent.

The only type of solution not found in this special case is cc. This is the
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case where two convergent endpoints are the bounds of the integral in Eq. (4.41).

An example of this type of behaviour can be found in the fully three dimensional

parameter space. For an example of this, see Fig. 4.9.
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Figure 4.9: A graph of the potential
√

2Φ (black curve), Φ (red curve),
and corresponding solution for α = α̂l = 2ua0κ

2
r/ur0κ

2
a = 10 (Eq. (4.20)),

ρ1 = 0.1, and ρ2 = 0.8. This illustrates the wave-type solution in the
nonlinear model.
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4.4 Linear Pressure with a Repulsive Potential

Plugging Eq. (4.21) directly into the general procedure from above gives

Φl(ρ;α, ρ1, ρ2) =

[

(Uρ(ρ) + C1(ρ1, ρ2))
2 /2 − α(ρ+ ρ2) + C2(ρ1, ρ2)

]

ρ2

(1 + 2ρ)2 , (4.56)

with

Uρ(ρ) = −
∫ ρ 1

ρ

dPl

dρ
dρ = − (log ρ+ 2ρ) , (4.57)

where we have dropped the ’̂s, and all quantities are dimensionless. Examples of

this potential, Φl, for various parameters (α, ρ1, and ρ2) can be seen in Fig. 4.10.
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Figure 4.10: This shows several valid potentials,
√

2Φ, for the linear pres-
sure case where ρ1 = ρ2 = ρ∞ = 0.1 for various α = α̂l = 2ua0κ

2
r/ur0κ

2
a

(Eq. (4.20)). Because the parameters α and ρ∞ are unbounded, the plots
are compressed according to α = tan(π/2 α) and ρ∞ = tan(π/2 ρ∞) to
force a range between 0 and 1 for both parameters.
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We use the same restriction as the nonlinear model and pick ρ1 = ρ2 = ρ∞

to illustrate the solutions of the linear pressure model. The parameter space, Fig.

4.11, is a lot less complicated than the nonlinear case, and examples of the solutions

from these regions can be seen in Fig. 4.12. Since low temperature corresponds

to the upper-right side of Fig. 4.11, the black region, corresponding to the region

with no solutions, is consistent with the boundary of Region II and Region IV of

Fig. 3.3. Additionally, the solutions obtained in the blue region (region B of Fig.

4.11) corresponding to one solution type are those found in Chapter 3 for the zero-

temperature correspondence. Note that solutions similar to the nonlinear case are

found in the linear model. In the next section, we compare parameter regions where

the solutions match. If we relax the restriction that ρ1 = ρ2 = ρ∞, the wave-type

solutions are also seen (see Fig. 4.13).
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Figure 4.11: Cross section of parameter space of the linear model where
ρ1 = ρ2 = ρ∞. The vertical axis is the parameter (2/π) arctan(α), and
the horizontal axis is (2/π) arctan(ρ∞). Black corresponds to no solu-
tions, blue corresponds to one solution, red corresponds to two solutions.
Additionally, labels A-C are included to identify the regions of parameter
space. Here, α = α̂l = 2ua0κ

2
r/ur0κ

2
a (Eq. (4.20))
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Figure 4.12: Plot the potential
√

2Φl and equilibrium density solution
for several choices of model parameters. A) ρ∞ = tan(π/2 0.2), α =
tan(π/2 0.8) shows the typical solutions of Region A of Fig. 4.11. B)
ρ∞ = tan(π/2 0.2), α = tan(π/2 0.88), shows the typical solutions of
Region B of Fig. 4.11. C) ρ∞ = tan(π/2 0.2), α = tan(π/2 0.5), shows
the typical solutions of Region C of Fig. 4.11.
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Figure 4.13: A graph of the potential
√

2Φ (black curve), Φ (red curve),
and corresponding solution for α = tan(π/2 0.75), ρ1 = tan(π/2 0.2),
and ρ2 = tan(π/2 0.3). This illustrates the existence of the wave-type
solution in the linear model.
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4.5 Comparison of Nonlinear Model to Linear Model

We would like to compare these two models to see when they produce the same

equilibrium. This would tell us when a repulsive potential could act like a pressure

term in fluid models of flocking. Here we restrict our attention to the region of phase

space where a double root of the potential Φ is labeled by ρ∞.

If we take the small density limit in the nonlinear case, and compare Eqns.

(4.44) and (4.21) in this limit, we see that we need ρ∗ = 2κ2
rT/ur0. Additionally,

the α parameters are then identical. For this expansion to be valid, all densities

for both models must be small with respect to the critical density ρ∗ given in the

nonlinear model. The potentials Φnl and Φl are identical under this expansion to

first order.

To obey this expansion, the maximum density must be also small with respect

to ρ∗. Figure 4.14 shows the maximum density versus ρ∞ for several values of α for

the nonlinear model. Picking a value for α large enough ensures that for some ρ∞,

we can find a maximum value of ρ = ρ0 small enough to satisfy the condition that

all densities must be much smaller than ρ∗. Additionally, large α is consistent with

the condition for the derivation of the linear model from Eqns. (4.10) - (4.12), and

corresponds to long-range attraction and short-range repulsion.

If we compare both models by keeping the number of flock members, N , fixed,

and define N by

N ≡
∫ ∞

−∞
(ρ(x) − ρ∞) dx, (4.58)

where these quantities have dimensions, we see that the models are in agreement
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Figure 4.14: Plots of the maximum density vs. the lower density end-
point ρ∞ for various choices of α in the nonlinear model (Eq. (4.6)).
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for large α, small ρ∞, and ρ∗ = 2κ2
rT/ur0. See Fig. 4.15 for an illustration of this

comparison.
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Figure 4.15: Plots of the comparison between the linear and nonlinear
model with ρ∗ = 2κ2

rT/ur0. a) The number of flock individuals was held
fixed, α = tan(π/2 0.98). The red curves are nonlinear, the solid curves
are Φ, and the dashed curves are

√
2Φ. b) α = tan(π/2 0.998). The red

curves are nonlinear. Here, the equilibria are almost identical.

4.6 Conclusion

In this chapter, we describe a procedure for producing an equilibrium density

profile for a one-dimensional flock given a differentiable flock pressure. We show

that multiple solution types are possible given a fixed set of flock parameters. Two

models, a model with a nonlinear pressure and a model with a linear pressure and
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a repulsive potential are examined in detail. Parameter spaces for both models are

investigated. Conditions for similar solutions correspond to long-range attraction

and short-range repulsion (large α). Additionally, in the limit of small densities

compared to ρ∗ and large α, the models are equivalent. Thus, even though the two

models produce different equilibria in general, they produce identical equilibria in

the above limiting cases.
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Chapter 5

Dispersion of Waves and Stability in Constant and Non-Constant

Density Solutions

Here we analyze stability in the full model for flocking introduced in Chapter

2. We use a linear stability analysis to identify stable and unstable constant density

solutions. We find that these stability regions depend on the constant density and

the parameter α, but are insensitive to the other parameters over several orders

of magnitude. The non-constant densities of Chapter 4 are briefly mentioned and

contrasted with the constant density solutions.

5.1 Flocking Equations and Constant Density Solution

Starting from basic continuum equations for flocking

∂v

∂t
+ v · ∇v =

1

τ

(

1 − v2

v2
0

)

v − 1

ρ
∇P (ρ) −∇U − W(v) (5.1)

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.2)

with a specific form of the pressure given by

P (ρ) =
Tρ

1 − ρ/ρ∗
, (5.3)

we may linearize about an equilibrium to determine the types of waves present from

the linear dispersion relation. Here, as in Chapter 2, we choose specific forms for

86



the attractive potential U and for the velocity viscosity W. We have

U =

∫

u(x,x′)ρ(x′)dx′ (5.4)

W =

∫

w(x,x′)(v′ − v)dx′ (5.5)

where the kernels u and w satisfy

∇2u− κ2
ρu = u0δ(x − x′) (5.6)

∇2w − κ2
ww = w0δ(x − x′). (5.7)

5.2 Linear Dispersion with Constant Density Equilibrium

With a constant density solution, we may address the issue of waves propa-

gating through this medium to complete the dispersion analysis started in Chapter

2. If we write the density and velocity near equilibrium as

v = a + δv (5.8)

ρ = ρ0 + δρ, (5.9)

where a is the equilibrium velocity for a constant density solution (a2 = v2
0), we can

substitute this back into the main equations. Doing so, and keeping only the linear

terms in the perturbed quantities, we get

∂

∂t
δρ+ ∇ · (ρ0δv) + ∇ · (δρa) = 0 (5.10)

∂

∂t
δv + a · ∇δv = − 1

ρ0

∇δP −∇δU − δW − 2a · δv
τv0

a. (5.11)

Where the linearized quantities (δU , δW, and δP ) are defined as perturbations

about their equilibrium quantities similar to the density and velocity perturbations.
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Taking a Fourier Transform in space and time gives an expression for the

constant-density dispersion relation. Here the Fourier Transforms are defined by

f̃(k) = FT [f(k)] =
1√
2π

∫

f(x)e−ikxdx (5.12)

g̃(ω) = FT [g(ω)] =
1√
2π

∫

g(t)eiωtdt (5.13)

(5.14)

where x is a spatial coordinate and t is time. Taking Fourier Transforms of Eqns.

(5.3) in all three spatial dimensions, (5.6), and (5.7) give

δP̃ =
∂P

∂ρ
δρ̃ =

T

(1 − ρ0/ρ∗)2
δρ̃ = c2sδρ̃ (5.15)

ũ = − u0

(2π)3/2 (k2 + κ2
ρ

)
(5.16)

w̃ = − w0

(2π)3/2 (k2 + κ2
w)
. (5.17)

where k2 = k2
x + k2

y + k2
z , and we have defined c2s = ∂P/∂ρ. Using the convolution

theorem, we calculate δŨ and δW̃ to give

δŨ = (2π)3/2 ũδρ̃ (5.18)

δW̃ = FT

[∫

w(x − x′)δv(x′)dx′
]

− FT

[

δv(x)

∫

w(x − x′)dx′
]

(5.19)

= (2π)3/2 w̃(k)δṽ(k) − 1

(2π)3/2

∫

δṽ(k − k′)FT

[∫

w(x − x′) · 1dx′
]

(k′)dk′

(5.20)

= (2π)3/2 w̃(k)δṽ(k) − (2π)3/2

∫

δṽ(k − k′)w̃(k′)δ(k′)dk′ (5.21)

= (2π)3/2 (w̃(k) − w̃(0)) δv(k) = νw(k)δv(k), (5.22)
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where

νw(k) = (2π)3/2 (w̃(k) − w̃(0)) =

(

w0

κ2
w

)

k2

k2 + κ2
w

, (5.23)

calculated from Eq. (5.17).

Thus we can take a Fourier Transform in space and time of Eqns. (5.10) and

(5.10) using our definitions above to give

−iωδρ̃+ ik · δṽρ0 + ik · aδρ̃ = 0 (5.24)

−iωδṽ + ia · kδṽ = −ik
ρ0

c2sδρ̃− ik (2π)3/2 ũ(k)δρ̃− νw(k)δṽ − 2a · δṽ
τv2

0

a.

(5.25)

The dispersion relation for waves within this medium satisfy these equations.

We may solve for an single equation that defines ω(k) implicitly as follows. For

notational ease, we define the following function of k

c̄2(k) = c2s + (2π)3/2 ũ(k)ρ0. (5.26)

We dot Eq. (5.25) with the vectors a, k, and k × a to get a total of four scalar

equations

δρ̃

ρ0

=
k · δṽ

ω − k · a (5.27)

(−iω + ik · a) δṽ · a = −ik · ac̄2 δρ̃
ρ0

− νwδṽ · a − 2a · δṽ
τ

(5.28)

(−iω + ik · a) δṽ · k = −ik2c̄2
δρ̃

ρ0

− νwδṽ · k − 2a · δṽ
τv2

0

k · a (5.29)

(−iω + ia · k) δṽ · k × a = −νwδṽ · k × a. (5.30)

We solve this system of equations by substitution. From Eqns. (5.27) and (5.28) we

get
[

−i (ω − k · a) + νw +
2

τ

]

δṽ · a = − ic̄2k · a
ω − k · aδṽ · k, (5.31)
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and from Eqns. (5.27) and (5.29) we get

[

−i (ω − k · a) + νw +
ic̄2k2

ω − k · a

]

δṽ · k = −2k · a
τv2

0

δṽ · a. (5.32)

Combining these, we get, with some rearrangement,

[

(ω − k · a + iνw) (ω − k · a) − k2c̄2
]

[

ω − k · a + iνw + i
2

τ

]

= −2ic̄2

τv2
0

(k · a)2 .

(5.33)

Along with Eq. (5.30), we have the complete dispersion relation. To find regions

of parameter space that are either stable or unstable, it is convenient to write this

in a dimensionless form. Here we choose dimensionless quantities, denoted by hats,

according to

k̂ = k/κρ, κ̂w = κw/κρ, ω̂ = ω/(u0ρ∗)
1/2, ν̂w = β̂k̂2/(k̂2 + κ̂w

2), (5.34)

δ̂ρ̃ = δρ̃/ρ∗, δ̂ṽ = δṽκρ/(u0ρ∗)
1/2, ˆ̄c2 = Γ̂/α̂− ρ̂0/(k̂

2 + 1), (5.35)

α̂ = u0ρ∗/κ
2
ρT, β̂ = w0/κ

2
ρ(u0ρ∗)

1/2, γ̂ = 2/τ(u0ρ∗)
1/2, (5.36)

ρ̂0 = ρ0/ρ∗, Γ̂ = 1/ (1 − ρ̂0)
2 , v̂0

2 = v2
0κ

2
ρ/u0ρ∗, â = aκρ/(u0ρ∗)

1/2. (5.37)

Accordingly, the dispersion relation becomes

[

(ω − k · a + iνw) (ω − k · a) − k2c̄2
]

[ω − k · a + iνw + iγ] = −iγ c̄
2

v2
0

(k · a)2 ,

(5.38)

and

(ω − k · a + iνw) δṽ · k × a = 0 (5.39)

where there is a ˆ on every quantity that has been dropped and that will be

implied for the rest of the chapter.

90



In the frame of the flock (ω → ω − k · a), we see that the dispersion has a

particularly clean looking dispersion relation

[

(ω + iνw)ω − k2c̄2
]

[ω + iνw + iγ] = −iγ c̄
2

v2
0

(k · a)2 , (5.40)

and

(ω + iνw) δṽ · k × a = 0 (5.41)

In Figure 5.1 we see examples of this dispersion relation for a choice of dimen-

sionless parameters. Notice that for some k we may have some negative imaginary

parts for the frequency. This represents an instability for that wavelength.

By plotting all of the different combinations of α, β, γ, ρ0, and κw, we have a

5 dimensional parameter space. We can set ky = kz = 0 and restrict our attention

to kx. Low-k stability will be exhibited with or without waves perpendicular to the

direction of the flock.

In Figure 5.2, we see a parameter- space plot identifying regions of parameter

space where the constant density solution is unstable. The parameter space is

almost completely independent of β, and γ, and has the slightest dependence on

κw. Stability of the constant density solution depends solely on α and ρ0. This is

primarily due to the compressibility of the system changing sign. When c̄2 < 0, we

have growing modes. Hence, when

c̄2 =
Γ

α
− ρ0

k2 + 1
< 0 ⇒ α >

1

ρ0(1 − ρ0)2
, (5.42)

we have an instability for some k. This corresponds to a boundary of Fig. 4.6 and is

plotted in Fig. 5.3. This indicates that constant densities inside the shaded region

are unstable.
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-i Ω

Figure 5.1: The solid curves represent the dimensionless frequency −iω
as a function of kx described by Eq. (5.40). Here the circles are the
numerical values obtained using the procedure in Appendix G. Red is the
real part of −iω, and blue is the imaginary part of −iω. The parameters
are α = 10, β = 5, γ = 10, κw = 1, ky = kz = 0, ax = 1, ay = 1,
ρ0 = 0.8, xmax = 20, nx = 801, using periodic boundary conditions and
periodic kernels.
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Figure 5.2: A plot of α versus ρ0 showing the boundary between sta-
bility and instability for all combinations of κw ∈ {0.01, 0.1, 1, 10},
β ∈ {0.01, 0.1, 1, 10, 100}, and γ ∈ {0.01, 0.1, 1, 10, 100}. The slight
variations in the boundary are due to low κw (0.01) and high β (10 and
100). The rest of parameter space is virtually independent of β, and γ.
Here we have ky = kz = 0 and ax = ay = 1.
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Figure 5.3: A plot of α versus ρ∞ showing the boundary between stability
and instability for constant density solutions on top of the parameter
space from Chapter 4. The underlying figure is Fig. 4.6 from Chapter 4.
Different colors depict the number of solutions given the parameters α
and ρ0 = ρinf . Here we have ky = kz = 0 and ax = ay = 1.
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5.3 Non-Constant Equilibrium Analysis and Stability

Now we are prepared to begin to compare the constant-density theory to the

nontrivial solutions found in Chapter 4. For computational simplicity, we again

specialize the full equations to a one-dimensional flock so that we may eventually

analyze the equilibria of Chapter 4. Accordingly, our picture of a flock is a density

profile along the x-direction, and uniform in density along the y and z-directions.

This can be visualized as a wall of flocking individuals with the normal vector to

the wall is parallel to the x-axis.

If we denote an equilibrium solution as ρ0(x), and a, we may linearize Eqns.

(5.1) and (5.2) around this equilibrium by expressing the physical density and ve-

locity (not dimensionless) as

v = a + δv(x) exp (−iωt+ ikyy + ikzz) (5.43)

ρ = ρ0(x) + δρ(x) exp (−iωt+ ikyy + ikzz) , (5.44)

where we have kept the explicit dependence on the coordinate x out of the expression

for the moment. Additionally, a sinusoidal dependence in the y and z directions

is attempted. This will test the sensitivity of perturbations along the y and z

directions. Using this ansatz we plug our expressions back into Eqns. (5.1) and

(5.2). Following the analysis in the previous section, we keep only first-order terms.
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If we replace the existing dimensional variables with dimensionless variables, we get

−iωδρ(x) = − d

dx
(ρ0(x)δvx(x)) − ikyρ0(x)δvy(x) − ikzρ0(x)δvz(x) (5.45)

−iωδvx(x) = − 1

ρ0(x)

d

dx

Γ(x)

α
δρ(x) − d

dx
U [δρ(x)] − βWx [δvx(x)] (5.46)

− γ
ax

a2
x + a2

y

(a · δv(x)) +
1

α

δρ(x)

ρ0(x)2

d

dx

(

ρ0(x)

1 − ρ0(x)

)

−iωδvy(x) = −iky

(

Γ(x)

ρ0(x)α
δρ(x) + U [δρ(x)]

)

− βWy [δvy(x)] (5.47)

− γ
ay

a2
x + a2

y

(a · δv(x)) + i
ky

α

δρ(x)

ρ0(x)(1 − ρ0(x))

−iωδvz(x) = −ikz

(

Γ(x)

ρ0(x)α
δρ(x) + U [δρ(x)]

)

− βWz [δvz(x)] (5.48)

+ i
kz

α

δρ(x)

ρ0(x)(1 − ρ0(x))

Here we have x = κρx, in addition to the other dimensionless variables men-

tioned above in Eqns. (5.34) to (5.37). Additionally, we use the one-dimensional

kernels that satisfy Eqns. (5.6) and (5.7), so that the dimensionless U and W are

defined by

U [δρ] =
−1

2
√

k2
y + k2

z + 1

∫ ∞

−∞
e−

√
k2

y+k2
z+1|x−x′|δρ(x′)dx′ (5.49)

W [δv] =
−1

2
√

k2
y + k2

z + κ2
w

∫ ∞

−∞
e−

√
k2

y+k2
z+κ2

w|x−x′| (δv(x′) − δv(x)) dx′. (5.50)

Also note that we have chosen, without loss of generality in these equations, that

the equilibrium velocity a is in the x-y plane.

We would like to investigate the eigenfunctions δρ(x) and δv(x) for stability

of various equilibria. To do this, we analyze this set of equations numerically. First,

we discretize all functions of x and approximate the derivatives in x by their central

difference counterparts. Further, we create an concatenated vector of δρ(x) and
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δv(x) of length 4n where n is the discretization size,

s =

























δρ

δvx

δvy

δvz

























. (5.51)

We can then express Eqns. (5.45) through (5.48) as a matrix eigenvalue equa-

tion

As = −iω s (5.52)

where A is the finite-difference approximation to the integro-differential equations

Eqns. (5.45) through (5.48), and ω are possible eigenvalues. The explicit form for A

can be seen in Appendix G. We take the boundary conditions to be flux-conserving

in the x-direction at the edges of the integration domain. Additionally, we explicitly

set δvy and δvz to zero at the boundaries of the domain. However, because of the

nature of the integral equations in the system, the specific form for the boundary

conditions are not important (see Appendix G).

We test the numerical framework with the constant density solution. Here the

specific form for the density profile is a constant. We can reconstruct the wave num-

ber, k, from the discretized eigenfunctions by taking the discrete Fourier Transform.

This will give us a set of ω versus k to compare with the analytical results. The

numerical results are plotted along with the analytical work in Fig. 5.1.

Using a specific equilibrium in Chapter 4, Region I, we can in principle identify

stable equilibria with this scheme. However, it is not as simple as the constant

density solution. For example, if κw = 1, β = 1, γ = 1, the most unstable eigenvalue
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is numerically found to be −iω = 0.0552, which represents instability. However, if

κw = .001, β = 1, and γ = 1, the most unstable eigenvalue is numerically found to

be −iω = −4.207 × 10−10 which is stable.

5.4 Conclusions

Here we examine the stability of a nonlinear model for flocking. Constant den-

sity solutions to the equations are investigated for stability. It is found that only the

flock parameters α and the density are important for the determination of stability

implying that the main source of instability comes from negative compressibility.

Stability of a non-constant density is more complicated, but both stable and

unstable regions exists for a specific equilibrium.

Future work would investigate the correlation of stability in the constant den-

sity regions and its predictive power for non-constant density solutions. A further

picture for stability of non-constant densities would provide a method for identifying

which equilibria are more likely to be found in natural flocks.
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Appendix A

Analytic Derivation of Disturbance Characteristics

A.1 Derivation of δρ/ρ0, the Height, and the Width of the Distur-

bance

We derive the density perturbation δρ/ρ0, the height, H, and the width, W ,

via a direct computation of the integral Eq. (2.36). To evaluate the integral, we

consider the following special case. First, we take vr = v0. This implies that ψ = 0.

Also, as in the main body of the paper,

c̄ ≈ lim
k→∞

c̄(k) = cs, (A.1)

νw ≈ lim
k→∞

νw(k) =
w0

κ2
w

, (A.2)

and we define ǫ = νw/2c̄ and γ = v0/c̄. With these approximations we can write the

integral (2.36) in rectangular coordinates,

δρ(r, θ)

ρ0

= − η0πl
2

c̄2 (2π)2

∫ ∞

−∞
eikxxe−

l2

4
k2

x

∫ ∞

−∞

k2
ye

ikyy− l2

4
k2

y

k2
y − k2

xγ
2 + iνwγ

c̄
kx

dkydkx. (A.3)

Let us do the ky integral first. We shift the path of integration up in the complex ky

plane to Im(ky) = i2y/l2 so as to go through the saddle point in the complex plane

giving,

δρ(r, θ)

ρ0

= − η0l
2

4c̄2π

∫ ∞

−∞
eikxxe−

l2

4
k2

x

(

∫ ∞

−∞

(

u+ i2y
l2

)2
e−

l2

4
u2

(u− û1) (u− û2)
du

)

dkx, (A.4)
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where the integral is over real u, we have factored the denominator, and we define

û1 = −γkx

√

1 − i2ǫ

γkx

− i2y

l2
, (A.5)

û2 = γkx

√

1 − i2ǫ

γkx

− i2y

l2
. (A.6)

Using

∫

(u+ ia)2e−b2u2

(u− u1)(u− u2)
du = − iπ

u1 − u2

[

(a− iu1)
2w(bu1) + (a− iu2)

2w(−bu2)
]

+

√
π

b

(A.7)

along the contour given in Fig. A.1, we can explicitly evaluate the u integral in terms

of the complex error function w, given by (see [1])

u1 u2

ReHuL

ImHuL

Figure A.1: Contour in the complex plane for the integral in Eq. (A.7).
This contour is forced by causality and from y → −y symmetry.

w(z) =
i

π

∫ ∞

−∞

e−t2

z − t
dt = e−z2

erfc(−iz) if Im(z) > 0 (A.8)

and defined for the negative imaginary z by analytic continuation.
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Expanding Eq. (A.5) and Eq. (A.6) as Taylor series in (ǫ/γkx), we obtain from

Eq. (A.4)

δρ

ρ0

= − η

c̄2
e−

(x2+y2)

l2 + A(x)e−B[y−y0(x)]2
(∫ ∞

−∞
e−w2

f+dw

)

+ A(x)e−B[y+y0(x)]2
(∫ ∞

−∞
e−w2

f−dw

)

(A.9)

where

f±(w) = C±(w)erfc(F±(w)), (A.10)

and

y0 =
1

γ

(

x− l2

2γ
ǫ

)

(A.11)

A(x) =
η0l

4c̄2
√

1 + γ2
exp

[

− ǫ

γ
(x− l2

4γ
ǫ)

]

(A.12)

B =
γ2

(1 + γ2)l2
(A.13)

C±(w) = i
2γ

l
√

1 + γ2
w −

γ(x− l2

2γ
ǫ)

l2

2
(1 + γ2)

± γ2y
l2

2
(1 + γ2)

(A.14)

F±(w) = i
γ

√

1 + γ2
w −

γ(x− l2

2γ
ǫ)

l(1 + γ2)
∓ y

l(1 + γ2)
. (A.15)

We now approximate the integral over w using, for example, integration for-

mula 25.4.46 on pg. 890 of [1], to obtain an analytic expression for δρ/ρ0. All

non-numerical plots and images are composed via this method (using n = 10). We

can further use

erf(u+ iv) ≈ erf(u) +
e−u2

2πu
[(1 − cos(2uv)) + i sin(2uv)] ≈ erf(u) (A.16)

from pg. 299, of the same text, to approximate the integrand. For large enough x,

if we change variables and shift the origin in the y direction to the center of the
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wedge, y0, we see that the real part of the argument of the error function is

−y0(x)

l
− ȳ

l(1 + γ2)
, (A.17)

where y = y0 + ȳ. Since for modest values of x this is typically far from zero, the

error function is approximately constant and equal to 2. This gives (near the center

of the wedge for fixed x)

A(x)e−Bȳ2

∫ ∞

−∞
e−w2

f+(w)dw ≈ A(x)e−Bȳ2 4γ2
√
π

l2(1 + γ2)
(ȳ) (A.18)

where we have integrated a Gaussian, and neglected the imaginary part, since the

final integral must be real. Thus, the height, H (δρ/ρ0 at maximum), and width,

W (distance between maximum and minimum) defined in Fig. 2.4, are given in the

main body of the thesis (Eq. (2.40) and Eq. (2.41)) as

H(x) =
η0γ

c̄2(1 + γ2)

√

π

2
exp

[

−1

2
+
ǫ2l2 − 4xγǫ

4γ2

]

W =
2√
2

√

1 + γ2

γ
l.
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Appendix B

Lambert -W Function

The Lambert-W function, also known as the Product Log function, is defined

implicitly as

z = W (z) eW (z), (B.1)

where z is a complex number, and W (z) is the Lambert-W . Despite its innocuous

appearance, the use of the Lambert-W function provides an elegant approach to

solving certain classes of transcendental equations in terms of the tabulated W (z).

An expansion for W can be found using Lagrange’s Inversion Theorem, stated

here because it is so amazing (see for instance [46], this notation from Wikipedia)

Theorem 1 (Lagrange’s Inversion Theorem) [47] Suppose the dependence be-

tween the variables w and z is implicitly defined by an equation of the form

f(w) = z,

where f is analytic at a point a and f ′(a) 6= 0. It is possible to invert f to give

w = g(z),

where g is analytic at the point b = f(a). The series expansion of g is [48]

g(z) = a+
∞
∑

n=1

dn−1

dwn−1

(

w − a

f(w) − b

)n ∣
∣

∣

∣

w=a

(z − b)n

n!
.
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Accordingly, we can use this to find the series expansion around zero. Here

a = b = 0, and

W (z) =
∞
∑

n=1

dn−1

dW n−1

(

W

f(W )

)n ∣
∣

∣

∣

W=0

(z)n

n!
.

Our f is f(W ) = W eW , so that W
f(W )

= e−W . This gives us

W (z) =
∞
∑

n=1

dn−1

dW n−1

(

e−n W
)

∣

∣

∣

∣

W=0

(z)n

n!
.

If we note that the (n− 1)st derivative of e−n W is (−n)n−1 e−n W , we can finish the

expansion. Evaluating at W = 0, we get

W (z) =
∞
∑

n=1

(−n)n−1 (z)n

n!
.

Even though the Lambert-W has a fascinating structure as a multivalued,

complex function of a complex variable, for physical purposes I will only consider

where the Lambert-W is real valued. The Lambert-W has one real value for real

arguments greater than or equal to zero. It has two real values for real arguments in

the range [−1/e, 0). In general, however, W is multivalued everywhere in all regions

of the complex plane.

An example is in order to show the power of expressing the a problem in terms

of the Lambert W . Consider the transcendental equation

(ax+ b)n = ecx+d. (B.2)

If we can arrange it so that this equation has the same form as Eqn. B.1, we can

use the definition to invert the equation, as well as find conditions on when a real

root exists. First we take an nth root of both sides and divide through by a,

x+
b

a
=

1

a
ωm

(

ecx+d
)1/n

=
ωm

a
e(c/n)x+(d/n) (B.3)
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where ωm is the mth root of unity, ωm = exp(2imπ/n), where 0 ≤ m < n, and 1/n

signifies the principle root. If we now rearrange algebraically, we arrive at

(

− c

n
x− cb

na

)

exp

(

− c

n
x− cb

na

)

= −cωm

na
exp

(

d

n
− cb

na

)

. (B.4)

The crucial observation here is that we may use the definition of W to express our

root. If we identify

Y =

(

− c

n
x− cb

na

)

,

we then get the equation

Y eY = −cωm

na
exp

(

d

n
− cb

na

)

. (B.5)

If we compare with the definition of the Lambert-W , Eqn. (B.1), we see that

Y = W [−cωm

na
exp

(

d

n
− cb

na

)

] ⇒ x =
W [− cωm

na
exp

(

d
n
− cb

na

)

] + cb
na

−c
n

. (B.6)

This same technique may be used to solve equations of the form

pax+b = (cx+ d)n

using the same basic procedure as above and the fact that

pax+b = eln p(ax+b).

Other than these particular uses for solving transcendental algebraic equations,

the general spirit of the approach is what I think is important. That a tabulated

function can be used as means of finding solutions of transcendental equations is a

needed alternative to the standard iterative procedures, especially if there are any

undetermined parameters in the problem.
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Appendix C

Stability of Constant Density Solutions of Chapter 3

Perturbing Eqns. (3.5) and (3.6) about a constant density, ρ0, and constant

velocity, v0, according to

ρ = ρ0 + ρ1 exp(ikx) exp(st) (C.1)

ρ = v0 + v1 exp(ikx) exp(st), (C.2)

we arrive at

ρ0v1s+ ikv1ρ0v0 = −ikρ1T − ρ0ik

(

uaρ1

−κ2
a

+
urρ1

κ2
r

)

(C.3)

ρ1s+ ik (ρ0v1 + ρ1v0) = 0, (C.4)

where we have neglected higher-order terms and we have used the long-wavelength

approximations for Ua and Ur (from Eqns. (3.3) and (3.4))

Ua,r = ∓ ua,r

κa,r + k2
ρ ≈ ∓ua,r

κa,r

ρ. (C.5)

We eliminate v1 from Eqns. (C.3) and (C.4), and cancel ρ1 from the resulting equa-

tion to get a quadratic for s

s2 + 2ikv0s+ k2

[

T + ρ0

(

ur

κ2
r

− ua

κ2
a

)

− v2
0

]

= 0. (C.6)

Solving for s we get

s = −ikv0 ± k

√

ρ0
ua

κ2
a

−
(

T + ρ0
ur

κ2
r

)

. (C.7)
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For an unstable constant-density solution at large wavelengths, the term under the

square root symbol is positive. Physically, this corresponds to the attractive po-

tential overcoming the combined repulsive effects of temperature and the repulsive

potential. In the case of stability, the square root term yields a real frequency

(imaginary contribution to s), and acts similarly to a sound wave. In terms of the

dimensionless quantity β∗ = κ2
rua/κ

2
aur, the condition for instability is

ρ0 >
Tκ2

r

ur

(

1

β∗ − 1

)

= ρc. (C.8)

Thus a density above a critical value is unstable. Below that value, the constant

density solution is stable to long-wavelength perturbations. Thus, if ρ0 is too large,

according to Eq. (C.8), we expect small inhomogeneities to evolve into growing

localized clumps that may be regarded as the early evolution toward the development

of flocks. On the other hand, our flock equilibria solutions with finite pressure have

ρ∞ > 0, and thus for their stability we require that ρ∞ not exceed the limit set by

Eq. (C.8).
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Appendix D

Quadrature of Second Order Ordinary Differential Equations

Given a second-order differential equation

d2f(x)

d2x
= g(f(x)), (D.1)

we may write the solution via direct integration. Writing the second derivative as a

repeated derivative, we get

d

dx

df

dx
= g(f(x)). (D.2)

Since

d

dx
=
df

dx

d

df
, (D.3)

we may write Eq. D.1 as

df

dx

d

df

(

df

dx

)

= g(f). (D.4)

Using the chain rule, we may further write this as

d

df

(

1

2

(

df

dx

)2
)

= g(f), (D.5)

which gives

1

2

(

df

dx

)2

=

∫

g(f) df. (D.6)
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Appendix E

Numerical Algorithm for Computation of Density Solution

E.1 Cell Stretch Algorithm

The basic equations that we want to solve are Eqns. (3.3), (3.4), and (3.7).

In order to do this, we introduce a fictitious linear friction term into the left-

hand side of Eq. (3.7). The velocity is then defined by

ν v(x) = − ∂

∂x
(Ua(x) + Ur(x)) −

T

ρ(x)

∂

∂x
ρ(x). (E.1)

At equilibrium, the velocity will be zero, and force balance achieved. We solve the

fictitious dynamics given by Eqns. (E.1), (3.3), (3.4), and continuity, Eq. (3.5). The

algorithm is as follows. Starting with a one-dimensional density profile, we break

the domain into a series of equally-spaced “cells”, each having a certain amount

of area equal to the integral of the density within a cell. During a step in the

algorithm, we use the density to update the potentials and velocity according to the

above equations. Then, using the updated velocity, the boundary of the cells move

according to the velocity. Thus, the boundaries of the cells move to accommodate

the new area flowing in or out of the cell. If the velocity is outward from a cell, the

area goes down to according to the continuity equation. Once the new boundaries are

calculated, continuity is maintained, and the new density is defined. Due to fidelity

issues, we could not simply update the density according to this simple formula.
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We needed to redistribute the density to its neighbors according to a triangular

weighting centered around the current cell. Once a new density is completed, we

can now updated the potentials and velocity and continue till an equilibrium is

converged upon.

Specifically, the algorithm is

1) Set up discretized potential and redistribution ODEs using second-order cen-

tral difference with Neumann boundary conditions, and solve for the inverses

using LU decomposition ([32])

a) −β∗
(

α2
∗

d2

dx̂2 Ûr(x̂) − Ûr(x̂)
)

= ρ̂(x̂)

b) d2

dx̂2 Ûa(x̂) − Ûa(x̂) = ρ̂(x̂)

c) ρ̂old = ρ̂new + αredistDtrap

(

d2ρ̂new

dx̂2

)

2) Update everything for the first time using an unstable constant density initial

condition. Determine velocity from a discretized version of Eq. (E.1).

3) For i = 1 to End Condition

a) Move boundaries using v: xj+1/2 = xj+1/2 − ∆tvj+1/2

b) Integrate between old cell walls, and update new density to maintain

continuity.

c) Use back substitution to get new density using triangular redistribution

into neighboring cells of some of the density

d) Update both potentials using back substitution, and update new velocity

using the current density
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e) Check End Condition

E.2 Parameters

The specific parameters we used were

1. ∆t = .0001

2. number of grid points = 1000

3. αredist = .99995

4. ν = 10

5. xmax = 5

6. xmin = 0

7. Dtrap = 1
8
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Appendix F

Fourier Transform Conventions

Here I record conventions for the Fourier Transform and associated identities

used in this work.

F.1 Spatial Fourier Transform

The Fourier Transform (FT) of a function f(x) is defined by

FT [f(x)] = f̃(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx. (F.1)

Related identities follow from Eq. (F.1). The inverse FT is

FT−1
[

f̃(k)
]

= f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk. (F.2)

For functions f(x) and g(x), the convolution and the auto-correlation are

(f ∗ g) (x) =
1√
2π

∫ ∞

−∞
f(x′)g(x− x′)dx′ (F.3)

(f ⋆ g) (x) =
1√
2π

∫ ∞

−∞
f(x′)∗g(x+ x′)dx′. (F.4)

where f ∗ is the complex conjugate of the function f . It follows from the definition

of the FT (via the convolution theorem) that

FT [f ∗ g] = f̃ g̃ ↔ f ∗ g = FT−1
[

f̃ g̃
]

(F.5)

FT [fg] = f̃ ∗ g̃ ↔ fg = FT−1
[

f̃ ∗ g̃
]

. (F.6)
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Additionally, since

f(x) =
1

2π

∫ ∞

−∞
eikx

∫ ∞

−∞
e−ikx′

f(x′)dx′dk =

∫ ∞

−∞
f(x′)

(

1

2π

∫ ∞

−∞
e−ik(x′−x)dk

)

dx′

(F.7)

↔ δ(x− x′) =
1

2π

∫ ∞

−∞
e−ik(x′−x)dk, (F.8)

where δ(x− x′) is a Dirac delta function centered at x = x′, we also have that

FT [δ(x)] =
1√
2π

and FT

[

1√
2π

]

= δ(k). (F.9)

Finally, using integration by parts, we get the important relation

FT [f ′(x)] = ikf̃(k). (F.10)

F.2 Temporal Fourier Transform

Similar to the spatial FT, the definition of the FT for a function of time f(t)

is defined by

FT [f(t)] = f̃(ω) =
1√
2π

∫ ∞

−∞
f(t)eiωtdt. (F.11)

Related identities follow from Eq. (F.11). The inverse FT is

FT−1
[

f̃(ω)
]

= f(t) =
1√
2π

∫ ∞

−∞
f̃(ω)e−iωtdω. (F.12)

For functions f(t) and g(t), the convolution and the auto-correlation are identical

to their spatial counterparts,

(f ∗ g) (t) =
1√
2π

∫ ∞

−∞
f(t′)g(t− t′)dt′ (F.13)

(f ⋆ g) (t) =
1√
2π

∫ ∞

−∞
f(t′)∗g(t+ t′)dt′. (F.14)
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The identities involving the FT of the convolution are unchanged and can be seen

in Eqns. (F.5) and (F.6).

We also have

f(t) =
1

2π

∫ ∞

−∞
e−iωt

∫ ∞

−∞
eiωt′f(t′)dt′dω =

∫ ∞

−∞
f(t′)

(

1

2π

∫ ∞

−∞
eiω(t′−t)dω

)

dt′

(F.15)

↔ δ(t− t′) =
1

2π

∫ ∞

−∞
eiω(t′−t)dω, (F.16)

where δ(t − t′) is a Dirac delta function centered at t = t′. From this we also have

that

FT [δ(t)] =
1√
2π

and FT

[

1√
2π

]

= δ(ω). (F.17)

Finally, using integration by parts, we get the important relation

FT [f ′(t)] = −iωf̃(ω). (F.18)

For completeness, we prove the convolution theorem for the case of a two functions

f(t) and g(t).

FT [f ∗ g] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t′)g(t− t′)dt′eiωtdt (F.19)

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
g(t− t′)eiωtdt

)

f(t′)dt′ (F.20)

=
1√
2π

∫ ∞

−∞
f(t′)

(

1√
2π

∫ ∞

−∞
g(y)eiωydy

)

eiωt′dt′ = f̃ g̃. (F.21)

For further information please see (for example) [3].
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Appendix G

Numerical Procedure for Stability of Equilirium

Using the dispersion relation Eqns. (5.45) through (5.48), we can set up the

matrix A in Eq. (5.52) using a discretization procedure along the x direction.

If xmax is the position of the boundary along x, we define

xi = −xmax + i∆, with ∆ =
2xmax

nx − 1
, (G.1)

where nx is the number of points representing the physical quantities, and ∆ is

defined for a non-periodic domain (if it were periodic, the spacing would be differ-

ent with nx points). Therefore, a function of x is represented within the domain

(−xmax, xmax) by

f(x) ≈ f(xi) = fi. (G.2)

Using the first-order central difference approximation for the derivative, we have the
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following definitions:

DUi,j =
Ui+1,j − Ui−1,j

2
→ − d

dx
U = −

nx−1
∑

j=0

DUi,jδρj, (G.3)

Wx = ∆
nx−1
∑

j=0

Wi,j (δvxj − δvxi) = ∆
nx−1
∑

j=0

Wi,jδvxj − δSWiδvxi, (G.4)

with SWi =
nx−1
∑

j=0

Wi,j, (G.5)

Ui = ∆
nx−1
∑

j=0

Ui,jδρj, (G.6)

Ui,j =
−1

2
√

k2
y + k2

z + 1
e−

√
k2

y+k2
z+1|xi−xj |, (G.7)

Wi,j =
−1

2
√

k2
y + k2

z + κ2
w

e−
√

k2
y+k2

z+κ2
w|xi−xj |, (G.8)

Γi =
1

(1 − ρ0 i)
2 , (G.9)

P0 i =
ρ0 i

1 − ρ0 i

. (G.10)

The matrix A is then constructed from 16 sub-matrices from Eq. (5.52),

−iω

























δρ

δvx

δvy

δvz

























=

























RR RVX RVY RVZ

VXR VXVX VXVY VXVZ

VYR VYVX VYVY VYVZ

VZR VZVX VZVY VZVZ

















































δρ

δvx

δvy

δvz

























, (G.11)
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where the sub-matrices are

RRi,j = 0, VXVZi,j = 0, VZVXi,j = 0, VZVYi,j = 0, (G.12)

VYVZi,j = 0 RVXi,j = − 1

2∆
ρ0 i+1δi+1,j +

1

2∆
ρ0 i−1δi−1,j, (G.13)

RVYi,j = −ikyρ0 iδi,j, RVZi,j = −ikzρ0 iδi,j, (G.14)

VXRi,j = − 1

2∆αρ0 i

(Γi+1δi+1,j − Γi−1δi−1,j) −DUi,j

+
1

2∆αρ2
0 i

(P0 i+1δi+1,j − P0 i−1δi−1,j) , (G.15)

VXVXi,j = −β∆Wi,j + β∆SWiδi,j − γ
a2

x

a2
δi,j, (G.16)

VXVYi,j = −γ ayax

a2
δi,j, VYVXi,j = −γ axay

a2
δi,j, (G.17)

VYRi,j = − iky

αρ0 i

Γiδi,j − i∆ kyUi,j +
iky

αρ2
0 i

P0 iδi,j, (G.18)

VYVYi,j = −β∆Wi,j + β∆SWiδi,j − γ
a2

y

a2
δi,j, (G.19)

VZRi,j = − ikz

αρ0 i

Γiδi,j − ikz∆Ui,j +
ikz

αρ2
0 i

P0 iδi,j, (G.20)

VZVZi,j = −β∆Wi,j + β∆SWiδi,j. (G.21)

Here, δi,j is the Kronecker Delta which is 1 if i = j, and 0 otherwise. In all sub-

matrices both i and j run from 0 to nx−1. However, on the boundaries 0 and nx−1,

the value of the sub-matrix is set to zero according to the schematic in Fig. G.1. This

ensures both zero flux along the x direction, as well enforcing localized perturbation

eigenvectors (i.e. the perturbed quantities are going to zero at the boundary). The

exact form for the boundary conditions does not affect the eigenvalues for legitimate

eigenvectors. For example, if we use the above scheme for a boundary condition, or

we replace the 0s with random numbers chosen uniformly between 0 and 1, a random

eigenvalue changes only slightly as seen in Fig. G.2. Independent of the boundary
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conditions imposed on the matrix, the system will have some symmetric-type eigen-

vectors and some asymmetric-type eigenvectors. The difficulty arises because of the

non-local boundary condition in the underlying problem.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 x x x 0 x x x x x 0 x x x 0 0 x x x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure G.1: Schematic of the boundary conditions imposed on the matrix
A. Here shown for nx = 5. The quantities x are those that may be non-
zero according to Eqns. (G.12) to (G.21).
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Zero BCs Random BCs

∆Ρ ∆vx ∆vy ∆vz

0 0 0 030 30 30 30
x

-0.10

-0.05

0.05

0.10
-ä Ω = -3668.71

∆Ρ ∆vx ∆vy ∆vz

0 0 0 030 30 30 30
x

-0.10

-0.05

0.05

0.10
-ä Ω = -3668.71

∆Ρ ∆vx ∆vy ∆vz

0 0 0 030 30 30 30
x

-0.4

-0.2

0.2

0.4

-ä Ω = -0.00523307

∆Ρ ∆vx ∆vy ∆vz

0 0 0 030 30 30 30
x

-0.4

-0.2

0.2

0.4

-ä Ω = -0.00569907

Figure G.2: Calculation of two specific eigenvectors and their cor-
responding eigenvalues for random boundary conditions and for zero
boundary conditions. The parameters are α = 8.2, β = 10, γ = 0,
κw = 0.05, ky = kz = 0, ax = 1, ay = 1, ρ0 = 0.8, xmax = 30, nx = 401
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