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Technology advancement has made multimedia content widely available and

easy to process. These benefits also bring ease to unauthorized users who can du-

plicate and manipulate multimedia content, and redistribute it to a large audience.

Unauthorized distribution of information has posed serious threats to government

and commercial operations. Digital fingerprinting is an emerging technology to

protect multimedia content from such illicit redistribution by uniquely marking

every copy of the content distributed to each user. One of the most powerful

attacks from adversaries is collusion attack where several different fingerprinted

copies of the same content are combined together to attenuate or even remove the

fingerprints. An ideal fingerprinting system should be able to resist such collusion

attacks and also have low embedding and detection computational complexity, and

require low transmission bandwidth.



To achieve aforementioned requirements, this thesis presents a joint coding

and embedding framework by employing a code layer for efficient fingerprint con-

struction and leveraging the embedding layer to achieve high collusion resistance.

Based on this framework, we propose two new joint-coding-embedding techniques,

namely, permuted subsegment embedding and group-based joint-coding-embedding

fingerprinting. We show that the proposed fingerprinting framework provides an

excellent balance between collusion resistance, efficient construction, and efficient

detection. The proposed joint coding and embedding techniques allow us to model

both coded and non-coded fingerprinting under the same theoretical model, which

can be used to provide guidelines of choosing parameters.

Based on the proposed joint coding and embedding techniques, we then con-

sider real-world applications, such as DVD movie mass distribution and cable TV,

and develop practical algorithms to fingerprint video in such challenging practical

settings as to accommodate more than ten million users and resist hundreds of

users’ collusion. Our studies show a high potential of joint coding and embedding

to meet the needs of real-world large-scale fingerprinting applications. The popu-

larity of the subscription based content services, such as cable TV, inspires us to

study the content protection in such scenario where users have access to multiple

contents and thus the colluders may pirate multiple movie signals. To address

this issue, we exploit the temporal dimension and propose a dynamic fingerprint-

ing scheme that adjusts the fingerprint design based on the detection results of

previously pirated signals. We demonstrate the advantages of the proposed dy-

namic fingerprinting over conventional static fingerprinting. Other issues related

to multimedia fingerprinting, such as fingerprinting via QIM embedding, are also

discussed in this thesis.
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Chapter 1

Introduction

1.1 Motivations

Technology advancement has made multimedia content widely available and easy

to process. These benefits also bring ease to unauthorized users who can duplicate

and manipulate multimedia content, and redistribute it to a large audience. In-

formation leak has posed serious threats to commercial markets and government

security. According to a survey in 2006 by L.E.K. Consulting LLC under the com-

mission of Motion Picture Association of America (MPAA), U.S. movie studios

are losing about $6.1 billion annually in global wholesale revenue to piracy [1].

Another example is that a classified video on Bin Ladens camp shared between

the Pentagon and CIA officials was leaked to the news media [2]. Without effective

traitor tracing tools, there would remain the reluctance for different agencies to

share critical information and thus jeopardize the mission in fighting terrorism and

defending the national and global security. Therefore, the protection of multimedia

content becomes increasingly important.

Digital fingerprinting is an emerging technology to protect multimedia content
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from such unauthorized dissemination, whereby a unique ID representing each user,

called digital fingerprint, is embedded in his/her copy. When a copy is leaked, the

embedded fingerprint can help trace back to the source of the leak. Adversaries

may apply various attacks to remove the fingerprints before redistribution. One of

the most powerful attacks from attackers is collusion attack, where several different

fingerprinted copies of the same content are combined together to attenuate or even

remove the fingerprints. In addition to resistance against attacks, three aspects

of system efficiency need to be considered when designing an anti-collusion finger-

printing system, namely, the efficiency in constructing, detecting, and distributing

fingerprinted signals. Construction efficiency concerns the computational com-

plexity involved during the generation of fingerprinted content; if the complexity

is high, we say the construction efficiency is low and vice versa. Similarly, detection

efficiency is related to the detection computational complexity. The distribution

efficiency refers to the amount of bandwidth consumed during the transmission of

all the fingerprinted signals through cable or wireless network. The more band-

width the transmission requires, the lower the efficiency of distribution is. An

ideal fingerprinting system should have high collusion resistance, low embedding

and detection computational complexity and low transmission bandwidth.

1.2 Related Prior Work

A growing number of techniques have been proposed recently concerning collusion-

resistant fingerprinting for multimedia data. Many of them fall in one of the two

categories according to whether an explicit discrete coding step is involved. In the

non-coded category, a typical example is orthogonal fingerprinting, which assigns

each user a spread spectrum sequence as fingerprint and the sequence is typically
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orthogonal to those for other users [21, 71]. The collusion resistance performance

of orthogonal fingerprinting can be improved by introducing correlation to the

fingerprints for users who are likely to collude together due to cultural and other

relations [70]. The non-coded fingerprinting is a natural extension from spread

spectrum embedding [17] and is easy to implement. A weakness of non-coded

fingerprinting schemes is that the number of long basis sequences needed and the

computational complexity of detection would increase linearly with the number of

users.

Building coded fingerprints for generic data (such as executable software pro-

grams and bitstreams) was investigated by the coding and cryptography commu-

nities. Early work can be traced back to the 1980s [7, 69]. A concept of marking

assumption was introduced by Boneh and Shaw in [8, 9], and a two-level binary

code construction known as a c-secure code was proposed to resist up to c colluders

with high probability. This binary code was later used to modulate a direct spread

spectrum sequence to embed fingerprints codes in multimedia signals [78]. By

explicitly exploiting the multimedia characteristics through selecting appropriate

modulation and embedding schemes, a more compact code was introduced in [64]

based on combinatorial design to identify colluders through the code bits shared

by them.

Many recent works on coded fingerprinting [4, 5, 62] extend Boneh and Shaw’s

marking assumption on the collusion and consider the construction of codes with

traceability, such as the identifiable parent property (IPP) code and the traceabil-

ity (TA) code. Among these codes, TA codes are stronger than other codes in

terms of tracing capability and can be systematically constructed using well estab-

lished error correcting code (ECC). Thus TA codes are widely used in the coded
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fingerprinting literature. For example, the works in [52] and [54] applied the ECC

based TA code to multimedia fingerprinting and extended it to deal with symbol

erasures contributed by noise or cropping in the multimedia signal domain. An-

other reason that researchers favor ECC for fingerprint code construction is that

some ECCs, such as the algebraic-geometry codes, have efficient decoding algo-

rithms. For example, the Guruswami-Sudan soft-decision list decoding algorithm

is employed in [22] for the algebraic-geometry code to identify multiple colluders.

In this thesis, we shall refer to the coded fingerprinting constructed on ECC as the

ECC-based Fingerprinting.

In the existing coded fingerprinting works that originated from fingerprinting

generic data, the special properties and issues of multimedia signal have not been

sufficiently explored in the code design. Although some papers [22,52] claimed that

their schemes are for multimedia, the embedding issues are handled in a rather

abstract level through models based on the marking assumptions [9, 52]. The

prior works typically assume that colluders can only change fingerprint symbols in

which they have different values, and the colluders assemble pieces of their codes

to generate a colluded version. The marking assumption based on generic data are

not sufficient to model multimedia fingerprinting where colluders can manipulate

fingerprinted multimedia in the signal domain, bringing the equivalent changes

in the code domain beyond the conventional marking assumption. In the mean

time, as has been shown in [64], by jointly exploring embedding and coding, we

can substantially limit the effective ways that attackers may exploit. Thus it is

important to examine the overall performance across coding and signal domains,

taking into account the coding, embedding, attack, and detection issues.

This thesis addresses the issues on the theory and design of collusion-resistant

4



multimedia fingerprinting. We jointly consider coding and embedding and propose

two new techniques, which substantially improve the collusion resistance of ECC

based fingerprinting, while still preserving its advantages of compact representa-

tion and efficient detection. We further extend the joint coding and embedding

framework to address the practical applications with challenging requirements of

holding millions of users and resisting hundreds of colluders and design fingerprint-

ing schemes for protecting contents in subscription based content services.

1.3 Thesis Organization and Contributions

This dissertation is organized as follows. Chapter 2 starts with background overview

on multimedia fingerprinting and then presents a general framework of coded fin-

gerprinting for multimedia signals. Code construction and fingerprint embedding

for anti-collusion purposes are discussed. We also examine the performance of con-

ventional ECC-based fingerprinting and compare it with orthogonal fingerprinting,

in terms of collusion resistance and detection efficiency.

Based on the framework and the performance examination in Chapter 2, Chap-

ter 3 presents our first proposed joint coding and embedding technique, namely,

permuted subsegment embedding technique. We demonstrate the advantages of

the proposed technique in terms of collusion resistance, detection complexity and

efficient distribution. By employing the proposed technique, we then analyze the

collusion resistance of the fingerprinting constructed on different codes, and study

the effects of code parameters on the system performance.

Chapter 4 presents the second proposed joint-coding-embedding technique,

called group-based joint coding and embedding (GRACE) technique. By taking

advantage of the prior knowledge on the collusion pattern, we construct compact
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fingerprints that consist of user sub-codeword and group sub-codeword and are

embedded in host signal via spread spectrum technique. The detection is done

in two levels, which identifies guilty groups through correlation and then narrows

down to specific colluders through minimum distance decoding. To further im-

prove the detection performance, we propose an adaptive group detection method

which can adaptively adjust the group detection parameter according to the ob-

served collusion pattern. We examine the performance of the proposed method

and compare it with the existing non-grouped fingerprinting.

Chapter 5 considers how to employ the proposed joint coding and embedding

framework and develop practical algorithms to fingerprint video in such challeng-

ing practical settings as to accommodate more than ten million users and resisting

hundreds of users’ collusion. We investigate the proper code structure for large-

scale fingerprinting and propose a trimming detection technique that can signifi-

cantly reduce the detection computational complexity with little reduction in the

detection probability. We conduct experiments on video signals to show the po-

tential of joint coding and embedding to meet the needs of real-world large-scale

fingerprinting applications.

Chapter 6 explores two research directions related to multimedia fingerprint-

ing. The first one addresses protecting multimedia content from unauthorized

redistribution in subscription based services, where adversaries work together to

pirate multiple multimedia programs during a subscription period. We exploit the

temporal dimension and propose a dynamic fingerprinting scheme that adjusts the

fingerprint design based on the detection results of previously pirated signals. We

also examine colluders strategies to combat the tracing by dynamic fingerprinting.

The second study explores the Quantization Index Modulation (QIM) embedding
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methods for fingerprinting applications. We first employ Dither Modulation (DM)

technique and extend it for embedding multiple symbols through a basic dither

sequence design. We then develop a theoretical model and propose a new algo-

rithm to improve the collusion resistance of the basic scheme. We further explore

coded fingerprinting based on spread transform dither modulation (STDM) em-

bedding and compare its performance with spread spectrum based fingerprinting

under both blind and non-blind detections.

The dissertation is concluded in Chapter 7, with discussions on future perspec-

tives.
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Chapter 2

Background and Performance

Studies of Multimedia

Fingerprinting

In this chapter, we first provide the background for multimedia fingerprinting and

briefly discuss fingerprint design schemes. We then introduce a general framework

of coded fingerprinting for multimedia signals by integrating coding and embedding

issues. Focusing on ECC code construction, we examine the overall performance of

conventional ECC-based fingerprinting across both coding and embedding layers,

and compare it with orthogonal fingerprinting in various aspects, such as collusion

resistance and detection efficiency.
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2.1 General Framework of Multimedia Finger-

printing

A multimedia fingerprinting system generally consists of three parts: fingerprint

embedding, fingerprint attacks and fingerprint detection. In fingerprint embedding

process, content owner generates fingerprint for each user and embed it through

robust digital watermarking technique into the original signal to generate each

user’s copy. The fingerprint should be embedded imperceptibly and robustly [16].

Imperceptibility can be achieved by employing human perceptual model to control

the distortion introduced by the embedded fingerprint so that the fingerprinted

signal is perceptually similar to the original version. Robustness requires the em-

bedded fingerprints survive intentional or unintentional processing introduced by

users or attackers, such as compression and filtering.

After the fingerprinted signals are distributed to end users, adversaries may

apply various attacks to try to remove their fingerprints. One powerful and cost-

effective attack is called collusion attack, whereby several different fingerprinted

copies of the same content are combined together to attenuate or even remove

the fingerprints. There are many ways to launch collusion attacks. A simple yet

effective way is to average the corresponding signal components or features from

multiple copies, called averaging collusion. Attackers can also apply order statistics

based collusions such as taking the minimum value of their corresponding signal

components. The colluded signal may be distributed outside the authorized group.

Once the content owner obtains the suspicious content, he/she can apply finger-

print detection to extract the fingerprint and then identify the possible colluders.

Depending on the availability of the host signal to the detector, fingerprint detec-
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tion can be performed blindly or non-blindly [16]. In non-blind detection, the host

signal is available to the detector and it is usually subtracted from the received

signal to remove its interference before detection. In blind detection, the detector

does not have access to the host signal and thus its effect cannot be completely re-

moved from the received signal, which may serve as a strong noise to the detector.

In most fingerprinting applications, host signal is often available to the detector,

and thus in this thesis we mainly focus on non-blind detection. Discussions on

fingerprint design under blind detection will be presented in Chapter 6.

2.2 Background on Robust Data Embedding

In this section, we provide an overview of the spread spectrum embedding that

has been widely used in the multimedia fingerprinting literature. We then discuss

several fingerprint design schemes.

Spread Spectrum Embedding

Due to its excellent robustness and invisibility under non-blind detection [16,29,43],

spread spectrum embedding has been widely used in multimedia fingerprinting [34,

37,71]. As illustrated in Fig. 2.1, watermark is modulated by a random noise-like

signal following zero-mean Gaussian distribution, which is then scaled according

to human visual model to control the introduced distortion to be lower than the

noticeable threshold. The modulated signal is then added to the components of

the original signal in the embedding domain to produce the watermarked signal.

The embedding process can be formulated as

y = x + α · JND · s

10
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Figure 2.1: Spread Spectrum Watermark Embedding.

where x is the original signal; y is the watermarked signal; s is the watermark; α

is the scaling factor used to adjust the watermark energy; and JND denotes Just

Noticeable Difference and it is employed to control the visual distortion.

During the detection, the host signal x is first subtracted from the received

signal to obtain test signal z. The received signal may have undergone further

processings and we model them as additive noise d. The detection of the spread

spectrum watermarking can be formulated as a hypothesis testing problem:⎧⎪⎪⎨
⎪⎪⎩

H0 : z = (x + d)− x = d watermark is absent,

H1 : z = (y + d)− x = s + d watermark is present.

(2.1)

Under the assumption of additive white Gaussian noise (AWGN), i.e. d follows

i.i.d. Gaussian distribution N(0, σ2
d), the optimal detector takes the form of a

correlator. The detection statistic T follows a Gaussian distribution

T = zT s/‖s‖ =

⎧⎪⎪⎨
⎪⎪⎩

N(0, σ2
d) watermark is absent,

N(‖s‖, σ2
d) watermark is present.

T is then compared with threshold h: if T > h, there is watermark; otherwise, no

11



watermark is detected. The threshold h controls the tradeoff between probability

of detection and false alarm.

Fingerprint Design

In general, multimedia fingerprinting can be classified into two categories: non-

coded fingerprinting, which does not involve explicit code design during fingerprint

construction, and coded fingerprinting, which builds fingerprints based on code

structure.

Orthogonal fingerprinting is a typical example of non-coded fingerprinting and

is a natural extension from spread spectrum watermarking [71]. In this fingerprint-

ing scheme, each user is assigned a spread spectrum sequence as fingerprint, and

sequences for different users are mutually orthogonal. The advantages of orthogo-

nal fingerprinting are that it can well distinguish users and is easy to implement.

However, as will be shown in Section 2.4, the required spreading sequences and

the detection computational complexity increase linearly with the number of users,

which become prohibitively high when the system scales up to hold a large number

of users.

Coded fingerprinting introduces correlation among users’ fingerprints accord-

ing to the code structure and thus allows fewer spreading sequences to represent

more users. Two types of modulation schemes are usually employed in coded fin-

gerprinting: CDMA modulation and TDMA modulation [74]. In CDMA type of

modulation, the fingerprint sj for user j is constructed based on a binary code

as [64]:

sj =
B∑

i=1

bijui,

where bij is the i-th code bit for user j, which usually takes value from {−1, +1},

12



B is the code length, and ui is the spreading sequence for the i-th bit. Through

this type of construction, the required base spreading sequences can be reduced to

be much fewer than the number of users. However, the computational complexity

of fingerprint construction and detection is still on the same order as that of or-

thogonal fingerprinting and the code is mainly restricted to binary code. On the

other hand, as will be shown in this thesis, TDMA type of modulation along with

M-ary code provide a lot of freedom to construct fingerprints with fewer spread-

ing sequences and lower computational complexity in detection. We will explore

the potential of employing TDMA modulation and ECC code for fingerprint con-

struction. We start with a detailed discussion on ECC-based fingerprinting and

performance examination in the following sections.

2.3 ECC-based Fingerprinting

Fingerprint construction and embedding are two important issues for a multimedia

fingerprinting system. We illustrate a framework of applying coded fingerprinting

for multimedia data in Fig. 2.2, which consists of a coding layer and an embed-

ding layer. As discussed in Section 2.2, the spread spectrum additive embedding

technique or its variations is a viable choice for the embedding layer, owing to its

excellent robustness under non-blind detection that has been demonstrated in the

literature [16–18, 29, 43]. A symbol in a fingerprint code over an alphabet of size

q can be mapped to a signal suitable for embedding through various modulation

techniques [73,74]. Orthogonal modulation that uses q mutually orthogonal signals

to represent q symbol values widely separates the different symbols in the signal

domain, and thus gives higher detection accuracy.

The prior works on ECC based fingerprinting have been designed on top of

13
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Figure 2.2: A framework of the embedded ECC based fingerprinting.

the marking assumptions [8, 9, 52,56]. We now replace the abstraction of marking

assumptions with a modulation and embedding layer for a complete system of

multimedia fingerprinting. Thus the layered structure of ECC based fingerprinting

system includes an ECC code layer and a spread spectrum based embedding layer,

along with an attack channel where we mainly focus on collusion attacks. In the

following, we shall address several important issues of ECC based fingerprinting

over the three main stages, namely, fingerprinting, collusion attacks, and detection.

2.3.1 Fingerprinting

During the fingerprinting process, we first choose an ECC code over an alphabet

with size q, and assign a codeword to each user. The design requirement of this

ECC fingerprint code will be discussed later in this section.

We partition the host signal into non-overlapped segments, where each segment

is to carry one symbol of the fingerprint code. The partition can be done spatially

into blocks for image, or temporally into frames for video and audio. Within each

segment, we use q mutually orthogonal spread spectrum sequences {ui, i = 1, ..., q}

14



with identical energy ||u||2 to represent the q possible symbol values, and add one

of these sequences into the segment (with perceptual scaling [49]) according to the

symbol value in the fingerprint code. Each fingerprinted segment can be modelled

as

yjk = usym(j,k) + xk, (2.2)

where xk is the kth segment of a host signal, and yjk is the kth fingerprinted

segment for the jth user. The function sym(j, k) is used to retrieve the symbol for

the kth segment from the jth user’s codeword, and usym(j,k) is the spread spectrum

sequence corresponding to the symbol value. The concatenation of all fingerprinted

segments forms the ultimate fingerprinted signal.

2.3.2 Collusion Attacks

In most existing works concerning fingerprinting, it is assumed that the colluders

can only change the fingerprint code symbols where they see different values within

the colluder group [9], and a colluded version is constructed by assembling pieces

of the colluders’ codewords [52]. We refer to this as (symbol-based) interleaving

collusion. Additional distortion may be added to the multimedia signal during the

collusion, which we model as additive noise. Since few colluders would be willing

to take higher risk than others, they generally would make contributions of an

approximately equal amount in the collusion [76].

In addition to interleaving collusion, colluders can manipulate fingerprinted

multimedia in the signal domain, incurring a variety of code-domain changes be-

yond the marking assumptions. A simple yet effective way is to average the corre-

sponding signal components or features from multiple copies [64], bringing changes

different from interleaving collusion. The averaging collusion can be modelled as
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follows:

z =
1

c

∑
j∈Sc

sj + x + d, (2.3)

where z is the colluded signal, x is the host signal, d is the noise term, sj represents

the fingerprint sequence for user j, Sc is the colluder set, and c is the number of

colluders. Studies in [82] have shown that a number of non-linear collusions can

be well approximated by an averaging collusion plus additive noise. Thus we

will mainly focus on the interleaving and averaging collusions in this thesis. For

simplicity in analysis, we assume that the additional noise under both collusions

follows i.i.d. Gaussian distribution. The effects of many other distortions have

been studied in the watermarking literature, such as quantization/compression

and geometric distortions. And since the original host signal is often available to

detector in fingerprinting applications, we can use it as a reference and the effects

of many distortions can be approximated well by additive noise.

2.3.3 Detection

At the detector side, our goal is to catch one of the colluders with high probability.

We first determine which symbol is present in each multimedia segment through

a correlation detector commonly used for spread spectrum embedding [17,71]. As

host signal can be made available to detectors in many fingerprinting applications,

we register the suspicious copy with host signal and subtract host signal from the

suspicious copy to obtain a test signal. Then for each segment of the test signal,

we employ a maximum correlation detector to identify the symbol; that is, we

correlate it with each of the q spreading sequences, identify the sequence giving

the maximum correlation, and record the corresponding symbol. The detection
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statistic for the kth segment is defined as

Ts(k, i) =
(zk − xk)

Tui√‖ui‖2
, i = 1, 2, ..., q, (2.4)

where zk and xk represent the kth segment of the colluded signal and original signal,

respectively. The extracted symbol from kth segment is î = arg maxi=1,2,...,q Ts(k, i).

With the sequence of symbols extracted from all segments using this maximum

detector, we proceed to the ECC code layer and apply a decoding algorithm to

identify the colluder whose codeword has the most matched symbols with the

extracted symbol sequence.

Alternatively, we can employ a soft-detection strategy to keep the correlation

results of Eqn.(2.4) with each of the q possible sequences at every segment with-

out determining the symbol value, and then collect the results from all segments

together to arrive at the correlation result for each user as

TN(j) =
L∑

k=1

Ts(k, sym(j, k)) j = 1, 2, ..., Nu, (2.5)

where L is the code length, and Nu is the total number of users. Note that this

approach has the correlation results equivalent to1 a matched-filter detector [51]

that correlates the entire test signal with each user’s fingerprint sequence sj by

TN(j) =
(z− x)T sj√‖s‖2 j = 1, 2, ..., Nu. (2.6)

Here, ‖s‖ = ‖sj‖ for all j based on the equal energy construction. The user whose

fingerprint has the highest correlation value TN(j) is identified as the colluder,

1As we shall see later in Section 2.4.1, computing the partial correlation and then aggregating

together is a more efficient implementation than taking the Nu correlation results on the whole

signal. In this thesis, we shall employ this efficient implementation for the matched-filter detector

in Eqn.(2.6) for ECC based fingerprinting.
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i.e. ĵ = arg maxj=1,2,...,Nu TN(j). Compared with the former 2-step hard-decision

scheme, the latter scheme takes advantage of the soft information on the symbol

level and provides a better collusion identification performance. In both hard and

soft detectors, we always make decisions on the colluder identification and only

accuse one user as the colluder. Therefore, the probability of false positive will be

one minus the probability of detection.

Under the above framework, the non-coded orthogonal fingerprinting can be

seen as a special case that the alphabet size q equals the total number of users

Nu and the codeword length equals 1. The detection for orthogonal fingerprinting

is done by first correlating the test signal with each user’s sequence and then

identifying the user with the highest correlation statistic as the colluder.

2.3.4 Considerations on ECC Fingerprint Codes

A common practice in fingerprint code design treats the symbols contributed from

other colluders as errors, and makes the minimum distance between codewords

large enough to tolerate the errors. The minimum distance requirement ensures

that the best match with a colluded codeword (referred to as the descendant)

comes from one of the true colluders. The c-TA code [13,14] is such an example.

Let Γ ⊆ QL be a code over an alphabet Q with length L and Nu codewords.

Without loss of generality, we consider the first c users as colluders. The set of c

colluders is denoted as C = {v1, ...,vc} ⊂ Γ, where a codeword vi ∈ Γ represents

the ith colluder and consists of a sequence of L symbols, i.e. vi = [w
(i)
1 w

(i)
2 ...w

(i)
L ].

A codeword set that can descend from this colluder set is denoted as

desc(C) = {[x1...xL] : xj ∈ {w(i)
j : 1 ≤ i ≤ c}, 1 ≤ j ≤ L}.
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If for any descendant [x1...xL] ∈ desc(C), there is a vi ∈ C such that

|{j : xj = w
(i)
j }| > |{j : xj = sj}|

for any innocent user’s codeword [s1...sL] ∈ Γ�C, where the notation |·| is the car-

dinality, then Γ is called a c-traceability (c-TA) code and denoted as c−TAq(L,Nu)

with q = |Q| .
Under the conventional marking assumptions, a c-TA code can be constructed

using an ECC if its minimum distance D satisfies [56]

D > (1− 1

c2
)L, (2.7)

where L is the code length and c is the colluder number.

As mentioned earlier, most of the existing works [22, 52] mainly consider the

outer layer of the system (i.e. the ECC code layer), and deal with the embedding

through marking assumptions. However, the distortions and attacks mounted by

adversaries on the fingerprinted multimedia can lead to errors in detecting finger-

print code symbols, which is beyond the marking assumptions. The existing work

on c-TA codes has been extended to tolerate erasures only [52]. We note that there

is nontrivial probability for false alarms in symbol detection, which contributes to

the non-erased erroneous colors that are not contributed by any colluders. Thus

we need to consider both erasure and non-erasure errors when designing finger-

print code. In the following, we extend the definition of c-TA code to account for

both types of errors and develop a minimum distance requirement with a similar

strategy used in [52].

As before, we consider a code Γ of length L over an alphabet Σ of size q.

This code is called a c-traceability code tolerating Le erasures and LFA errors and

denoted as c-TAq(L,Nu; LFA, Le) if for any (x1, ..., xL) ∈ X(C), there is a colluder’s
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codeword ui ∈ C such that |{j : xj = w
(i)
j }| > |{j : xi = sj}| for any innocent

user’s codeword (s1, ..., sL) ∈ Γ \ C. Here X(C) denotes the set of the codeword

with no more than Le erasures and no more than LFA erroneous colors over an

extended alphabet Σ∪{?}, where {?} is the erasure symbol. We derive the following

minimum distance conditions for c-TA(L,Nu; LFA, Le) [30]:

Let Γ be an (L,Nu, D)q-ECC, and c an integer. If

D > (1− 1

c2
)L +

c + 1

c2
LFA +

1

c2
Le, (2.8)

then Γ is c-TAq(L,Nu; LFA, Le). The proof can be found in Section 2.6.1.

As can be seen from the above discussions, the ECC based fingerprint code

prefers an ECC with larger minimum distance to tolerate more colluders. Among

ECC constructions, Reed-Solomon codes have the minimum distance that achieves

the Singleton bound [72] and is widely used in the existing coded fingerprinting

works [52, 56]. We can construct c-TA code using a Reed-Solomon code that

satisfies the above condition. The design can be simplified by treating erasures

as errors, which reflects the case of symbol extraction by such schemes as the

maximum correlation detector described in Section 2.3.3. This simplification leads

to the following results:

Among Reed-Solomon code with alphabet size q, there exists a c-TAq(L,Nu; LFA)

code with minimum distance

D > (1− 1

c2
)L +

c + 1

c2
LFA,

where the parameters satisfy

Nu = qt, and t = 	L
c2
− c + 1

c2
LFA
. (2.9)

The detailed proof can be found in Section 2.6.1.
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In general, the decoding computational complexity of the c-TA code is O(Nu)

for a total of Nu codewords. For Reed-Solomon codes, or more generally algebraic-

geometry codes, there is a more efficient decoding method known as the list de-

coding, which can correct more errors than the decoding radius imposed by the

minimum distance. The list decoding algorithm can reduce the decoding complex-

ity to the order of polynomial in c log Nu [26, 44, 55]. However, as we will see in

the following section, when we take the embedding layer into consideration, the

demodulation process to extract the embedded symbols dominates the accounting

of the detection computational complexity. This also suggests the importance of

the joint consideration of coding and embedding.

2.4 Performance Analysis of ECC-based Finger-

printing

Examining the existing literature on ECC based fingerprinting reveals that few

work has actually taken into full consideration of the embedding layer of the fin-

gerprints. We have found a very limited amount of overall performance analysis

by considering the coding and embedding together [78], and little comparison with

non-coded orthogonal fingerprinting. Thus in this section, we first analyze the

computational complexity of the detection process and the efficient distribution

of ECC based fingerprinting. We then examine its collusion resistance through

measuring the probability of catching one colluder under different values of the

colluder number, and compare it with the performance of non-coded orthogonal

fingerprinting.

21



2.4.1 Computational Complexity of Detection

As we have pointed out in the previous section, one of the reasons that researchers

in the literature may favor ECC based fingerprinting over the non-coded orthogonal

approach is because some classes of ECC have more efficient decoding algorithms

than the maximum likelihood decoding that is commonly used for orthogonal fin-

gerprinting [79]. By jointly considering the coding and embedding of ECC based

fingerprinting, we can obtain a complete picture on the computational complex-

ity for colluder identification, which consists of demodulation and decoding. We

shall show that while the efficient decoding improves the detection efficiency, the

improvement is a relatively small part in the overall computational complexity.

The major improvement on the detection efficiency comes from the demodulation

process.

For a fingerprinting system with a total of Nu users and a host signal with

totally N embeddable components, the detection of orthogonal fingerprinting is

done by correlating the test signal with each user’s fingerprint sequence. This

takes NuN multiplications plus Nu(N − 1) summations, or a total of O(NuN)

operations. We further perform Nu−1 comparisons to find the fingerprint sequence

corresponding to the highest correlation to identify one of the colluders. Thus the

computational complexity of the whole detection process is O(NuN) + O(Nu) =

O(NuN).

For ECC based fingerprinting, since the fingerprint sequences for each seg-

ment only have q different versions (corresponding to q symbols), we only need

qL(N/L) multiplications plus qL(N/L− 1) summations and L(q− 1) comparisons

for demodulation, giving a total computational complexity of O(qN). In the de-

coding step, we can determine the colluder through NuL + Nu− 1 comparisons by

22



brute force searching, which provides an upper bound on the decoding complexity.

Putting the demodulation and decoding steps together, we find the computational

complexity for ECC based fingerprinting as O(qN) + O(NuL). In many practical

applications of robust fingerprinting, to ensure fingerprints be reliably embedded

in multimedia, we generally have Nu << N . This suggests that the demodulation

part dominates the overall complexity, regardless of the use of efficient decod-

ing algorithms. Therefore, the overall computational complexity becomes O(qN).

Similarly, the soft detector of Eqn.(2.6) with implementation of Eqn.(2.5) needs

O(qN) operations to calculate the partial correlations and further requires O(NuL)

summations and Nu − 1 comparisons to determine the colluder. This leads to the

same computational complexity bound of O(qN) as the hard detection. Taking a

Reed-Solomon code construction with Nu = qt as an example, we obtain the bound

of detection computational complexity for ECC based fingerprinting as O( t
√

NuN).

Comparing the detection computational complexity of ECC based fingerprint-

ing and orthogonal fingerprinting, we can see that the significant improvement

on the demodulation process brings a substantial advantage of ECC based finger-

printing over the orthogonal fingerprinting. This is largely owing to the reduced

alphabet size in ECC based fingerprinting. Furthermore, we notice that ECC based

fingerprinting requires as few as q orthogonal sequences of length N/L, while the

orthogonal fingerprinting requires Nu mutually orthogonal sequences of length N .

This suggests that the ECC based system has an advantage of providing a more

compact way of representing users and consuming fewer resources in terms of the

orthogonal sequences. The compact representation of fingerprints allows for a sim-

pler design and implementation in the embedding and detection stages.
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2.4.2 Efficient Distribution of Fingerprinted Signals

In some applications, such as video streaming, where a huge amount of data has

to be transmitted to a number of users in real time, the efficient generation and

distribution of fingerprinted copies for different users is an important issue. ECC

based fingerprinting provides a potential support for the efficient distribution of

the fingerprinted signal. This is because for a total of Nu users, every segment only

has q versions, each of which has one of the q possible symbols embedded. We can

pre-generate these q versions for each segment, which allows us to quickly construct

the fingerprinted copy for any given user by concatenating the corresponding seg-

ments according to his/her codeword. To distribute these fingerprinted copies, we

can employ secure multicast protocols such as that by Chu et al. [15]. Since for

each segment we send q copies, the bandwidth requirement on the sender side for

distributing Nu copies is qB, where B is the bandwidth requirement of sending

only one copy.

In contrast, for an orthogonal fingerprinting system, all users have different

versions at each segment. There is no structural advantage we can take in con-

structing and distributing the fingerprinted signals. The owner needs to generate

the whole fingerprinted signal for each user and to unicast one of the Nu versions

of the signals to each user, which generally requires a bandwidth of NuB.

We compare the communication cost of ECC based fingerprinting and orthog-

onal fingerprinting by defining γ as the ratio of the bandwidth consumption of

ECC based fingerprinting to that of orthogonal fingerprinting. From the above

discussion, we have γ = qB/(qtB) = q1−t. When the ECC based fingerprint-

ing is constructed based on a Reed-Solomon code, for example, with parameters

t = 2, q = 32, γ has value of 1/32. This suggests that the communication band-
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width required by a sender employing ECC based fingerprinting can be one to two

orders of magnitude lower than that of orthogonal fingerprinting. If the commu-

nication cost requirement is more stringent than other parameters, we can further

adjust t to lower the cost.

2.4.3 Analysis of Collusion Resistance

Consider an ECC based fingerprinting system employing a L-tuple code with min-

imum distance D over q-ary alphabet to represent Nu users. Under the (symbol

wise) interleaving collusion, the colluders exploit the fingerprint pattern and con-

tribute segment by segment with each segment carrying one symbol. Averaging

collusion does not rely on the fingerprint pattern and simply takes the average

value of each signal component. As a result, these two collusion attacks have

different effects on collusion detection, and we shall analyze them separately.

Interleaving Collusion

During the interleaving collusion, colluders contribute their copies segment by

segment (or equivalently, symbol by symbol at the code level) with approximately

equal share. Further distortion may be applied on the colluded signal, which we

simplify as an additive white Gaussian noise. At the detector side, we consider

the soft detector employing matched-filter as in Eqn.(2.6). With this detector, we

skip the symbol detection as in hard detection, and directly identify the colluder

by correlating the test signal with every fingerprint sequence. The user whose

fingerprint sequence has the highest correlation is declared as colluder. As long as

the correlation between the fingerprint sequences is kept low, the performance of

the matched-filter decoding approaches that of the maximum likelihood decoding
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and provides an upper bound for the ECC based fingerprinting.

To facilitate further discussions, here we write down the expression of the

matched-filter detector again in Eqn.(2.10). For each user, we examine a correlation-

based statistic TN as

TN(j) =
(z− x)T sj√‖sj‖2

j = 1, ..., Nu, (2.10)

which follows a multivariate Gaussian distribution of Nu dimensions [50]. Here, sj

is the fingerprint sequence for user j, z is the colluded signal, and x is the original

signal. We define

T1 = max
j∈SC

TN(j), T2 = max
j /∈SC

TN(j), (2.11)

where SC is the colluder set. For simplicity, we approximate T1 and T2 as indepen-

dent Gaussian variables. By examining the distribution of the correlations between

each fingerprint sequence and the test sequence, we can express the mean and the

variance of T1 and T2 as follows:

mT1 � E[T1] =
‖u‖√

L
(
L

c
+

5(c− 1)(L−D)

12
),

σ2
T1

� V ar[T1] =
‖u‖2

L
σ2

C + σ2
d; (2.12)

mT2 � E[T2] =
‖u‖√

L
× c(L−D) + 1

2
,

σ2
T2

� V ar[T2] =
‖u‖2

L
σ2

I + σ2
d; (2.13)

with σ2
I =

(
c(L−D)− 1

6

)2

,

σ2
C =

(
5(c− 1)(L−D)

36

)2

, (2.14)

where σ2
d is the variance of the additive noise. Thus the probability of detection is

Pd = Pr(T1 > T2) =

∫ ∞

−∞
P (T1 > t)fT2(t)dt, (2.15)
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where fT2 is the p.d.f. of T2 and [19]

P (T1 > t) = 1−Q(
t−mT1

σT1

). (2.16)

The detailed derivation is presented in Section 2.6.2.

Averaging Collusion

We employ the matched-filter detector in Eqn.(2.10) to analyze the probability of

detection under averaging collusion. To get an analytical approximation, we first

consider an ideal fingerprinting system whose fingerprint sequences have a constant

pairwise correlation, denoted as ρ. Without loss of generality, we assume that

the first c users contribute to collusion by performing averaging operations. The

vector of detection statistics TN ’s defined in Eqn.(2.10) follows an Nu-dimensional

Gaussian distribution:

T = [TN(1), ..., TN (Nu)]
T ∼ N([m1,m2]

T , σ2
dΣ), (2.17)

with m1 = ‖s‖(1
c

+ (1− 1

c
)ρ)1c, m2 = ‖s‖ρ1Nu−c,

where 1k is an all-1 vector with dimension k-by-1, Σ is an Nu-by-Nu matrix whose

diagonal elements are 1’s and off-diagonal elements are ρ’s, σ2
d is the variance of the

noise, m1 is the mean vector for colluders, and m2 is the mean vector for innocent

users. Given the same colluder number c and fingerprint strength ‖s‖, the mean

correlation values with colluders and with innocents are separated more widely for

a smaller ρ. This suggests that in absence of any prior knowledge on collusion

pattern, a smaller ρ leads to a larger colluder detection probability Pd. Therefore,

we prefer fingerprint sequences with a small pairwise correlation ρ in the system

design.
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The pairwise correlation of ECC based fingerprinting can be calculated by

examining the code construction. Codes with a larger minimum distance have

a smaller upper bound on the correlation and thus are more preferable. This is

consistent with the principle indicated in Eqn.(2.7) to employ codes with a large

minimum distance. Under the code construction with a large minimum distance,

the largest pairwise correlation ρ0 between the fingerprinting sequences, which

corresponds to the codewords with minimum distance, will be close to 0. We

use the above equal pairwise correlation model with ρ = ρ0 to approximate the

performance of ECC based fingerprinting under averaging collusion.

Taking a Reed-Solomon code based fingerprinting as an example, we calculate

its pairwise correlation. For an L-tuple q-ary Reed-Solomon code with dimension

t, the total number of codewords is Nu = qt and the minimum distance is D =

L − t + 1. We use si and sj to represent the fingerprint sequences for user i and

user j, respectively, and wik the orthogonal sequence representing the symbol in

user i’s codeword at position k with ‖wik‖ = ‖w‖. The normalized correlation

between si and sj is

< si, sj >

‖s‖2 =
< [wi1wi2 · · ·wiL], [wj1wj2 · · ·wjL] >

L‖w‖2

≤ L−D

L
=

t− 1

L
= ρ0. (2.18)

We can choose t and L such that the correlation ρ0 is close to 0. By doing so, the

ECC based fingerprinting and the orthogonal fingerprinting should have compara-

ble resistance against averaging collusion.

Numerical results

In order to illustrate the collusion resistance derived from the above analysis, we

consider an example system with the parameters chosen as follows. For a system
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Figure 2.3: Analytical approximation of ECC-based fingerprinting under (a) inter-

leaving collusion; (b) averaging collusion; and orthogonal fingerprinting under (c)

interleaving collusion and (d) averaging collusion.

holding Nu users, the results in Eqn.(2.9) and (2.18) show that a larger L and a

smaller t are preferred in order to get better collusion resistance under interleaving

and averaging collusion. Because t can only take integer values, we take t = 2

to obtain a nontrivial Reed-Solomon code construction. This also determines q

since qt = Nu. On the other hand, larger L results in a smaller segment size for a

given host signal, which may lead to a higher error probability in symbol detection.

Typically a segment size of 1000 can provide reliable symbol detection. With an
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additional condition that L ≤ q, we choose L to be a number smaller than but close

to q. In our example considering a total of Nu = 1024 users and a host signal with

N = 3× 104 embeddable components, we choose L = 30 and use a Reed-Solomon

code with parameters of q = 32 and D = 29. According to Eqn.(2.7), the code

level alone can only assure resisting up to five users’ interleaving collusion; on the

other hand, the correlation between fingerprint sequences is only 0.03 according

to Eqn.(2.18), which suggests it should have similar performance to orthogonal

fingerprinting under averaging collusion.

We show the analytical approximation of Pd for the ECC based fingerprinting

under interleaving and averaging collusion with the above settings in Fig. 2.3(a)

and (b) respectively. The Watermark-to-Noise-Ratio (WNR) ranges from 0dB to

-20dB, which includes the scenarios from severe distortion to mild distortion. The

theoretical results for orthogonal fingerprinting from [71] are shown in Fig. 2.3(c)

and (d) for interleaving collusion and averaging collusion, respectively. Comparing

Fig. 2.3(b) and (d), we see that under averaging collusion, the orthogonal finger-

printing and the ECC based fingerprinting constructed above have similar colluder

identification performance. They both can resist at least a few dozens colluders’

averaging attack under high WNR and about half dozen’s under very low WNR.

This is consistent with the above analysis of the collusion resistance against av-

eraging collusion. Thus from colluders’ point of view, averaging collusion for an

ECC based fingerprinting system is not a very effective strategy. However, un-

der interleaving collusion, we observe from Fig. 2.3(a) and (c) a huge gap on the

collusion resistance between the two systems. For orthogonal fingerprinting, the

probability of colluder detection under interleaving collusion is the same as that

under averaging collusion owing to the orthogonal spreading; at WNR = 0dB, the
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Pd remains close to 1 when c is around a few dozens. On the other hand, the

detection probability of the ECC based fingerprinting drops sharply when more

than seven colluders come to create an interleaved copy, even when WNR is high.

Thus from colluders’ point of view, interleaving collusion is an effective strategy

to circumvent the protection.
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Figure 2.4: Simulation results of ECC based fingerprinting under (a) interleaving

collusion; (b) averaging collusion; and orthogonal fingerprinting under (c) inter-

leaving collusion and (d) averaging collusion.

To validate the analysis, we apply both systems to a host signal that is modelled

as an i.i.d. Gaussian sequence with length N = 3 × 104. This simple assumption
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on the host signal suits the fingerprinting applications well since the host signal

is often known to the detector, and its effect will be mostly removed by subtract-

ing it from the colluded signal. As such, the distribution of host signal does not

have a major effect on the detection performance. The detector in Eqn.(2.10) is

employed for both fingerprinting systems. We measure the probability of correctly

catching a colluder (Pd) for different values of colluder number c. The results of

200 iterations are shown in Fig. 2.4. Notice that the analytical approximation of

ECC based fingerprinting under interleaving collusion (Fig. 2.3(a)) is higher than

the measured value of Pd for large c. This is because the analysis in Eqn.(2.12)-

(2.14) considers the maximum number of matched symbols between the colluded

codeword and an innocent codeword as c(L − D). Using such an assumption to

estimate Pd becomes less accurate for large c. However, the analytical approxi-

mation captures the trend and provides an upper bound for the Pd of ECC based

fingerprinting under interleaving collusion. All other analytical results match well

with the simulation results. In summary, the simulation results verify the analyt-

ical approximation derived for interleaving collusion and averaging collusion, and

validate the conclusions drawn from the analytical results.

2.5 Chapter Summary

When designing a fingerprinting system, a better trade-off between the collusion

resistance and other performance measures, such as detection computational com-

plexity, is desired. Although orthogonal fingerprinting performs well in collusion

resistance, its detection computational complexity and distribution cost are expen-

sive as we have seen in Section 2.4.1 and 2.4.2. The significant computational and

distribution advantages of ECC based fingerprinting motivate us to find avenues to
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improve its collusion resistance, especially to reduce the performance gap between

the ECC based fingerprinting and orthogonal fingerprinting while preserving its

efficient detection and distribution. In the following two chapters, we identify two

directions for improving collusion resistance and propose two new techniques that

jointly consider coding and embedding of fingerprint, namely, Permuted Subseg-

ment Embedding and Group Based Joint Coding and Embedding (GRACE) finger-

printing.

2.6 Appendix: Derivations

2.6.1 Derivation of Inequality (2.8) and (2.9)

In this appendix section, we derive the minimum distance requirement of a c-

TAq(L,Nu; Le, LFA) code and the construction of such a code through Reed-

Solomon codes.

Let Γ be an ECC of length L with Nu codewords over an alphabet of size q, and

c an integer. If its minimum distance D satisfies

D > (1− 1

c2
)L +

c + 1

c2
LFA +

1

c2
Le, (2.19)

then Γ is c− TAq(L,Nu; Le, LFA).

Proof: Following the strategies by [52], for ω ∈ X(C), if |C| < c, then there exists

υi ∈ C such that υi and ω have at least (L − Le − LFA)/c in common. Here

X(C) denotes the set of the codeword with no more than Le erasures and no more

than LFA erroneous colors over an extended alphabet Σ ∪ {?}, where {?} is the

erasure symbol. Then the number of common symbols between υi and ω, defined

as λ(υi, ω), satisfies λ(υi, ω) ≥ (L − Le − LFA)/c. On the other hand, for any
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ϕ ∈ Γ \ C,

λ(ϕ, ω) ≤ λ(ϕ, υ1) + ... + λ(ϕ, υc) + LFA ≤ cλmax + LFA.

From (2.7), we have c2(L−D) + cLFA < L− Le − LFA. It follows that λ(ϕ, ω) ≤
cλmax + LFA ≤ λ(υi, ω). Thus υi can be identified correctly. �

For simplicity, we can treat the erasures as errors i.e. Le = 0, which reflects

the case of the maximum detector we considered in this thesis. Then we have the

following corollary for constructing c − TAq(L,Nu; LFA) code via Reed-Solomon

code.

Among Reed-Solomon code with alphabet size q, there exists a c−TAq(L,Nu; LFA)

code with minimum distance

D > (1− 1

c2
)L +

c + 1

c2
LFA, (2.20)

where the total codeword number Nu = qt and t = 	 L
c2
− c+1

c2
LFA
.

Proof: The minimum distance for a Reed-Solomon code is D = L − t + 1. If we

choose

t = 	L
c2
− c + 1

c2
LFA
,

then

t <
L

c2
− c + 1

c2
LFA + 1.

Therefore,

D = L− t + 1 > (1− 1

c2
)L +

c + 1

c2
LFA.

From Eqn. (2.19), this code is a c− TAq(L,Nu; LFA) code. �
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2.6.2 Derivation of Eqns. (2.12)-(2.14)

In this appendix section, we presents the detailed derivation of the detection statis-

tic distribution under interleaving collusion.

Given the colluded signal z generated through interleaving followed by additive

white gaussian noise, we obtain the correlation-based statistic TN for each user as

TN(j) =
(z− x)T sj√‖sj‖

j = 1, ..., Nu, (2.21)

where x is the host signal, sj is the fingerprint signal of user j by concatenating

the fingerprint sequence corresponding to the symbols in user j’s codeword. TN(j)

follows a Gaussian distribution

TN(j) ∼ N(
‖u‖
L
× (L− d(r, cj)), σ

2
d). (2.22)

Here, r is the extracted colluded codeword, cj is the codeword for user j, d(·, ·) is

the hamming distance metric, and ‖u‖ is the strength of the fingerprint sequence

corresponding to one symbol. From the modulation and embedding layer, all the

‖sj‖’s are the same and equal to
√

L‖u‖ with the code length denoted as L. We

define

T1 = max
j∈SC

TN(j), T2 = max
j /∈SC

TN(j), (2.23)

where SC is the colluder set.

For simplicity, we approximate T1 and T2 using Gaussian distributions condi-

tional on random variables MC and MI , respectively

T1|MC ∼ N(
‖u‖
L

MC , σ2
d), T2|MI ∼ N(

‖u‖
L

MI , σ
2
d), (2.24)

where MC = maxj∈SC
(L − d(r, cj)) and MI = maxj /∈SC

(L − d(r, cj)) indicate the

maximum number of matched symbols of colluded codeword with colluders’ code-

words and with innocent users’ codewords respectively. Notice that for MI , the
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maximum value is c(L − D) and minimum value is 1. Then we approximate the

mean and variance of MI as (c(L−D)+1)/2 and σ2
I = ((c(L−D)−1)/6)2, respec-

tively. Similarly, the maximum value of MC is L/c+ (c− 1)(L−D) and minimum

value is L/c and we approximate its mean as L/c + β(c− 1)(L−D) and variance

as σ2
C = (β(c − 1)(L − D)/3)2. β is set to a value less than 1/2, which reflects

the fact that lower values of the MC is more likely to happen than higher values.

Under these assumptions, we can further approximate T1 and T2 using Gaussian

distribution with means and variances calculated as follows:

m1 = E[T1] = EMC
[E[T1|MC ]] =

‖u‖√
L

(
L

c
+ (c− 1)(L−D)β)

σ2
1 = V ar[T1] =

‖u‖2
L

σ2
C + σ2

d

m2 = E[T2] = EMI
[E[T2|MI ]] =

‖u‖√
L
× c(L−D) + 1

2

σ2
2 = V ar[T2] =

‖u‖2
L

σ2
I + σ2

d

with σ2
I = (

c(L−D)− 1

6
)2, σ2

C = (
β(c− 1)(L−D)

3
)2

where β is used to adjust the approximation. We examined several β values, and

choose β = 5/12 for a good approximation.
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Chapter 3

Joint Coding and Embedding

with Permuted Subsegment

Embedding

From Chapter 2, we have seen that coded fingerprinting has efficient detection

but rather low collusion resistance. In this Chapter, we explore avenues that can

both retain the advantages provided by the ECC-based fingerprinting and improve

the collusion resistance. We have observed that the existing ECC fingerprinting

works put most of the attention on the code layer and few work has considered the

interaction between coding and embedding. In the mean time, joint consideration

of coding and embedding has shown promising results recently in [64] for non-

segment based fingerprinting. This motivates us to examine the interplay between

the ECC code layer and the embedding layer. As we shall see, by employing a

strategic embedding mechanism referred to as the Permuted Subsegment Embed-

ding for putting the ECC fingerprint code into host media, we can benefit from

the joint consideration of coding and embedding for ECC-based fingerprinting and
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substantially improve its collusion resistance. Based on the proposed embedding

technique, we will further study how to choose fingerprinting codes to meet various

requirements on collusion resistance and detection efficiency.

3.1 Permuted Subsegment Embedding

3.1.1 The Proposed Embedding Method

We have observed from Section 2.4.3 a drastic difference in the collusion resistance

against averaging and interleaving collusions of ECC based fingerprinting. This

inspires us to look for an improved fingerprinting method, for which the interleaving

collusion would have a similar effect to averaging collusion. Careful examination on

the two types of collusion shows that the difference in the resistance against them

comes from the amount of role given to the embedding layer to play. The segment-

wise interleaving collusion is equivalent to the symbol-wise interleaving collusion

on the code level, since each colluded segment comes from just one user. The

collusion resilience primarily relies on what is provided by the code layer and almost

bypasses the embedding layer. Because of the limited alphabet size, the chance

for the colluders to interleave their symbols and to create a colluded fingerprint

close to the fingerprint of an innocent user is so high that it would require a large

minimum distance in the code design, if to handle this on the code level alone. This

means that either codes representing a given number of users can resist only a small

number of colluders, or codes can represent only a small total number of users. On

the other hand, for averaging collusion, every colluder contributes his/her share in

every segment. Through a correlation detector, the collection of such contribution

over the entire test signal leads to high expected correlation values when correlating
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with the fingerprints from the true colluders, and to low expected correlation values

when with the fingerprints from innocent users. In other words, the embedding

layer contributes to defending against the collusion. This suggests that more closely

considering the relation between fingerprint encoding, embedding, and detection

is helpful to improve the collusion resistance against interleaving collusion.

The basic idea of our improved algorithm is to prevent the colluders from

using the whole segment that carries one symbol as an interleaving unit and to

exploit the code-level limitation. We accomplish this by making each colluded

segment contain multiple colluders’ contribution. Our solution builds upon the

existing code construction and performs two important additional steps that we

collectively refer to as Permuted Subsegment Embedding [32]. As shown in Fig. 3.1,

consider as before a fingerprint signal generated by concatenating the appropriate

sequences corresponding to the symbols in a user’s codeword. We first partition

each segment of the fingerprint signal into β subsegments, giving a total of βL

subsegments. We then randomly permute these subsegments according to a secret

key to obtain the final fingerprint signal to represent the user. In detection, the

extracted fingerprint sequence is first inversely permuted and then the correlator

Eqn.(2.10) is applied to identify the colluder.

With subsegment partitioning and permutation, each colluded segment after

interleaving collusion most likely contains subsegments from multiple users. To

correlation-based detectors (including both hard and soft detection on the symbol

level), this would have a similar effect to what averaging collusion brings. Since

averaging collusion is far less effective from the colluders’ point of view, the per-

muted subsegment embedding can greatly improve the collusion resistance of ECC

based fingerprinting under interleaving collusion. Even if the colluders know the
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Figure 3.1: Illustration of the permutated subsegment embedding for ECC based

fingerprinting: (a) the conventional ECC based fingerprinting, (b) the proposed

scheme.

actual size of a segment or a subsegment, the permutation unknown to them pre-

vents them from creating a colluded signal with the equivalent effect of symbol

interleaving in the code domain.

3.1.2 Detection Analysis against Interleaving Collusion

Consider an ECC-based fingerprinting on a code [L, t,D] with code length L, di-

mension t and minimum distance D. Each symbol is mapped to a spreading

sequence with strength ‖u‖. After the permuted subsegment embedding with β,

each fingerprint sequence consists of βL subsegments, and each subsegment has

strength ‖u‖/β. Notice that after permuted subsegment embedding, the colluders

cannot identify which subsegment corresponds to which symbol even if they know

the segment size. Thus, permuted subsegment embedding has the effect that it
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forces colluders to perform interleaving collusion using subsegments. In the follow-

ing analysis, we take this observation and approximate the collusion strategy as

subsegment-wised interleaving collusion, under which, the permutation does not

affect the results.

Denote the colluded fingerprint sequence as y which is generated by subsegment-

wise interleaving from c colluders plus an additive Gaussian noise n with mean 0

and variance σd, i.e.

y = ITL(s1, s2, ..., sc) + n, (3.1)

where ITL denotes the subsegment-wise interleaving collusion. Without loss of

generality, we assume the first c colluders perform collusion attack.

We employ correlation based detection as we mentioned earlier in Chapter 2,

i.e.

TN(j) =
(z− x)T sj√‖sj‖2

j = 1, ..., Nu. (3.2)

TN follows a Gaussian distribution for both colluders and innocent users with

different mean values, i.e.,

T = N([m1,m2], Σ) (3.3)

where m1 and m2 are the mean values for colluder and innocent user, respec-

tively, and they are determined by the matches between the colluded signal (be-

fore applying additive noise) and colluders’(innocents’) users. In a fair subseg-

ment interleaving collusion, the colluders contribute approximately equal amount

of subsegments and thus one colluder contributes �βL/c� subsegments on average.

Besides the contributed segments, matches may also come from the shared seg-

ments among the codewords. For a [L, t,D] code, there are maximum of L − D

matches between codewords for L symbols. Then for (βL − �βL/c�) symbols,
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there are �(βL − �βL/c�)(L − D)/L� matches on average. Thus we arrive at

�βL/c�+ �(L−D)/L(βL−�βL/c�)� matches between the colluded codeword and

user i’s codeword. For an innocent user j, the matches only come from the code

itself, it would be �((L−D)/L)Lβ�.
The variance matrix Σ can be derived as follows:

Σ(i, j) = E[(TN(i)− E(TN(i)))(TN(j)− E(TN(j)))]

= E[
(nT si)(n

T sj)

‖s‖2 ] = sT
i E[nnT ]sj = sT

i sj (3.4)

=

⎧⎪⎪⎨
⎪⎪⎩

L−D
L

for i �= j

1 for i = j

. (3.5)

In summary, the detection statistic TN follows Nu dimension Gaussian distri-

bution:

T ∼ N([mITL
1 ,mITL

2 ], Σ) (3.6)

with mITL
1 = (�βL

c
�+ �L−D

L
(βL− �βL

c
�)�)‖s‖

βL
; (3.7)

mITL
2 = �L−D

L
Lβ�‖s‖

βL
; (3.8)

Recall that under averaging collusion, the detection statistic follows the distribu-

tion

T = [TN(1), ..., TN (Nu)]
T ∼ N([mAV G

1 ,mAV G
2 ]

T
, σ2

dΣ), (3.9)

with mAV G
1 = ‖s‖(1

c
+ (1− 1

c
)ρ)1c, mAV G

2 = ‖s‖ρ1Nu−c,

where ρ = L−D
L

. We can see that as β increase, TN approaches the distribution

under averaging collusion. This can be shown through the following example. We

take the Reed-Solomon Code [L, t,D] = [30, 2, 29] and consider c = 25. Under

averaging collusion, mAV G
1 = 2.16‖s‖/30 · 1c,m

AV G
2 = ‖s‖/30 · 1Nu−c. Under
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interleaving collusion, mITL
2 = ‖s‖/30 · 1Nu−c for any β value, which is the same

as that under averaging collusion. We denote mITL
1 = A‖s‖/L · 1c. Then it is

sufficient to examine the coefficient A under different β values and compare it

with 2.16. For example, when β = 1, it is the traditional ECC fingerprinting

A = (�30
25
�+ � 1

30
(30− �30

25
�)�)/β = 1. We summarize the results for other β values

in Table 3.1.

Table 3.1: Coefficient A values for different β

β 1 2 4 5 10 ... 1000

A 1 1.5 1.75 2 2.1 ... 2.16

We can see that the parameter β controls the “approximation” level of the

effect of interleaving collusion to that of averaging collusion. Larger β provides

a finer granularity in subsegment division and permutation. Thus each segment

may contain subsegments from more colluders, leading to better approximation

and better collusion resistance. We verify this relation by building an improved

ECC based fingerprinting system with different β values upon the experiment setup

in Section 2.4.3. That is, we choose Reed-Solomon code of length 30, dimension 2

and minimum distance 29 for fingerprint construction. The host signal length is

10,000. Fig. 3.2 shows the results when a total of c = 25 colluders perform segment-

wise interleaving with WNR = 0dB. We can see that higher β indeed gives higher

detection probability Pd. On the other hand, a larger β may incur higher compu-

tational complexity in permutation. Thus a tradeoff should be made according to

the requirements of a specific application. Notice that for the particular system

we examined in Fig. 3.2, the improvement on the detection probability saturates

when β > 5. Therefore, we choose β = 5 for this system in later experiments to
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Figure 3.2: Probability of catching one colluder Pd versus β for c = 25 and WNR

= 0dB of the proposed scheme.

obtain a good trade-off between the permutation computational complexity and

the detection performance improvement.

3.1.3 Experimental Results

We evaluate the performance of the improved system with β = 5 under various

WNRs, and show the results in Fig. 3.3(a) for segment-wise interleaving collusion.

For comparison, we show the performance of the conventional ECC based finger-

printing under segment-wise interleaving collusion in Fig. 3.3(c). We can see that

the detection probability of the proposed system is substantially improved over the

conventional ECC based fingerprinting system under the same interleaving collu-

sion. Under around two dozens users’ collusion, the probability of detection Pd

increases to up to four times of that for the conventional ECC based fingerprinting

at high and moderate WNRs. In the meantime, the gap between the performance

of the proposed system in Fig. 3.3(a) and that of the orthogonal fingerprinting in
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Fig. 2.4(c) is very small.

Next, Fig. 3.3(b) shows the results for interleaving collusion using subsegment

as a unit. We observe from Fig. 3.3(a) and (b) that when many users come to-

gether to perform interleaving collusion (i.e. for large c), the performance of the

proposed system is a little worse when the interleaving is done using a subsegment

as a unit than that when using a segment as a unit. This is because the probability

that one segment contains only one colluder’s trace after subsegment interleaving

and inverse permutation is a little higher than that after segment interleaving. As

we have pointed out earlier, one segment containing more colluders’ information

after the collusion leads to a higher performance in colluder detection. As such

the collusion resistance against subsegment interleaving is slightly worse than that

against segment interleaving. Overall the proposed system has similar performance

under two types of interleaving collusion and gives a high detection probability for

up to two dozens colluders at moderate to high WNR. Since the permuted subseg-

ment embedding does not affect the performance of the system under averaging

collusion, the Pd under averaging collusion remains unchanged. We can see that

the proposed system based on the joint consideration of the fingerprint coding and

embedding has effectively improved the collusion resistance.

3.1.4 Discussions

The Role of Permutation

Random permutation is a useful technique that has found quite a few applications

in data embedding. It was used in image watermarking to equalize the uneven

embedding capacity [75], and was applied to a simple staircase construction of

binary fingerprint code to prevent framing innocent users [9]. In our proposed work,
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Figure 3.3: Collusion resistance of the improved ECC based fingerprinting with

permuted subsegment embedding technique under (a) segment-wise and (b)

subsegment-wise interleaving collusion; (c) Collusion resistance of the conventional

ECC based fingerprinting under interleaving collusion.

we employ random permutation to make each segment after interleaving collusion

contain multiple colluders’ information, thus mimicking the effect of averaging

collusion and improving the collusion resistance against interleaving collusion.
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Computational Complexity of Fingerprint Detection and Efficient Dis-

tribution

The detection of the improved ECC based fingerprinting using permuted subseg-

ment embedding consists of three steps: inverse permutation, demodulation by

correlation, and decoding to certain colluder. The computational complexity of

the inverse permutation is O(βL). As we have analyzed in Section 2.4.1, the other

two steps need at most O(qN) computations. Thus the improved ECC fingerprint-

ing has complexity of O(βL) + O(qN). Since the largest possible value of βL is

the total number of the embeddable components N , the demodulation step still

dominates the overall complexity. Therefore, the overall computational complexity

remains at O(qN).

Notice that in the improved ECC based fingerprinting, for each subsegment,

there are only q different versions. The efficient distribution of fingerprinted sig-

nal discussed earlier for ECC based fingerprinting is still applicable here except

that the multicast becomes subsegment based instead of segment based. While

the bandwidth efficiency (in terms of the cost ratio γ defined earlier) remains

unchanged, the multicast groups have to be updated when transmitting each sub-

segment [48]. The more subsegments (or larger β) we have, the more frequently we

have to switch the multicast grouping. This overhead should be taken into account

when choosing β.

Comparison Criteria

The results in Fig. 3.3 show that the proposed permuted subsegment embedding

provides significant collusion resistance improvement for ECC based fingerprinting

with only a small increase of computation and distribution cost. Moreover, differ-
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ent user-capacity requirements can be accommodated by preserving the alphabet

size and adjusting the dimension of the ECC. For Reed-Solomon code, this can

be done by adjusting the dimension parameter t. We summarize in Table 3.2 the

collusion resistance, detection and distribution efficiency for three fingerprinting

systems, namely, ECC based fingerprinting (“ECC FP” in short), improved ECC

based fingerprinting with permuted subsegment embedding, and orthogonal fin-

gerprinting (“Orth FP” in short). Overall, the improved ECC based fingerprinting

provides a better tradeoff among these three criteria over the conventional schemes,

and offers flexibility to accommodate different application requirements.

Table 3.2: Performance Comparison of Fingerprinting Systems

Orthogonal FP Improved ECC FP ECC FP

Collusion Resistance

to interleaving collu-

sion (colluder #)

One order of

magnitude more

than the number

of ECC FP

Between ECC and

Orth FP. Approach

to averaging collu-

sion for large β.

On the order

of
√

q

Collusion Resistance

to averaging collusion

(colluder #)

Same as interleav-

ing collusion

Similar to Orth FP

for small ρ

Similar to

Orth FP for

small ρ

Detection Computa-

tional Complexity

O(NuN) O( t
√

NuN) O( t
√

NuN)

Distr. Efficiency γ 1 q1−t q1−t

It is worth noting that the comparison that we have seen is the resistance

against averaging collusion and interleaving collusion at the same WNR. Under

such settings, we have found that interleaving collusion is a more effective attack

than averaging collusion. We thus focus on improving the system’s resistance
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against interleaving collusion, and propose the permuted subsegment embedding

technique to bring similar performance against both types of collusions. Another

possible comparison setting is to keep the same Mean Square Error (MSE) of the

colluded signal with respect to the original signal for both types of collusions.

Notice that for fingerprint sequences with small correlation, averaging operation

brings the colluded signal (before additive noise and other further distortions)

close to the original signal. As such, for the same level of overall MSE distortion,

averaging collusion allows stronger noise to be added than interleaving collusion

does. In this sense, averaging collusion may become more effective than interleav-

ing collusion after permuted subsegment embedding, especially when the number

of colluders is large. The detailed colluder tracing results under this alternative

setting can be obtained by mapping the WNR in Fig. 3.3 to the corresponding

MSE distortion.

3.2 The Effect of Code Parameters on Finger-

printing Performance

We have seen from the previous section that the proposed permuted subsegment

embedding substantially improves the collusion resistance of coded fingerprinting.

With this improvement, coded fingerprinting has a better trade-off between col-

lusion resistance and detection efficiency than the non-coded fingerprinting. One

question that remains to be answered is the effect of the code parameters on

the performance of the fingerprinting systems. In this section, building upon the

cross-layer framework and employing our proposed permuted subsegment embed-

ding technique, we examine the performance of different fingerprint codes, that
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have tracing capability and are able to resist collusion. We collectively call these

codes traceability codes. The term of “traceability codes”, as will be discussed

later, also refers to a specific type of traceability codes with the property that the

colluded codeword has smaller distance to one of the guilty codewords than any

other innocent codeword. To avoid confusion, in this section, we will use “TA

codes” to represent this type of traceability codes.

3.2.1 Traceability Codes

In the literatures of fingerprint code design, codes such as Identifiable Parent Prop-

erty(IPP) codes and Traceability(TA) codes are widely studied [5,13,14,52,56,65,

66]. We briefly review these two kinds of codes in the following.

c-TA Code

A c-TA code satisfies the condition that any colluded codeword by any c (or fewer)

colluders has a smaller distance to at least one of these colluders’ codewords than

to the innocent users’ [56]. We can construct a c-TA code using an established

Error Correcting Code (ECC), provided that the minimum distance D is large

enough and satisfies [56]

D >

(
1− 1

c2

)
L. (3.10)

Here L is the code length and c is the number of colluders that the code is intended

to resist. With the minimum distance achieving the Singleton bound, a Reed-

Solomon code is a natural choice for constructing a c-TA code. Then, the number

of c-TA codewords over an alphabet of size q constructed through a Reed-Solomon

code is Nu = qt, where t = 	L/c2
.
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c-IPP Code

A c-IPP code satisfies the condition that any colluded codeword by a coalition of

size at most c can be traced back to at least one member of the coalition [56].

A c-TA code is a c-IPP code, but a c-IPP code is not necessarily a c-TA code.

Therefore, the set of c-TA codes is a subset of c-IPP codes. In terms of the

traceability, the c-TA codes are stronger than those c-IPP codes that are not c-TA

codes, which we call proper c-IPP codes. Van Trung et al. propose a method that

can be used to construct a proper c-IPP code as follows [65]:

Let A be an (L2, N2, q2) c-IPP code with code length L2, codeword number

N2 and alphabet size q2. Let B be an (L1, q2, q1) c-IPP code with code

length L1, codeword number q2 and alphabet size q1. Then the concatenated

code C of A and B is an (L1L2, N2, q1) c-IPP code with code length L1L2,

codeword number N2 and alphabet size q1.

The concatenation of code A and code B is done by replacing each symbol in the

alphabet of code A by a codeword in code B. Since a c-TA code is also a c-IPP

code, the construction of a proper c-IPP code can be done by concatenating two

c-TA codes.

In this section, we are interested in the comparison of c-TA codes with proper

c-IPP codes. From this point on, for the sake of brevity we use the term c-IPP

codes to refer to proper c-IPP codes.
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Figure 3.4: Simulation results for IPP codes and TA codes based fingerprinting

systems: the performance of 2-IPP code based system under (a) interleaving col-

lusion and (b) averaging collusion; the performance of 2-TA code based system

under (c) interleaving collusion and (d) averaging collusion. The performance

of both systems under (e) interleaving collusion and (f) averaging collusion with

WNR=−12dB.
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3.2.2 Performance Evaluation

c-IPP codes versus c-TA codes

Inequality (3.10) shows the sufficient condition for a code to be a c-TA code, and

it does not hold for a c-IPP code. Rewriting inequality (3.10) as

L−D

L
<

1

c2
,

and combining it with Eqn.(2.18), we can see that a c-TA code has pairwise corre-

lation ρ0 < 1/c2, while c-IPP code has pairwise correlation ρ0 > 1/c2. According

to the analysis in Section 2.4.3, the fingerprinting system constructed on c-TA code

should have better performance than the fingerprinting system employing c-IPP

code.

To validate the analysis, we examine the performance of a c-IPP code based

fingerprinting system and a c-TA code based fingerprinting system through simu-

lation. For a host signal with length N = 40, 000, we design two systems that are

capable of holding Nu = 256 users as follows:

• System 1 is built upon a 2-IPP code (40,256,4) with code length L=40,

codeword number Nu = 256 and alphabet size q=4. This 2-IPP code is

constructed through the concatenation of two 2-TA Reed-Solomon codes

(8,256,16) and (5,16,4) following the method proposed in [65]. The pairwise

correlation of the fingerprint sequences ρ0 is 0.3 according to Eqn. (2.18).

• System 2 is built upon a 2-TA Reed-Solomon code (8,256,16) with code

length L=8, codeword number Nu = 256 and alphabet size q=16. The

pairwise correlation ρ0 is 0.14.

In both systems, we employ our proposed permuted subsegment embedding tech-

nique and choose the same subsegment size 200 for permutation. We examine
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the probability of catching one colluder Pd of both systems against interleaving

collusion and averaging collusion with colluder number c ranging from 2 to 30

and Watermark-to-Noise-Ratio(WNR) ranging from -20dB to 0dB. The simula-

tion results are shown in Fig. 3.4. For ease of comparison, we show the case of

WNR=−12dB in Fig. 3.4(e) and (f). From the results, we can see that under

averaging collusion (Fig. 3.4(b), (d) and (f)) 2-TA code based System 1 has 8%

gain in the probability of detection Pd. Under interleaving collusion (Fig. 3.4(a),

(c) and (e)), the performance gain can be up to 30%. The results are consistent

with our analysis that due to the low pairwise correlation among the fingerprint

sequences, 2-TA code based system outperforms 2-IPP code based system in all

the cases we examined.

c-TA codes with different parameters

From the above comparison results, we can see that the fingerprint sequences

constructed based on a c-TA code have lower correlation than the sequences con-

structed based on a c-IPP code. This low correlation helps defending against

collusion attacks. A TA code is thus preferred in designing the fingerprint se-

quences. A natural question is that, given a host signal and the number of users

the system needs to hold, how should we choose the parameters of TA codes to

achieve good collusion resistance.

In the following, we consider TA codes constructed on Reed-Solomon codes over

alphabet size of q with dimension t. Examining Eqn. (2.18) we find that in order

to get a small ρ0, we can decrease t and increase L. In order to meet the desired

number of users Nu and reduce the dimension t, larger q is preferred. Moreover,

for Reed-Solomon code (including extended Reed-Solomon code), L ≤ q + 1. In
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Figure 3.5: Simulation results for systems with different code parameters under

collusion attacks: System 3 under (a) Interleaving Collusion and (b) Averaging

Collusion; System 4 under (c) Interleaving Collusion and (d) Averaging Collusion;

System 5 under (e) Interleaving Collusion and (f) Averaging Collusion.
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Figure 3.6: Simulation results for systems with different code parameters under

interleaving and averaging collusion at WNR = 0dB and -8dB. (a) Interleaving

Collusion with WNR = 0dB; (b) Averaging Collusion with WNR = 0dB; (c) In-

terleaving Collusion with WNR = -8dB and (d) Averaging Collusion with WNR

= -8dB
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order to get larger L, a larger q is also preferred. Therefore, our conjecture is that

the fingerprinting system constructed on a TA code with a larger alphabet size q

and a longer code length L should have better collusion resistance.

To validate our analysis, we examine the collusion resistance of the systems

with various parameters through simulations. We construct three fingerprinting

systems as follows:

• System 3 is built upon a TA code (15, 4096, 16) with code length L =

15, codeword number Nu = 4096 and alphabet size q = 16. According to

Eqn. (2.18), the pairwise correlation ρ0 is 0.13.

• System 4 is built upon a TA code (14, 4096, 64) with code length L =14,

codeword number Nu=4096 and alphabet size q =64. The pairwise correla-

tion ρ0 is 0.07.

• System 5 is built upon a TA code (62, 4096, 64) with code length L =62,

codeword number Nu=4096 and alphabet size q =64. The pairwise correla-

tion ρ0 is 0.016.

System 3 and System 4 have approximately the same code length but different

alphabet size. System 4 and System 5 have the same alphabet size but different

code lengths. All the systems are designed to protect a host signal with length

N = 15, 000 and to accommodate Nu = 4096 users. We employ the permuted sub-

segment embedding technique for the fingerprint embedding, and a subsegment size

of 50 is chosen for the permutation. We examine the probability of catching one

colluder Pd of all three systems against interleaving collusion and averaging collu-

sion, with colluder number c ranging from 2 to 20 and WNR ranging from -20dB to

0dB. We show the simulation results in Fig. 3.5, where the results for WNR = 0dB
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and -8dB cases are shown separately in Fig. 3.6 for better illustration. Comparing

System 3 and System 4, we observe that under averaging collusion (Fig. 3.6(b)

and (d)) System 4 with a larger alphabet size has 8% gain in the probability of

detection Pd. The performance gain under interleaving collusion (Fig. 3.6(a) and

(c)) can be as high as 40%. The comparison of System 3 and System 4 shows that

with the same code length and the same subsegment permutation, the system with

a larger alphabet size has better performance. Comparing System 4 and System

5, we can see that under both averaging and interleaving collusions, System 5 has

about a 5% performance gain due to a longer code length. This small performance

gain is because in this particular experimental settings, the pairwise correlations

of both System 4 and 5 are very small and close to 0. There is little room for

the improvement brought about by the smaller pairwise correlation of System 5.

The simulation results of all three systems are consistent with our analysis in Sec-

tion 2.4.3 in that TA codes with larger alphabet size q and longer code length L

result in fingerprint sequences with smaller pairwise correlation, and thus better

collusion resistance.

3.2.3 Discussions

The above results show that larger q and L values are preferred in code construc-

tion. However, q and L cannot be chosen arbitrarily. There are several constraints

on them depending on the code constructions. Specifically, for the Reed-Solomon

code construction, we have following constraints:

System requirement on the total user number: q = t
√

Nu; (3.11)

Reed-Solomon code construction constraint: L ≤ q + 1; (3.12)

Orthogonality of the FP sequences for each segment: q ≤ N

L
. (3.13)
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where N is the host signal length, Nu is the total number of users, q is the alphabet

size and L is the code length. Taking L as the maximum value q + 1, we get from

(3.13) that

q(q + 1) ≤ N ; (3.14)

which means the upper bound of q value is roughly on the order of
√

N . Usually,

in multimedia fingerprinting the host signal length N >> Nu and t ≥ 2 for Reed-

Solomon codes. Therefore, Eqn. (3.11) is a more stringent requirement on q. In

Eqn. (3.11), the dimension t can be used to achieve the desired trade-off between

the collusion resistance and the computational complexity in detection which is

O(qN) according to Section 3.1.4. For example, in applications where the detection

computation resources are very limited, we can first choose a small q to achieve a

low complexity detection and then adjust t value to reach a large user capacity.

On the other hand, if the detection complexity is not a major concern, the system

designer can fix t to be 2 and q =
√

Nu to minimize the correlation for high

collusion resistance. We can see that these parameters provide a tradeoff between

collusion resistance and efficiency, and they should be chosen according to the

priority of various design requirements. Notice that the extreme case of t = 1

reduces to orthogonal fingerprinting which has better collusion resistance but high

computational complexity in detection [32].

Other c-TA code constructions can be analyzed in a similar way. It is worth

mentioning that the TA code proposed in [66] can be regarded as a TA code with

dimension t lying between 1 and 2, which offers a fine adjustment on the trade-off

between the collusion resistance and detection efficiency.
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3.3 Chapter Summary

In this chapter, we focus on improving the collusion resistance of the ECC based

fingerprinting while retaining its advantages in detection complexity and fast dis-

tribution. We have discovered a gap in the collusion resistance of ECC based

fingerprinting between the averaging and interleaving collusions. Our analysis on

the gap suggests a great need of jointly considering the coding, embedding, and

detection issues, and inspires to the proposed technique of permuted subsegment

embedding. Experimental results demonstrate that the proposed technique can

substantially improve the collusion resistance of ECC based fingerprinting, while

inheriting the advantage in detection complexity and efficient distribution.

Based on the proposed technique, we then examine the collusion resistance

of the coded fingerprinting. The results show that for a given host signal the

pairwise correlation among fingerprint sequences is a key indicator of the collusion

resistance, the lower the correlation the higher the collusion resistance. According

to this principle, c-TA codes can be used to introduce a lower correlation among

fingerprint sequences and thus is preferred over c-IPP codes in fingerprint design.

Furthermore, a TA code with a larger alphabet size and a longer code length can

provide better collusion resistance. The fingerprinting code construction provides

a systematic way to introduce the correlation and to achieve a desired trade-off

between the collusion resistance and detection efficiency.
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Chapter 4

GRACE: Group Based Joint

Coding and Embedding

Our second joint coding and embedding technique is rooted from the observation

that a user is often not equally likely to collude with other users in practice. For

example, users in the same geographic area or having similar social or cultural

background may be more likely to collude. Taking advantage of this prior knowl-

edge, Wang et al. proposed group-oriented fingerprinting to enhance the collusion

resistance of non-coded orthogonal fingerprinting [70]. In their work, users are put

into groups according to the group collusion behavior, and each user’s fingerprint

consists of two parts of information identifying each individual user as well as the

group he/she is in. The group information is used in the detection to narrow down

the suspicious user set. Such kind of prior knowledge on the collusion pattern has

not been exploited in the coded fingerprinting, where new issues arise, such as how

to group users and how to construct and embed the group information and user

information.

In the meantime, the results in the Chapter 2 suggest that the performance of
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the conventional ECC based fingerprinting is mainly restricted by the code struc-

ture especially for high WNR where the symbol detection from the embedding layer

has high accuracy. For example, we see from Fig. 2.4(a) that as WNR increases

from -20dB to 0dB, the detection probability of the ECC based fingerprinting only

increases 0.1-0.15 compared with the huge increase of 0.7-0.8 in orthogonal finger-

printing. Based on this observation, it is possible to use part of the fingerprint

energy to embed group information to facilitate the colluder detection, while keep-

ing the symbol detection accuracy high enough. We thus propose the Group Based

Joint Coding and Embedding (GRACE) fingerprinting system [31]. In the GRACE

fingerprinting, we construct the fingerprint sequence by superposing the sequences

for the group information and the user codeword. This combined fingerprint is

spread over the host signal during embeddding. As we shall see, this joint coding

and embedding significantly improves the collusion resistance of the ECC based

fingerprinting.

4.1 Incorporating Grouping in Coded Fingerprint-

ing

4.1.1 Fingerprint Construction and Embedding

We partition the codewords in ECC based fingerprinting into groups to capture

the collusion pattern, and assign symbols to each group to represent the group in-

formation. We call these group symbols “group subcode”, and refer to the symbols

for distinguishing individual users as “user subcode”. Thus each user’s fingerprint

consists of two parts, namely, user subcode and group subcode.
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Algorithm 1 Group construction in GRACE fingerprinting

1: Set the group index i = 1, initialize the set of codewords for group i to be

empty, G(i) = ∅;

2: Pick any codeword c ∈ C to be the first element for group i, move it from C

to group i: G(i) = {G(i), c}, C ← C − {c};
3: Examine every codeword in C: If c ∈ C is orthogonal to all the existing

codewords in G(i), move c from C to G(i);

4: If C �= ∅, continue to build the next group. Set i← i + 1, initialize G(i) = ∅,

and go to step 2.

Subcode Construction

To construct the user subcode, we start with a c-TA code based on error correcting

code construction over an alphabet of size q as discussed in Chapter 2. The code

length is L, and the minimum distance is D and typically less than L. We then

rearrange the codebook into groups so that within each group, the codewords are

orthogonal to each other, i.e. users within the group have distinct values at each

symbol position. Thus the code distance within a group equals the codeword

length L. We assign one codeword to each user as his/her user subcode. This

process is illustrated in Fig. 4.1 and described in more detail in Algorithm 1.

Other construction of orthogonal subcodes is also possible, for example, through a

systematic coding technique known as Mutually Orthogonal Latin Squares(MOLT)

[66].

Next, we construct the group subcodes. To make group information as separate

as possible and thus facilitate accurate identification of guilty groups, we design

the group subcodes to be orthogonal to each other. A simple way to construct the

group subcode is to use one distinct symbol to represent one group, thus we need
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Figure 4.1: Fingerprint codeword construction for GRACE fingerprinting.

a total of g symbols for g groups. For each group, we construct repetition code

with length L by repeating the symbol L times as the group subcode.

Fingerprint Embedding

In the proposed GRACE fingerprinting scheme, we embed both group subcode

and user subcode by mapping them to spreading sequences and then adding the

superposition of the two corresponding spreading sequences to the host signal.

The group information of the GRACE fingerprinting is orthogonal to the spread-

ing sequence conveying the user subcode, yet their supports overlap in the signal

sample domain [73]. More specifically, we use the sequences {uj, j = 1, ..., q} to

represent q symbol values in the alphabet of user subcode, where uj’s are orthogo-

nal to each other and have identical energy ||u||2. The g sequences {ai, i = 1, ..., g}
represent g groups. They are orthogonal to each other and to {uj}, and have the

same energy as uj’s, i.e. ‖a‖2 = ‖u‖2. We then construct the fingerprint sequence
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for the kth segment of user j who belongs to group i as

sijk =
√

1− ρusym(j,k) +
√

ρai, (4.1)

where the function sym(j, k) is used to retrieve the symbol for the kth segment

from the jth user’s subcode, and ρ is used to adjust the relative energy between

the group subcode and user subcode. This fingerprint signal is finally added to the

kth segment of the host signal. A larger ρ puts more energy on group information

and thus provides a more accurate detection of group information. However, a

larger ρ also reduces the detection accuracy of user subcode and makes it harder

to narrow down to the true colluder. Therefore, there is a trade-off between group

detection and user detection when choosing ρ. Since in our scheme we have L

segments to collect the energy for group detection, and usually collusion happens

among a small number of groups, we can choose a small ρ to satisfy the detection

performance requirement on both user information and group information.

We can see that a key design issue in the GRACE fingerprinting is on how to

represent and embed the group information versus the user information. Our ap-

proach is to superpose the spreading sequences of group subcode and user subcode

for embedding. Alternatively, the group information may be embedded by append-

ing the spreading sequence of group subcode to that of user subcode. To demon-

strate the performance gain of the GRACE fingerprinting brought by the joint con-

sideration of coding and embedding, we shall present this appending scheme as well

and refer to it as the group ECC fingerprinting by appending. In this alternative

fingerprinting scheme, the equivalent codeword for each user is the concatenation

of the user subcode with length L and the group subcode with length Lg, where

Lg is not necessarily equal to L and is used to adjust the relative energy between

the group subcode and the user subcode. The total codeword length is L + Lg.
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To embed this codeword, the host signal is partitioned into L + Lg segments. The

corresponding spreading sequence is added into each segment according to the

codeword symbols. For a given host signal where the total number of embeddable

signal samples N is fixed, the longer the group subcode is, the smaller the length

of each segment N ′
s = N/(L + Lg) is.

4.1.2 Fingerprint Detection

At the detector side, the embedded group information can be used to facilitate the

detection by a two-level detection scheme. First, we examine through a correlation

detector the group information in the colluded signal to identify the groups from

which the colluders come. We then focus our attention on these identified suspi-

cious groups and apply matched-filter detection for ECC-based fingerprinting as

discussed in Section 2.3 on the user subcode to narrow down to the true colluders.

More specifically, we extract group information from the colluded signal z using

a non-blind correlation detector. The detection statistic with respect to group i is

TG(i) =
(z− x)Tbi

‖b‖ , i = 1, 2, ..., g, (4.2)

where x is the host signal, and bi is the concatenation of the spreading sequences

representing group i’s information from each segment. In the above settings, bT
i =

[aT
i ...aT

i ] since we embed ai in each segment of group i. The kth group is considered

guilty for the test signal if TG(k) > h, where h is the threshold. In this work, we

choose the threshold to be adaptive, i.e. h = γ maxk=1,...,g TG(k), where γ is a

parameter to adjust the threshold. The details of the adaptive detection will be

presented in Section 4.3. The union of the detected groups forms a suspicious

group set. To narrow down to the true colluders inside the suspicious groups,

we employ the soft detector in Eqn.(2.6) to correlate the test signal with each
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user’s fingerprint sequence and identify the one with the highest correlation as the

colluder.

The detection for the group ECC fingerprinting by appending is a two-stage

process similar to GRACE fingerprinting. We first extract the group information

from the segments corresponding to group subcode through a non-blind correlation

detector. The decoding to a specific colluder is then conducted on the segments

for user subcode within the extracted suspicious groups.

4.1.3 Experimental Results

In this section, we demonstrate the effectiveness of the proposed GRACE finger-

printing through experiments. To build the user subcode, we employ a Reed-

Solomon code with q = 32, L = 30, Nu = 1024, D = 29, and rearrange it into 32

groups using the algorithm described in Section 4.1.1. Inside each group, there are

32 codewords mutually orthogonal to each other. We choose ρ = 1/7 in Eqn.(4.1)

to generate the fingerprint signal from the user subcode and the group subcode in

GRACE. For fair comparison, we choose Lg = 5 for the group ECC fingerprinting

by appending in order to provide the same relative energy between user subcode

and group subcode as that of GRACE. We use the repetition code described in Sec-

tion 4.1.1 as the group subcode, and construct i.i.d. Gaussian signals with 3× 104

signal samples to emulate the host signal.

Interleaving collusion and averaging collusion are applied to all three systems,

namely, the ECC based fingerprinting, the GRACE fingerprinting and the group

ECC fingerprinting by appending. We examine the probability of successfully

detecting one colluder (Pd) at WNR = 0dB in the following three scenarios:

1) Collusion within a small number of groups: In this case, our grouping
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correctly reflects the collusion pattern that all the colluders come from a small

number of groups. In our simulation, all colluders are from 2 out of 32 groups, and

they are randomly distributed between these two groups. The results of Pd under

interleaving collusion and averaging collusion are shown in Fig. 4.2(a) and (b),

respectively. Under interleaving collusion, we can see that for the same number

of colluders, the Pd’s for the proposed GRACE and the group ECC fingerprinting

by appending are similar, and they have up to 0.7 improvement over that of the

conventional ECC based fingerprinting. From another point of view, if we require

the Pd of the system to be no less than a given value, say 0.98, the number of

colluders that the system can resist can be improved from 6 colluders (for con-

ventional ECC based fingerprinting) to 18 colluders (for the proposed GRACE

fingerprinting). Under the averaging collusion, all systems have Pd close to 1 for

the examined c values, but we still can see 0.02 improvement on Pd brought by

GRACE fingerprinting over the conventional ECC fingerprinting.

2) Colluders randomly distribute across all groups: In this case, the group-

ing does not capture the collusion pattern. The colluders randomly distribute

across all groups. The results under interleaving and averaging collusion are shown

in Fig. 4.2(c) and (d), respectively. Under interleaving collusion, the proposed

GRACE fingerprinting has up to 0.3 improvement on Pd over the conventional

ECC fingerprinting, while the alternative technique of group ECC fingerprinting

by appending performs a little worse than the conventional ECC fingerprinting.

Under averaging collusion, the proposed GRACE fingerprinting has comparable

performance with the ECC based fingerprinting.

3) Colluders come from distinct groups: In this case, the grouping knowledge

is extremely inaccurate. All the colluders come from distinct groups (i.e. the num-
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Figure 4.2: Performance comparison of the proposed GRACE fingerprinting, group

ECC fingerprinting by appending and the conventional ECC fingerprinting in terms

of probability of detection Pd versus the colluder number c at WNR = 0dB.
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ber of groups equals the number of colluders c). The results under interleaving and

averaging collusion are shown in Fig. 4.2(e) and (f), respectively. Under interleav-

ing collusion, the proposed GRACE fingerprinting still has up to 0.2 improvement

on Pd over the conventional ECC fingerprinting. The group ECC fingerprinting by

appending performs worse than the conventional ECC fingerprinting with about

0.15 less on Pd. Under averaging collusion, the proposed GRACE fingerprinting

has comparable performance with the conventional ECC fingerprinting.

The above results can be explained as follows. When collusion happens within

a small number of groups, the group information is well preserved so that the

group detection for both GRACE fingerprinting and the group ECC fingerprinting

by appending has high accuracy. As the user subcodes within a small number of

groups can be well distinguished due to higher minimum distance than that of

the whole codebook, the colluder detection is more accurate than that of the non-

group case. When colluders come from multiple groups or even distinct groups

and apply interleaving collusion, the energy of the group subcode for GRACE

fingerprinting is reduced after collusion but does not completely diminish because

of the spreading of group information over the entire host signal. Therefore we

still have some improvement in detection, although it is not as much as the first

case.

For group ECC fingerprinting by appending, when the number of groups gets

larger, especially larger than Lg, it is likely that only part of the colluders con-

tribute the group subcode after segment-by-segment interleaving collusion. The

detector loses the information of some guilty groups, which leads to no perfor-

mance improvement over the ECC based fingerprinting. In contrast, the group

information from all colluders can be retained for the two group-based schemes
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when colluders perform averaging operations, leading to the similar performance

by the two schemes. When multiple groups participate the collusion as in the

scenarios 2) and 3), the energy of the group information is reduced by averag-

ing. As such, the group detection has low accuracy, resulting in the diminishing

performance gain over ECC based fingerprinting.

The comparison between the GRACE fingerprinting and the group ECC fin-

gerprinting by appending demonstrates the performance improvement that can be

achieved by the joint consideration of coding and embedding. Without the joint

consideration, the group ECC fingerprinting by appending is equivalent to the

code-level grouping. Separating group information and user information makes it

vulnerable to multiple groups’ interleaving collusion. In contrast, the proposed

GRACE fingerprinting leverages the embedding layer to spread the group infor-

mation over multiple segments. This helps retain the group information after

collusion attacks, and thus helps identify the true colluders. In addition to WNR

= 0dB presented in Fig. 4.2, we also examined the cases of low WNRs, and the

comparative results are similar to high WNR case. Overall, the joint coding and

embedding as well as the grouping in the proposed GRACE system have brought

consistent performance improvement over the existing ECC based fingerprinting

under various scenarios.

4.1.4 Discussions

Security of the Group Information

From the results of the proposed scheme, we can see that the group information

helps narrow down the suspicious users in the colluder detection. However, if

the group information is not embedded properly, the attackers may figure out the
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positions of group subcode, and try to frame innocent groups and mislead the

detection. Therefore, the embedded group information should have sufficiently

high security. In the following, we shall examine the security of the group infor-

mation for GRACE fingerprinting and compare it with that of the group ECC

fingerprinting by appending.

For the group ECC fingerprinting by appending, all the users inside one group

have the same group subcode with length Lg, thus they have Lg segments in

common. On the other hand, for users coming from different groups, their matches

in the user subcodes are at most L − D, which is usually much smaller than Lg.

When several users compare their copies, they can examine the number of the

matched segments and figure out whether they belong to one group or not. They

may also identify the positions of the group subcode. With the position information

of the group subcode, one colluder may contribute his/her share only to the group

subcode positions and other colluders from a different group only contribute to

user subcode positions. We call this group-framing attack. Under this attack, after

the group detection, the colluder detection will be limited to the group where only

one colluder comes from. Since this colluder did not contribute the user subcode,

he/she is less likely to be declared as the colluder. Hence the probability of accusing

an innocent user as a colluder will be high.

For GRACE fingerprinting, each group has different group subcode from the

others. Within one group, users have different user subcodes. As a result of

the superposition of these two subcodes, the fingerprint sequence for each user

is different from any other user, and the colluders cannot separately identify the

group information by comparing their copies. We further note that no matter

which segment the colluder contributes, he/she always contributes both the group
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information and the user information. The group-framing attack mentioned above

cannot succeed here. Thus, the joint coding and embedding of GRACE provides

both an effective and a secure way to incorporate the group information.

Computational Complexity of GRACE Fingerprinting

Compared with the ECC based fingerprinting, the extra detection computation of

the GRACE fingerprinting comes from the detection of guilty groups, which needs

O(gN) computations for a total of g groups. Incorporating the computational

complexity of the ECC based fingerprinting derived in Section 2.4.1, the overall

computational complexity for the GRACE fingerprinting is O(qN) + O(gN). The

group number g is usually much smaller than the total number of users, and in

our example, g equals q. Therefore, the overall computational complexity remains

at O(qN), the same order as the ECC based fingerprinting.

It is worth mentioning that since in most cases the colluder detection is applied

within a small amount of groups, the suspicious user set to be examined will be

much smaller than that in non-grouped ECC based fingerprinting. This further

speeds up the colluder detection process.

Multi-level GRACE Fingerprinting

The idea of the proposed GRACE fingerprinting is to use the group information

to quickly narrow down the suspicious colluders to a small group of users. Within

each group, the minimum distance between the users’ codewords is larger than

that of the whole user set so that the users’ codewords are more separated and

easier to detect. Following this idea, we can extend our GRACE fingerprinting to

a general multi-level GRACE fingerprinting to capture more complicated collusion
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patterns.

For example, we partition a codebook with minimum distance D0 into groups.

Inside each group the minimum distance D1 is larger than D0. Then we repeat

this partition for each group until the minimum distance equals the code length L

or the structure of the group can capture the collusion pattern. When combining

the group information with the user information, we can adopt a similar strategy

used in the tree-based scheme in [70] to assign each level an orthogonal sequence

and embed them by proper scaling. At the detector side, the group information

at each level is used to narrow down the suspicious colluders to a smaller group,

and the colluder can be detected inside the extracted groups as before.

4.2 Combining GRACE with Permuted Subseg-

ment Embedding

Earlier in Chapter 3, we have proposed a new permuted subsegment embedding

technique for ECC based fingerprinting, which improves the collusion resistance

while retaining the efficiency in detection and distribution. We can combine the

permuted subsegment embedding and the GRACE fingerprinting to arrive at a

complete design of coded fingerprinting system as shown in Fig. 4.3. We envision

that the combined design can provide further improvement on collusion resistance,

and we will verify it through experiments.

In the combined design, the fingerprint sequence of group subcode is superposed

with that of the user subcode as before. We then employ the permuted subsegment

embedding to embed the superposed fingerprint sequence to the host signal. A

two-level detector is employed after the inverse permutation at the detector side,
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Figure 4.3: Proposed framework of coded multimedia fingerprinting combining

GRACE with permuted subsegment embedding.

namely, the extraction of the group information followed by the soft detection of

the colluder using Eqn.(2.6) within the extracted groups. We demonstrate the

performance of the combined fingerprinting system through simulations on the

same system as we have examined in Section 4.1.

As we have expected, the combination of the proposed two approaches achieves

better results than each individual approach. In the cases with inaccurate group-

ing information (Fig. 4.4(c)-(f)), the permuted subsegment embedding further im-

proves the detection probability Pd of the fingerprinting system by 0.4-0.5 under

interleaving collusion at high WNR. The combined design can resist up to 25

users’ collusion with high probability of detection, which is more than three times

as many as that of the conventional ECC fingerprinting. When the grouping is

accurate (Fig. 4.4(a)-(b)), the grouping strategy boosts the detection probability
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Figure 4.4: Performance of the proposed GRACE fingerprinting with permuted

subsegment embedding technique: Probability of detection Pd vs. the colluder

number c and WNR.
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Pd to nearly 1 for a wide range of WNR and c.

In order to further demonstrate the effectiveness of the proposed joint-coding-

and-embedding techniques, we apply the combination of the two newly proposed

approaches to natural images and compare its collusion resistance performance

with that of the conventional ECC fingerprinting. We use the transform-domain

spread spectrum scheme for fingerprint embedding, where the original image is

divided into 8 × 8 blocks and the fingerprint signal is added into the block DCT

coefficients after perceptual weighting. The fingerprint basis is generated according

to i.i.d. Gaussian distribution N(0, 1). In this experiment, we perform non-blind

detection where the original host signal is available and subtracted from a test

signal.

(a) (b) (c)

Figure 4.5: (a) Original images; (b) Fingerprinted images; (c) Corresponding dif-

ference images (amplified by a factor of 10).

We select 512 × 512 Lena and Baboon as original images to demonstrate the
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Figure 4.6: Experimental results on real images of (a) Lena and (b) Baboon under

interleaving collusion.

performance of the proposed fingerprinting system on images with different na-

tures. We apply two schemes on both images and examine their performance

under collusion attacks: one is the conventional, non-grouped ECC based finger-

printing scheme, and the other is our proposed GRACE fingerprinting scheme with

permuted subsegment embedding. We employ the same coding setup as in Section

2.4.3 for these two images, i.e. Reed-Solomon code of length 30, dimension 2 and

minimum distance 29. The effective segment size is 2189 for Lena and 4740 for

Baboon. The fingerprinted images have an average PSNR of 41.6dB for Lena and

33.2dB for Baboon. Fig. 4.5 shows the original and fingerprinted images along

with the corresponding pixel-wise difference between them.

We examine the scenario of interleaving collusion by randomly distributed col-

luders across all groups with WNR = 0dB. The results of 100 iterations on the two

images are shown in Fig. 4.6, where the number of colluders the system can re-

sist is increased from 6 for conventional ECC fingerprinting to 25 for the proposed

combined scheme with detection probability as high as 0.98. We also examined the
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averaging collusion scenario, and the improvements for both cases are consistent

with earlier results on synthetic signals.

4.3 Adaptive Detection for Group-based Finger-

printing

Results in both our GRACE fingerprinting and the prior work by Wang et al. [70]

have shown that the grouping strategy increases the collusion resistance of both

non-coded and coded fingerprinting schemes when the grouping reflects the collu-

sion pattern. However, when the grouping does not match the collusion pattern

well, the group information in the colluded signal would be significantly reduced

and group detection may become unreliable, which would lead to a lower detection

accuracy than the non-grouped schemes. In this section, we explore how to design

and adapt the system to combat a wide range of collusion patterns, especially when

the actual collusion pattern is considerably different from the grouping patterns

in the system design [38]. For easy analysis, we choose to examine the adaptive

detection on non-coded group fingerprinting by Wang et al. [70] and the results on

GRACE fingerprinting will be also reported.

4.3.1 Non-Coded Group-based Fingerprinting

The group-based fingerprint construction in [70] takes advantage of the prior knowl-

edge on the collusion pattern by putting users who are likely to collude into the

same group and introducing correlation among their fingerprints. The constructed

fingerprint consists of user information and group information. The fingerprint
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sequence for user j who belongs to group i is constructed as

sij =
√

1− ρeij +
√

ρai, (4.3)

where ρ is used to adjust the correlation among the users’ fingerprints inside one

group as well as the ratio of the fingerprint energy assigned to group information;

eij’s are the spreading sequences for individual user information and they are

mutually orthogonal to each other; ai’s are the spreading sequences for group

information and they are orthogonal to each other and also to the user spreading

sequences eij’s.

The collusion attack considered in this section is K-user averaging collusion

plus additive noise. A number of other collusions based on order statistics, such

as minimum collusion attack, have been shown to be well approximated by such a

model [82]. The colluded version z follows:

z =
1

K

L∑
i=1

∑
j∈Sci

yij + d =
1

K

L∑
i=1

∑
j∈Sci

sij + x + d, (4.4)

where x is the host signal and L is the total number of groups. Sci ⊆ {1, ...,M} is a

subset with size |Sci| = ki and contains the members of group i who participate in

the collusion attack. M is the number of users inside each group. The additional

distortion is modelled as an i.i.d. additive Gaussian noise d with zero-mean and

variance σ2
d.

The detection scheme consists of two stages [70]. The group information is first

used to detect the guilty groups and then the colluder detection is conducted within

the guilty groups. A correlation based method is employed for group detection [70],

that is,

TG(i) =
(z− x)T (si1 + si2 + ... + siM)√‖s‖2[M + (M2 −M)ρ]

, (4.5)
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whose probability density function (pdf) is

p(TG(i)|K, ki, σ
2
d) =

⎧⎪⎪⎨
⎪⎪⎩

N(0, σ2
d), if ki = 0,

N(
ki‖s‖
√

1+(M−1)ρ

K
√

M
, σ2

d), o.w.

(4.6)

where ‖s‖ is the strength of the fingerprint and it is the same for each user due to

the equal-energy fingerprint construction. The i-th group is declared as guilty if

TG(i) > hG, where hG is the threshold for group detection.

The colluder detection is performed within the guilty groups through a corre-

lation based detector:

ĵi = argM
j=1{Tei(j) ≥ h}, (4.7)

where h is a threshold to determine the colluders and the detection statistic for

user information is

Tei(j) =

√
1− ρ(z− x)Teij√‖s‖2 .

The group threshold hG and the user threshold h are chosen such that the false

alarm on group detection is bounded by α1 and the probability for an innocent

user to be declared as colluder is bounded by α2:

α1 � Pr(TG(i) ≥ hG|ki = 0) = Q(
hG

σd

); (4.8)

α2 � Pr(Tei(j) ≥ h|j /∈ Sci) = Q(
h

σd

√
1− ρ

). (4.9)

Thus, h = Q−1(α2)σd

√
1− ρ and hG = Q−1(α1)σd, where the Q-function is de-

fined as Q(t) =
∫∞

t
1/
√

2π exp(−x2/2)dx. The overall probability of catching one

colluder Pd and the probability of false alarm Pfp can be calculated as [70]:

Pd =
l∑

i=1

qi

i−1∏
j=1

(1− qj),

Pfp = [1− (1− pl+1)
L−l] + (1− pl+1)

L−1

l∑
i=1

pi

i−1∏
j=1

(1− pj), (4.10)

81



where l is the number of guilty groups, pi is the probability of a false alarm event

in which at least one innocent user from group i is declared as colluder, and qi

is the probability of a correct detection event in which at least one true colluder

from group i is declared as guilty. Both pi and qi contain multiple terms with the

form of a Q-function, and they are functions of the three parameters ρ, α1 and α2,

which should be chosen in such a way that

{α1, α2, ρ} = arg max
α1,α2,ρ

Pd(α1, α2, ρ) (4.11)

subject to Pfp(α1, α2, ρ) ≤ ε.

4.3.2 Performance Evaluation of Group-based Fingerprint-

ing

Due to multiple terms of Q-function in Eqn. (4.10), closed-form relations between

systems performance Pd and system parameters ρ and α1 on an arbitrary collu-

sion pattern cannot be found. Commonly used analytical bounds are usually not

very tight for our performance evaluation purpose. We use the system in [70] as

an example and examine the optimization problem of (4.11) through numerical

evaluation to approximate the optimal solution to the parameter settings.

In the example system, we choose fingerprint sequence with length 104 and

examine the detection performance at Watermark-to-Noise-Ratio (WNR) of 0dB.

There are totally L = 100 groups and M = 60 users in each group; a total of

K = 64 users participate in averaging collusion. These values are chosen based on

the guidelines from the orthogonal fingerprinting study in [71] in order to maintain

good collusion resistance of mutually orthogonal group-fingerprint on the group

detection level as well as the orthogonal user fingerprint within each group. We

consider the worst-case scenario in detecting at least one of the true colluders,
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where all the colluders are evenly distributed among l guilty groups, i.e. ki = K/l.

The colluder detection performance at Pfa = 0.1 under two different collusion

patterns of l = 4 and l = 16, respectively, is shown in Fig. 4.7. We can see that the

values of ρ and α1 significantly affect the detection probability Pd, and the values of

these two parameters that achieve the optimal Pd under different collusion patterns

are different. Next, we take a close look at the effect of these two parameters.
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Figure 4.7: Pd versus ρ and α1 under averaging collusion attack from (a) 4 groups

and (b) 16 groups.

The effect of ρ From the fingerprint construction of Eqn. (4.3) and group de-

tection analysis in Eqn. (4.6), we can see that the larger the ρ is, the higher the

correlation is and the better the group detection is. But large ρ also reduces the

energy that can be allocated to represent individual user and therefore may reduce

the detection accuracy.

We take the same system as that of Fig. 4.7 and numerically examine the effect

of different ρ’s on the collusion resistance. Three scenarios with l = 4, 8, 16 are

studied, and the results of Pd at Pfa = 0.1 are shown in Fig. 4.8, along with
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the results of orthogonal fingerprinting [71]. From Fig. 4.8, we can see that the

difference of Pd’s under different ρ values can be up to 70%, and there is no ρ value

that reaches the best performance under all the collusion patterns. We also note

that ρ must be determined during the design of the system without the knowledge

of the actual collusion patterns. Thus, ρ value should be chosen to achieve a good

performance trade-off under a broad range of anticipated collusion patterns. For

the experiment settings in Fig. 4.8, relatively small ρ around 0.1, instead of a

higher setting of 0.4 as in [70], leads to a better trade-off among various collusion

patterns. Therefore, we choose ρ = 0.1 in the following study.
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Figure 4.8: Pd vs. ρ under averaging-collusion attack.

The intuition of choosing relatively small ρ is as follows. When the grouping

strategy captures the collusion pattern, many colluders come from the same group

i, and thus they have the same group information
√

ρai in their fingerprints. Under

averaging collusion, the energy of this group information will not be reduced much,

as can be seen from the mean value of detection statistic TG(i) for guilty group

in Eqn. (4.6). In the term
ki‖s‖
√

1+(M−1)ρ

K
√

M
, although the total number of colluders

K can be quite large, ki, the number of colluders inside group i, is also large. As

a result, even with a small ρ, the mean value of TG(i) would be reasonably high
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to distinguish the guilty groups from innocent groups, leading to a high detection

probability. When the grouping strategy does not reflect the collusion pattern,

ki would be quite small for all the groups. Thus TG(i) for guilty groups would

have a small mean value, leading to a less reliable group detection. To achieve a

high colluder detection accuracy, we would then rely more on the user information

part of the fingerprint in the second step detection. Relatively small ρ value keeps

the energy of user information strong to distinguish each individual user and help

achieve a high probability of detection. Therefore, relatively small ρ provides a

good performance trade-off under a wide range of collusion patterns.
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Figure 4.9: Group detection statistics for colluders from (a) 2 groups, and (b) 4

groups.

The Effect of α1 and hG In the two-step detection strategy, the false alarm

of group detection α1 and group detection threshold hG are related through the

false alarm probability of group detection in Eqn. (4.8), and they determine the

accuracy of group detection. If this step is accurate enough, as illustrated by

“threshold 1” in Fig. 4.9(a) and “threshold 2” in Fig. 4.9(b), many innocent

85



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d
 vs α

1
 w/ K =64, L =100, ρ =0.1, M =60, N = 104, P

fa
 = 0.1

α
1

P
d

l = 4 Group FP
l = 8 Group FP
l = 16 Group FP
ORTH FP

Figure 4.10: Pd vs. α1 under averaging-collusion attack.

users are successfully filtered out in the first step, so the second step of locating

individual colluders only needs to focus on a small set of users and can achieve

a high detection accuracy. However, if the group detection is not accurate, the

second step of detecting colluders cannot take advantage of the grouping strategy

and the system performance may become worse than the non-grouping case. There

are two cases of inaccurate group detection. One is when the threshold is too low

that many innocent groups are passed onto the second step detection, as shown

in Fig. 4.9(a) with “threshold 2”. The increase in the number of innocent users

incurs higher probability of false alarm during the colluder detection, leading to a

low overall detection accuracy. The other case is when the threshold is so high that

many groups, including true guilty groups, fail to pass the group detection. This

is shown in Fig. 4.9(b) for “threshold 1”. With few true colluders being inside the

suspicious user set, it is difficult for the second step detection to correctly identify

the colluder. Therefore, α1 should be chosen carefully in the detection.

We examine different α1 values for the above system settings with ρ = 0.1

according to the above discussions, and show the results of Pd for a fixed Pfa = 0.1

in Fig. 4.10. We see that when colluders come from only 4 groups, a low value
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of α1 = 10−6 provides the highest detection probability Pd, and a wide range

of α1 values can lead to near optimal Pd. When colluders spread to more and

more groups, the value of α1 achieving the highest Pd increases to 3 × 10−3 for

8-group collusion and to 3 × 10−2 for 16-group collusion. Pd for low α1 value at

around 10−6 significantly drops and becomes even lower than that of orthogonal

fingerprinting. Collectively considering various collusion patterns, we can see that

for this particular system that we have examined, a less stringent setting for α1,

such as 10−2, has a better trade-off in the detection performance. This is because

when most colluders come from only a few groups as shown in Fig. 4.9(a), with

high probability the group detection statistics for guilty groups have large values

and are much higher than that of innocent groups. In this case, employing a

moderate threshold rather than a low one can help filter out more innocent groups

and pass most of the guilty groups to the second detection step, leading to a high

overall detection probability as shown in Fig. 4.10 for l = 4, 8. When colluders

come from multiple groups, the group detection statistics of guilty groups are

reduced and not very distinguishable from those of innocent groups as shown in

Fig. 4.9(b). Compared with a high threshold, a moderate threshold enables the

detector to include more guilty groups into the second step detection to achieve a

better performance as shown in Fig. 4.10 with l = 16.

An important finding suggested by the above analysis is that a variable thresh-

old in group detection is necessary to deal with different collusion patterns. In fact,

the detector has the freedom to adjust α1 according to its findings and to adapt

the threshold value for group detection according to the detection statistics. In the

next section, we present an adaptive group detector and examine its performance.
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4.3.3 Adaptive Detection

Studies in Section 4.3.2 suggest that an ideal group detector should be able to

adjust the threshold for various collusion patterns. To achieve this, the detector

first needs to collect information to infer the underlying collusion pattern. From

the group detection statistics, we can see that when colluders come from a small

number of groups as system designers expect, the detection statistics are high for

guilty groups and low for innocent groups. This is because the shared group infor-

mation in colluders’ fingerprints is preserved after collusion and has relatively high

energy. On the other hand, when collusion pattern does not match the grouping,

the detection statistics for guilty groups are low and not very distinguishable from

innocent groups. Another scenario is that a non-trivial part of the colluders come

from one group i, and the other colluders scatter over several groups. The detec-

tion statistic for group i will be high with high probability, although the detection

statistics for others groups are low.

As the detection statistics on the group information reflect the collusion pat-

tern, we examine how to exploit the detection statistics to facilitate the group

detection. A good and easy-to-obtain indicator for collusion patterns is the maxi-

mal group detection statistic TGmax, which can be used by the adaptive detector as

a baseline to set threshold. For example, the threshold hG can be made to be pro-

portional to TGmax, i.e. hG = γTGmax with 0 < γ < 1, so that group i is declared

guilty if TG(i) > γTGmax. We set γ at 0.5 in our experiments. The probability of

group i being caught, PGd(i), can be obtained by

PGd(i) = Pr(TG(i) > γTGmax)

=

∫ ∞

−∞

∏
r �=i

Pr(TG(r) < t/γ)fTG(i)(t)dt, (4.12)
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where TG(i) follows a Gaussian distribution according to Eqn. (4.6). We can then

analyze the colluder detection probability Pd and false alarm probability Pfp by

following similar strategies as in [70]. By choosing the threshold in this way, at

least one group will always be identified as possibly containing traitors and passed

onto the second stage in detection to pinpoint the colluders, whereas in the non-

adaptive detection it is possible that all groups are vindicated in the first stage

and never make it to the second stage of detection even when there are traitors.

We examine the performance of the proposed adaptive group detection and

choose the same system as studied in the previous sections, i.e. L = 100,M = 60,

and K = 64. We consider three different collusion scenarios of l = 24, 8, 2, and

compare the results with the corresponding non-adaptive detection cases. For com-

parison, we choose α1 = 10−2 for the non-adaptive scheme, as this setting provides

the best performance for a non-adaptive detector according to the studies in Sec-

tion 4.3.2. The results in Fig. 4.11(a) and (b) show that when all the colluders

come from only a few groups so that the group structure well reflects the collusion

pattern, the adaptive detection can perform better than the non-adaptive scheme;

and both schemes outperform the orthogonal fingerprinting that does not exploit

the group structure. The improvement of adaptive detection can be up to 10% in

Pd for the same Pfp over non-adaptive scheme, and up to 70% over orthogonal fin-

gerprinting. When the colluders scatter over tens of groups and thus the collusion

pattern does not match the group structure, non-adaptive detection scheme does

not have advantage over orthogonal fingerprinting, as indicated in Fig. 4.11(c). In

contrast, our proposed adaptive detection is able to adjust the threshold accord-

ingly, and thus outperforms the non-adaptive detection by 5% ∼ 10% improvement

on Pd. To further demonstrate the advantage of the proposed adaptive detection,
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Figure 4.11: ROC curve comparisons for the adaptive and non-adaptive group-

based fingerprinting. Averaging collusion attack from: (a) 2 groups, (b) 8 groups

and (c) 24 groups. (d) Probability of detection vs. different collusion patterns for

adaptive detection with γ = 0.5 and non-adaptive detection with α1 of 10−6 to

10−1 under Pfa = 0.01.
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we examine different collusion patterns and show the results of detection for both

adaptive and non-adaptive schemes in Fig. 4.11(d). In this figure, we fix the prob-

ability of false alarm at 0.01 and examined various thresholds for non-adaptive

scheme. The γ for the adaptive scheme is set at 0.5. We can see that the pro-

posed adaptive detection consistently has better or comparable performance to

non-adaptive scheme under a variety of collusion scenarios, and the performance

curve of the proposed adaptive detection is the upper envelope of those achievable

by non-adaptive detection at various settings.
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Figure 4.12: Performance comparison of adaptive detection and non-adaptive de-

tection on Group-based ECC fingerprinting under averaging collusion attack from:

(a) 2 groups, (b) distinct groups.

We have also applied the adaptive detection to coded group fingerprinting sys-

tem proposed in Section 4.1 and compare it with non-adaptive detection results.

Fig. 4.12 shows the detection results of the same system settings examined in Sec-

tion 4.1, which is constructed based on Reed-Solomon code with alphabet size

of 32 and dimension 2. The code is divided into 32 groups and each group con-

tains 32 codewords. We vary the threshold for group detection in a wide range
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of 1.7∼3.9, while the adaptive detection threshold parameter γ is set at 0.5. In

order to demonstrate the performance difference clearly, we choose Watermark-

to-Noise-Ratio (WNR) as -10dB during the examination. Fig. 4.12(a) shows the

detection under the collusion from two groups and Fig. 4.12(b) shows the results

under collusion from distinct groups, i.e. any pair of colluders come from different

groups. It can be seen that a fixed group detection threshold cannot generate high

detection probability for various collusion patterns. A threshold of 3.9 gives sat-

isfactory detection accuracy under 2-group collusion, but the performance drops

sharply when the colluders come from distinct groups. In contrast, the proposed

adaptive detection consistently leads to higher performance than the fixed thresh-

olding scheme under various colluder numbers and collusion patterns. Overall, the

adaptive detection provides performance improvement over non-adaptive detection

scheme under various scenarios.

4.4 Chapter Summary

Because of cultural and other social reasons, users often form a collusion group

in a foreseeable pattern. Taking advantage of this observation and based on our

previous study, we have proposed a group-based joint coding and embedding fin-

gerprinting system. In this system, the fingerprint for each user is compact and

consists of user sub-codeword and group sub-codeword, which are embedded over-

lappingly in host signal via spread spectrum technique. The detection is done

in two levels, which identifies guilty groups through correlation and then narrows

down to specific colluders through minimum distance decoding inside the extracted

guilty groups. Simulation results show that the proposed fingerprinting system

can provide substantial improvement over existing ECC based fingerprinting. The
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group information helps to limit the suspicious users to a smaller set, and leads to

a higher probability of detection.

In addition, we have proposed an adaptive detection approach for group-based

fingerprinting. Through analyzing the existing group-based fingerprinting, we have

found that the overall detection accuracy is sensitive to the group detection thresh-

old, and the threshold achieving good performance is closely related to the collusion

pattern. Based on this observation, we propose a new adaptive detection method

that automatically adjusts the group detection threshold according to the detection

statistics for group information to adapt to different collusion patterns. Results

show that the proposed adaptive detection is superior to the non-adaptive detec-

tion under a variety of collusion scenarios, and can provide up to 10% improvement

on the overall probability of detection.
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Chapter 5

Collusion-Resistant Video

Fingerprinting for Large User

Group

With the advances of broadband communication and compression technologies, an

increasing amount of video will be shared among large groups of users through the

Internet and other broadband channels. For example, in applications such as cable

TV, the user number can be as high as 10∼100 million. The potential adversary

group may involve hundreds of colluders. However, most of the existing finger-

printing schemes consider an experimental settings with user number on the order

of a few thousand and a small collusion group around 10 colluders and cannot

cannot reach such large user size and high collusion resistance requirements. For

example, to hold 10 million users, the Boneh-Shaw scheme [9] gives a code on the

order of 107 bits that needs 22-hour video for embedding, and it can only resist 10

users’ collusion. On the other hand, the orthogonal fingerprinting can be scaled

up to hold 10 million users with collusion resistance of 100, but the detection com-

94



putational complexity increases linearly with the number of users and it becomes

prohibitively high for large scale system. In literature of traitor tracing through

cryptographic keys [39–41], the large scale of user group has been constantly con-

sidered during the scheme design. The basic idea of these works is to use codes to

establish key set for each user to access the content, which shares similarity with

the coded fingerprinting such as [22,52]. When directly extended to fingerprinting

application by modulating each code symbol with spreading sequence and adding

the sequence to the host signal, these schemes would have rather limited collusion

resistance as the case in [22,52] because the embedding layer is not well utilized.

Table 5.1 summarizes the performance of existing fingerprinting schemes and

those extended from traitor tracing schemes for a user group of 10 million with

probability of miss detection on the order of 10−3. From this table, we can see

that to hold such a large user group, Boneh-Shaw scheme requires an extremely

long host signal and has very low collusion resistance. For all other schemes, we fix

the host signal length and compare their collusion resistance and detection com-

putational complexity. We observe a low collusion resistance for traditional ECC

based fingerprinting and a high detection complexity for orthogonal fingerprinting

and the anti-collusion code (ACC) fingerprinting.

Different from other fingerprinting schemes, our proposed joint coding and em-

bedding strategies built on top of the ECC fingerprinting offer much improved

collusion resistance while retaining the efficiency in construction, detection and

distribution of the fingerprinted signal. Such advantages of the improved ECC

fingerprinting makes it attractive for video applications, especially under the chal-

lenging settings of millions of users and hundreds of colluders. The large scale

system, however, introduces several issues that have not been addressed in the
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Table 5.1: Performance Comparison of Existing Fingerprinting Schemes with User

Number Nu = 10 Million

Fingerprinting Schemes Col. Resis. Required Sig. Len. (N) Det. Complexity

Boneh-Shaw FP [9,78] 10 22-hour video O(N + Nu)

ECC FP [22,39,52] <10 Several minutes video O( k
√

Nu(N + Nu))

ACC FP [64] ∼ 100 Several minutes video O(
√

NuN + Nu)

Orthogonal FP [71] ∼ 100 Several minutes video O(NuN)

Joint Coding-Emebedding ∼ 100 Several minutes video O( k
√

Nu(N + Nu))

existing literature. First, in large scale system where millions fingerprinted copies

need to be generated and distributed, the efficient fingerprint construction with

low computational complexity becomes an important issue. Meanwhile, the high

collusion resistance requirement places a constraint on the code construction and

embedding. How to construct and embed the code to meet efficient construction

and high collusion resistance is a problem. Second, the detection of the existing

improved ECC based fingerprinting employs maximal correlation based detector.

Ideally, this detector can provide good performance for the large scale system.

However, the large number of users will result in a high computational complexity,

which becomes an issue in real-world applications. Therefore, we need to pursue a

more efficient detection to reduce the computational complexity and to retain the

good detection performance.

In this chapter, we explore the application of the joint coding-embedding frame-

work to video fingerprinting for such a large scale system and address a few major

design and algorithmic issues. In particular, we first address the issue of code struc-

ture to achieve higher collusion resistance and maintain the efficient construction
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and distribution. We then propose an efficient detection algorithm for joint coding

and embedding fingerprinting which significantly speeds up the detection while

maintaining a good detection performance. To our best knowledge, this is the first

work of applying embedded fingerprinting on multimedia signal with such chal-

lenging user capacity and collusion resistance requirements as tens of millions of

users and hundreds of colluders [35,37].

5.1 Large-Scale Video Fingerprinting

5.1.1 Analysis of Collusion Resistance

In a collusion-resistant fingerprinting system, we usually measure the collusion

resistance terms of the probability of catching one of the true colluders. Recall from

Section 2.4.3, under averaging collusion and additional additive white Gaussian

noise, the vector of detection statistics TN ’s defined in Eqn. (2.6) follows an Nu-

dimensional Gaussian distribution:

T = [TN(1), ..., TN (Nu)]
T ∼ N([m1,m2]

T , σ2
dΣ) (5.1)

with m1 = ‖s‖
(

1

K
+

(
1− 1

K

)
ρ

)
1K , m2 = ‖s‖ρ1n−K .

Here 1k is an all one vector with dimension k-by-1; ρ is the pair-wise correlation

between fingerprint sequences; Σ is an Nu-by-Nu covariance matrix whose diagonal

elements are 1’s and off-diagonal elements are ρ’s; σ2
d is the variance of the additive

noise; m1 is the mean vector for colluders; and m2 is the mean vector for innocent

users. Given the same colluder number K and fingerprint strength ‖s‖, the mean

correlation values with colluders and with innocents are separated more widely

for a smaller correlation ρ between each pair of sequences. This suggests that in
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absence of any prior knowledge on collusion patterns, a smaller ρ leads to a higher

colluder detection probability Pd.

To facilitate the study, we derive the expression for the detection probability Pd

based on the model in Eqn. (5.1) and the results on order statistics for multivariate

Gaussian variables [63]:

Pd =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(1− ΦK(

(t−m1)/σ +
√

ρz√
1− ρ

))×
n−K

σ
√

1− ρ
Φn−K−1(

(t−m2)/σ +
√

ρy√
1− ρ

)×

φ(
(t−m2)/σ +

√
ρy√

1− ρ
)φ(y)φ(z)dydzdt, (5.2)

where Φ(·) and φ(·) denote the c.d.f. and p.d.f. of standard Gaussian distribution

N(0, 1), respectively. The detailed derivation is presented in Section 5.5.1. We

numerically examine the Pd under different ρ values for a system with Nu = 1024

and N = 30, 000 under WNR= −10dB, and show the results in Fig. 5.1. The

results are consistent with the conjecture that a small ρ value leads to a higher

detection accuracy and thus is preferred in the system design. According to Section

2.4.3, the correlation ρ between fingerprint sequences constructed from ECC code

with code length L, dimension k and minimum distance D can be approximated

as

ρ ≈ L−D

L
=

k − 1

L
. (5.3)

We can choose k and L to make ρ close to 0 for good collusion resistance.

With this theoretical model, we can numerically examine the system’s perfor-

mance to determine whether the coded fingerprinting can meet the challenging

requirements on user number and collusion resistance. In the examination, we set

the total number of users Nu = 108, embeddable host signal length N = 2 × 107,
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Figure 5.1: Pd of ECC fingerprinting with different intra-fingerprint correlation ρ.

which corresponds to a video signal less than 10 minutes, and correlation ρ = 0.03.

The performance of the coded fingerprinting under this setting is shown in Fig. 5.2,

where we consider different values of colluder number K with WNR (Watermark-

to-Noise Ratio) ranging from −20dB to 0dB. The settings of WNR include the

scenarios from severe distortion to mild distortion. We can see that even under

severe distortion, WNR = −20dB, the system has the potential to protect a video

signal as short as 10 minutes and resist more than 100 users’ collusion out of

100 million users. This promising result inspires us to explore the application of

ECC fingerprinting onto video signals with large user group and address several

important issues in this chapter.

5.1.2 Fingerprint Construction for Reaching Large Scale

The high data volume in a video stream provides seemingly abundant spaces for

data embedding and offers high degrees of freedom in choosing how to fingerprint.

We need to determine how to apply ECC fingerprinting onto video signals to
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Figure 5.2: Analytical results of ECC based fingerprinting for Nu = 108, N = 2 × 107

and ρ = 0.03.

achieve the large user scale. One way is to construct the first round of ECC-based

fingerprint sequences as basis sequences and employ another layer of fingerprint

code to reach the user capacity as shown in Fig. 5.3(a). The fingerprint sequences

of the inner layer serves as the alphabet for the outer code. For example, we build

an ECC based fingerprinting with Reed-Solomon code (L, k,D)q = (6, 2, 5)8 and

obtain 64 fingerprint sequences according to the ECC fingerprint construction and

applying permuted subsegment embedding on these sequences; then using these

64 sequences as basis sequences, we apply an outer code of RS (62, 2, 61)64 on top

of the ECC fingerprinting, arriving at an overall system for a total of 642 users.

This scheme provides a more efficient fingerprint construction than the inner ECC

fingerprint alone since it requires fewer spreading sequences due to one more code

layer and also enables an efficient distribution to users. However, through the

performance evaluation of ECC fingerprinting in Chapter 2, we can see that in

multi-level fingerprinting schemes, the outer level code structure limits the collu-

sion resistance of the whole system, even though its inner level has high collusion

100



resistance. In this case, the attackers may apply segment-wise interleaving attack,

i.e. one segment of the colluded signal (corresponding to one symbol in the outer

code) comes from one of the colluders, which is equivalent to attackers’ applying

interleaving attack on the code level. Thus, this kind of fingerprinting systems

mainly relies on the code level collusion resistance, which is usually very low (less

than 10) due to finite alphabet size of the code. To verify this, we build a two-layer

system with inner RS(6, 2, 5)8 along with permuted subsegment embedding and an

outer code RS(62, 2, 61)64. The simulation results under interleaving collusion in

Fig. 5.3(c) show that a dozen colluders are able to defeat the system even under

high WNR.

Fingerprint
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Sub-segment 
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Forming base sequences 
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Figure 5.3: Coding-embedding structures and performance comparison. (a) Build-

ing an outer code on ECC fingerprinting to reach user capacity; (b) Using finger-

print code to reach user capacity and then applying permuted subsegment embed-

ding; (c) Collusion resistance under interleaving collusion for both schemes in (a)

and (b).

Another way is to directly apply ECC fingerprinting, that is, to first build a fin-

gerprint code to reach the user capacity and then apply the permuted subsegment

embedding to embed the fingerprint into the video signal, as shown in Fig. 5.3(b).
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Continuing with the settings in the above example, this second approach would

first construct a concatenated code using RS(6, 2, 5)8 and RS(62, 2, 61)64, followed

by applying permuted subsegment embedding. The results are also shown in

Fig. 5.3(c), where we can see a much better collusion resistance compared with

the previous method. The resistance against interleaving collusion is increased

from 10 colluders to more than 50 colluders under WNR of 0dB and to 40 col-

luders under WNR = −10dB. The improvement is due to the step of random

permutation before the embedding. The random permutation prevents the attack-

ers from knowing which subsegment corresponds to which symbol. As a result, the

attackers cannot identify the code level and arbitrarily manipulate each symbol

to mount the symbol-wise interleaving attack on either inner code or outer code.

Leveraging the embedding layer, the fingerprinting system is able to resist much

more colluders than the code level alone. Therefore, designing fingerprint code to

reach user capacity first and then applying permuted subsegment embedding to

instill randomness to enhance collusion resistance is a preferred way to construct

fingerprint signals for a large number of users.

5.1.3 Efficient Detection through Trimming

Recall from Section 2.4.1 that the computational complexity of the detection for

ECC-based fingerprinting is the sum of two terms: qN for demodulation and NuL

for colluder identification. When the number of users scales up to millions, the sec-

ond term NuL becomes a non-trivial part of the total computational complexity. In

this subsection, we exploit code structure to significantly reduce the computational

complexity.
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Trimming Based Detection

We propose to employ a trimming process based on the detection results on prede-

fined symbol positions, which we refer to as trimming positions. We first calculate

the correlation statistics T s
ij for the segments Ψ corresponding to trimming posi-

tions with every possible spreading sequence. That is:

T s
ij =

(zi − xi)
Tuj

‖uj‖ , i ∈ Ψ; j = 1, 2, ..., q.

where zi and xi are the ith segment of the test signal and original signal, respec-

tively, and uj is the spreading sequence for symbol j. Then, for each trimming

position i ∈ Ψ, we pick the symbols that have higher statistic than a threshold h

as candidate symbols:

Si = {j|T s
ij > h}, i ∈ Ψ. (5.4)

The codewords that match candidate symbols in Si for all the positions in Ψ are

put into a suspicious codeword set W :

W = {w|wi ∈ Si, i ∈ Ψ}.

Finally, we apply matched filter detection of Eqn. (2.6) within the suspicious set

W to identify the colluder.

The computational complexity of this scheme is determined by the number

of trimming positions. If k′ symbol positions are used for trimming, the resulting

computational complexity for colluder identification can be reduced from O(qkL) to

O(qk−k′
L), and the reduction is qk′

-fold. For example, in a system holding around

1000 users with q = 32 and k = 2, when we use all the information symbols for

trimming, we can obtain more than 1000 times reduction on the computational

complexity. The detection computational complexity can be more significantly

reduced for a large scale system with large q and k′.
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Choosing Trimming Positions

In order to find out the corresponding codeword given the symbol values at certain

positions, i.e. to find out W given {Si, i ∈ Ψ}, we generally need to solve the equa-

tion of xHT = 0 that contains L−k equations and L−k′ unknowns. Here, H is the

parity check matrix of the code, x is the codeword vector with known symbols at

position Ψ and unknowns at remaining positions, and k′ ≤ k. The number of solu-

tions for these equations is qk−k′
corresponding to the qk−k′

suspicious codewords

after the trimming. The computational complexity of solving such an equation

array is O((L − k)3 + qk−k′
L), whose two terms correspond to Gaussian elimina-

tion process and the enumeration of all qk−k′
codewords satisfying the equations,

respectively. To further reduce the complexity, we employ systematic construction

for Reed-Solomon code to build fingerprint code and use the information sym-

bols for trimming. In the systematic code construction, the first k symbols in the

codeword are the information symbols, the remaining are parity check symbols.

These information symbols provide the index of users and can be used to easily

identify the users/codewords. The position information of these symbols (or the

corresponding segments) is protected from adversaries by the random permutation

during the permuted subsegment embedding. To achieve higher detection accu-

racy, it is desirable to assign more energy on the trimming symbols. We accomplish

this by expanding the fingerprint sequence length by γ times for each information

symbol, so that the segment length becomes Ns = γN/(L + k(γ − 1)), where N

is the total sequence length and L is the codeword length. The segment size for

remaining symbols would be N/(L+k(γ−1)). The expansion can be implemented

by repeatedly embedding the sequence corresponding to the information symbols

by γ times.
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Figure 5.4: Correlation ρ vs. Expansion factor γ.

One of the effects of the expansion is the increase in correlation between fin-

gerprint sequences. Recall that a Reed-Solomon code with parameters (L, k) has

the minimum distance of D = L− k +1 or any two codewords share at most k− 1

symbols. For some pairs of codewords, the symbols in common lie at the infor-

mation symbol positions. Thus after the expansion, the number of shared symbol

becomes γ(k− 1). For codewords that have fewer than k− 1 information symbols

in common, the number of shared symbols after the expansion would be smaller

than γ(k − 1). Therefore, in the expanded code, the minimum distance becomes

L+k(γ−1)−γ(k−1) = L−k +γ, and the maximal correlation of the fingerprint

sequences would become

ρ′ =
γ(k − 1)

L + k(γ − 1)
. (5.5)

Fig. 5.4 shows the relationship between the correlation ρ′ and the expansion factor

γ. We can see that the correlation increases as γ becomes larger, and in turn the

overall detection accuracy may decrease according to the results in Eqn. (5.1). On

the other hand, high γ enhances the accuracy of trimming symbol detection and

thus may lead to a high overall probability of detection Pd. We examine the effect

of the expansion factor γ on Pd and show the results in Fig. 5.5 at WNR of 0dB
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and −10dB. In this figure, we set the host signal length as N = 30, 000 and the

total number of users Nu = 1024. The code is constructed by Reed-Solomon code

with L = 30, k = 2 and q = 32. Both information symbols are used for trimming.

From the results, we find that there is an optimal value of γ for a given k′ to

achieve the highest detection probability. For the particular experimental settings

in Fig. 5.5, γ = 3 achieves the best detection results. In the next section, we will

theoretically analyze Pd as a function of the system parameters, and optimal γ can

be derived based on the theoretical model. In Fig. 5.6, we examine Pd of trimming

detection and matched-filter detection with γ = 3 under WNR = −10dB and

−5dB. We can see that, compared with matched-filter detection, the accuracy

of trimming detection is only reduced by less than 6% for low WNRs and less

than 0.5% for moderate WNRs. In most fingerprinting applications, since the

host signal is usually available to the detector and its interference can be removed

from the test signal, we expect a WNR higher than -5dB and thus a comparable

performance by trimming detection to matched-filter detection. Meanwhile, the

trimming detection reduces the detection computational complexity by qk′
, which

is around 1000 times in this experimental settings. As can be seen from the results,

the efficiency of trimming detection is at a negligible expense of lower performance

than matched-filter detection

Performance Analysis

We analyze the performance of the proposed trimming detection in terms of the

detection probability. For simplicity, we show the analysis for the case that only

one information symbol position is used for trimming and the symbol with highest

correlation statistic is chosen to trim the codebook. Thus after trimming, there
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Figure 5.5: Pd vs. expansion factor γ by trimming detector at WNR of (a) -10dB

and (b) -5dB.

remain qk−1 codewords in the codebook. We assume random collusion in our

analysis, i.e. all the users have equal probability to participate the collusion.

Without loss of generality, we select the first symbol position as the trimming

position and its corresponding frame size is Ns = γN/(L + k(γ − 1)). We call the

symbol in the alphabet as color and thus there are q colors for a q-ary codebook.

Note that for a linear code, such as Reed-Solomon code considered in this chapter,

at any given position, each color occurs the same number of times among all

the codewords. That is, each color occurs in qk−1 codewords among totally qk

codewords. When considering random collusion attack, the effect of forming a

K-colluder group on the first symbol position is to choose K symbols from qk

symbols {11...122...233...3......qq...q}. The total number of possibilities for such a

K-colluder group are
(

qk

K

)
. Denote the colluders’ color pattern at the trimming

position as a vector c = [c1 c2 ... cn] and
∑n

i=1 ci = K, where n is the total number

of colors and ci is the number of symbols with color i. For example, a vector

c = [1 2 2] means that among the first symbol position of 5 colluders’ codewords,
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Figure 5.6: Performance comparison of trimming detection vs. matched filter

detection with expansion factor γ = 3 at WNR of (a) -10dB and (b) -5dB.

there are three different colors in total: one color appears once, one appears twice,

and another also appears twice. The exact color values do not affect the analysis

here, because of the symmetry of the code as well as the randomness of the collusion

and the mutual independence of the fingerprint sequences for different colors. For

example, for the color pattern [1 2 2] and color alphabet {A, ..., F}, the instance of

{A A B D D} and {A B B F F} would result in the same detection probability.

Given this vector c, we can derive the probability of detection as:

Pd|c =
n∑

i=1

Pr(catch one colluder inside subcode i)× Pr(subcode i is picked)

=
n∑

i=1

Pd(ci, q
k−1)Pr(Ti = max(T1, .., Tq)).

Here, “subcode i” refers to the set of codewords having color i at the trimming

position; Pd(ci, q
k−1) is calculated according to Eqn. (5.2) with K replaced by ci

and n replaced by qk−1; and Eqn. (5.5) is used for calculating ρ′. The probability
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of subcode i being picked at the trimming position is calculated by

Pr(Ti = max(T1, .., Tq)) =

∫ ∞

−∞
Πj �=iPr(Tj < t)fi(t)dt,

Tj ∼ N(
cj

K
‖u‖, σ2

d) j = 1, ..., q (5.6)

where Tj is the detection statistic for symbol j and fi(t) is the p.d.f. of Ti. Note that

Tj’s are independent Gaussian variables with equal variance, due to the presence of

white Gaussian noise and the orthogonality of the sequences representing different

symbols. For those colors that are not contained in the colluders’ codewords, cj’s

are set to 0.

After obtaining Pd|c, we can calculate the overall probability of detection as

Pd =
∑
c∈CK

Pd|c × Pr(c). (5.7)

Here, CK is the set of all color patterns for K colluders, and it can be recursively

expressed in a matrix form

CK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 CK−1

2 C\{1}K−2

... ...

i C\{1,...,i−1}
K−i

... ...

K 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where C\IK denote the set of row vectors in CK excluding the rows containing element

in I. 1 represents an all “1” column vector with the same number of entries as

the row number of CK−1, and 2 represents an all “2” column vector with the same

number of entries as the row number of C\{1}K−2, and so on. In the above matrix, each

row vector contains q elements and represents one possible color pattern generated
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from K colluders. For each color pattern c in CK , it can be shown that

Pr(c) =
θ
∏q

i=1

(
qk−1

ci

)
(

qk

K

) (5.8)

with θ =

(
q

n

)(
n

a1, a2, ..., am

)
=

(
q

n

)
n!∏m

i=1 ai!
. (5.9)

Here, a = [a1, a2, ..., am] is an auxiliary vector representing the histogram of a color

pattern c, m is the number of distinct values in vector c and ai is the number of

occurrence of ith value in vector c. The detailed derivations for CK and Pr(c) are

presented in Section 5.5.2.

According to the above analysis, we are able to derive the CK matrix for any

K value and get the α value for each c vector (each row of CK). By plugging these

quantities into Eqn. (5.7), we obtain the analytical expression of probability of

detection Pd for the trimming method. The optimal parameter γ∗ can be chosen

to maximize Pd so that

∂Pd(γ)

∂γ
|γ=γ∗ = 0.

The analysis for a more general trimming detection can be conducted in a

similar way. For example, we can set a threshold for the trimming detection

statistic T to select multiple symbols as shown in Eqn. (5.4). The only changes

that need to be made is the calculation of Pd|c, which now becomes

Pd|c =
n∑

i=1

Pd(ci, q
k−1)Pr(Ti > h)

q∏
m=1,m�=i

Pr(Tm < h) +

n∑
i=1

q∑
j=n+1

Pd(ci, 2q
k−1)Pr(Ti > h)Pr(Tj > h)

q∏
m=1,m�=i,j

Pr(Tm < h) +

n∑
i=1

n∑
j=1,j �=i

Pd(ci + cj, 2q
k−1)Pr(Ti > h)Pr(Tj > h)

q∏
m=1,m�=i,j

Pr(Tm < h)

+... + Pd(K,nqk−1)
n∏

m=1

Pr(Tm > h)

q∏
m=n+1

Pr(Tm < h), (5.10)
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where h is a threshold, and

Pr(Ti > h) = Q(
h− ci‖u‖/K

σd

)

with

Q(t) =

∫ ∞

t

1/
√

2π exp(−x2/2)dx.

Multiple-position trimming can be analyzed by iteratively applying the above anal-

ysis process.
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Figure 5.7: Comparison of theoretical and experimental results of trimming detec-

tion: (a) -10dB and (b) -5dB.

We numerically examine the analysis result with the parameter settings of

Nu = 1024, q = 32, and k = 2. The trimming detection is performed only on

the first symbol position and the color with highest detection statistic is picked

for trimming. The results for two WNR values (−10dB and −5dB) are shown in

Fig. 5.7, along with the simulation results at the same parameter settings. We can

see that the analytical results match the experimental results well for most of the

K values. The small gap at some points comes from the numerical computation
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error on the combination terms in Pr(c) and the calculation of Pd|c, where a simpli-

fication of equal-correlation is assumed in the analysis while the actual fingerprints

have different correlation values according to the codebook construction.

5.2 Experimental Results

5.2.1 Experimental settings and results

In this section, we apply the proposed fingerprinting scheme on video signals and

examine the experimental performance. The test video signal is obtained from [3]

and has VGA size of 640-by-480. The total number of users that we target at

is on the order of ten million and colluder number is around 100. We choose a

Reed-Solomon code with q = 64, k = 4, and L = 63, which leads to the number

of users Nu = 1.6 × 107. The expansion parameter γ in the efficient detection

is set at 3, and the first 4 symbol positions are selected for trimming. Thus the

equivalent codeword length is 71 and the resulting pairwise maximum correlation

is ρ′ = 0.127 according to Eqn. (5.5).

During the fingerprint embedding, each frame is transformed into DCT domain.

Fingerprint sequences are embedded into these DCT coefficients through additive

embedding with perceptual scaling. The host video signal is chosen to have 852

frames with about 12 frames for each codeword symbol. For simplicity, we repeat-

edly embed the same fingerprint sequence into every group of frames consisting

of 6 consecutive frames [77]. The issue of intra-video collusion attack will be dis-

cussed in Section 5.3.2. Subsegment partition factor β is set as 24. Fig. 5.8(a)-(c)

show the 500th frame in the original, fingerprinted and compressed video sequences.

Fig. 5.9 shows the simulation results on the probability of catching one colluder,
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Pd, versus colluder number, K, under averaging and interleaving collusion attacks

followed by MPEG compression. The curves are obtained by averaging the results

of 50 iterations.

(a) (b)

(c)

Figure 5.8: Experimental results: (a) Original frame; (b) Fingerprinted frame

before attack with PSNR = 32dB; (c) 3Mbps MPEG compressed frame.

The results shown in Fig. 5.9 is encouraging in that we are able to hold more

than 10 million users and resist more than 100 users’ averaging collusion and 60

users’ interleaving collusion within less than 30 seconds video. The resistance

can be further improved by increasing the video sequence length and employing a
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Figure 5.9: Probability of catching one colluder Pd vs. colluder number c under

averaging and interleaving collusion followed by (a) 3M bps and (b) 1.5M bps

MPEG-2 compression.

larger β value, and trading off the reduced efficiency in distributing fingerprinted

signals. On the other hand, without the joint coding and embedding approach,

the system can only resist about 2 users’ collusion as indicated by the dash line

in Fig. 5.9(a). We can see that the joint coding and embedding strategy can

help overcome the code-level limitation and substantially improve the collusion

resistance at an affordable computational complexity. We further decrease the

compression bit rate down to 1.5Mbps which is of VCD quality and examine the

collusion resistance. Even under this quality, the collusion resistance only reduces

a little under interleaving collusion down to 50 colluders. The resistance under

averaging collusion is till higher than 100 colluders.
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5.2.2 Results under Nonlinear Collusion Attack

The experimental and analytical results that we have presented so far are based on

averaging collusion and interleaving collusion. Our next experiments examine the

collusion resistance under Min-Max attack which can be used as a representative

of non-linear collusion1. In the Min-Max attack, colluders choose the average of

the minimum and maximum values of their copies in each DCT coefficient position

to generate the colluded version. MPEG-2 compression is further applied to the

colluded signal. Fig. 5.10(a) shows the 500th frame of the colluded video after

compression and Fig. 5.10(b) shows the detection probability Pd versus the colluder

number under the Min-Max attack followed by 3Mbps MPEG-2 compression. The

results show that under this non-linear collusion attack, the collusion resistance is

around 80 colluders, which further demonstrates the effectiveness of the proposed

large scale fingerprinting. Its performance gap compared with that under averaging

collusion is mainly because the Min-Max collusion introduces higher distortion on

the colluded signal than the averaging collusion [82]. For 80 users’ collusion, the

Mean Squared Error (MSE) introduced to the host signal by averaging attack is

0.94 and is 3.57 by Min-Max attack before MPEG-2 compression. The increased

distortion results in a lower collusion resistance of the system to Min-Max collusion

attack.

It is worth mentioning that the computational complexity of order-statistics

based non-linear collusion significantly increases because of the sorting involved.

In the examined experimental settings, the non-linear collusion attack from 80 col-

luders requires 12 hours while the averaging collusion only needs 70 minutes. This

1Interested readers may refer to [82] for detailed analysis on the relationship and comparison

among various nonlinear collusion attacks.
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high computational complexity can also help deter the colluders from employing

the non-linear collusion on video especially for a large colluder group.
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Figure 5.10: Experimental results under Min-Max collusion followed by 3Mbps

MPEG2 compression: (a) 500th frame after attack; (b) Probability of catching

one colluder Pd vs. colluder number c.

Table 5.2: Time Consumption of the Proposed Efficient Fingerprinting Embedding

and Detection with User Number Nu = 16 Million and 852 VGA Frames

Efficient Scheme Fully Embedding/Matched Filter Detection

Embedding (per copy) 4–5 mins 30 mins

Detection 370 secs 840 secs

5.2.3 Performance Summary

We summarize the time consumption of the embedding and detection in Table 5.2.

The efficient scheme for embedding refers to the way that we generate all the pos-

sible versions beforehand for each subsegment and concatenate these subsegments
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according to each user’s fingerprint code. Fully embedding means we perform the

embedding on the entire host signal for every user without exploring the code struc-

ture. The efficient scheme for detection refers to the trimming detection proposed

in Section 5.1.3. Standard compilation from Microsoft Visual Studio has been ap-

plied to the C++ implementations of both schemes. We can see from Table 5.2

that the code structure of the fingerprinting speeds up the fingerprinted signal

generation by 6-7 times, and the proposed trimming detection only consumes less

than half of the time required by the matched-filter detection.

5.3 Discussions

5.3.1 Relation to Group-based ECC Fingerprinting

The proposed trimming detection utilize the code structure to first detect trimming

symbols and then use these symbols to trim the codebook. This process is similar to

the detection of GRACE fingerprinting proposed in Chapter 4. In this group-based

fingerprinting, the group symbols are first extracted and then only codewords inside

the extracted groups are put under suspicion for further examination. However,

the GRACE fingerprinting cannot be applied here to get efficient detection because

of the following reasons:

First, GRACE fingerprinting spreads group information over the entire sig-

nal, which does not allow the efficient construction of fingerprinted signal. Recall

that the efficiency of the joint coding and embedding fingerprinting lies in the

code structure such that many copies share the same segment. By pre-generating

those segments, we can assemble the fingerprinted signal for each user according

to his/her codeword to meet real-time requirement. However, in GRACE finger-
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printing, the group information is spread over the entire signal and is different for

users from different group. After adding the group information, users have few

segments in common, thus we cannot utilize the efficient construction as before.

Second, the group fingerprinting can be implemented by appending the group

information to maintain the efficiency in fingerprint construction and to employ

permuted sub-segment embedding hoping to protect the group information. This

scheme, however, is vulnerable to the group-framing attack discussed in Section

4.1.4 because colluders can identify the shared sub-segments and guess the group

information.

In contrast, the proposed trimming detection takes advantage of the inherent

code structure and randomization in embedding, which cannot be easily identi-

fied by the colluders but can be explored by the detector to perform the efficient

detection.

5.3.2 Intra-video collusion

The large amount of data in video is a double-edged sword as it also benefits

the attackers. Given one copy of the fingerprinted video, an attacker may apply

multiple-frame collusion [57, 58], whereby several frames are used to estimate and

eventually remove the fingerprint. One possible implementation of such intra-video

attacks is that the attacker may average several frames that have “visually similar”

content but are embedded with independent fingerprint sequences. By collecting

enough frames, this averaging operation can successfully remove the embedded

fingerprint at a possible expense of reduced visual quality. Furthermore, this attack

can be extended to object-based collusion, where similar objects are identified and

averaged or swapped to circumvent the detection. Another possible attack is that
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the attacker may identify several “visually dissimilar” frames or regions embedded

with the same fingerprint sequences and average these frames to estimate the

embedded fingerprint. This estimated fingerprint sequence will then be subtracted

from the fingerprinted signal to obtain an approximation of the original frame. In

each of the above cases, the attacker can succeed by attacking just one fingerprinted

copy without help from other colluders. Therefore, the design and embedding of

the fingerprint sequence should be robust to these intra-video attacks.

A basic principle to resist these attacks is to embed fingerprint sequences based

on the content of the video, i.e. similar fingerprint sequences are embedded in

frames/objects with similar content and different fingerprint sequences are em-

bedded in frames with different content [60]. For example, a scheme proposed by

Fridrich employs the content-based hash of each segment of the signal as a key to

generate watermark sequences [24]. However, this method cannot be directly used

in the ECC-based fingerprinting because of two reasons. First, the fingerprint

spreading sequences in ECC fingerprinting are mainly determined by the code

structure and the designer does not have the freedom to generate the sequences

according to the content. In ECC-based fingerprinting, the spreading sequences

for different symbols should be orthogonal to each other. On the other hand,

the content-based construction of fingerprint sequences would lead to correlated

spreading sequences for different symbols, which conflicts with the fingerprint con-

struction for ECC fingerprinting. Second, the correlation between the watermark

sequences for two frames generated in [24] decrease exponentially as the Hamming

distance between their hash values increases. This change is so dramatic that it

may result in visually similar frames having quite different watermarks. Therefore,

to address the intra-video collusion attack, we need to find a mechanism that is
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    Secret Key : 1 2 3 … … 1v v

     Hash of
current frame  

new key 1:   1h 2 3 … … 1v v

new key 2:   1 2h 3 … … 1v v

… … 
new key v: 1 2 3 … … 1v vh

sequence from the PSE ECC FP 

  block 1   block 2   block 3      ….  ….         block v

permute permute permute 

  block 1’   block 2’   block 3’      ….  ….           block v’

FP sequence to be embedded in the current frame 

h : 1h 2h 3h … … 1vh vh

Figure 5.11: Illustration of hash-based fingerprint construction.

able to convert the sequence structure imposed by the codeword to what the video

content demands, and build content based fingerprints such that the difference

between fingerprints of two frames is linear with respect to the difference of frame

content.

Since consecutive frames in one scene are visually similar, we can repeatedly

embed the same fingerprint sequence into those consecutive frames. For those

visually dissimilar frames that are assigned similar fingerprint sequences based on

ECC construction, we need to modify the fingerprint sequences to be dissimilar.

To achieve this goal, we can use the hash of each frame to adjust the fingerprint

sequences. For example, frame i and frame j have hash h(i) and h(j), respectively,

each of which is a v-bit binary sequence. If frame i and frame j are visually similar,

the Hamming distance between h(i) and h(j), D(h(i), h(j)), would be very small, i.e.

only a few bit positions are different; if they are visually different, D(h(i), h(j)) will

be very large. As illustrated in Fig. 5.11, we choose a binary secret key κ with the

same length v as the frame hash to generate fingerprint sequence. For each frame

i, we generate v new keys by replacing κ’s nth bit with hi’s nth bit, n = 1, ..., v.

Meanwhile, the fingerprint sequence for the current frame is divided into v blocks.
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Each of these v new keys is used to permute one block. The concatenation of

these v permuted blocks will be the final fingerprint sequence for frame i. With

this method, visually similar frames will have many permuted blocks in common,

thus the overall sequence will be similar; and visually dissimilar frames will have

dissimilar sequences. The correlation between the sequences changes linearly with

the Hamming distance between two frames’ hashes.

5.4 Chapter Summary

In this chapter, we consider fingerprinting video signal under such challenging

settings as to accommodate millions of users and to resist hundreds of users’ col-

lusion. Our work of joint coding and embedding ECC fingerprinting has shown an

excellent trade-off between collusion resistance and efficient construction and de-

tection, which is promising for large-scale video fingerprinting. Building upon this

improved ECC fingerprinting, we address issues of designing code structure and

speeding up detection. We have found out that directly applying the joint coding

and embedding fingerprinting scheme is preferred for a good trade-off between ef-

ficient generation and collusion resistance. The proposed trimming approach can

speed up the detection by 3 orders of magnitude with only slightly drop of detection

accuracy. With the proposed fingerprint construction and efficient detection, the

system holding 16 million users can resist 50-60 colluders’ interleaving collusion and

more than 100 users’ averaging collusion as well as 80 users’ non-linear collusion.

The user capacity and collusion resistance can be further increased by adjusting

such system parameters as k and β. Both the analysis and the experimental re-

sults show a strong potential of joint coding and embedding ECC fingerprinting

for large-scale video fingerprinting applications.
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5.5 Appendix: Derivations

5.5.1 Derivation of Detection Probability Pd of (5.2)

Based on the distribution of the detection statistic in Eqn. (5.1), we derive the

probability of detection as follows. We denote the maximum detection statistic for

colluder and innocent user as T1 and T2, respectively. That is,

T1 = max
i∈SC

Ti, T2 = max
i/∈SC

Ti.

The probability of catching one colluder using the maximum detector (2.6) can be

expressed as

Pd = Pr(T1 > T2) ≈
∫ ∞

−∞
Pr(T1 > t)fT2(t)dt, (5.11)

The approximation in the above equation comes from the simplification on the in-

dependence between T1 and T2 due to small correlation ρ. To obtain an expression

of Pd, we employ the results on order statistics from [63]: Let x = [X1, ..., Xn]′

have an n-dimension Gaussian distribution Nn(μ,Σ) such that the mean value μi,

variance σ2
i of Xi, and the correlation coefficient ρij of Xi and Xj satisfy

μ1 = μ2 = ... = μn = μ;

σ2
1 = σ2

2 = ... = σ2
n = σ2;

ρij = ρ ∈ [0, 1].

Then the density function and distribution function of nth smallest variable X(n),

denoted as g(n)(x) and G(n)(x), are

g(n)(x) =

∫ ∞

−∞
(σ
√

1− ρ)−1f(n)

(
(x− μ)/σ +

√
ρz√

1− ρ

)
φ(z)dz,

G(n)(x) =

∫ ∞

−∞
F(n)

(
(x− μ)/σ +

√
ρz√

1− ρ

)
φ(z)dz, for x ∈ (−∞,∞),

where f(n)(z) = nΦn−1(z)φ(z), F(n)(z) = Φn(z). (5.12)
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Here, Φ(·) and φ(·) denote the cumulative distribution function (c.d.f.) and the

probability density function (p.d.f.) of standard Gaussian distribution N(0, 1),

respectively. Based on this result, we can get the c.d.f. for T1 and p.d.f. for T2 by

plugging in the proper μ value with m1 for colluder and m2 for innocent user. The

expression for the probability of detection becomes what is shown in (5.2):

Pd =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(1− Φc(

(t−m1)/σ +
√

ρz√
1− ρ

))×
n− c

σ
√

1− ρ
Φn−c−1(

(t−m2)/σ +
√

ρy√
1− ρ

)×

φ(
(t−m2)/σ +

√
ρy√

1− ρ
)φ(y)φ(z)dydzdt.

5.5.2 Derivation of Pr(c) and CK
From Eqn. (5.7), we can see that to get the overall detection probability Pd, we need

to obtain two quantities: the set of possible c patterns for K colluders, CK , and

the probability for each pattern to occur, Pr(c). We assume that the collusion

happens randomly among a total of qk users, and the total number of possible

choices for K colluders is
(

qk

K

)
. For a given color pattern c = [c1, c2, ..., cq], the

number of possibilities is θ
∏q

i=1

(
qk−1

ci

)
, where θ is the number of instances of color

pattern c, and the term
∏q

i=1

(
qk−1

ci

)
is the number of choices of colluders’ codeword

that has ci occurrences for each color. Then the Pr(c) can be obtained by

Pr(c) =
θ
∏q

i=1

(
qk−1

ci

)
(

qk

K

) .

To calculate θ, we first take a look at an example with q = 4, and K = 7. We use

{A,B,C,D} to denote the four colors in the alphabet. The possible instances of a

color pattern c = [1 1 2 0] are {ABCC} {ABBC} {AABC} {ABDD} {ABBD}
{AABD} {ACDD} {ACCD} {AACD} {BCDD} {BCCD} {BBCD}, giving a
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total of
(
4
3

)(
3
2

)(
3−2
1

)
= 12 instances. For any value of q, K and c, the value of θ can

be obtained as follows. For a given color pattern c = [c1, c2, ..., cn, 0, 0...0] leading

by n non-zero elements, we derive a histogram vector a = [a1, a2, ..., am], where

m is the number of distinct values in vector c and ai is the number of occurrence

of ith value in vector c. For the above example c = [1 1 2 0], we have a = [2 1]

indicating that there are two ‘1’s and one ‘2’ in c. Apparently,
∑m

i=1 ai = n. Then

θ can be calculated by

θ =

(
q

n

)(
n

a1

)(
n− a1

a2

)(
n− a1 − a2

a3

)
...

=

(
q

n

)(
n

a1, a2, ..., am

)
=

(
q

n

)
n!∏m

i=1 ai!
. (5.13)

The next step is to derive the color patterns for a given K, denoted as CK . In

the following, we use a matrix to represent CK in which each row is a color pattern.

CK can be derived as follows:

For K = 1:

C1 = [1];

For K = 2:

C2 =

⎡
⎢⎣ 1 1

2 0

⎤
⎥⎦ ;

For K = 3:

C3 =

⎡
⎢⎢⎢⎢⎣

1 1 1

1 2 0

3 0 0

⎤
⎥⎥⎥⎥⎦ ;

124



For K = 4:

C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 1 2 0

1 3 0 0

2 2 0 0

4 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

For any K,

CK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 CK−1

2 C\{1}K−2

... ...

i C\{1,...,i−1}
K−i

... ...

K 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

where C\IK denote the set of vectors in CK excluding the rows containing element

in I. 1 represents an all “1” column vector with the same number of entries as

the row number of CK−1, and 2 represents an all “2” column vector with the same

number of entries as the row number of C\{1}K−2, and so on. If C\{1,...,j−1}
K−j for some j

is empty, then the sub-matrix [ j C\{1,...,j−1}
K−j ] will not appear in CK . In the above

equations, each row vector contains q elements. For simplicity in representation,

we omit the zeros at the end of each row. A full vector can be obtained by simply

appending zeros at the end of each row to reach q elements.
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Chapter 6

Exploring Dynamic and QIM

Fingerprinting

In this chapter, we explore two directions for further study on multimedia finger-

printing, namely dynamic fingerprinting and QIM based multimedia fingerprinting

with blind detection. The dynamic fingerprinting is designed for the applications

allowing long term subscription from users, whereby users have access to multi-

ple signals during a certain period. In this system, the fingerprinting scheme will

change dynamically according to the observed collusion pattern to increase the

probability of catching colluders. The second problem we consider in this chapter

is the Quantization Index Modulation (QIM) fingerprinting scheme for blind detec-

tion. QIM is known for its excellent performance under blind detection, and thus

we choose this embedding method in our study. Since there is no prior work in the

literature on QIM based fingerprinting, we first explore how to apply QIM to the

fingerprinting problem and then we will examine several QIM-based fingerprinting

and compare their performance with spread-spectrum based fingerprinting.
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6.1 Dynamic Fingerprinting for Multimedia

Nowadays, subscription based content services have become very popular, such

as cable TV or online downloading, where users can obtain multimedia content

from the content provider during the subscription period. One example is cable

TV subscription service, through which people can have many options to view TV

program or movies. Another example is the online subscription of movie download,

where the user set up an account with the server, and download movies by signing

in with his/her account. It is important to protect the content from unauthorized

redistribution during the subscription period.

Most fingerprinting works address the anti-collusion problem for one signal in

a static way, i.e. the fingerprint for each user is designed before-hand [70]. One of

the first several works considering dynamic traitor tracing is by Fiat et al [23] and

was improved in [6, 61]. In their work, the host signal is transmitted in segments,

and the fingerprint in each segment is dynamically determined according to the

detected fingerprints from previous segments. After collecting many segments,

the detector makes a decision on the likely colluder. A major limitation of the

work is the assumptions on real-time surveillance feedback and on dumb colluders,

which may not always be realistic. Although it is possible to extend Fiat’s dynamic

fingerprinting to subscription scenarios of multiple programs by treating one movie

as one segment, the detector has to collect tens of pirated movies for the algorithm

to converge to catch ten colluders out of only 1000 users. If the total number of

users scales up to millions, the detector has to collect nearly 100 pirated movies to

catch colluders, which is impractical. Based on the work by Fiat et al., Safavi-Naini

et al. proposed a sequential traitor tracing scheme [53], whereby the fingerprint

for each signal segment is predetermined, rather than dynamic, and the detection
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is performed sequentially.

In this section, we consider the time dimension of the subscription based ser-

vices and exploit the dynamics between the content owner and the colluders to

design fingerprint [36]. Specifically, we adjust the fingerprint strength dynamically

according to the colluders’ information collected from previous pirated signals. To

better understand the performance of the proposed scheme, we also examine pos-

sible strategies that colluders may take to combat dynamic fingerprinting. Results

show that the proposed scheme has better collusion resistance than static ones and

is robust to various collusion strategies.

6.1.1 Problem Description and Basic Fingerprinting Scheme

A dynamic fingerprinting scheme consists of several rounds. Each round i employs

a basic fingerprinting system Fi. The content owner distributes a signal xi with

fingerprint embedded to all users in the system. After receiving the fingerprinted

signals, the colluders collectively generate a copy zi and redistribute it. When

a detector obtains a colluded copy zi, detection is performed on zi to identify

colluder(s). According to the detection results, the content owner redesign the

fingerprint for round i + 1 to increase the chances for colluders being caught. As a

result, the fingerprinting scheme for round i + 1, Fi+1, is a function of Fi and the

collusion strategy Ki, i.e. Fi+1 = f(Fi,Ki), where f() is the dynamic fingerprinting

strategy. The same process will continue in round i + 1.

In this work, we employ orthogonal fingerprinting [71] as the basic fingerprinting

scheme for each round and this basic fingerprinting scheme can be replaced by

other fingerprinting systems [27,28,34] according to the application requirements.

In orthogonal fingerprinting, mutually orthogonal spreading sequences {uj, j =
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1...Nu} with identical energy ||u||2 are assigned to Nu users as the fingerprints.

User j’s fingerprinted copy is obtained as yj = x + uj. After the distribution of

the fingerprinted copies, the adversaries may employ various attacks K. In this

chapter we focus on averaging collusion 1, where colluders take the average of the

corresponding signal in their copies to generate a colluded version. Additional

distortion may be added to the multimedia signal during the collusion, which we

model as an additive noise. Since few colluders would be willing to take higher

risk than others, they generally would make contributions of approximately equal

amount in the collusion. The colluded version z follows:

z =
1

K

∑
j∈Sc

yj + d =
1

K

∑
j∈Sc

uj + x + d, (6.1)

where Sc is the colluder set with size K. The additional distortion is modelled as

an i.i.d. additive Gaussian noise d with zero-mean and variance σ2
d.

To identify colluders who have contributed to a suspicious copy of multimedia

content, we employ a correlation detector commonly used for spread spectrum

embedding. In this work, we focus on catching one colluder with high probability,

for which the maximum detector [71] is employed. The user with the highest

correlation with the test signal is identified as the colluder: ĵ = arg maxNu
j=1 Tj,

where

Tj =
(z− x)Tuj√‖u‖2 j = 1, ..., Nu, (6.2)

The colluder set in each round can be the same or different. In this chapter, we

first consider the case of static colluder set, in which colluders remain the same for

1For orthogonal fingerprinting with Gaussian distributed fingerprints, a number of non-linear

collusions employing order statistics, such as minimum collusion attack, have been shown [82] to

be well approximated by the averaging collusion plus additive noise.
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each round. In Section 6.1.3, we will discuss the dynamic strategies that colluders

can employ in different rounds.

6.1.2 Dynamic Fingerprinting via Strength Scaling

Dynamic Fingerprinting Scheme

For simplicity, we start with a two-round system, and assumes the content owner

initially does not have information about the colluders. In the first round, the

content owner assumes every user has equal probability to collude, and the or-

thogonal fingerprinting with equal strength is employed. When a pirated copy is

leaked, the correlation based detector in Eqn. (6.2) is employed to identify col-

luder. In this work, we choose not to immediately disconnect the colluder from the

service. Notice that the action of disconnecting the detected colluder will inform

the attackers that the content owner has identified some colluder(s), which will

trigger complicated collusion strategies from the attackers. We will leave this case

as our future work.

We design the fingerprints of the second round based on the detection statistic

T (1) from the first round. Given the statistic {T (1)
i } for each user, a threshold h

is chosen such that the users whose detection statistic is higher than h are put

into the suspicious user set Us. The fingerprint strength of the users in Us will be

increased by a small amount β in the second round to increase the probability of

catching colluder(s). That is, for users in Us, the fingerprinted copy is obtained as

y = x + (1 + β)u. Other users’ fingerprint strength remains as ‖u‖. The strategy

of increasing only suspicious users’ fingerprint energy instead of all the users is

important in the applications where it is crucial to guarantee innocent users to get

high-fidelity content. The parameters h and β in the proposed scheme enable the
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designer to achieve a trade-off between the detection performance and the received

perceptual quality according to various applications’ requirements.

After finding out a suspicious copy in the second round, the content owner

employs the correlation detector in Eqn. (6.2) to identify colluder. As will be seen

from Section 6.1.2, the increased fingerprint strength will increase the colluders’

probability of being caught while the probability of false alarm remains unchanged.

The detection statistic from second round T
(2)
i can also be combined with T

(1)
i as

Ti = (T
(1)
i + T

(2)
i )/
√

2 to facilitate the final decision, where we pick the user with

highest T as the colluder.

Analyzing Colluder Detection Performance

In this section, we analyze the probability of catching one colluder for the pro-

posed dynamic fingerprinting. For comparison purpose, we also analyze two other

alternatives: (1) repeatedly employing equal-energy orthogonal fingerprinting with

the same fingerprint energy for both rounds, which we call static fingerprinting,

and (2) employing equal-energy orthogonal fingerprinting for the first round and

increasing the energy by β for all the users in the second round, called blind dy-

namic fingerprinting since it does not utilize the detection results from the first

round.

For all three schemes, the first step is to determine the distribution of T (1) and

T (2) so as to derive the distribution of the final detection statistic Ti = (T
(1)
i +

T
(2)
i )/
√

2 for each user. After obtaining the distribution of Ti’s, we are able to

calculate the probability of detection as

Pd = Pr(TM1 > TM2) =

∫
Pr(TM1 > t)fTM2

(t)dt (6.3)

where TM1 = maxi∈Sc Ti, TM2 = maxi/∈Sc Ti, and fTM2
(t) is the p.d.f. of TM2. For all
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Figure 6.1: Performance of three schemes: (a) Simulation results vs. analytical

results; (b) Analytical results for all three schemes (c) Portion of users having

higher fingerprint strength in the second round.

three schemes, Ti for innocent users are the same and follow Gaussian distributions

N ∼ (0, σ2
d). Thus we have

fTM2
(t) =

Nu −K

σd

Φ

(
t

σd

)Nu−K−1

× φ

(
t

σd

)
, (6.4)

where Nu is the total number of users, and Φ() and φ() are the c.d.f. and p.d.f. of

standard Gaussian distribution, respectively.

The detection statistic T for static fingerprinting and blind dynamic finger-
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printing can be shown to follow

Ti ∼

⎧⎪⎪⎨
⎪⎪⎩

N(0, σ2
d), i /∈ Sc,

N(μC , σ2
d), i ∈ Sc,

(6.5)

where μC takes value of
√

2‖u‖/K � μC1 for static fingerprinting and (2 +

β)‖u‖/(√2K) � μC2 for blind dynamic fingerprinting.

To determine the distribution of T for the proposed dynamic fingerprinting, we

need to first calculate the probability of T
(1)
i having higher value than the threshold

after the first round. This probability, denoted as psi, is the probability for each

user to be put into a suspicious user set. In this work, we set the threshold h

adaptively as h = γ maxi T
(1)
i . Then, the psi is calculated as

psi =

∫ ∏
j �=i

Pr(T
(1)
j < t/γ)fTi

(t)dt. (6.6)

Due to the equal energy and orthogonal fingerprint construction in the first round,

psi for all the innocent users are the same. We denote it as ps0. Similarly, psi for

all the colluders would be the same under fair collusion, and we denote it as ps1.

We can show that T of the proposed scheme has the distribution of

Ti =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N(0, σ2
d), i /∈ Sc,

N(μC2, σ
2
d), with prob. ps1 i ∈ Sc

N(μC1, σ
2
d), with prob. 1− ps1 i ∈ Sc,

(6.7)

and Pr(TM1 > t) = 1−
K∑

i=0

Φi

(
t− μC2

σd

)
×

ΦK−i

(
t− μC1

σd

)⎛
⎜⎝ K

i

⎞
⎟⎠ pi

s1(1− ps1)
K−i. (6.8)

Plugging in the obtained results into Eqn. (6.3), we can obtain the probability of

catching one colluder for all three schemes.
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We validate the analysis through simulations with 5000 iterations. The exam-

ined system holds 1000 users, and the fingerprint length is 104, which is roughly the

number of embeddable components in a 256×256 natural image. The first round

of all three systems employs orthogonal fingerprinting with equal strength. In the

second round, the static fingerprinting keeps the same fingerprint strength; the

two dynamic fingerprinting schemes employ β = 0.2 to introduce a small amount

of extra distortion, which is equivalent to 1.6dB loss in PSNR. Fig. 6.1(a) shows

the simulation results on probability of detection Pd along with the numerical eval-

uation of Eqn. (6.3), where we select the results of static fingerprinting and the

proposed dynamic fingerprinting as representatives. We can see that the analytical

results match well with simulation results.

Comparison of Fingerprinting Schemes

In this section, we evaluate the performance of the proposed dynamic fingerprinting

in comparison with the other two alternatives. The experimental settings are the

same as above. The adaptive threshold γ for the proposed dynamic fingerprinting

is set at 0.1 and 0.3, respectively. Fig. 6.1 (b) shows the analytical results of Pd

versus the colluder number K at a Fingerprint-to-Noise Ratio of -5dB for all three

schemes. We can see that the collusion resistance of the blind dynamic fingerprint-

ing is better than that of static fingerprinting due to higher fingerprint strength in

the second round. With the same detection probability, e.g. Pd=0.85, the static

fingerprinting can only resist 51 colluders, while the blind dynamic fingerprinting

can resist 59 colluders giving a 16% improvement in collusion resistance. The per-

formance of the proposed dynamic fingerprinting lies in between and is close to

blind dynamic fingerprinting scheme. For example, with γ = 0.1, the proposed
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dynamic fingerprinting can catch 6 ∼ 7 more colluders than static fingerprinting.

As the threshold γ decreases, the collusion resistance of the proposed scheme gets

closer to that of blind dynamic fingerprinting.

Although blind dynamic fingerprinting has the highest detection probability in

all three schemes, everyone in the system, including innocent users, suffers a larger

distortion in the second round of content distribution because of the increased

fingerprint strength. This is unfair for the innocent users. In comparison, the

proposed dynamic fingerprinting only increases the fingerprint strength for the

suspicious users. Fig. 6.1(c) shows the portion of the innocent users’ and colluders’

fingerprint to be increased. From the results, we can see that with γ = 0.1, only

37% of the innocent users receive content with larger distortion in the second round

and 68% of the colluders have their fingerprint energy increased, and we are able to

achieve almost the same detection performance as the blind dynamic fingerprinting

where all users have larger distortion. As we increase γ, fewer innocent users and

colluders receive low quality signal, which leads a lower Pd. We can see that γ is a

parameter used to achieve a trade-off between the collusion resistance performance

and user satisfaction. Overall, the proposed dynamic fingerprinting has a better

trade-off than the other two schemes.

6.1.3 Dynamic Collusion Strategies

The results shown in the last section are based on the assumptions that the collud-

ers remain the same in both rounds. However, knowing the dynamic fingerprinting

is employed, colluders may take different strategies in each round to circumvent

the proposed fingerprinting. In this section, we examine the possible strategies

that the colluders may take, and study the performance of the proposed dynamic
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Figure 6.2: Pd of the proposed scheme against distinct colluder set.

fingerprinting against those collusion strategies. Here we assume that each of the

colluders is honest to the coalition, and issues regarding selfish colluder can be

studied following the framework in [81].

The effectiveness of the proposed scheme comes from the fact that the colluders

participate the collusion in both rounds so that (1) the colluders may be detected

as suspicious user in the first round and get fingerprint of increased strength for

second round; (2) after participating the collusion in the second round, his/her

probability of being detected is higher than before due to the increased fingerprint

energy. Observing this, colluders may form different collusion sets for each round

to circumvent the dynamic fingerprinting.

Suppose there are totally K colluders, denoted as Sc. The colluders decide to

choose a subset of the colluders to collude in the first round and use a different

subset of colluders for the second round. We denote the colluder set in the first

round as Sc1 with K1 colluders, in the second round as Sc2 with K2 colluders, and

Sc = Sc1∪Sc2. The ratio of the colluders in the first round over the entire colluder

group is denoted as K1/K = η. We define an overlap ratio as ξ = |SC1 ∩ SC2|/K.
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It is obvious that K2+K1 = (1+ξ)K. The parameters η and ξ feature the strategy

employed by the colluders. For simplicity, we consider the colluder set for both

rounds to have the same colluder number, which imposes one more constraint of

η = 1 + ξ − η. Under this model, the collusion strategy with repeated colluder

set we have examined in Section 6.1.2 is a special case with η = ξ = 1. Now we

examine other two cases, namely, disjoint colluder set and overlapped colluder set.

Disjoint Colluder Set In this strategy, the colluders divide themselves into two

disjoint groups and each group performs collusion attack in one round, i.e. η = 0.5,

ξ = 0. As a result, every colluder participates the collusion only in one round.

Under this case, the detection statistic T based on both rounds has distribution

close to that of the static fingerprinting as in Eqn. (6.5), and thus the detection

performance would be similar to that of the static fingerprinting. However, due to

the smaller colluder group in each round, the basic fingerprinting system in each

round has a higher probability of detection as shown in Fig. 6.2. In this case, at

each round, the detector is able to make decision without aggregating the detection

statistics from multiple rounds, and the colluders actually have higher risk of being

caught than before.

Overlapped Colluder Set In this case, some colluders only participate in one

round of collusion and some participate in both rounds. The two parameters η

and ξ are within the range of 0.5 < η < 1, 0 < ξ < 1. In Fig. 6.3, we show

the probability of detection under this collusion strategy, where we examined two

settings: η = 0.6, ξ = 0.2 and η = 0.9, ξ = 0.8. Comparing the results with that of

Section 6.1.2, we can see that the overlapped colluder set brings the detector up to

10% increase in probability of detection. As ξ and η approach 1, the performance

approaches to the case with the same colluder set in both rounds. The strategy
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Figure 6.3: Pd of the proposed scheme against overlapped colluder set.

with overlapped colluder set does not bring benefit to the colluders. Fairness issues

inside the colluders would also arise, which will be addressed in our future work.

In summary, if we look at only one round, both strategies with distinct and

overlapped colluder set reduce the colluder number in each round and increase

the colluders’ risk of being caught; if we collectively examine two rounds, the

overlapped strategy also increase the probability of detection. Therefore, the best

strategy for colluders would be to try to collect as many colluders as possible in

each round and launch the collusion attack altogether, which is the case that we

have examined in Section 6.1.2.

6.2 QIM based Multimedia Fingerprinting

In the collusion-resistant multimedia fingerprinting literature, most of the schemes

use spread spectrum techniques to embed the fingerprints. Under non-blind detec-

tion, spread spectrum based fingerprint embedding has high detection accuracy.

However, in applications where the detection is performed without the original
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signal, the host signal acts as strong noise to the detector in the spread spec-

trum based fingerprinting and thus the detection accuracy is very low. An impor-

tant alternative to spread spectrum embedding is Quantization Index Modulation

(QIM) [11, 12]. In QIM, the host data is quantized using multiple quantizers, the

index of which is chosen based on the message to be embedded. The advantages

of the QIM embedding is the high detection accuracy under blind detection. In

this section, we explore the possibility of employing QIM for anti-collusion fin-

gerprinting applications. Specifically, we employ dither modulation (DM) for the

fingerprint embedding [11]. We have observed that the existing DM algorithm pri-

marily focusses on embedding binary bits. We first construct a basic embedding

scheme to resist collusion attacks by extending the existing DM to embed multiple

symbols, and study its performance. To better understand the results, we introduce

a general theoretical model and analyze the collusion resistance of DM based fin-

gerprinting. From our theoretical analysis, we infer that fingerprint sequences with

low correlation have better collusion resistance. We then design a new algorithm

to construct dither sequences so that the resulting fingerprints have low correlation

and are approximately orthogonal. We demonstrate through simulations that our

proposed method performs better than the basic scheme, and compare the results

with those obtained using spread spectrum based fingerprinting. Our results show

that the fingerprint correlation is not easy to control through QIM embedding and

hence it does not perform as well as the spread spectrum based fingerprinting even

under non-blind detection.

Spread Transform Dithered Modulation (STDM) is an alternative robust quan-

tization based embedding approach whereby a random unitary transformation is

applied to the signals before quantization. With this embedding method, every
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bit of information can be spread over the signal. This would have similar effect

as spread spectrum based embedding, and the quantization operation during the

embedding would bring benefits in blind detection scenario. Meanwhile, we no-

tice that the existing QIM embedding techniques are well defined for embedding

binary bits, and our results on DM based fingerprinting show that it is non-trivial

to extend these methods to embed non-binary symbols. In principle, it would be

possible to construct binary fingerprint sequences employing collusion-secure codes

such as Boneh-Shaw’s [9] for fingerprinting multimedia. However, since these codes

are designed without considering the embedding issues explicitly, they are often

too long to be reliably embedded [9], and/or are unable to resist a nontrivial num-

ber of colluders [5]. For example, to attain moderate levels of collusion resistance

such as to resist 10 colluders out of 1000 users, the Boneh-Shaw code requires a

long codeword at least on the order of 106 bits. Such high payloads often exceed

the embedding capacity for most multimedia data under stringent robustness re-

quirements. In this section, we propose to use non-binary fingerprint code, such

as traceability code employed in [33] and map each symbol to a binary codeword

through an efficient construction for embedding [59].

6.2.1 Fingerprinting Model and QIM Review

Spread Spectrum based Fingerprinting

Spread spectrum embedding has been widely used for multimedia fingerprint-

ing [33,64,71]. One typical example is orthogonal fingerprinting, whereby mutually

orthogonal spreading sequences are generated as fingerprint for each user. Another

way to construct fingerprint is to employ a coding step, such as error correcting

code (ECC), and map symbols in the alphabet to orthogonal sequences [30]. The
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ith user’s fingerprinted copy yi is obtained by adding his/her fingerprint sequence

si to the host signal x, i.e.

yi = x + si. (6.9)

After the fingerprinted copies reach end users, some users may mount collusion

attacks and try to remove the traces of the embedded fingerprint. Averaging collu-

sion plus additive noise is mostly studied in the literature [71,76] and a number of

non-linear collusions have been shown to be well approximated by this model [82].

Under averaging collusion, the resulting signal, z, is the average of c colluders’

fingerprinted copy:

z =
1

c

∑
i∈Sc

yi + n, (6.10)

where Sc is the colluder set containing c colluders, n = [n1, n2, . . . , nN ]T is additive

noise that models additional distortions applied on the colluded signal, and N is

the length of the fingerprint sequence. For simplicity, we assume n follows an i.i.d.

Gaussian distribution.

The goal of the detector is to catch at least one of the colluders with a high

probability given the suspicious copy, z. As the host signal can be made available to

detectors in many fingerprinting applications, we subtract the host signal from the

suspicious copy to obtain a test signal. Match filter detector is then employed to

find the colluder; that is, we correlate the test signal with each of the Nu spreading

sequences (one for each user) and identify the sequence that gives the maximum

correlation. The detection statistic for the ith user is defined as

Ti =
(z− x)T si√||si||2

, (6.11)

and the m̂th user is declared as a colluder if

m̂ = arg maxi=1,2,...,Nu
Ti. (6.12)
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Quantization Index Modulation(QIM)

Dither Modulation(DM) In quantization based methods, the host data is

quantized using multiple quantizers and the index of the quantizer is chosen based

on the message to be embedded [11]. A simple way to build multiple quantizers

is by dither modulation (DM). Specifically, for a host-signal x, the embedding

function for hiding binary messages can be written as

qxi
= QΔ(x + di)− di ∀i ∈ {0, 1}, (6.13)

where QΔ(.) represents the quantization function with step size Δ and di represents

the dither sequence that is used to perturb the host signal before quantization. One

possible way to construct the dither sequence is by first choosing one dither vector

(say d0) as i.i.d. random variables following a uniform distribution over [−Δ
2
, Δ

2
]

and then the second one can be obtained using [11]

d1k =

⎧⎪⎨
⎪⎩

d0k + Δk

2
if d0k < 0,

d0k − Δk

2
if d0k ≥ 0,

∀k ∈ {1, 2, . . . , N}, (6.14)

where di = [di1, di2, . . . , diN ]T .

It has been shown in [11, 20] that the rate-distortion and robustness tradeoff

can be improved in the basic QIM method by compensation and other postpro-

cessing operations. In the distortion compensated QIM (DC-QIM), a fraction of

the quantization error is added back to the original signal. Thus, the watermarked

image can be represented as

yi = α
(
QΔ

α
(x + di)− di

)
+ (1− α)x ∀i ∈ {0, 1}, (6.15)

where the constant α can be chosen appropriately to maximize the Signal-to-Noise

Ratio (SNR) [11] or to maximize embedding capacity [20,45].
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Spread Transform Dither Modulation (STDM) Another robust way to im-

plement QIM is STDM. Instead of applying scalar DM directly on each component

of host signal, STDM first applies a random unitary transformation by projecting

the host signal x onto a random direction, u. The projection values, x(p) = uTx,

are then quantized using DM to obtain the watermarked signal [11], i.e.

y = x + (y(p) − x(p))u, (6.16)

y(p) = Q	(x(p) + db)− db, b ∈ {0, 1}, (6.17)

where b is the message bit to be embedded. Typically, the projection direction u

is randomly generated according to a secret key, and therefore we do not need to

introduce uncertainty in the choice of dither sequence db. In our implementation,

we choose the dither sequences to be deterministic. Due to random projections,

only the noise in the direction of u would affect performance. Thus, the STDM

provides a higher effective Watermark to Noise Ratio (WNR), and is more robust

against additive noise attacks [11].

During the detection, the test signal z = y + n, is projected onto vector u to

get z(p) = zTu. The embedded bit is determined as

m̂ =

⎧⎪⎨
⎪⎩

arg minb=0,1 ‖z(p) − (Q	(x(p) + db)− db)‖ for non-blind detection,

arg minb=0,1 ‖z(p) − (Q	(z(p) + db)− db)‖ for blind detection.

(6.18)

6.2.2 Dither Modulation based Fingerprinting

Extending QIM to Fingerprinting

It is known in the recent literature that lattice-based quantizers can be used to

embed multiple alphabets [80], but they generally have a very high computational
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complexity. To overcome this problem, we consider a simple extension of the

DM scheme for embedding multiple symbols, i.e. use mutually orthogonal dither

sequences for each user. Specifically, we construct Nu random dither sequences di

following an i.i.d. Gaussian distribution such that E(dT
i dj) = 0 ∀i, j ∈ {1, ..., Nu}

and i �= j. The fingerprinted copies are then obtained using Eqn. (6.15).

When the content owner obtains the suspicious copy z, he/she can apply max-

imum likelihood detection, which would involve an exhaustive search over O(2Nu)

different colluder combinations. Although this detector is optimal in minimizing

the probability of detection error, its complexity is very high and grows exponen-

tially with the number of users. Therefore, in our implementation, we apply the

minimum-distance detection as used in the QIM literature [11] to find one of the

colluders. More specifically, the m̂th user is declared a colluder if

m̂ = arg mink=1,2,...Nu
||z− yk||2. (6.19)

This detector also provides a fair comparison with the spread spectrum based

fingerprinting employing match filter detection of Eqn. (6.11).

We simulated this basic scheme for Nu = 1024 users under averaging collusion

on a 256 × 256 size Lena image with the PSNR of the fingerprinted image with

respect to the original set to 42dB. The embedding was done in the block DCT

domain and the quantization step sizes were chosen according to the JPEG quanti-

zation table. We examine the probability of catching one colluder, Pd, at different

watermark-to-noise-ratio (WNR), and the results are shown in Fig. 6.4(a). For

comparison purposes, we show in Fig. 6.4(c) the performance of a spread spectrum

based fingerprinting under the same conditions. From the results, we observe that

the basic QIM-based fingerprinting can only resist about half dozen colluders at

moderate to high WNRs, while spread spectrum based fingerprinting can resist
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Figure 6.4: Comparison on the performance of QIM-based and spread spectrum

based fingerprinting: (a) Basic QIM-based Fingerprinting; (b) Improved QIM-

based Fingerprinting; (c) Spread spectrum based Fingerprinting; (d) Results under

WNR= −10dB.
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more than 30 colluders with high probability in the same WNR range. To facil-

itate the analysis of results, we build a theoretical model to study the detection

performance in the next subsection.

Theoretical Analysis of QIM-based Fingerprinting

Without loss of generality, we assume the first c colluders perform averaging collu-

sion as formulated in Eqn. (6.10). Then, the probability of catching one colluder,

Pd, is

Pd = Pr(min(X1, X2, . . . , Xc) < min(Xc+1, Xc+2, . . . , XNu)), (6.20)

where Xk = ||z− yk||2 is the detection statistic for user k. We can show that for

a system with totally Nu users and c colluders, X = [X1, X2, . . . , XNu ]T approx-

imately follows a multi-variate Gaussian distribution with mean and covariance

matrix given by:

mk = E(Xk) =

⎧⎪⎨
⎪⎩

(
c−1

c

)
Λ
2

+ Nσ2
n if 1 ≤ k ≤ c,(

c+1
c

)
Λ
2

+ Nσ2
n if c + 1 ≤ k ≤ Nu,

(6.21)

R(i, j) = cov(Xi, Xj) = 2σ4
n

[
N +

(
Λ

σ2
n

)
P (i, j)

c

]
, (6.22)

where N is the length of fingerprint sequence, σ2
n is variance of the additive noise,

and Λ is the average mean square difference between two fingerprinted copies. The
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Figure 6.5: Theoretical results on probability of correct detection with respect to

number of colluders for different ρ values

matrix P(Nu×Nu) is given by

P (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c− 1 if 1 ≤ i, j ≤ c and i = j,

−1 if 1 ≤ i, j ≤ c and i �= j,

0 if 1 ≤ i ≤ c and j > c,

0 if 1 ≤ j ≤ c and i > c,

c + 1 if c < i, j ≤ Nu and i = j,

1 if c < i, j ≤ Nu and i �= j.

(6.23)

The detailed derivation is described in Section 6.2.4. We remark that the above

theoretical framework is general and applicable to any fingerprinting scheme as

long as the distance between any pair of fingerprints is identical. Thus, this model

can help explain the results obtained by spread spectrum techniques as well.

From Eqn. (6.21), we notice that the difference between the means of Xk for

the colluders and the innocent users is Δm = Λ
c
. Thus, we infer that the aver-

age performance in terms of probability of catch one colluder would improve as

the distance between two fingerprint sequences, Λ, is increased, or the number of
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colluders c is decreased. This result can also be interpreted in terms of the correla-

tion between the fingerprint sequences ρ = 1− Λ
2W

(W is the average energy of the

fingerprint). In Fig. 6.5, we show the probability of correct decision Pd for differ-

ent values of the correlation parameter ρ by numerically evaluating the theoretical

model. We observe from the plot that the performance of the fingerprinting system

increases when ρ reduces (or Λ increases). Based on this principle, we examine

the correlation for basic QIM-based fingerprinting. We observe that the main rea-

son for our basic QIM construction not performing well compared to the spread

spectrum case is because the resulting correlation value ρ = 0.45 was much higher

than that of the spread spectrum based fingerprinting (close to zero). Therefore,

in order to improve the collusion resistance of QIM-based fingerprinting, we need

to carefully select dither sequences so that the resulting fingerprint sequences have

low correlation. In the next section, we propose a new technique that will help

reduce the correlation and improve the detection performance.

Improved Dither Sequence Construction for QIM-based Fingerprinting

According to the theoretical model, for best results, the dither sequences should be

constructed so as to make the final fingerprints have as low correlation as possible.

The problem can be formulated as

min (QΔ(x+di)−x−di)
T (QΔ(x+dj)−x−dj), ∀ i, j ∈ {1, 2, . . . , Nu}, i �= j,

(6.24)

subject to the fairness constraints that the fingerprint energies for different users

are equal, i.e.

(QΔ(x + di)− x− di)
T (QΔ(x + di)− x− di) = W, ∀i = 1, 2, . . . , Nu. (6.25)

Let Δ = [Δ1, Δ2, . . . , ΔN ]T , where Δk is the step size of the uniform quantizer in
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the kth component. We can show that the quantization operation (for the mid-

raiser quantizer) is given by

QΔ(x + di) = a +
1

2
Δ⊗Yi, (6.26)

where a = [a1, a2, . . . , aN ]T , Yi = [Yi1, Yi2, . . . , YiN ]T and Δ⊗Yi = [Δ1Yi1, Δ2Yi2, . . . ,

ΔNYiN ]T . The corresponding kth element in the vector can be represented as

ak =

⎧⎪⎨
⎪⎩

tkΔk if tkΔk ≤ xk < (tk + 0.5)Δk,

(tk + 1)Δk if (tk + 0.5)Δk ≤ xk < (tk + 1)Δk;
(6.27)

Yik =

⎧⎪⎨
⎪⎩
−1 if −Δk

2
≤ dik < (ak − xk),

1 if (ak − xk) ≤ dik < Δk

2
.

(6.28)

Here, we assume that −Δk

2
≤ dik < Δk

2
. Note that ak is a multiple of the quantiza-

tion step size Δk, that is closest to the host data sample xk. Further, the value of

ak is independent of the choice of the dither sequence. The term 1
2
ΔkYik denotes

the residue term that would choose one among the two nearby quantization points

based on the value of the dither sequence.

By substituting Eqns. (6.27) and (6.28) back into the minimization problem,

and using the Lagrange multipliers to incorporate the equal-energy constraints we

obtain an equivalent cost function−J given by

J = (a− x +
1

2
Δ⊗Yi − di)

T (a− x +
1

2
Δ⊗Yj − dj)

+ ν1

(
(a− x +

1

2
Δ⊗Yi − di)

T (a− x +
1

2
Δ⊗Yi − di)−W

)

+ ν2

(
(a− x + Δ⊗Yj − dj)

T (a− x +
1

2
Δ⊗Yj − dj)−W

)
, (6.29)

where ν1 and ν2 are Lagrange multiplier constants. Setting the gradient of J with

respect to both the dither vectors to zero, we get a set of linear equations solving
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which we obtain

di =
1

2
Δ⊗Yi − κi(x− a), (6.30)

where κi are scalars chosen so that the total energy of the fingerprint is equal to

W . In our implementations, we first choose the vectors Yi ∈ {−1, 1}N for each

user. The dither sequences are then generated according to Eqn. (6.30). In the

next section, we present the results for this scheme and compare it with our basic

dither based approach presented earlier in Section 6.2.2.

Results and Discussions

To examine the effectiveness of the proposed improvement algorithm, we apply the

constructed dither sequences on the Lena image with the same parameter settings

as in Section 6.2.2; that is, 256 × 256 Lena image fingerprinted with a PSNR of

42dB and Nu = 1024 users. The results are shown in Fig. 6.4(b) alongside the

corresponding plots for the basic QIM scheme and spread spectrum fingerprinting.

For better illustration, we compare the performance of the three schemes at WNR

= −10dB in Fig. 6.4(d). We observe that the improved scheme performs much

better than the basic scheme. This gain can be attributed to the reduced aver-

age correlation among fingerprint sequences in the improved scheme (around 0.1),

compared to a high value of 0.45 in the basic scheme. We also observe that our

improved scheme still does not perform as well as the traditional spread spectrum

based scheme. A closer examination shows that the variance of the correlation

statistic for QIM based fingerprinting is larger (ρ values range from −0.15 to 0.2),

while the spread spectrum based fingerprinting has correlation ranging from −0.04

to 0.04. Owing to the nonlinear quantization operation employed in QIM, it is not

easy to control the correlation between the fingerprints for a total of Nu users as
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in spread spectrum based fingerprinting.

From the results, we can see that in the proposed DM based fingerprinting it is

non-trivial to construct dither sequences to get fingerprint sequences with low cor-

relation. Since the QIM has been well studied for embedding binary bits, a natural

way of using QIM for fingerprinting is to embed binary fingerprint codeword. In

the mean time, we observe that STDM based embedding has an effect of spreading

the embedded bit over the host signal. By choosing mutually orthogonal projection

vectors for different bits, we can achieve an effect similar to the overlapped spread

spectrum embedding. Taking these two factors into consideration, we explore the

STDM based coded fingerprinting in the next section.

6.2.3 STDM based ECC fingerprinting

ECC based fingerprinting with spread spectrum embedding has been shown very

promising in providing an excellent trade-off between the collusion resistance and

detection efficiency [34]. In this section, we explore the performance of STDM

based ECC fingerprinting. For embedding, we propose to map each symbol to a

binary codeword that is constructed to well separate q symbols.

Fingerprint Embedding and Detection

To embed a q-ary fingerprint codeword with length L1, we partition the host signal

into L1 segments. In each segment, we choose a simplex code S(L2,m,D) to

represent each of the q symbols. A simplex code of dimension m has q = 2m

codewords, each of length L2 = 2m − 1 and provides an equal distance of D =

2m−1. Simplex code has good properties such as a large relative distance (> 0.5)

and a non-trivial code rate; and thus it can support a large alphabet size q with
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better separation among symbols. The binary simplex codeword for each symbol

is embedded into a segment of the host signal through STDM, where we project

the host signal to L2 mutually orthogonal random directions and quantize the

resulting projection values. This has an overall effect of overlapped embedding

that the bits representing one symbol are added on top of each other and spread

over the segment. An illustration is shown in Fig. 6.6.

Table 6.1: Quantization Error for Different Bit Positions (Qstep = 4)

Bit Position 1 2 3 4 5 6 7 8 9 ...

Bit 0 1.744 3.388 3.987 1.718 0.970 2.334 0.810 0.796 0.0098 ...

Bit 1 2.256 0.612 0.013 2.282 3.030 1.666 3.190 3.204 3.9902 ...

During our preliminary exploration, we found that due to the randomness of

the projection, the quantization error, or the energy for bit 0 and 1 is not equal.

Table 6.1 list the quantization error for each bit position. We can see that in some

positions, bit 0 is embedded with more energy than bit 1, and vice versa for other

places. This unevenness would make the collusion resistance unpredictable and

make the fingerprinted signals have different visual quality. One way to overcome

this problem is to adjust the dither sequence according to the host signal to make

bit 0 and 1 have equal embedding energy. However, under blind detection, the

detector would not be able to identify the correct dither sequences from the received

signal, which will incur decoding error. In this chapter, we propose to spread each

bit of the simplex codeword to multiple bits by mapping bit 1 to a l-bit random

binary sequence s and 0 to s̄, the bit-wise flipped version of s. The spreading

factor l can be adjusted to tradeoff the perceptibility and robustness. For clear

presentation, we shall use “logic bit” to refer to the bit in the simplex codeword,

and “bit” refers to the bit in the spreading sequence s. Every bit in the sequence
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Figure 6.6: An example of embedding q-ary codeword using STDM.

s is embedded into the same segment using STDM by projecting the signal onto

a random direction. As a result, a total of L2l bits for all the L2 logic bit in a

simplex codeword are superposed and spread over one segment of host signal. The

kth fingerprinted segment y(k) can be represented as

y(k) = x(k) +

L2∑
i=1

l∑
j=1

(y
(p)
ij − x

(p)
ij )uij, (6.31)

where uij is the projecting direction for the ith bit in logic bit j’s spreading se-

quence; x
(p)
ij is the projection of the kth segment host signal x(k) on uij, and y

(p)
ij is

obtain by quantizing x
(p)
ij using Eqn. (6.16).

During the detection, we first calculate the distance information for each bit

according to Eqn. (6.18). Then we add all these distance information from every

bit of each user’s fingerprint codeword. The user who has the smallest distance

with the test signal is declared as colluder.

Results and Discussions

We test the performance of the proposed STDM based ECC fingerprinting on a

256×256 Lena image. We choose Reed-Solomon code (14, 2, 13) as the fingerprint

code with code length 14, dimension 2, and alphabet size 16. Each of the 16

symbols is mapped to a binary codeword of a simplex code (15, 4, 8). Mutually
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orthogonal spreading sequences are chosen for projecting the input data and the

resulting values are quantized using the binary dither modulation method. As

mentioned earlier, we choose deterministic dither sequences d0 = 0 and d1 = �/2

to maximize separation. The PSNR of the fingerprinted copy is set at 40.8 dB.

In Fig. 6.7, we show the probability of catching one colluder, Pd, under aver-

aging collusion and additional JPEG compression. The results for the blind and

non-blind scenarios are shown in Fig. 6.7(a) and (b) respectively. We notice that

under moderate JPEG compression, the system is able to resist at least a few

dozen users’ collusion in both cases. When the JPEG quality factor reduces, the

performance drops sharply in the case of blind detection even for a small number

of colluders. This is expected because the projected point z(p) moves outside the

correct decoding region when a large JPEG quantization step size is used. This

leads to wrong estimates of the true projection points x(p), eventually resulting in

a large probability of decoding error. On the other hand, in the case of non-blind

detection, the projected point z(p) provides some information for correct decoding.

Therefore, the performance of non-blind detection degrades gracefully as the JPEG

quality factor reduces and the number of colluders increases.

To facilitate comparison, we also implement the spread spectrum based ECC

fingerprinting with the same Reed-Solomon code, i.e. each symbol is mapped to an

orthogonal spreading sequences before embedding [34]. Matched filter detection is

employed for catching one colluder. Also in Fig. 6.7, we show the results for spread

spectrum based fingerprinting under both the blind detection and non-blind de-

tection. Under blind detection, we notice that the STDM based fingerprinting has

significant advantage over spread spectrum based fingerprinting with up to 90%

increase in Pd. On the other hand, the spread spectrum based ECC fingerprint-
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Figure 6.7: Simulation results of STDM based and spread spectrum based ECC fin-

gerprinting under averaging collusion and JPEG compression: (a) blind detection;

(b) non-blind detection.

ing performs a little better than STDM based scheme under non-blind detection

with less than 5% increase on Pd under moderate JPEG compression. This is

because the spread spectrum based scheme employs orthogonal modulation to em-

bed each symbol, while STDM based scheme use a simplex code, which does not

perform as well as orthogonal modulation in separating different symbols. Over-

all, the proposed STDM based fingerprinting shows significant advantages over

spread spectrum based fingerprinting under blind detection and slightly reduced

performance under non-blind detection.

6.2.4 Appendix: Theoretical Model on QIM based Finger-

printing

In this appendix, we present the theoretical analysis on the performance of fin-

gerprinting schemes employing minimum distance decoding. Let x denote the

host signal and yi represent user i’s fingerprinted copy. In the case of QIM, yi
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is obtained by quantizing the host signal x as shown in Eqn. (6.15). Under the

averaging collusion model, the received signal, z, is given by

z =
1

c

c∑
i=1

yi + n, (6.32)

where n denotes the additive noise used to model any further processing. Here, we

assume, without loss of generality, that the first c colluders participate in collusion.

The decoder applies minimum distance decoding as given in Eqn. (6.19) to find

one of the colluders.

The probability of catching one colluder, Pd, is given by

Pd = Pr(min(X1, X2, . . . , Xc) < min(Xc+1, Xc+2, . . . , XNu)), (6.33)

where Xk = ||z−yk||2 is the detection statistic for user k. Substituting for z from

Eqn. (6.32), we get

Xk = ||n +
α

c

c∑
i=1

(
qxi
− qxk

) ||2. (6.34)

The detection statistic Xk is a random variable and its distribution would depend

on the noise statistics. The mean of Xk can be obtained as

mk = E(Xk) = sT
k sk + trace(Σn), (6.35)

where Σn is the covariance matrix of the noise variable n and sk = α
c

∑c
i=1

(
qxi
− qxk

)
gives the average difference between the quantization points among the users in

collusion set. In a similar note, the (i, j)th element of the covariance matrix R of

the detection statistics Xk can be expressed as

R(i, j) = cov(Xi, Xj) = w(4)
n

T
1N−trace(ΣT

nΣn)+2w(3)T (si+sj)+4sT
i Σnsj, (6.36)

where 1N denotes a column vector with all N elements as 1 and w
(l)
n is a N×1 vector

in which the ith element represents the lth order moment of the corresponding noise

component ni.
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If we assume that the noise n is Gaussian with zero mean and variance σ2
n, then

the detection statistic would follow the chi-square distribution [47] and its mean

and variance can be simplified as

mk = sT
k sk + Nσ2

n, (6.37)

R(i, j) = 2Nσ4
n + 4σ2

ns
T
i sj. (6.38)

We remark that as the length of the fingerprint N is increased, the detection

statistic can be well approximated as a multi-variate Gaussian distribution [47].

Substituting for si, we obtain

sT
i sj =

(α

c

)2
c∑

l=1

c∑
k=1

(qxl
− qxi

)T (qxk
− qxj

),

which can be further reduced to give

sT
i sj =

P (i, j)Λ

2c
. (6.39)

Here P (i, j) is given as in Eqn. (6.23) and Λ is the average mean squared difference

between any two fingerprinted copies,

Λ =
2

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j �=i

||yi − yj||2. (6.40)

Substituting for sT
i sj from Eqn. (6.39) into equations (6.37) and (6.38), we obtain

the desired expressions as given in equations (6.21) and (6.22).

6.3 Chapter Summary

In this chapter, we have studied two problems related to collusion-resistance multi-

media fingerprinting. The first one is anti-collusion fingerprinting for applications

with long-term subscription, where a group of pirates may launch several rounds of
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collusions. We propose a dynamic fingerprinting strategy to adjust the fingerprint

strength in each round according to the detection results from previous round.

Both analytical and simulation results show that the proposed scheme performs

better, in terms of detection probability, than static fingerprinting and close to

blind dynamic fingerprinting without having as many users suffering from reduced

visual quality. Dynamic collusion strategies are also examined, where the results

indicate that the best strategy for colluders is to gather as many colluders as

possible in each round of the collusion.

The second problem we have considered is to use Quantization Index Modu-

lation (QIM) embedding for fingerprinting applications mainly for blind detection

scenario. In particular, we use spread transform dither modulation (STDM) to

embed the fingerprint code, where each q-ary symbol is mapped to a binary sim-

plex code for embedding. The results show significant advantage of STDM based

embedding over spread spectrum based embedding under blind detection, where

the STDM based fingerprinting has up to 90% improvement in probability of de-

tection over spread spectrum based fingerprinting. This suggests that STDM is a

promising embedding technique for fingerprinting under blind detection scenarios.
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Chapter 7

Conclusions and Future

Perspectives

In this dissertation, we have studied various aspects of fingerprint design in collusion-

resistant fingerprinting for multimedia signals.

Starting from a cross-layer framework for multimedia fingerprinting, we first

examine the end-to-end performance of ECC-based fingerprinting by considering

both the coding and embedding layers. The results show that traditional ECC-

based fingerprinting has high efficiency in distribution of fingerprinted signal and

colluder detection but rather limited collusion resistance. The ECC based fin-

gerprinting motivates us to find avenues to improve its collusion resistance while

preserving its efficient detection and distribution.

Based on the observation from the performance examination, we propose two

new joint-coding-and-embedding techniques, namely, the permuted subsegment

embedding technique and the Group-Based Joint Coding and Embedding (GRACE)

technique. Our results show the significant performance gain of each approach

on the collusion resistance over the conventional ECC-based fingerprinting. We

159



then combine these two new schemes to further improve the collusion resistance

and obtain a complete joint-coding-and-embedding design for coded fingerprint-

ing. Our combined design can resist more than three times colluders collusion

as many as that of the conventional ECC-based fingerprinting and retain the low

detection computational complexity. It offers a much improved tradeoff between

the collusion resistance and detection efficiency than the conventional ECC-based

fingerprinting and orthogonal fingerprinting.

Building upon the proposed joint coding and embedding framework, we con-

sider fingerprinting video signal under such challenging settings as to accommodate

millions of users and to resist hundreds of users’ collusion. We further address issues

of designing code structure and speeding up detection. Our proposed trimming

detection approach can speed up the detection by 3 orders of magnitude with only

slightly drop of detection accuracy. With the proposed fingerprint construction

and efficient detection, the system holding 16 million users can resist 50-60 col-

luders’ interleaving collusion and more than 100 users’ averaging collusion as well

as 80 users’ non-linear collusion. The user capacity and collusion resistance can

be further increased by adjusting such system parameters as k and β. Both the

analysis and the experimental results show a strong potential of joint coding and

embedding ECC fingerprinting for large-scale video fingerprinting applications.

The increase in the popularity of the subscription based services, such as cable

TV, motives us to study the problem of anti-collusion fingerprinting for applica-

tions with long-term subscription, where a group of pirates may launch several

rounds of collusions. We propose a dynamic fingerprinting strategy to adjust the

fingerprint strength in each round according to the detection results from previous

rounds. Both analytical and simulation results show that the proposed scheme
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performs better, in terms of detection probability, than static fingerprinting and

close to blind dynamic fingerprinting without having as many users suffering from

reduced visual quality. Dynamic collusion strategies are also examined, where the

results indicate that the best strategy for colluders is to gather as many colluders

as possible in each round of the collusion.

We notice that spread spectrum embedding has been widely used in the existing

multimedia fingerprinting schemes because the host signal is often available at the

detector and thus can facilitate the detection. However, in applications where

the host signal is not easy to obtain, the spread spectrum based fingerprinting

would have low detection accuracy. In this dissertation, we have explored a class

of quantization based embedding methods for fingerprinting applications, whose

advantage is the high detection accuracy under blind detection. Specifically, we

explore coded fingerprinting based on spread transform dither modulation (STDM)

embedding. Simulation results show that this coded STDM based fingerprinting

has significant advantages over spread spectrum based fingerprinting under blind

detection, where the STDM based fingerprinting has up to 90% improvement in

probability of detection over spread spectrum based fingerprinting.

Based on the study of this dissertation, there are several aspects of multime-

dia fingerprinting that can be further explored. First, our current joint-coding-

embedding fingerprinting is mainly examined on uncompressed video data. The

effect of video compression is treated as an additional distortion to our fingerprint

detection. In some scenario, the raw video data may not be available to the finger-

print embedder. For example, in cable TV application, the set-up boxes, where the

fingerprint is embedded, have very limited computing and storage resources and

cannot afford to do the embedding in fully-uncompressed domain. It is desirable
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to embed fingerprint in the compressed domain of the signal to reduce the compu-

tation and delay incurred by the fingerprint embedding. Apparently, results from

the existing work on the uncompressed domain cannot be directly applied to this

case due to different nature of compressed and uncompressed data [67, 68]. Thus

we need to consider the particular property of the embedding domain and jointly

explore the coding and embedding layers for fingerprint design.

Second, this dissertation initiates the research on collusion-resistant dynamic

fingerprinting for multimedia and as the first step of exploration, proposes a sim-

ple but quite effective scheme. There still remain many research questions. From

designer’s perspective, we are interested in the possible strategies to dynamically

design the fingerprints. The choice of the strategy will be closely related to the

collusion pattern observed from the previous rounds. Then how to accurately esti-

mate the collusion pattern and design effective fingerprinting given the estimated

collusion pattern would become two important questions that need to be answered

first. On the other hand, the adversaries will try to seek for the best strategy to

minimize their risk of being caught given the designer’s dynamic strategy. Thus

the interactions between fingerprint designer and attackers is also an interesting

topic to explore, where game theory [25, 46] can be used as a tool to model and

solve the problem.

Finally, the fingerprinting research in this dissertation is to prevent each indi-

vidual user from sharing his/her content with others. A new paradigm for next-

generation multimedia content protection may encourage and take advantage of file

sharing among users [10,42]. This would open up opportunities of new technology-

economics model that builds an incentive-based off-line market for digital media,

and supports the legitimate resale by individual users to others such that both
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consumers and copyright owners/service provider can benefit from the resale rev-

enues. In this new system, the fingerprinting would play an important role to

provide content protection after the system being hacked. Moreover, the embed-

ded fingerprints can also serve as a track mark to facilitate the study of the viral

structure, which is an important input information for the operation of the new

system. It would be interesting to investigate how to design fingerprints so that it

can play such roles in the new model.
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