
ABSTRACT

Title of dissertation: LOW-RANK SOLUTION METHODS
FOR DISCRETE PARAMETRIZED
PARTIAL DIFFERENTIAL EQUATIONS

Tengfei Su
Doctor of Philosophy, 2019

Dissertation directed by: Professor Howard C. Elman
Department of Computer Science

Stochastic partial differential equations are widely used to model physical prob-

lems with uncertainty. For numerical treatment, the stochastic Galerkin discretiza-

tion in general gives rise to large, coupled algebraic systems that are computationally

expensive to solve. In this thesis, we develop efficient iterative algorithms to reduce

the costs, by taking advantage of the structures of the systems and computing low-

rank approximations to the discrete solutions.

We demonstrate this idea by exploring three types of problems: (i) the stochas-

tic diffusion equation, in which the diffusion coefficient is a random field; (ii) a

collection of stochastic eigenvalue problems arising from models of diffusion and

fluid dynamics; (iii) stochastic version of the time-dependent incompressible Navier–

Stokes equations with an uncertain viscosity. These problems range from a relatively

straightforward linear elliptic problem for which we are able to obtain rigorous re-

sults on convergence rates for solvers, to more complex models that include eigen-

value computations and nonlinear and time-dependent computations.

For the diffusion problem, we propose a low-rank multigrid method for solv-

ing the linear system obtained from the stochastic Galerkin discretization. In the

algorithm, the iterates are represented as low-rank matrices, with which the asso-

ciated computations become much cheaper. We conduct a rigorous error analysis

for the convergence of the low-rank multigrid method. Numerical experiments show

significant cost savings from low-rank approximation.

We design a low-rank variant of the inverse subspace iteration algorithm for

stochastic eigenvalue problems. We apply low-rank iterative methods to efficiently

solve the large algebraic systems required at each step of the algorithm, and show

that the costs of other computations, including the Gram–Schmidt process and the

Rayleigh quotient, are also greatly reduced. The accuracy of the solutions and

efficiency of the algorithm are illustrated in numerical tests.

For the time-dependent Navier–Stokes problem, we consider an all-at-once

formulation where the discrete solutions at all the time steps are represented in a

three-dimensional tensor. In the nonlinear iteration, we compute low-rank tensor

approximations to explore further reduction in memory and computation. Effective

mean-based preconditioners are derived for the all-at-once systems. The low-rank

algorithm is able to efficiently handle large-size problems.

LOW-RANK SOLUTION METHODS FOR DISCRETE
PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS

by

Tengfei Su

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Howard C. Elman, Chair/Advisor
Professor James Baeder
Professor Lise-Marie Imbert-Gérard
Professor Ricardo H. Nochetto
Professor Konstantina Trivisa

c© Copyright by
Tengfei Su

2019

Acknowledgments

It still feels like yesterday when I came to the states for graduate school in the

fall of 2014 although almost five years have passed. I owe my sincere gratitude to

all the people who have helped me during my PhD life and who made this thesis

possible.

Fist of all, I am deeply in debt to my advisor, Howard Elman. It is because of

his invaluable guidance, generous support, and constant patience that my graduate

study has been smooth and fruitful. I appreciate the time and effort he has put in

this work, from my choice of research topics to the detailed editing of the thesis. I

learnt from him not only different aspects of the research work, but also many of

his wisdoms in life. It is my greatest fortune to have him as my advisor.

I would like to thank my committee, James Baeder, Lise-Marie Imbert-Gérard,

Ricardo Nochetto, and Konstantina Trivisa for their time and for their support of

this work. Dr. Nochetto and Dr. Trivisa gave me a lot of help and advice at the

early stage of my PhD, which made my transition to graduate school much easier.

Many thanks to my dearest friends at Maryland. I will miss the lovely con-

versations, delicious foods, and wonderful trips shared with them. I am grateful to

have their company to share joys and difficulties. They made my life colorful here.

Most importantly, none of my academic achievements would have been pos-

sible without the endless love from my family. I owe much to my parents for their

unconditional support for whatever choice I make for my life.

ii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Background . 1
1.2 Existing work . 5
1.3 Contributions of this thesis . 8

2 Preliminaries 11
2.1 Stochastic Galerkin method . 11

2.1.1 Input parametrization . 11
2.1.2 Generalized polynomial chaos 13

2.2 Iterative solvers for linear systems . 16
2.2.1 Krylov subspace methods . 16
2.2.2 Multigrid methods . 18

2.3 Numerical methods for eigenvalue problems 19
2.3.1 Inverse subspace iteration . 20
2.3.2 LOBPCG method . 20

2.4 Nonlinear iterative methods . 22
2.5 Low-rank approximation . 23

3 Low-rank multigrid for the stochastic diffusion problem 26
3.1 Introduction . 26
3.2 Model problem . 28

3.2.1 Stochastic Galerkin method 29
3.2.2 Multigrid . 31

3.3 Low-rank approximation . 34
3.3.1 Low-rank truncation . 36

iii

3.3.2 Low-rank multigrid . 37
3.3.3 Convergence analysis . 41

3.4 Numerical experiments . 48
3.4.1 Exponential covariance . 48
3.4.2 Squared exponential covariance 53

3.5 Conclusions . 53

4 Low-rank methods for stochastic eigenvalue problems 56
4.1 Introduction . 56
4.2 Stochastic inverse subspace iteration 58
4.3 Low-rank approximation . 61

4.3.1 System solution . 62
4.3.2 Orthonormalization . 64
4.3.3 Rayleigh quotient . 66
4.3.4 Convergence criterion . 68

4.4 Stochastic diffusion equation . 69
4.4.1 Low-rank multigrid . 70
4.4.2 Rayleigh–Ritz refinement . 71
4.4.3 Numerical experiments . 73

4.5 Stochastic Stokes equation . 82
4.5.1 Low-rank MINRES . 85
4.5.2 Numerical experiments . 86

4.6 Conclusions . 91

5 Low-rank solvers for the stochastic unsteady Navier–Stokes equations 93
5.1 Introduction . 93
5.2 Problem setting . 96
5.3 Discrete problem . 97

5.3.1 Time discretization . 97
5.3.2 Stochastic Galerkin method 98
5.3.3 All-at-once system . 100
5.3.4 Picard’s method . 101

5.4 Low-rank approximation . 102
5.4.1 Tensor train decomposition 103
5.4.2 Low-rank GMRES . 106
5.4.3 Convection matrix . 107

5.5 Preconditioning . 108
5.5.1 Deterministic operator . 110
5.5.2 Approximations to S−1 . 111
5.5.3 System solve with F + C . 113

5.6 Numerical experiments . 114
5.6.1 Benchmark problem . 114
5.6.2 Inexact Picard method . 116
5.6.3 Numerical results . 120

5.7 Conclusions . 122

iv

6 Concluding Remarks 124

Bibliography 127

v

List of Tables

2.1 Univariate random variable distributions and corresponding orthog-
onal polynomials. 15

3.1 Performance of multigrid solver with εabs = 10−6, 10−4, and no trun-
cation for various nx = (2/h− 1)2. Exponential covariance, σ = 0.01,
b = 4, m = 11, p = 3, nξ = 364. 50

3.2 Performance of multigrid solver with εabs = 10−6, 10−4, and no trun-
cation for various nξ = (m + p)!/(m!p!). Exponential covariance,
σ = 0.01, h = 2−6, p = 3, nx = 16129. 51

3.3 Performance of multigrid solver with εabs = 10−6, 10−4, and no trun-
cation for various σ. Time spent on truncation is given in parentheses.
Exponential covariance, b = 4, h = 2−6, m = 11, p = 3, nx = 16129,
nξ = 364. 52

3.4 Performance of multigrid solver with εabs = 10−6, 10−4, and no trun-
cation for various nx = (2/h − 1)2. Squared exponential covariance,
σ = 0.01, b = 2, m = 3, p = 3, nξ = 20. 54

4.1 Iterate ranks after the multigrid solve and numbers of multigrid steps
required in the inverse subspace iteration algorithm. nc = 6, b = 4.0,
m = 11. 76

4.2 Relative differences between low-rank stochastic Galerkin solutions
(without Rayleigh–Ritz refinement) and Monte Carlo solutions. nc =
6, b = 4.0, m = 11. 77

4.3 Relative differences between low-rank stochastic Galerkin solutions
(with Rayleigh–Ritz refinement) and Monte Carlo solutions. b = 4.0,
m = 11. 78

4.4 Time comparison (in seconds) between stochastic Galerkin method
and Monte Carlo simulation for various nc. b = 4.0, m = 11, nξ =
364, nr = 10000. 80

4.5 Time comparison (in seconds) between stochastic Galerkin method
and Monte Carlo simulation for various m. nr = 10000. 81

4.6 Time consumption percentages for different parts of computations in
the low-rank stochastic Galerkin method for various nc and m. 81

vi

4.7 Iterate ranks after the MINRES solve and numbers of MINRES steps
required in the inverse iteration algorithm. nc = 4, b = 4.0, m = 11. . 89

4.8 Relative difference between stochastic Galerkin solutions and Monte
Carlo solutions. b = 4.0, m = 11, nξ = 364. 89

4.9 Time comparison (in seconds) between stochastic Galerkin method
and Monte Carlo simulation for various nc. nr = 1000. 90

5.1 Parameter values for numerical experiments. 116
5.2 Stopping and truncation tolerances. 118

vii

List of Figures

2.1 First 50 eigenvalues of the exponential covariance on a spatial domain
D = [−1, 1]2 with different correlation lengths b. 13

3.1 Block structure of A. m = 4, p = 1, 2, 3 from left to right. Block size
is nx × nx. 31

3.2 Decay of singular values of solution matrix U . Left: exponential
covariance, b = 5, h = 2−6, m = 8, p = 3. Right: squared exponential
covariance, b = 2, h = 2−6, m = 3, p = 3. See the benchmark
problems in section 3.4. 35

3.3 (a) Singular values of the coarse-grid correction matrix C(i) at multi-
grid iteration i = 0, 1, . . . , 5. (b) Singular values of correction ma-
trices C2h in the first multigrid iteration at various grid-refinement
levels, for grid sizes h = 2/2nc, nc = 4, 5, 6, 7. No truncation is intro-
duced, σ = 0.01, b = 5, h = 2−6, m = 8, p = 3. See the benchmark
problem in section 3.4.1. 40

4.1 Singular values (relative to the largest one) of the matrix represen-
tations of the stochastic eigenvectors for the numerical examples in
sections 4.4 and 4.5, with standard deviations σ = 0.01 and σ = 0.1.
nc = 5, b = 4.0, m = 11, nξ = 364. 63

4.2 (a) Smallest 20 eigenvalues of the mean problem. (b) Reduction of

the error indicator ε
(i)
θ for an adaptive multigrid tolerance eq. (4.44)

and a fixed tolerance tolmg = 10−6. nc = 6, b = 4.0, m = 11. 75
4.3 (a) Eigenvalues of BK−1

0 BT q = λMq. nc = 3. (b) Reduction of
the relative residual for the low-rank MINRES method with various
truncation criteria. Solid lines: relative tolerance εrel; dashed lines:
relative tolerance εrel with rank κ ≤ nξ/4. nc = 4, b = 4.0, m = 11. . . 88

4.4 Computational time required by the low-rank stochastic Galerkin
method, the full-rank stochastic Galerkin method, and the Monte
Carlo method to generate large numbers of sample solutions. nc = 6,
b = 4.0, m = 11, nr = 1000, 5000, 10000. 91

5.1 Symmetric step domain with boundary conditions. 115

viii

5.2 (a) Convergence of the low-rank GMRES method (at the first Picard
step) with different truncation tolerances. (b) Convergence of the
inexact Picard method. 119

5.3 (a) Ranks of corrections δu(i) and δp(i). (b) Ranks of approximate
solutions u(i) and p(i), and ranks of ũ(i) for convection matrix. 119

5.4 (a) Number of GMRES iterations at each Picard step. (b) Accumu-
lative computational time after each Picard step. 121

5.5 Solution ranks and computational times for different values of σ and
ν0. 122

5.6 Solution ranks and computational times for different values of h and
τ . In (a), ne = 2/h is the number of elements in the vertical interval
[−1, 1] of the domain D. 123

ix

List of Abbreviations

AMG Algebraic multigrid
BiCGstab Biconjugate gradient stabilized method
CG Conjugate gradient method
DMRG Density matrix renormalization group method
GMG Geometric multigrid
GMRES Generalized minimal residual method
gPC Generalized polynomial chaos
HT Hierarchical Tucker
KL Karhunen–Loève
LOBPCG Locally optimal block preconditioned conjugate gradient method
LSC Least-squares commutator
MC Monte Carlo
MINRES Minimum residual method
PCD Pressure convection-diffusion
PDE Partial differential equation
SG Stochastic Galerkin
SVD Singular value decomposition
TT Tensor train

x

Chapter 1: Introduction

This thesis is devoted to developing efficient computational algorithms for solv-

ing physical problems modeled as stochastic partial differential equations (PDEs),

based on low-rank approximation techniques for model order reduction. We start

the introduction with a review of uncertainty quantification for stochastic PDEs and

the computational approaches. Then we discuss the existing methods that explore

low-rank structures in the stochastic problems for handling large problem sizes or

complicated physical models. In the end we summarize the main contributions of

this thesis and provide an outline for the following chapters.

1.1 Background

Many physical problems are modeled as stochastic PDEs, where some ran-

dom inputs are used to characterize possible variations in the physical properties,

boundary conditions, or source terms, due to measurement errors, imprecise knowl-

edge about the systems, or intrinsic variability. For example, in models of diffusion,

a stochastic diffusion coefficient can be used to describe the permeability of a het-

erogeneous porous medium, or, in models of fluid dynamics, uncertain boundary

conditions depending on some random variables can be used to study the effect

1

of fluctuations in the temperature of walls in a Boussinesq cavity model [59]. Let

(Ω,F , P) be a probability space and ω ∈ Ω. In general, a stochastic model can be

abstractly written as

L(a(ω);u(ω)) = 0, (1.1)

where L represents a PDE with appropriate forcing terms and boundary conditions,

and the uncertainty is incorporated in the input data a(ω). As a result, the solution

u(ω) of the equation is also a stochastic function. In a forward propagation problem,

the probability distribution about the input a(ω) is assumed known, and the objec-

tive of uncertainty quantification is to determine the distribution of the solution, or

provide reliable predictions about probabilities of certain events associated with the

output of the model. For an inverse problem, some observations about the output

are given and the goal is to identify the corresponding input parameters or estimate

certain state variables [91]. In this thesis, we will focus on the forward problem and

develop efficient algorithms for computing the solution u(ω).

A straightforward approach for handling the forward problem is the sampling-

based Monte Carlo (MC) method. Random samples are drawn from the given dis-

tribution of the input. For each realization of the input data a(ω(r)), a deterministic

equation is solved for the corresponding solution u(ω(r)). The mean and variance of

the solution can be estimated via

E[u] ≈ 1

nr

nr∑
r=1

u(w(r)), Var[u] ≈ 1

nr − 1

nr∑
r=1

(u(w(r))− E[u])2, (1.2)

where nr is the sample size. Probabilities of events can also be easily computed from

the sample solutions. However, it is known that the Monte Carlo method suffers

2

from slow convergence. For instance, the error for the mean estimate behaves as

O(n
−1/2
r) (see, e.g. [62]). Therefore, a large number of samples are required to

obtain accurate results, and the associated computational cost can be prohibitive

especially when the problem is already nontrivial to solve in a deterministic setting.

To address this high cost, quasi-Monte Carlo methods [17] and multilevel Monte

Carlo methods [35] have been studied for improved convergence.

In this thesis, we focus on a different type of approach, the stochastic Galerkin

(SG) method. Instead of solving a deterministic PDE for each sample, the stochastic

Galerkin approach computes a surrogate as an approximation to the true solution

function. The surrogate is typically expressed as a series

u(ω) =
∞∑
s=1

usψs(ω), (1.3)

where {ψs(ω)} is an appropriately selected set of basis functions, and {us} are de-

terministic coefficients. In practice, a finite number of terms are used, and the

coefficients are determined by imposing an orthogonality condition. Once the surro-

gate is available, it becomes a much easier task to compute the statistics and other

properties of the solution, either analytically or by sampling the basis functions. The

method also enjoys fast convergence rates under some mild smoothness conditions

on the random data [3, 15]. For example, it was shown in [3] that when the input

data is parametrized with a finite number of random variables, the error associated

with the surrogate decreases exponentially with respect to the polynomial degree

of the basis functions. The stochastic Galerkin approach has received increasing

attention since it was first studied in [34] for applications in structural mechanics.

3

It has been applied to numerous problems in fluid dynamics, ranging from flows in

porous media to complex thermofluid and reacting flows [53,68,97].

To compute the surrogate, the stochastic Galerkin method typically gives rise

to a large, coupled algebraic system, whose size might be orders of magnitude larger

than those obtained from the deterministic subproblems in the Monte Carlo method.

Solving such systems can be computationally challenging and requires new versions

of iterative solution algorithms, such as preconditioned Krylov subspace methods.

Efficient solution methods have been studied by exploiting the Kronecker product

structures or blockwise sparsity patterns of the systems, so the computational effort

required becomes much less that the problem size suggests [21, 73]. For a linear

stochastic diffusion problem, a geometric multigrid method was proposed in [23],

and a mean-based preconditioner was studied in [74]. Both were shown to give

numbers of iterations independent of some of the discretization parameters. In

an acoustic scattering model with uncertainty in the forcing terms or boundary

conditions, the authors in [25] reduced the algebraic system to a much smaller size

with multiple right-hand sides, and applied block Krylov methods to efficiently solve

the system. Nonlinear iterative methods and effective preconditioners have been

studied in [75, 87] for the Navier–Stokes equations with random input data. The

goal of this thesis is to address the computational difficulty for solving the algebraic

systems associated with the stochastic Galerkin method for stochastic PDEs, by

using the idea of low-rank approximation for the discrete solutions.

4

1.2 Existing work

In this section we briefly survey some recent developments of iterative methods

with low-rank approximation techniques for solving stochastic PDE problems. As

discussed earlier, the stochastic Galerkin discretization results in large algebraic

systems that are computationally expensive to solve. Such large systems also arise

from discretization of PDEs with high spatial or stochastic dimensions. Low-rank

approximation techniques are used to reduce the high storage and computational

costs for solving large-scale problems, and the basic idea is to employ a compressed

data representation in classical iterative algorithms, and repeatedly apply low-rank

truncation for data compression [38]. Let F define an iterative method

uk+1 = Fk(uk), (1.4)

where uk is a vector representation of the approximate solution. For example, uk

may be the coefficients of the basis functions of a stochastic Galerkin discretization.

In general, for the discrete solution of a stochastic PDE, the vector can be equiva-

lently cast as a multidimensional array, or tensor (see specific examples in chapters 3

to 5). Let Uk be a low-rank approximation to the tensor, then the iterative algorithm

becomes

Uk+1 = T (Fk(Uk)), (1.5)

where T is a low-rank truncation operator. A two-dimensional tensor reduces to a

matrix and the low-rank approximation can be directly computed from a singular

value decomposition (see section 2.5). In higher dimensions, many different low-rank

5

formats have been developed. Examples include the CANDECOMP/PARAFAC

(CP) decomposition [55], the tensor train (TT) decomposition [70], and the hierar-

chical Tucker (HT) decomposition [37]. These low-rank tensor formats use much less

storage than the full tensor, and the basic operations associated with the tensors

also become much cheaper. In the course of the iteration, the tensor ranks may

grow very quickly, from computations such as summations and pointwise products.

The truncation operator T is thus needed to reduce the tensor ranks to maintain

efficiency. There have been many studies in designing low-rank iterative methods

with applications to various physical models [2,4,5,7–10,18,41,56,57,60,65]. Some

theoretical results are also available on the existence of low-rank solutions and con-

vergence of the low-rank methods [7, 42, 51,56,65].

For stochastic linear elliptic PDEs, a preconditioned Richardson method with

low-rank matrix approximation was studied in [65]. Convergence results are avail-

able for such cases where the low-rank iterative method can be expressed as a per-

turbed fixed point iteration [42, 65]. However, for more complicated iterative algo-

rithms, such as Krylov subspace methods, the effect of truncation on the convergence

is much harder to analyze. The preconditioned conjugate gradient and BiCGstab

methods have been studied in [56] to compute low-rank matrix and HT approx-

imations to the solutions of linear elliptic PDEs with parametrized or stochastic

coefficients. The iterates are compressed with a relative tolerance on the singular

values or a maximal rank constraint, and the accuracy attained by the low-rank

methods is closely related to these choices. In [4] the authors proposed a low-rank

GMRES-like method for solving linear systems from discretization of PDEs in high

6

spatial dimensions. The residual of the system is projected onto a subspace spanned

by vectors in low-rank HT format, and the iterates are truncated to a fixed rank

to reduce computational complexity. The method is also applicable for discrete

stochastic PDEs.

A low-rank solver for time-dependent diffusion equations with stochastic coef-

ficients was developed in [7]. With an implicit Euler method for time discretization,

a linear system is solved at each time step using a low-rank conjugate gradient

method. The authors showed in theory that the discrete solution can be well ap-

proximated by a low-rank matrix under certain conditions. People have also explored

low-rank reduction in time with an “all-at-once” formulation, where the equations

at all the discrete time steps are collected to form a single system. Such a for-

mulation arises naturally from optimal control problems with time-dependent PDE

constraints [8, 90], where the solution is required over the whole time horizon. The

storage increases dramatically with the number of time steps, and a low-rank ap-

proximation becomes essential for efficient computations. In [8] the authors used

a preconditioned MINRES method combined with low-rank TT format for solving

the saddle-point systems obtained from the discrete optimality condition of optimal

control problems constrained by unsteady PDEs with random inputs.

Low-rank iterative methods have been developed to solve PDE-related eigen-

value problems. Similar to low-rank Krylov subspace methods for solving linear sys-

tems, low-rank approximation techniques can be combined with an iterative eigen-

solver. A low-rank variant of the LOBPCG method was proposed in [57] to compute

the smallest eigenvalue of a symmetric, high-dimensional discrete PDE operator.

7

The HT format was used to overcome the exponential growth of degrees of freedom

in high spatial dimensions. A low-rank Arnoldi method was discussed in [10] to

compute compressed representation of the dominant eigenvectors of posterior co-

variance matrices in the context of Bayesian inverse problems. In [9], the authors

formulated the stochastic eigenvalue problem as a nonlinear algebraic system with

stochastic Galerkin discretization, and used an inexact Newton method to compute

the surrogate eigenvalue closest to the initial guess. A low-rank BiCGstab method

was applied to efficiently solve the linear system associated with the Jacobian matrix

at each nonlinear step.

1.3 Contributions of this thesis

In this thesis, we develop efficient low-rank iterative algorithms to solve the al-

gebraic systems obtained from stochastic Galerkin discretization of stochastic PDEs.

We consider three types of problems: a stochastic diffusion equation with random

diffusion coefficients, stochastic eigenvalue problems arising from models of diffusion

and fluid dynamics, and time-dependent incompressible Navier–Stokes equations

with uncertain inputs. The main contributions are summarized as follows.

First, for the stochastic diffusion problem, we propose a low-rank multigrid

method. The stochastic Galerkin discretization of the equation gives rise to a large

linear system with Kronecker product structure. Numerically we show that the

discrete solution, when represented as a matrix, exhibits exponential decay in its

singular values, and thus can be well approximated by a low-rank matrix. In the

8

proposed algorithm, the iterates are represented as low-rank matrices to reduce the

memory and computational costs. Theoretically, we conduct a rigorous convergence

analysis for the low-rank multigrid method. As we have discussed, such results are

not available for general Krylov subspace methods. It shows the error introduced by

the low-rank approximation, and provides insights on how to choose the truncation

strategies in the algorithm. Numerical experiments show significantly improved

efficiency of the low-rank solver compared against the original multigrid method

(without low-rank approximation), especially when the number of degrees of freedom

associated with the spatial discretization is large. This is discussed in chapter 3.

For stochastic eigenvalue problems, we design a low-rank variant of the in-

verse subspace iteration algorithm for computing one or several minimal eigenvalues

and corresponding eigenvectors. The eigenvalue problems arise from discretization

of self-joint PDEs with random data. The algorithm computes low-rank approx-

imations to the eigenvectors. A large linear system is solved at each step of the

algorithm, with a low-rank multigrid or Krylov subspace method. Other computa-

tions required for subspace iteration including a Gram–Schmidt process and con-

struction of a Rayleigh quotient are also inexpensive in the low-rank format. We

test the proposed algorithm on two specific problems, a stochastic diffusion problem

with some poorly separated eigenvalues, and an operator derived from a discrete

stochastic Stokes problem whose minimal eigenvalue is related to the inf-sup sta-

bility constant. For the diffusion problem we show that a Rayleigh–Ritz procedure

can be used to improve the accuracy of the solution. Numerical experiments show

that the low-rank method produces accurate solutions with reduced computational

9

costs. See chapter 4 for detailed discussions.

The Navier–Stokes equations is a challenging problem where one has to handle

nonlinearity, time-dependency, as well as stochasticity. We consider an all-at-once

formulation where the equations at all the discrete time steps are collected in a sin-

gle system. Low-rank tensor approximations are used to overcome the high memory

requirements. At each nonlinear step, the all-at-once system is solved by a low-

rank GMRES method. We derive mean-based preconditioners for the system, using

state-of-the-art results for deterministic problems. With an inexact nonlinear iter-

ation and effective preconditioners, the GMRES method is efficient in solving the

large systems and only requires a small number of iterations to reach the required

accuracy. The matrix-vector product computation introduces large rank increases

for the intermediate iterates, and we show that an approximate convection matrix

can be used to get rid of this problem. The proposed low-rank algorithm allows us

handle large problem sizes. Numerical experiments show the effectiveness of the pre-

conditioners and the memory and computational savings from the low-rank tensor

approximation. This will be discussed in chapter 5.

10

Chapter 2: Preliminaries

In this chapter we review the basic procedure of the stochastic Galerkin method,

and summarize some of the classical iterative algorithms that will be useful in later

discussions. Some facts about low-rank approximation are also given.

2.1 Stochastic Galerkin method

2.1.1 Input parametrization

In this thesis we will focus on stochastic PDEs with uncertainty a(ω) com-

ing from some physical properties associated with the models represented by the

PDEs. We start with a discussion on the representation of the random input a(ω).

Depending on the problems studied, a simple choice can be just a single random

variable. However, in many cases, the random inputs are stochastic fields a(x, ω),

where x is the spatial parameter. For practical computation, a finite dimensional

approximation is often required. This can be achieved using a truncated Karhunen–

Loève (KL) expansion [34,61]. Let (Ω,F , P) be a probability space, and let D be a

spatial domain. For a second order stochastic process a(x, ω) : D × Ω → R where

11

E[a2] <∞ for all x ∈ D, the KL expansion has the form

a(x, ω) = a0(x) +
∞∑
l=1

√
βlal(x)ξl(ω), (2.1)

where a0(x) is the mean function, and (βl, al(x)) is the lth eigenpair of the covariance

function c(x, y) = E[(a(x, ω)− a0(x))(a(y, ω)− a0(y))] such that

∫
D
c(x, y)al(y)dy = βlal(x). (2.2)

The eigenfunctions {al(x)} are orthonormal in L2(D), and the eigenvalues {βl} are

in nonincreasing order. The random variables {ξl(ω)} are mutually uncorrelated,

satisfying

E[ξl] = 0, E[ξiξj] = δij, (2.3)

and they are defined via

ξl(ω) =
1√
βl

∫
D

(a(x, ω)− a0(x))al(x)dx. (2.4)

To simplify the computations, we will also assume them to be independent and

identically distributed.

The KL expansion in eq. (2.1) is an infinite series and for approximation we

use a truncated version with a finite number of random variables,

a(x, ω) ≈ a0(x) +
m∑
l=1

√
βlal(x)ξl(ω). (2.5)

The number of terms m required depends on the decay of the eigenvalues {βl}. For

example, for the exponential covariance c(x, y) = exp(−‖x−y‖1/b), if the correlation

length b is larger, the eigenvalues decay faster (see fig. 2.1), and a smaller number of

terms are needed in eq. (2.5) to obtain a good approximation. Now with eq. (2.5),

12

the input is parametrized with a finite-dimensional random vector ξ : Ω→ Γ ⊂ Rm

and can be written as a(x, ξ).

Figure 2.1: First 50 eigenvalues of the exponential covariance on a spatial domain
D = [−1, 1]2 with different correlation lengths b.

2.1.2 Generalized polynomial chaos

The generalized polynomial chaos (gPC) [95, 96] provides an expansion for

any second order stochastic process u(x, ω) : D × Ω → R and a way to construct

finite-term approximations, with orthogonal multi-dimensional polynomials of inde-

pendent random variables. As the number of the random variables and the order

of the polynomials go to infinity, the expansion converges to the true process in the

mean square sense [96]. When the input in eq. (1.1) is parametrized with a random

vector ξ : Ω → Γ ⊂ Rm, the solution is also dependent on ξ and can be written as

u(x, ξ) : D × Γ→ R. In such cases, the number of the random variables is fixed as

13

m. The gPC expansion of the solution is in the following form

u(x, ξ) =
∞∑
s=1

us(x)ψs(ξ). (2.6)

Let (Γ,B, µ) be the probability space induced by ξ, where µ is the induced measure.

The functions {ψs(ξ)} form an orthogonal basis for L2(Γ, µ), and after normalization

they satisfy

〈ψr(ξ), ψs(ξ)〉 =

∫
Γ

ψr(ξ)ψs(ξ)dµ = δrs. (2.7)

The specific forms of the gPC basis functions depend on the distribution of the

random variables ξ. For example, if each of the random variables has a standard

normal distribution, the basis functions are multi-dimensional Hermite polynomials.

See table 2.1 for some commonly used distributions and corresponding gPC polyno-

mials. To construct a finite-term approximation to the stochastic process, one can

restrict the total degree of the polynomials (i.e., the sum of the degrees of univariate

polynomials) to p. Then

u(x, ξ) =

nξ∑
s=1

us(x)ψs(ξ) (2.8)

and the number of terms nξ = (m+p)!/(m!p!). For example, Let m = 2, p = 3. Let

the multi-index α = (α1, α2) denote the degrees of polynomials of the two random

variables ξ1 and ξ2. Then the possible values of α are (0, 0), (1, 0), (0, 1), (2, 0), (1, 1),

(0, 2), (3, 0), (2, 1), (1, 2), and (0, 3). In the case of Gaussian random variables, the

(unnormalized) univariate Hermite polynomials are H0(t) = 1, H1(t) = t, H2(t) =

t2 − 1, and H3(t) = t3 − 3t, and the basis functions {ψs(ξ)} in eq. (2.8) are

1, ξ1, ξ2, ξ
2
1 − 1, ξ1ξ2, ξ

2
2 − 1, ξ3

1 − 3ξ1, (ξ
2
1 − 1)ξ2, ξ1(ξ2

2 − 1), ξ3
2 − 3ξ2. (2.9)

14

In general, a small value of p suffices for a good approximation of the stochastic

process due to the fast convergence of the sequence in eq. (2.8) [96].

Table 2.1: Univariate random variable distributions and corresponding orthogonal
polynomials.

Distribution Polynomials Support

Gaussian Hermite (−∞,∞)
gamma Laguerre [0,∞)

beta Jacobi [t1, t2]
uniform Legendre [t1, t2]

The stochastic Galerkin method [34] for eq. (1.1) computes a surrogate solu-

tion, expanded with gPC basis functions as in eq. (2.8). Define the residual associ-

ated with the surrogate as

R = L
(
a(x, ξ);

nξ∑
s=1

us(x)ψs(ξ)
)
. (2.10)

This is in general not equal to zero. A Galerkin projection is applied so that the

residual is orthogonal to the space spanned by the basis functions {ψs(ξ)}, i.e.,

〈
L
(
a(x, ξ);

nξ∑
s=1

us(x)ψs(ξ)
)
, ψr(ξ)

〉
= 0, r = 1, . . . , nξ. (2.11)

This results in nξ coupled equations for the expansion coefficients {us(x)}. Equa-

tion (2.11) can be combined with a finite element method for the spatial discretiza-

tion. Time discretization can also be carried out for unsteady problems. In the

following chapters we will consider such formulations for some specific stochastic

PDEs. More details will be given as we discuss the stochastic diffusion problem in

chapter 3.

15

2.2 Iterative solvers for linear systems

The stochastic Galerkin discretization in general gives rise to a large algebraic

system for the coefficients of the surrogate solution. Linear system solves are re-

quired from discretization of linear stochastic PDEs or inside a nonlinear iterative

algorithm. For large-size linear systems, a direct method based on Gaussian elim-

ination or matrix decompositions becomes too expensive to be feasible. In such

situations, iterative methods are used. The major cost in an iterative solver, the

matrix-vector product computation, is order O(n) for a sparse matrix, where n is

the problem size. Fast convergence can be achieved with good preconditioners. In

this chapter, we briefly review Krylov subspace methods and multigrid methods.

2.2.1 Krylov subspace methods

Consider a linear system Au = f , where A ∈ Rn×n is nonsingular. Krylov

subspace methods seek an approximate solution uk in the space u0 + Kk(A, r0),

where Kk is a k-dimensional Krylov subspace defined as

Kk(A, r0) = span{r0, Ar0, A
2r0 . . . , A

k−1r0}, (2.12)

u0 is an initial guess for the solution, and r0 = f−Au0 is the corresponding residual.

In other words, the approximate solution is in the form

uk = u0 + qk−1(A)r0 (2.13)

where qk−1 is a polynomial of degree k − 1. The accuracy of the approximate

solution uk is improved by successively increasing the Krylov subspace dimension k.

16

An optimality condition can be imposed by requiring the residual rk = f − Auk to

be orthogonal to some space Mk. The following two choices of Mk result in some

of the most successful iterative solvers [26, 78]:

1. Mk = Kk. If A is symmetric positive definite, this is equivalent to minimizing

‖ek‖A = (A(u − uk),u − uk)
1/2, and it gives the conjugate gradient (CG)

method [45].

2. Mk = AKk. This is equivalent to minimizing ‖rk‖2, and the resulting al-

gorithms are the minimum residual (MINRES) method [72] for a symmetric

matrix A and the generalized minimal residual (GMRES) method [80] for a

general nonsingular A.

The convergence of Krylov subspace methods depends on properties of the

coefficient matrix A, such as its spectrum. Preconditioning techniques are used

to improve the eigenvalue distribution or to reduce the condition number of the

system so that the iterative algorithms have faster convergence, and thus lower

computational cost. For instance, a right-preconditioned system has the form

AP−1v = f , u = P−1v, (2.14)

where the preconditioner P should be a good approximation to A, and it should be

inexpensive to apply the action of P−1 for a given vector. Krylov subspace methods

are now used to solve the system associated with AP−1 instead of the original A. We

will discuss constructions of preconditioners for specific problems in the following

chapters.

17

2.2.2 Multigrid methods

Multigrid methods [14,40] can be divided to geometric multigrid (GMG) and

algebraic multigrid (AMG). In this section we focus on GMG where the linear sys-

tem is solved on a hierarchy of spatial grids. AMG, on the other hand, only uses

information from the entries of the coefficient matrix but ignores the physical dis-

cretization. We refer to [13,77] for more details about AMG.

The two ingredients of GMG are the smoothing operator and the coarse-grid

correction. The smoothing operator is a stationary iterative method, based on a

splitting of the coefficient matrix A = M −N , such that

Muk+1 = Nuk + f , or uk+1 = uk +M−1(f − Auk). (2.15)

Examples are the Jacobi method and the Gauss–Seidel method. Such methods

are effective in eliminating the oscillatory components of the error, but the smooth

components get damped slowly. After a few steps of the stationary iteration, the

error becomes smooth and can be well represented on a coarse grid. The system is

then transferred to the coarse grid and solved much less expensively. Specifically, let

superscripts h and 2h denote quantities associated with the fine grid and the coarse

grid. The prolongation operator Ih2h and the restriction operator I2h
h define how a

function (represented as a vector via finite element discretization) is mapped from

the coarse grid to the fine grid, and vice versa. A two-grid scheme vh ← MG(vh, fh)

is given as follows.

• Smoothing: for ν1 steps vh ← vh +M−1(fh − Ahvh).

18

• Residual restriction: r2h = I2h
h (fh − Ahvh).

• Coarse-grid correction: solve A2he2h = r2h.

• Prolongation and update: vh ← vh + Ih2he
2h.

• Smoothing: for ν2 steps vh ← vh +M−1(fh − Ahvh).

On the coarse grid, the coefficient matrix A2h can be built from A2h = I2h
h A

hIh2h. In

some cases this is equivalent to assembling A2h directly from the spatial discretiza-

tion on the coarse grid. The above procedure can be applied recursively to obtain

the multigrid version. That is, for the coarse-grid correction, the system is solved

with the same scheme e2h ← MG(e2h, r2h).

2.3 Numerical methods for eigenvalue problems

Another important problem class we consider are eigenvalue problems. In this

section we review two iterative algorithms, the inverse subspace iteration method

and a variant of the Lanczos algorithm known as the locally optimal preconditioned

conjugate gradient method, for solving a deterministic eigenvalue problem

Aus = λsus, s = 1, . . . , ne, (2.16)

where A ∈ Rn×n is symmetric, λs is the sth smallest eigenvalue and us is the cor-

responding eigenvector. We refer to [79,89] for a thorough discussion. In chapter 4

we will develop variants of these algorithms for eigenvalue problems obtained from

discretization of stochastic PDEs.

19

2.3.1 Inverse subspace iteration

When a single smallest eigenvalue is sought, the problem can be solved by the

inverse iteration method, where the iterate uk is given by

vk = A−1uk−1, uk =
vk
‖vk‖2

. (2.17)

For a large sparse matrix A, the action of A−1 can be achieved by applying the

iterative solvers discussed in the previous section. The error associated with the

approximate eigenvector uk decreases as O(ρk), where ρ = |λ1|/|λ2|. It indicates

that the convergence is fast if λ2 has a much larger modulus than λ1. The inverse

subspace iteration algorithm is a block generalization for computing more than one

eigenvalue. For Uk = [u1
k, . . . ,u

ne
k], the algorithm has the following steps.

• Compute Vk = A−1Uk−1.

• Compute Uk as a Gram–Schmidt orthonormalization of Vk.

The second step can also be achieved by computing a QR factorization Vk = QkRk

and setting Uk = Qk. For the subspace iteration, the largest canonical angle between

the approximate eigenspace spanned by the columns of Uk, and the true eigenspace,

decreases essentially as O(ρk), with ρ = |λne|/|λne+1| (see, e.g., [89]).

2.3.2 LOBPCG method

The locally optimal block preconditioned conjugate gradient (LOBPCG) meth-

od [54] is an iterative method for solving a generalized eigenvalue problem Au =

20

λBu, where both A,B ∈ Rn×n are symmetric positive definite. Unlike the inverse

subspace iteration algorithm, it does not require solving linear systems with A, but

only matrix-vector products. The single eigenvalue version is based on successively

minimizing the generalized Rayleigh quotient

uk+1 = min
v∈span{wk,uk,uk−1}

vTAv

vTBv
, (2.18)

where uk and uk−1 are the current and previous iterates, and wk is the precondi-

tioned residual. Let µ(v) = vTAv/vTBv. Then

wk = P−1(Auk − µ(uk)Buk), (2.19)

where P is a left preconditioner for the eigenvalue problem. The preconditioner

should be a good approximation to A, and the matrix P−1A has a much smaller

condition number. As the algorithm converges, the vectors uk and uk−1 become

nearly linearly dependent. To increase stability, one can use an equivalent space,

span{wk,uk,pk}, where pk is an implicitly computed difference between uk and

uk−1. The LOBPCG method is a block generalization of the above procedure. It

is used to compute multiple eigenvalues simultaneously, or to accelerate the single

eigenvalue computation. In general, the error associated with the computed eigen-

value λk decreases as O(ρk), where ρ is an average convergence factor and it is

related to the condition number of P−1A.

21

2.4 Nonlinear iterative methods

In this section we summarize Picard’s and Newton’s methods for solving a

nonlinear equation

F (u) = 0 (2.20)

where F : Rn → Rn [50]. Picard’s method is a fixed-point iteration. If the nonlinear

equation can be expressed in the form u = K(u) for some K : Rn → Rn, then the

Picard iteration is given by

uk+1 = K(uk). (2.21)

It is known that if K is Lipschitz continuous with Lipschitz constant γ < 1, the fixed-

point iteration converges linearly to the solution. We will consider this approach

in the context of the incompressible Navier–Stokes equations, where the discrete

problem has the form

uk+1 = A−1(uk)f , (2.22)

where A(uk) ∈ Rn×n is an approximation to a Jacobian at uk. Each step of the

Picard iteration requires solving a linear system. One way to save the computational

work is to solve the linear systems inexactly. It is shown in [11] that Picard’s method

is guaranteed to converge if the following stopping criterion for eq. (2.22) is satisfied

with τ < 1,

‖A(uk)uk+1 − f‖2 ≤ τ‖A(uk)uk − f‖2. (2.23)

Although not used in the thesis, Newton’s method is also included here for

22

completeness. For eq. (2.20), Newton’s method is defined by

uk+1 = uk + sk, F ′(uk)sk = −F (uk), (2.24)

where F ′(uk) ∈ Rn×n is the Jacobian matrix at uk. Under some appropriate as-

sumptions, Newton’s method achieves quadratic convergence rate if the initial guess

is close to the solution. In the cases where solving the linear systems at each Newton

step is expensive, inexact Newton methods [16,22] can be employed so that at each

step sk is solved to satisfy

‖F ′(uk)sk + F (uk)‖2 ≤ ηk‖F (uk)‖2. (2.25)

If the forcing term ηk < ηmax < 1, the convergence is linear, and if ηk is chosen to

be O(‖F (uk)‖2) then the convergence is still quadratic.

2.5 Low-rank approximation

Low-rank approximation finds applications in many different fields. In this

thesis we will study low-rank approximations to the discrete solutions of stochastic

PDEs in order to reduce the cost of iterative algorithms. For a two-dimensional

array, or matrix X ∈ Rn1×n2 , n1 ≥ n2, the best rank κ approximation X̃∗ satisfies

the following minimization problem,

min ‖X − X̃‖F , s.t. rank(X̃) ≤ κ. (2.26)

23

The analytic solution is given by the Eckart–Young–Mirsky theorem [20] based on

the singular value decomposition (SVD) of X

X = UΣV T =

(
U1 U2

)Σ1 0

0 Σ2

V T

1

V T
2

 (2.27)

where Σ = diag(σ1, . . . , σn2) with the singular values in nonincreasing order, and

Σ1 = diag(σ1, . . . , σκ). Then the best approximation is

X̃∗ = U1Σ1V
T

1 (2.28)

and

‖X − X̃∗‖F =
√
σ2
κ+1 + · · ·+ σ2

n2
. (2.29)

For a multi-dimensional array, or tensor z ∈ Rn1×···×nd , d ≥ 3, a low-rank

approximation z̃ can be constructed in different formats [38]. In chapter 5 we will

use the tensor train (TT) decomposition [70]. The TT format for z̃ is written as

z̃(i1, . . . , id) =
∑

α0,...,αd

z̃(1)(α0, i1, α1)z̃(2)(α1, i2, α2) · · · z̃(d)(αd−1, id, αd), (2.30)

where the TT core z̃(j) has size κj−1 × nj × κj, {κj}d−1
j=1 are called TT ranks, and

on the “boundary” κ0 = κd = 1. Such a low-rank format can be computed from a

so-called TT-SVD algorithm. It entails a sequence of SVDs to construct the best

rank κj approximation (as defined in eq. (2.26)) of the unfolding matrix Zj, where

Zj(i1, . . . , ij; ij+1, . . . , id) = z(ii, . . . , id), j = 1, . . . , d− 1; (2.31)

i.e., the first j indices enumerate the rows of Zj and the last d− j indices enumerate

the columns. Such a matrix can be obtained from a MATLAB reshape function

24

so that Zj = reshape(z,
∏j

s=1 ns,
∏d

s=j+1 ns). It was shown in [70] that for a given

tensor z, the best rank {κj}d−1
j=1 approximation z̃∗ in the TT format always exists, and

the TT approximation z̃ computed from the TT-SVD algorithm is quasi-optimal,

satisfying

‖z − z̃‖F ≤
√
d− 1‖z − z̃∗‖F . (2.32)

25

Chapter 3: Low-rank multigrid for the stochastic diffusion problem

3.1 Introduction

In this chapter we study iterative solvers for stochastic linear elliptic PDEs.

As discussed in chapter 1, stochastic Galerkin discretization gives rise to large linear

systems of equations which are computationally expensive to solve. These systems

are in general sparse and structured. In particular, the coefficient matrix can often

be expressed as a sum of tensor products of smaller matrices [65, 74]. For such

systems it is natural to use an iterative solver where the coefficient matrix is never

explicitly formed and matrix-vector products are computed efficiently. One way to

further reduce costs is to construct low-rank approximations to the desired solution.

The iterates are truncated so that the solution method handles only low-rank objects

in each iteration. This idea has been used to reduce the costs of iterative solution

algorithms based on Krylov subspaces. For example, a low-rank conjugate gradient

method was given in [56], and low-rank GMRES methods have been studied in [4,60].

Also, a geometric multigrid method for tensor structured linear systems in high

spatial dimensions was briefly discussed in [41].

We propose a low-rank multigrid method for solving the linear systems ob-

tained from the stochastic Galerkin discretization. We consider a steady-state diffu-

26

sion equation with random diffusion coefficient as model problem. The linear system

has Kronecker product structure and moreover, quantities used in the computation,

such as the solution sought, can be expressed in matrix format. It has been shown

that such systems admit low-rank approximate solutions [7, 56]. In our proposed

multigrid solver, the iterates are represented as low-rank matrices, and a truncation

operation is applied in each iteration to compress the matrix ranks. We derive an

analytic bound for the error of the solution and show the convergence of the algo-

rithm. We note that a convergence analysis for an iterative fixed-point like process

with truncation was studied in [42]. We demonstrate using benchmark problems

that the low-rank multigrid solver is often more efficient than a solver that does not

use truncation, and that it is especially advantageous in reducing computing time

for large-scale problems.

The material in this chapter is adapted from our published work [27]. An

outline of this chapter is as follows. In section 3.2 we state the problem and briefly

review the stochastic Galerkin method for the stochastic diffusion problem and the

multigrid solver from which the new technique is derived. In section 3.3 we discuss

the idea of low-rank approximation and introduce the multigrid solver with low-

rank truncation. A convergence analysis of the low-rank multigrid solver is also

given in this section. The results of numerical experiments are shown in section 3.4

to test the performance of the algorithm, and some conclusions are drawn in the

last section.

27

3.2 Model problem

Consider the stochastic steady-state diffusion equation with homogeneous Dirich-

let boundary conditions
−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D × Ω,

u(x, ω) = 0 on ∂D × Ω.

(3.1)

Here D is a spatial domain and Ω is a sample space with σ-algebra F and probability

measure P . The diffusion coefficient a(x, ω) : D × Ω → R is a random field. We

consider the case where the source term f is deterministic. The stochastic Galerkin

discretization of eq. (3.1) uses a weak formulation: find u(x, ω) ∈ V = H1
0 (D)⊗L2(Ω)

satisfying

∫
Ω

∫
D
a(x, ω)∇u(x, ω) · ∇v(x, ω)dxdP =

∫
Ω

∫
D
f(x)v(x, ω)dxdP (3.2)

for all v(x, ω) ∈ V. The problem is well posed if a(x, ω) is bounded and strictly

positive, i.e.,

0 < a1 ≤ a(x, ω) ≤ a2 <∞, a.e. ∀x ∈ D, (3.3)

so that the Lax–Milgram lemma establishes existence and uniqueness of the weak

solution.

We will assume that the stochastic coefficient c(x, ω) is represented as a trun-

cated KL expansion, in terms of a finite collection of uncorrelated random variables

{ξl}ml=1:

a(x, ω) ≈ a0(x) +
m∑
l=1

√
βlal(x)ξl(ω) (3.4)

28

where a0(x) is the mean function, (βl, al(x)) is the lth eigenpair of the covariance

function c(x, y), and the eigenvalues {βl} are assumed to be in non-increasing order.

In section 3.4 we will further assume these random variables are independent and

identically distributed. Let ρ(ξ) be the joint density function and Γ be the joint

image of {ξl}ml=1. The weak form of eq. (3.1) is then given as follows: find u(x, ξ) ∈

W = H1
0 (D)⊗ L2(Γ) s.t.

∫
Γ

ρ(ξ)

∫
D
c(x, ξ)∇u(x, ξ) · ∇v(x, ξ)dxdξ =

∫
Γ

ρ(ξ)

∫
D
f(x)v(x, ξ)dxdξ (3.5)

for all v(x, ξ) ∈W.

3.2.1 Stochastic Galerkin method

We briefly review the stochastic Galerkin method as described in [3,34]. This

method approximates the weak solution of eq. (3.1) in a finite-dimensional subspace

Whp = Sh ⊗ T p = span{φj(x)ψs(ξ) | φj(x) ∈ Sh, ψs(ξ) ∈ T p}, (3.6)

where Sh and T p are finite-dimensional subspaces of H1
0 (D) and L2(Γ). We will use

quadrilateral elements and piecewise bilinear basis functions {φj(x)}nxj=1 for the dis-

cretization of the physical space H1
0 (D), and generalized polynomial chaos [96] for

the stochastic basis functions {ψs(ξ)}
nξ
s=1. The latter are m-dimensional orthogonal

polynomials whose total degree does not exceed p. For instance, Legendre polyno-

mials are used if the random variables have uniform distribution with zero mean

and unit variance. The number of degrees of freedom in T p is nξ = (m+ p)!/(m!p!).

Given the subspace, now one can write the stochastic Galerkin solution as a

29

linear combination of the basis functions,

uh(x, ξ) =
nx∑
j=1

nξ∑
s=1

ujsφj(x)ψs(ξ), (3.7)

where nx is the dimension of the subspace Sh. Substituting eqs. (3.4) and (3.7) into

eq. (3.5), and taking the test function as any basis function φi(x)ψr(ξ) results in the

Galerkin system: find u ∈ Rnxnξ , s.t.

Au = f . (3.8)

The coefficient matrix A can be represented in Kronecker product notation [74],

A = G0 ⊗K0 +
m∑
l=1

Gl ⊗Kl, (3.9)

where {Kl}ml=0 are the stiffness matrices and {Gl}ml=0 correspond to the stochastic

part, with entries

G0(r, s) =

∫
Γ

ψr(ξ)ψs(ξ)ρ(ξ)dξ, K0(i, j) =

∫
D
a0(x)∇φi(x)∇φj(x)dx,

Gl(r, s) =

∫
Γ

ξlψr(ξ)ψs(ξ)ρ(ξ)dξ, Kl(i, j) =

∫
D

√
βlal(x)∇φi(x)∇φj(x)dx,

(3.10)

l = 1, . . . ,m; r, s = 1, . . . , nξ; i, j = 1, . . . , nx. The right-hand side can be written

as a Kronecker product of two vectors:

f = g0 ⊗ f0, (3.11)

where

g0(r) =

∫
Γ

ψr(ξ)ρ(ξ)dξ, r = 1, . . . , nξ,

f0(i) =

∫
D
f(x)φi(x)dx, i = 1, . . . , nx.

(3.12)

Note that in the Galerkin system eq. (3.8), the matrix A is symmetric and

positive definite. It is also blockwise sparse (see fig. 3.1) due to the orthogonality

30

of {ψr(ξ)}. The size of the linear system is in general very large (nxnξ × nxnξ).

For such a system it is suitable to use an iterative solver. Multigrid methods are

among the most effective iterative solvers for the solution of discretized elliptic

PDEs, capable of achieving convergence rates that are independent of the mesh

size, with computational work growing only linearly with the problem size [40,78].

Figure 3.1: Block structure of A. m = 4, p = 1, 2, 3 from left to right. Block size is
nx × nx.

3.2.2 Multigrid

In this subsection we discuss a geometric multigrid solver proposed in [23] for

the solution of the stochastic Galerkin system eq. (3.8). For this method, the mesh

size h varies for different grid levels, while the polynomial degree p is held constant,

i.e., the fine grid space and coarse grid space are defined as

Whp = Sh ⊗ T p, W2h,p = S2h ⊗ T p, (3.13)

respectively. Then the prolongation and restriction operators are of the form

P = I ⊗ P, R = I ⊗ P T , (3.14)

31

where P is the same prolongation matrix as in the deterministic case. On the coarse

grid we only need to construct matrices {K2h
l }ml=0, and

A2h = G0 ⊗K2h
0 +

m∑
l=1

Gl ⊗K2h
l . (3.15)

The matrices {Gl}ml=0 are the same for all grid levels.

Algorithm 3.1 describes the complete multigrid method. In each iteration, we

apply one multigrid cycle (Vcycle) for the residual equation

Ac(i) = r(i) = f − Au(i) (3.16)

and update the solution u(i) and residual r(i). The Vcycle function is called re-

cursively. On the coarsest grid level (h = h0) we form matrix A and solve the linear

system directly. The system is of order O(nξ) since A ∈ Rnxnξ×nxnξ where nx is

a very small number on the coarsest grid. The smoothing function (Smooth) is

based on a matrix splitting A = Q− Z and stationary iteration

us+1 = us +Q−1(f − Aus), (3.17)

which we assume is convergent, i.e., the spectral radius ρ(I − Q−1A) < 1. The

algorithm is run until the specified relative tolerance tol or maximum number of

iterations maxit is reached. It is shown in [23] that for f ∈ L2(D), the convergence

rate of this algorithm is independent of the mesh size h, the number of random

variables m, and the polynomial degree p.

32

Algorithm 3.1: Multigrid for stochastic Galerkin systems

1: initialization: i = 0, r(0) = f , r0 = ‖f‖2

2: while r > tol ∗ r0 & i ≤ maxit do
3: c(i) = Vcycle(A,0, r(i))

4: u(i+1) = u(i) + c(i)

5: r(i+1) = f − Au(i+1)

6: r = ‖r(i+1)‖2, i = i+ 1

7: end

8: function uh = Vcycle(Ah,uh0 , f
h)

9: if h == h0 then
10: solve Ahuh = fh directly
11: else
12: uh = Smooth(Ah,uh0 , f

h)
13: rh = fh − Ahuh
14: r2h = Rrh

15: c2h = Vcycle(A2h,0, r2h)
16: uh = uh + Pc2h

17: uh = Smooth(Ah,uh, fh)

18: end

19: end

20: function u = Smooth(A,u, f)
21: for ν steps do
22: u = u +Q−1(f − Au)
23: end

24: end

33

3.3 Low-rank approximation

In this section we consider a technique designed to reduce computational effort,

in terms of both time and memory use, using low-rank methods. We begin with the

observation that the solution vector of the Galerkin system eq. (3.8)

u = [u11, u21, . . . , unx1, . . . , u1nξ , u2nξ , . . . , unxnξ]
T ∈ Rnxnξ (3.18)

can be restructured as a matrix

U = mat(u) =

u11 u12 · · · u1nξ

u21 u22 · · · u2nξ

...
...

. . .
...

unx1 unx2 · · · unxnξ

∈ Rnx×nξ . (3.19)

Then (3.8) is equivalent to a system in matrix format,

A (U) = F, (3.20)

where

A (U) = K0UG
T
0 +

m∑
l=1

KlUG
T
l ,

F = mat(f) = mat(g0 ⊗ f0) = f0g
T
0 .

(3.21)

It has been shown in [7, 56] that the “matricized” version of the solution U can

be well approximated by a low-rank matrix when nxnξ is large. Evidence of this

can be seen in fig. 3.2, which shows the singular values of the exact solution U

for the benchmark problem discussed in section 3.4. In particular, the singular

values decay exponentially, and low-rank approximate solutions can be obtained

34

by dropping terms from the singular value decomposition corresponding to small

singular values.

Figure 3.2: Decay of singular values of solution matrix U . Left: exponential covari-
ance, b = 5, h = 2−6, m = 8, p = 3. Right: squared exponential covariance, b = 2,
h = 2−6, m = 3, p = 3. See the benchmark problems in section 3.4.

Now we use low-rank approximation in the multigrid solver for eq. (3.20).

Let U (i) = mat(u(i)) be the ith iterate, expressed in matricized format. (In the

sequel, we use u(i) and U (i) interchangeably to represent the equivalent vectorized

or matricized quantities.) Suppose U (i) is represented as the outer product of two

rank-κ matrices, i.e., U (i) ≈ V (i)W (i)T , where V (i) ∈ Rnx×κ, W (i) ∈ Rnξ×κ. This

factored form is convenient for implementation and can be readily used in basic

matrix operations. For instance, the sum of two matrices gives

V
(i)

1 W
(i)T
1 + V

(i)
2 W

(i)T
2 = [V

(i)
1 , V

(i)
2][W

(i)
1 ,W

(i)
2]T . (3.22)

35

Similarly, A (V (i)W (i)T) can also be written as an outer product of two matrices:

A (V (i)W (i)T) = (K0V
(i))(G0W

(i))T +
m∑
l=1

(KlV
(i))(GlW

(i))T

= [K0V
(i), K1V

(i), . . . , KmV
(i)][G0W

(i), G1W
(i), . . . , GmW

(i)]T .

(3.23)

If V (i),W (i) are used to represent iterates in the multigrid solver and κ� min(nx, nξ),

then both memory and computational (matrix-vector products) costs can be re-

duced, from O(nxnξ) to O((nx+nξ)κ). Note, however, that the ranks of the iterates

may grow due to matrix additions. For example, in eq. (3.23) the rank may increase

from κ to (m + 1)κ in the worst case. A way to prevent this from happening, and

also to keep costs low, is to truncate the iterates and force their ranks to remain

low.

3.3.1 Low-rank truncation

Our truncation strategy is derived using an idea from [56]. Assume X̃ = Ṽ W̃ T ,

Ṽ ∈ Rnx×κ̃, W̃ ∈ Rnξ×κ̃, and X = T (X̃) is truncated to rank κ with X = VW T ,

V ∈ Rnx×κ, W ∈ Rnξ×κ and κ < κ̃. First, compute the QR factorization for both Ṽ

and W̃ ,

Ṽ = QṼRṼ , W̃ = QW̃RW̃ , so X̃ = QṼRṼR
T
W̃
QT
W̃
. (3.24)

The matrices RṼ and RW̃ are of size κ̃ × κ̃. Next, compute an SVD of the small

matrix RṼR
T
W̃

:

RṼR
T
W̃

= V̂ diag(σ1, . . . , σκ̃)Ŵ
T (3.25)

where σ1, . . . , σκ̃ are the singular values in descending order. We can truncate to

a rank-κ matrix where κ is specified using either a relative criterion for singular

36

values, √
σ2
κ+1 + · · ·+ σ2

κ̃ ≤ εrel

√
σ2

1 + · · ·+ σ2
κ̃ (3.26)

or an absolute one,

κ = max{κ | σk ≥ εabs}. (3.27)

Then the truncated matrices can be written in MATLAB notation as

V = QṼ V̂ (:, 1 : κ), W = QW̃ Ŵ (:, 1 : κ)diag(σ1, . . . , σκ). (3.28)

Note that the low-rank matrices X obtained from eq. (3.26) and eq. (3.27) satisfy

‖X − X̃‖F ≤ εrel‖X̃‖F (3.29)

and

‖X − X̃‖F ≤ εabs

√
κ̃− κ, (3.30)

respectively. The right-hand side of eq. (3.30) is bounded by
√
qnξεabs, q ≤ m + 2,

since in the worst case, there is a sum of m+2 matrices (see Line 13 of algorithm 3.2),

and in general qnξ < nx. The total cost of this computation is O((nx + nξ + κ̃)κ̃2).

In the case where κ̃ becomes larger than nξ, we compute instead a direct SVD for

X̃, which requires a matrix-matrix product to compute X̃ and an SVD, with smaller

total cost O(nxnξκ̃+ nxn
2
ξ).

3.3.2 Low-rank multigrid

The multigrid solver with low-rank truncation is given in algorithm 3.2. It

uses truncation operators Trel and Tabs, which are defined using a relative and an

absolute criterion, respectively. In each iteration, one multigrid cycle (Vcycle) is

37

applied to the residual equation. Since the overall magnitudes of the singular values

of the correction matrix C(i) decrease as U (i) converges to the exact solution (see

fig. 3.3a for example), it is suitable to use a relative truncation tolerance εrel inside

the Vcycle function. It is also shown in fig. 3.3b that in each multigrid iteration,

the singular values for the correction matrices C2h at grids at all levels decay in a

similar manner. In the smoothing function (Smooth), the iterate is truncated after

each smoothing step using a relative criterion

‖Trel1(U)− U‖F ≤ εrel‖F h −A h(Uh
0)‖F (3.31)

where Ah, Uh
0 , and F h are arguments of the Vcycle function, and F h−A h(Uh

0) is

the residual at the beginning of each V-cycle. In Line 13, the residual is truncated

via a more stringent relative criterion

‖Trel2(R
h)−Rh‖F ≤ εrelh‖F h −A h(Uh

0)‖F (3.32)

where h is the mesh size. In the main while loop, an absolute truncation criterion

eq. (3.27) with tolerance εabs is used and all the singular values of U (i) below εabs

are dropped. The algorithm is terminated either when the largest singular value of

the residual matrix R(i) is smaller than εabs or when the multigrid solution reaches

the specified accuracy (see eq. (3.62)).

Note that the post-smoothing is not explicitly required in algorithms 3.1

and 3.2, and we include it just for sake of completeness. Also, in algorithm 3.2,

if the smoothing operator has the form S = S1 ⊗ S2, then for any matrix with a

low-rank factorization X = VW T , application of the smoothing operator gives

S (X) = S (VW T) = (S2V)(S1W)T , (3.33)

38

Algorithm 3.2: Low-rank multigrid method

1: initialization: i = 0, R(0) = F in low-rank format, r0 = ‖F‖F
2: while r > tol ∗ r0 & i ≤ maxit do
3: C(i) = Vcycle(A, 0, R(i))

4: Ũ (i+1) = U (i) + C(i), U (i+1) = Tabs(Ũ
(i+1))

5: R̃(i+1) = F −A (U (i+1)), R(i+1) = Tabs(R̃
(i+1))

6: r = ‖R(i+1)‖F , i = i+ 1

7: end

8: function Uh = Vcycle(Ah, Uh
0 , F

h)
9: if h == h0 then

10: solve A h(Uh) = F h directly
11: else
12: Uh = Smooth(Ah, Uh

0 , F
h)

13: R̃h = F h −A h(Uh), Rh = Trel2(R̃
h)

14: R2h = R(Rh)
15: C2h = Vcycle(A2h, 0, R2h)
16: Uh = Uh + P(C2h)
17: Uh = Smooth(Ah, Uh, F h)

18: end

19: end

20: function U = Smooth(A,U, F)
21: for ν steps do

22: Ũ = U + S (F −A (U)), U = Trel1(Ũ)
23: end

24: end

39

(a) (b)

Figure 3.3: (a) Singular values of the coarse-grid correction matrix C(i) at multigrid
iteration i = 0, 1, . . . , 5. (b) Singular values of correction matrices C2h in the first
multigrid iteration at various grid-refinement levels, for grid sizes h = 2/2nc, nc =
4, 5, 6, 7. No truncation is introduced, σ = 0.01, b = 5, h = 2−6, m = 8, p = 3. See
the benchmark problem in section 3.4.1.

40

so that the result is again the outer product of two matrices of the same low rank.

The prolongation and restriction operators eq. (3.14) are implemented in a similar

manner. Thus, the smoothing and grid-transfer operators do not affect the ranks of

matricized quantities in algorithm 3.2.

3.3.3 Convergence analysis

In order to show that algorithm 3.2 is convergent, we need to know how trun-

cation affects the contraction of error. Consider the case of a two-grid algorithm for

the linear system Au = f , where the coarse-grid solve is exact and no post-smoothing

is done. Let Ā be the coefficient matrix on the coarse grid, let e(i) = u − u(i) be

the error associated with u(i), and let r(i) = f − Au(i) = Ae(i) be the residual. It is

shown in [23] that if no truncation is done, the error after a two-grid cycle becomes

e
(i+1)
notrunc = (A−1 −PĀ−1R)A(I −Q−1A)νe(i), (3.34)

and

‖e(i+1)
notrunc‖A ≤ Cη(ν)‖e(i)‖A, (3.35)

where ν is the number of pre-smoothing steps, C is a constant, and η(ν) → 0 as

ν →∞. The proof consists of establishing the smoothing property

‖A(I −Q−1A)νy‖2 ≤ η(ν)‖y‖A, ∀y ∈ Rnxnξ , (3.36)

and the approximation property

‖(A−1 −PĀ−1R)y‖A ≤ C‖y‖2, ∀y ∈ Rnxnξ , (3.37)

and applying these bounds to eq. (3.34).

41

Now we derive an error bound for algorithm 3.2. The result is presented in

two steps. First, we consider the Vcycle function only; the following lemma shows

the effect of the relative truncations defined in eqs. (3.31) and (3.32).

Lemma 3.1. Let u(i+1) = Vcycle(A,u(i), f) and let e(i+1) = u − u(i+1) be the

associated error. Assume a damped Jacobi smoother is used (see eq. (3.69)). Then

‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A, (3.38)

where, for small enough εrel and large enough ν, C1(ν) < 1 independent of the mesh

size h.

Proof. For s = 1, . . . , ν, let ũ
(i)
s be the quantity computed after application of the

smoothing operator at step s before truncation, and let u
(i)
s be the modification

obtained from truncation by Trel1 of eq. (3.31). For example,

ũ
(i)
1 = u(i) +Q−1(f − Au(i)), u

(i)
1 = Trel1(ũ

(i)
1). (3.39)

Denote the associated error as e
(i)
s = u− u

(i)
s . From eq. (3.31), we have

e
(i)
1 = (I −Q−1A)e(i) + δ

(i)
1 , where ‖δ(i)

1 ‖2 ≤ εrel‖r(i)‖2. (3.40)

Similarly, after ν smoothing steps,

e(i)
ν = (I −Q−1A)νe(i) + ∆(i)

ν

= (I −Q−1A)νe(i) + (I −Q−1A)ν−1δ
(i)
1 + · · ·+ (I −Q−1A)δ

(i)
ν−1 + δ(i)

ν ,

(3.41)

where

‖δ(i)
s ‖2 ≤ εrel‖r(i)‖2, s = 1, . . . , ν. (3.42)

42

In Line 13 of algorithm 3.2, the residual r̃
(i)
ν = Ae

(i)
ν is truncated to r

(i)
ν via eq. (3.32),

so that

‖r(i)
ν − r̃(i)

ν ‖2 ≤ εrelh‖r(i)‖2. (3.43)

Let τ (i) = r
(i)
ν − r̃

(i)
ν . Referring to eqs. (3.34) and (3.41), we can write the error

associated with u(i+1) as

e(i+1) = e(i)
ν −PĀ−1Rr(i)

ν

= (I −PĀ−1RA)e(i)
ν −PĀ−1Rτ (i)

= e
(i+1)
notrunc + (A−1 −PĀ−1R)A∆(i)

ν −PĀ−1Rτ (i)

= e
(i+1)
notrunc + (A−1 −PĀ−1R)(A∆(i)

ν + τ (i))− A−1τ (i).

(3.44)

Applying the approximation property eq. (3.37) gives

‖(A−1 −PĀ−1R)(A∆(i)
ν + τ (i))‖A ≤ C(‖A∆(i)

ν ‖2 + ‖τ (i)‖2). (3.45)

Using the fact that for any matrix B ∈ Rnxnξ×nxnξ ,

sup
y 6=0

‖By‖A
‖y‖A

= sup
y 6=0

‖A1/2By‖2

‖A1/2y‖2

= sup
z 6=0

‖A1/2BA−1/2z‖2

‖z‖2

= ‖A1/2BA−1/2‖2, (3.46)

we get

‖A(I −Q−1A)ν−sδ(i)
s ‖2 ≤ ‖A1/2‖2 ‖(I −Q−1A)ν−sδ(i)

s ‖A

≤ ‖A1/2‖2 ‖A1/2(I −Q−1A)ν−sA−1/2‖2 ‖δ(i)
s ‖A

≤ ρ(I −Q−1A)ν−s‖A1/2‖2
2 ‖δ(i)

s ‖2

(3.47)

where ρ is the spectral radius. We have used the fact that A1/2(I −Q−1A)ν−sA−1/2

is a symmetric matrix (since Q is symmetric). Define d1(ν) = (ρ(I − Q−1A)ν−1 +

43

· · ·+ ρ(I −Q−1A) + 1)‖A1/2‖2
2. Then eqs. (3.42) and (3.43) imply that

‖A∆(i)
ν ‖2 + ‖τ (i)‖2 ≤ εrel(d1(ν) + h)‖r(i)‖2

≤ εrel(d1(ν) + h)‖A1/2‖2 ‖e(i)‖A.
(3.48)

On the other hand,

‖A−1τ (i)‖A = (A−1τ (i), τ (i))1/2 ≤ ‖A−1‖1/2
2 ‖τ (i)‖2

≤ εrelh‖A−1‖1/2
2 ‖r(i)‖2

≤ εrelh‖A−1‖1/2
2 ‖A1/2‖2 ‖e(i)‖A.

(3.49)

Combining eqs. (3.35), (3.44), (3.45), (3.48) and (3.49), we conclude that

‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A (3.50)

where

C1(ν) = Cη(ν) + εrel(C(d1(ν) + h) + h‖A−1‖1/2
2)‖A1/2‖2. (3.51)

Note that ρ(I −Q−1A) < 1, ‖A‖2 is bounded by a constant, and ‖A−1‖2 is of order

O(h−2) [74]. Thus, for small enough εrel and large enough ν, C1(ν) is bounded below

1 independent of h.

Next, we adjust this argument by considering the effect of the absolute trunca-

tions in the main while loop. In algorithm 3.2, the Vcycle is used for the residual

equation, and the updated solution ũ(i+1) and residual r̃(i+1) are truncated to u(i+1)

and r(i+1), respectively, using an absolute truncation criterion as in eq. (3.27). Thus,

at the ith iteration (i > 1), the residual passed to the Vcycle function is in fact a

perturbed residual, i.e.,

r(i) = r̃(i) + γ = Ae(i) + γ, where ‖γ‖2 ≤
√
qnξεabs. (3.52)

44

It follows that in the first smoothing step,

ũ
(i)
1 = u(i) +Q−1(f − Au(i) + γ), u

(i)
1 = Trel1(ũ

(i)
1), (3.53)

and this introduces an extra term in ∆
(i)
ν (see eq. (3.41)),

∆(i)
ν = (I−Q−1A)ν−1δ

(i)
1 + · · ·+(I−Q−1A)δ

(i)
ν−1 +δ(i)

ν − (I−Q−1A)ν−1Q−1γ. (3.54)

As in the derivation of eq. (3.47), we have

‖A(I −Q−1A)ν−1Q−1γ‖2 ≤ ρ(I −Q−1A)ν−1‖A1/2‖2
2 ‖Q−1‖2 ‖γ‖2. (3.55)

In the case of a damped Jacobi smoother, ‖Q−1‖2 is bounded by a constant. Denote

d2(ν) = ρ(I −Q−1A)ν−1‖A1/2‖2
2 ‖Q−1‖2. Also note that ‖r(i)‖2 ≤ ‖A1/2‖2 ‖e(i)‖A +

‖γ‖2. Then eqs. (3.48) and (3.49) are modified to

‖A∆(i)
ν ‖2 + ‖τ (i)‖2

≤ εrel(d1(ν) + h)‖r(i)‖2 + d2(ν)‖γ‖2

≤ εrel(d1(ν) + h)‖A1/2‖2 ‖e(i)‖A + (d2(ν) + εrel(d1(ν) + h))‖γ‖2,

(3.56)

and

‖A−1τ (i)‖A ≤ εrelh‖A−1‖1/2
2 ‖A1/2‖2 ‖e(i)‖A + εrelh‖A−1‖1/2

2 ‖γ‖2. (3.57)

As we truncate the updated solution ũ(i+1), we have

u(i+1) = ũ(i+1) + ζ, where ‖ζ‖2 ≤
√
qnξεabs. (3.58)

Let

C2(ν) = (Cd2(ν) + εrel(C(d1(ν) + h) + h‖A−1‖1/2
2) + ‖A1/2‖2)

√
q. (3.59)

From eqs. (3.56) to (3.59), we conclude with the following theorem:

45

Theorem 3.2. Let e(i) = u − u(i) denote the error at the ith iteration of algo-

rithm 3.2. Then

‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A + C2(ν)
√
nξεabs, (3.60)

where C1(ν) < 1 for large enough ν and small enough εrel, and C2(ν) is bounded by

a constant. Also, eq. (3.60) implies that

‖e(i)‖A ≤ Ci
1(ν)‖e(0)‖A +

1− Ci
1(ν)

1− C1(ν)
C2(ν)

√
nξεabs, (3.61)

i.e., the A-norm of the error for the low-rank multigrid solution at the ith iteration

is bounded by Ci
1(ν)‖e(0)‖A + O(

√
nξεabs). Thus, algorithm 3.2 converges until the

A-norm of the error becomes as small as O(
√
nξεabs).

In the proof above, it is convenient to consider the damped Jacobi smoother

in that the matrix Q is symmetric and ‖Q−1‖2 is bounded. In fact, one can use the

smoothing property eq. (3.36) to bound eq. (3.47), which does not require symmetry

in Q, and the proof can be generalized for any smoother with bounded ‖Q−1‖2. Also,

it can be shown that the result in theorem 3.2 holds if post-smoothing is used. The

convergence of full (recursive) multigrid with these truncation operations can be

established following an inductive argument analogous to that in the deterministic

case (see, e.g., [26, 40]). Besides, in algorithm 3.2, the truncation on r̃(i+1) imposes

a stopping criterion, i.e.,

‖r̃(i+1)‖2 ≤ ‖r̃(i+1) − r(i+1)‖2 + ‖r(i+1)‖2

≤ √qnξεabs + tol ∗ r0.

(3.62)

In section 3.4 we will vary the value of εabs and see how the low-rank multigrid solver

works compared with algorithm 3.1 where no truncation is done.

46

Remark 3.3. It is shown in [74] that for eq. (3.8), with constant mean a0 and standard

deviation σ,

‖A‖2 = α(a0 + σCmax
p+1

m∑
l=1

√
βl‖al(x)‖∞), (3.63)

where Cmax
p+1 is the maximal root of an orthogonal polynomial of degree p+ 1, and α

is a constant independent of h, m, and p. If Legendre polynomials on the interval

[−1, 1] are used, Cmax
p+1 < 1. Since both C1 and C2 in theorem 3.2 are related to ‖A‖2,

the convergence rate of algorithm 3.2 will depend on m. However, if the eigenvalues

{βl} decay fast, this dependence is negligable.

Remark 3.4. As shown in eq. (3.51), the factor h in the truncation criterion eq. (3.32)

is introduced to compensate for the order O(h−2) of ‖A−1‖2. Arguments similar to

those in [74] can also be used to show that if A comes from a model where the

diffusion coefficient is a lognormal random field, then ‖A−1‖2 = O(h−2) (see the

discussions in [29,92]), and the error bound in theorem 3.2 is still valid.

Remark 3.5. If instead a relative truncation is used in the while loop so that

r(i+1) = r̃(i+1) + γ = Ae(i+1) + γ, where ‖γ‖2 ≤ εrel‖r̃(i+1)‖2, (3.64)

then a similar convergence result can be derived, and the algorithm stops when

‖r̃(i+1)‖2 ≤
tol ∗ r0

1− εrel

. (3.65)

However, the relative truncation in general results in a larger rank for r(i), and the

improvement in efficiency will be less significant.

47

3.4 Numerical experiments

Consider the benchmark problem with a two-dimensional spatial domain D =

[−1, 1]2 and constant source term f = 1. We look at two different forms for the

covariance function c(x, y) of the diffusion coefficient a(x, ω).

3.4.1 Exponential covariance

The exponential covariance function takes the form

c(x, y) = σ2exp

(
−1

b
‖x− y‖1

)
. (3.66)

This is a convenient choice because there are known analytic solutions for the eigen-

pair (βl,al(x)) [34]. In the KL expansion, take a0(x) = 1 and {ξl}ml=1 independent

and uniformly distributed on [−1, 1]:

a(x, ω) = a0(x) +
√

3
m∑
l=1

√
βlal(x)ξl(ω). (3.67)

Then
√

3ξl has zero mean and unit variance, and Legendre polynomials are used as

basis functions for the stochastic space. The correlation length b affects the decay

of {βl} in the KL expansion. The number of random variables m is chosen so that(
m∑
l=1

βl

)/(M∑
l=1

βl

)
≥ 95%. (3.68)

Here M is a large number which we set as 1000.

We now examine the performance of the multigrid solver with low-rank trun-

cation. We employ a damped Jacobi smoother, with

Q =
1

ωs
diag(A) =

1

ωs
I ⊗ diag(K0) (3.69)

48

(since G0 = I and diag(Gl) = 0 for l = 1, . . . ,m), and the parameter value ωs = 2/3.

Apply three smoothing steps (ν = 3) in the Smooth function. Set the multigrid

tol = 10−6. As shown in eq. (3.62), the relative residual ‖F −A (U (i))‖F/‖F‖F for

the solution U (i) produced in algorithm 3.2 is related to the value of the truncation

tolerance εabs. In all the experiments, we also run the multigrid solver without trun-

cation to reach a relative residual that is closest to what we get from the low-rank

multigrid solver. We fix the relative truncation tolerance εrel as 10−2. (The trun-

cation criteria in eqs. (3.31) and (3.32) are needed for the analysis. In practice we

found the performance with the relative criterion in eq. (3.29) to be essentially the

same as the results shown in this section.) The numerical results, i.e., the rank of

multigrid solution, the number of iterations, and the elapsed time (in seconds) for

solving the Galerkin system, are given in tables 3.1 to 3.3. In all the tables, the 3rd

and 4th columns are the results of low-rank multigrid with different values of trunca-

tion tolerance εabs, and for comparison the last two columns show the results for the

multigrid solver without truncation. The Galerkin systems are generated from the

Incompressible Flow and Iterative Solver Software (IFISS, [82]). All computations

are done in MATLAB 9.1.0 (R2016b) on a MacBook with 4 GB SDRAM.

Table 3.1 shows the performance of the multigrid solver for various mesh sizes

h, or spatial degrees of freedom nx, with other parameters fixed. The 3rd and

5th columns show that multigrid with low-rank truncation uses less time than the

standard multigrid solver. This is especially true when nx is large: for h = 2−8,

nx = 261121, low-rank approximation reduces the computing time from 2857s to

370s. The improvement is much more significant (see the 4th and 6th columns) if

49

the problem does not require very high accuracy for the solution. Table 3.2 shows

the results for various degrees of freedom nξ in the stochastic space. The multigrid

solver with absolute truncation tolerance 10−6 is more efficient compared with no

truncation in all cases and uses only about half the time. The 4th and 6th columns

indicate that the decrease in computing time by low-rank truncation is more obvious

with the larger tolerance 10−4.

Table 3.1: Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation
for various nx = (2/h−1)2. Exponential covariance, σ = 0.01, b = 4, m = 11, p = 3,
nξ = 364.

εabs = 10−6 εabs = 10−4 No truncation

64× 64 grid
h = 2−5

nx = 3969

Rank 51 12
Iterations 5 4 5 4
Elapsed time 6.26 1.63 12.60 10.08
Rel residual 1.51e-6 6.05e-5 9.97e-7 1.38e-5

128× 128
grid h = 2−6

nx = 16129

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 5.17 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

256× 256
grid h = 2−7

nx = 65025

Rank 49 13
Iterations 5 4 5 3
Elapsed time 76.56 24.31 311.27 188.70
Rel residual 4.47e-6 2.07e-4 1.36e-6 2.35e-04

512× 512
grid h = 2−8

nx = 261121

Rank 39 16
Iterations 5 3 4 3
Elapsed time 370.98 86.30 2857.82 2099.06
Rel residual 9.93e-6 4.33e-4 1.85e-5 2.43e-4

We have observed that when the standard deviation σ in the covariance func-

tion (3.66) is smaller, the singular values of the solution matrix U decay faster (see

fig. 3.2), and it is more suitable for low-rank approximation. This is also shown in

50

Table 3.2: Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation
for various nξ = (m+ p)!/(m!p!). Exponential covariance, σ = 0.01, h = 2−6, p = 3,
nx = 16129.

εabs = 10−6 εabs = 10−4 No truncation

Rank 25 9
b = 5,m = 8 Iterations 5 4 5 3
nξ = 165 Elapsed time 5.82 1.71 19.33 11.65

Rel residual 5.06e-6 3.41e-4 1.22e-6 2.20e-4

Rank 51 12
b = 4,m = 11 Iterations 6 4 5 3
nξ = 364 Elapsed time 20.90 5.17 54.59 32.92

Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

Rank 91 23
b = 3,m = 16 Iterations 6 5 5 4
nξ = 969 Elapsed time 97.34 16.96 197.82 158.56

Rel residual 5.71e-7 3.99e-5 1.23e-6 1.63e-5

Rank 165 86
b = 2.5,m = 22 Iterations 6 5 6 4
nξ = 2300 Elapsed time 648.59 172.41 1033.29 682.45

Rel residual 1.59e-7 8.57e-6 9.29e-8 1.63e-5

51

the numerical results. In the previous cases, we fixed σ as 0.01. In table 3.3, the

advantage of low-rank multigrid is clearer for a smaller σ, and the solution is well

approximated by a matrix of smaller rank. On the other hand, as the value of σ

increases, the singular values of the matricized solution, as well as the matricized

iterates, decay more slowly and the same truncation criterion gives higher-rank ob-

jects. Thus, the total time for solving the system and the time spent on truncation

will also increase. Another observation from the above numerical experiments is

that the iteration counts are largely unaffected by truncation. In algorithm 3.2,

similar numbers of iterations are required to reach a comparable accuracy as in the

cases with no truncation.

Table 3.3: Performance of multigrid solver with εabs = 10−6, 10−4, and no trunca-
tion for various σ. Time spent on truncation is given in parentheses. Exponential
covariance, b = 4, h = 2−6, m = 11, p = 3, nx = 16129, nξ = 364.

εabs = 10−6 εabs = 10−4 No truncation

σ = 0.001

Rank 13 12
Iterations 6 4 5 4
Elapsed time 7.61 (4.77) 3.73 (2.29) 54.43 43.58
Rel residual 1.09e-6 6.53e-5 1.22e-6 1.63e-5

σ = 0.01

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 (15.05) 5.17 (3.16) 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

σ = 0.1

Rank 136 54
Iterations 6 4 5 3
Elapsed time 54.44 (33.91) 18.12 (12.70) 55.49 33.62
Rel residual 3.28e-6 2.47e-4 1.88e-6 2.62e-4

σ = 0.3

Rank 234 128
Iterations 9 7 8 4
Elapsed time 138.63 (77.54) 60.96 (38.66) 86.77 43.42
Rel residual 6.03e-6 4.71e-4 2.99e-6 7.76e-4

52

3.4.2 Squared exponential covariance

In the second example we consider covariance function

c(x, y) = σ2exp

(
− 1

b2
‖x− y‖2

2

)
. (3.70)

The eigenpair (βl, al(x)) is computed via a finite element approximation of the eigen-

value problem ∫
D
c(x, y)al(y)dy = βlal(x). (3.71)

Again, in the KL expansion eq. (3.67), take a0(x) = 1 and {ξl}ml=1 independent

and uniformly distributed on [−1, 1]. The eigenvalues of the squared exponential

covariance eq. (3.70) decay much faster than those of eq. (3.66), and thus fewer

terms are required to satisfy eq. (3.68). For instance, for b = 2, m = 3 will suffice.

Table 3.4 shows the performance of multigrid with low-rank truncation for various

spatial degrees of freedom nx. In this case, we are able to work with finer meshes

since the value of nξ is smaller. In all experiments the low-rank multigrid solver

uses less time compared with no truncation.

3.5 Conclusions

In this chapter we focused on the multigrid solver, one of the most efficient

iterative solvers, for the stochastic steady-state diffusion problem. We discussed

how to combine the idea of low-rank approximation with multigrid to reduce com-

putational costs. We proved the convergence of the low-rank multigrid method with

an analytic error bound. It was shown in numerical experiments that the low-rank

53

Table 3.4: Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation
for various nx = (2/h−1)2. Squared exponential covariance, σ = 0.01, b = 2, m = 3,
p = 3, nξ = 20.

εabs = 10−6 εabs = 10−4 No truncation

128× 128
grid h = 2−6

nx = 16129

Rank 9 4
Iterations 5 3 4 3
Elapsed time 0.78 0.35 1.08 0.82
Rel residual 1.20e-5 9.15e-4 1.63e-5 2.20e-4

256× 256
grid h = 2−7

nx = 65025

Rank 8 4
Iterations 4 3 4 3
Elapsed time 2.55 1.31 4.58 3.46
Rel residual 3.99e-5 9.09e-4 1.78e-05 2.35e-4

512× 512
grid h = 2−8

nx = 261121

Rank 8 2
Iterations 4 2 4 2
Elapsed time 10.23 2.13 18.93 9.61
Rel residual 6.41e-5 6.91e-3 1.85e-5 3.29e-3

1024× 1024
grid
h = 2−9

nx = 1045629

Rank 8 2
Iterations 4 2 4 2
Elapsed time 58.09 10.66 115.75 63.54
Rel residual 6.41e-5 6.93e-3 1.90e-5 3.32e-3

54

truncation is useful in decreasing the computing time when the variance of the ran-

dom coefficient is relatively small. The proposed algorithm also exhibited great

advantage for problems with large numbers of spatial degrees of freedom.

55

Chapter 4: Low-rank methods for stochastic eigenvalue problems

4.1 Introduction

In this chapter we study low-rank solution methods for stochastic eigenvalue

problems associated with discrete PDE operators. Approaches for solving stochas-

tic eigenvalue problems can be broadly divided into non-intrusive methods, includ-

ing Monte Carlo methods and stochastic collocation methods [1, 76], and intrusive

stochastic Galerkin methods. The Galerkin approach gives parametrized descrip-

tions of the eigenvalues and eigenvectors, represented as expansions with stochastic

basis functions. A commonly used framework is the generalized polynomial chaos

(gPC) expansion [96]. A direct projection onto the subspace spanned by the ba-

sis functions will result in large coupled nonlinear systems that can be solved by

a Newton-type algorithm [9, 33]. Alternatives that do not use nonlinear solvers

are stochastic versions of the (inverse) power methods and subspace iteration al-

gorithms [43, 44, 67, 86, 93]. These methods have been shown to produce accurate

solutions compared with the Monte Carlo or collocation methods. However, due to

the extra dimensions introduced by randomness, solving the linear systems, as well

as other computations, can be expensive. In this chapter, we develop new efficient

solution methods that use low-rank approximations for the stochastic eigenvalue

56

problems.

We use the stochastic Galerkin approach to compute gPC expansions of one or

more minimal eigenvalues and corresponding eigenvectors of parameter-dependent

matrices, arising from discretization of stochastic self-adjoint PDEs. Our work

builds on the results in [67, 86]. We devise a low-rank variant of the stochastic

inverse subspace iteration algorithm, where the iterates and solutions are approx-

imated by low-rank matrices. In each iteration, the linear system solves required

by the inverse iteration algorithm are performed by low-rank iterative solvers. The

orthonormalization and Rayleigh quotient computations in the algorithm are also

computed with the low-rank representation. To test the efficiency of the proposed

algorithm, we consider two benchmark problems, a stochastic diffusion problem and

a Schur complement operator derived from a discrete stochastic Stokes problem.

The diffusion problem has some poorly separated eigenvalues and we show that a

generalization of Rayleigh–Ritz refinement for the stochastic problem can be used

to obtain good approximations. A low-rank geometric multigrid method is used

for solving the linear systems. For the Stokes problem, the minimal eigenvalue of

the Schur complement operator is the square of the parametrized inf-sup stability

constant for the Stokes operator. Each step of the inverse iteration entails solv-

ing a Stokes system for which a low-rank variant of the MINRES method is used.

We demonstrate the accuracy of the solutions and efficiency of the low-rank algo-

rithms by comparison with the Monte Carlo method and the full subspace iteration

algorithm without using low-rank approximation.

We note that a low-rank variant of LOBPCG method was studied in [57] for

57

eigenvalue problems from discretization of high-dimensional elliptic PDEs. A low-

rank Arnoldi method was proposed in [10] to approximate the posterior covariance

matrix in stochastic inverse problems. Another dimension reduction technique is the

reduced basis method. This idea was used in [30,47,63], where the eigenvectors are

approximated from a linear space spanned by carefully selected sample “snapshot”

solutions obtained via, for instance, a greedy algorithm that minimizes an a posteri-

ori error estimator. Inf-sup stability problems were also studied in [48,84] in which

lower and upper bounds for the smallest eigenvalue of a stochastic Hermitian matrix

are computed using successive constraint methods in the reduced basis context.

The material presented in this chapter is based on our work in [28]. The rest

of this chapter is organized as follows. In section 4.2 we review the stochastic inverse

subspace iteration algorithm for computing several minimal eigenvalues and corre-

sponding eigenvectors of parameter-dependent matrices. In section 4.3 we introduce

the idea of low-rank approximation in this setting, and discuss how computations in

the inverse subspace iteration algorithm are done efficiently with quantities in low-

rank format. The stochastic diffusion problem and the stochastic Stokes problem

are discussed in sections 4.4 and 4.5, respectively, with numerical results showing the

effectiveness of the low-rank algorithms. Conclusions are drawn in the last section.

4.2 Stochastic inverse subspace iteration

Let (Ω,F , P) be a probability triplet where Ω is a sample space with σ-algebra

F and probability measure P . Define a random variable ξ : Ω→ Γ ⊂ Rm with uncor-

58

related components and let µ be the induced measure on Γ. Consider the following

stochastic eigenvalue problem: find ne minimal eigenvalues λs(ξ) and corresponding

eigenvectors us(ξ) such that

A(ξ)us(ξ) = λs(ξ)us(ξ), s = 1, 2, . . . , ne, (4.1)

almost surely, where A(ξ) is a matrix-valued random variable. We will use a version

of stochastic inverse subspace iteration studied in [67, 86] for solution of eq. (4.1).

The approach derives from a stochastic Galerkin formulation of subspace iteration,

which is based on projection onto a finite-dimensional subspace of L2(Γ) spanned

by the gPC basis functions {ψk(ξ)}
nξ
k=1. These functions are orthonormal, with

〈ψiψj〉 = E[ψiψj] =

∫
Γ

ψi(ξ)ψj(ξ)dµ = δij, (4.2)

where 〈·〉 is the expected value, and δij is the Kronecker delta. The stochastic

Galerkin solutions are expressed as expansions of the gPC basis functions,

λs(ξ) =

nξ∑
r=1

λsrψr(ξ), us(ξ) =

nξ∑
j=1

usjψj(ξ). (4.3)

We briefly review the stochastic subspace iteration method in the case where

A(ξ) admits an affine expansion with respect to components of the random variable

ξ:

A(ξ) = A0 +
m∑
l=1

Alξl (4.4)

where each Al is an nx×nx deterministic matrix, obtained from, for instance, finite

element discretization of a PDE operator. The matrix A0 is the mean value of A(ξ).

Such a representation can be obtained from a KL expansion of the stochastic term

59

in the problem. Let {us,(i)(ξ)}nes=1 be a set of approximate eigenvectors obtained at

the ith step of the inverse subspace iteration. Then at step i+ 1, one needs to solve

〈Avs,(i+1)ψk〉 = 〈us,(i)ψk〉, k = 1, 2, . . . , nξ, (4.5)

for {vs,(i+1)}nes=1 and compute {us,(i+1)}nes=1 via orthonormalization. If ne = 1, for

the latter requirement, vs,(i+1) is normalized so that ||us,(i+1)||2 = 1 almost surely.

If ne > 1, a stochastic version of the Gram–Schmidt process is applied and the

resulting vectors {us,(i+1)}nes=1 satisfy 〈us,(i+1), ut,(i+1)〉Rnx = δst almost surely, where

〈·, ·〉Rnx is the Euclidean inner product in Rnx . With the iterates expressed as gPC

expansions, for instance, us,(i)(ξ) =
∑nξ

j=1 u
s,(i)
j ψj(ξ), collecting the nξ equations in

eq. (4.5) for each s yields an nxnξ × nxnξ linear system

m∑
l=0

(Gl ⊗ Al)vs,(i+1) = us,(i) (4.6)

where⊗ is the Kronecker product, each Gl is an nξ×nξ matrix with [Gl]kj = 〈ξlψkψj〉

(ξ0 ≡ 1 and G0 = I), and

us,(i) =

u
s,(i)
1

u
s,(i)
2

...

u
s,(i)
nξ

∈ Rnxnξ . (4.7)

Note that the matrices {Gl} are sparse due to orthogonality of the gPC basis func-

tions [29,74]. The initial iterate is given by solving the mean problem A0ū
s = λ̄sūs,

60

and

us,(0) =

ūs

0

...

0

. (4.8)

The complete algorithm is summarized as algorithm 4.1. The details of the compu-

tations in steps 4 and 7 are given in eqs. (4.13), (4.19) and (4.22) below.

Algorithm 4.1: Stochastic inverse subspace iteration

1: initialization: initial iterate us,(0).
2: for i = 0, 1, 2, . . . do
3: Solve the stochastic Galerkin system eq. (4.6) for vs,(i+1), s = 1, 2, . . . , ne.

4: If ne = 1, compute us,(i+1) by normalization. Otherwise, apply a
stochastic Gram–Schmidt process for orthonormalization.

5: Check convergence.

6: end
7: Compute eigenvalues using a Rayleigh quotient.

4.3 Low-rank approximation

In this section we discuss the idea of low-rank approximation and how this can

be used to reduce the computational costs of algorithm 4.1. The size of the Galerkin

system eq. (4.6) is in general large and solving the system can be computationally

expensive. We utilize low-rank iterative solvers where the iterates are approximated

by low-rank matrices and the system is efficiently solved to a specified accuracy. In

addition, low-rank forms can be used to reduce the costs of the orthonormalization

and Rayleigh quotient computations in the algorithm.

61

4.3.1 System solution

For any random vector x(ξ) with expansion x(ξ) =
∑nξ

j=1 xjψj(ξ) where each

xj is a vector of length nx, let

X = mat(x) = [x1, x2, . . . , xnξ] ∈ Rnx×nξ . (4.9)

Then the Galerkin system
∑m

l=0(Gl ⊗ Al)x = f is equivalent to the matrix form

m∑
l=0

AlXG
T
l = F = mat(f). (4.10)

For such a matrix equation obtained from the stochastic Galerkin discretization, the

approach in [7] can be applied to show that the solution X can be approximated

by a low-rank matrix. In particular, in examples considered in this study, when

the variance of the random parameters is small, the singular values of the solution

matrix decay exponentially fast (see fig. 4.1), and a low-rank approximate solution

can be obtained by dropping the terms corresponding to small singular values in a

singular value decomposition.

To take advantage of the low rank of the solution matrix, we construct it-

erative solvers that produce a sequence of low-rank approximate iterates. Let

X(i) = mat(x(i)) be the ith iterate computed by an iterative solver applied to

eq. (4.10), and suppose X(i) is represented as the product of two rank-κ matri-

ces, i.e., X(i) = Y (i)Z(i)T , where Y (i) ∈ Rnx×κ, Z(i) ∈ Rnξ×κ. If this factored form

is used throughout the iteration without explicitly forming X(i), then the matrix-

vector product (Gl ⊗ Al)x will have the same structure,

AlX
(i)GT

l = (AlY
(i))(GlZ

(i))T , (4.11)

62

(a) σ = 0.01 (b) σ = 0.1

Figure 4.1: Singular values (relative to the largest one) of the matrix representations
of the stochastic eigenvectors for the numerical examples in sections 4.4 and 4.5, with
standard deviations σ = 0.01 and σ = 0.1. nc = 5, b = 4.0, m = 11, nξ = 364.

63

and it is only necessary to compute AlY
(i) andGlZ

(i). If κ� min(nx, nξ), this means

that the computational costs of the matrix operation are reduced from O(nxnξ)

to O((nx + nξ)κ). On the other hand, summing terms with the factored form

tends to increase the rank, and rank compression techniques must be used in each

iteration to force the matrix rank κ to stay low. In particular, if X
(i)
1 = Y

(i)
1 Z

(i)T
1 ,

X
(i)
2 = Y

(i)
2 Z

(i)T
2 , where Y

(i)
1 ∈ Rnx×κ1 , Z

(i)
1 ∈ Rnξ×κ1 , Y

(i)
2 ∈ Rnx×κ2 , Y

(i)
2 ∈ Rnξ×κ2 ,

then

X
(i)
1 +X

(i)
2 = [Y

(i)
1 , Y

(i)
2][Z

(i)
1 , Z

(i)
2]T . (4.12)

The addition gives a matrix of rank κ1 +κ2 in the worst case. This issue is the same

as that discussed for the multigrid solver in chapter 3. Rank compression can be

achieved by an SVD-based truncation operator X̃(i) = T (X(i)) so the matrix X̃(i)

has a much smaller rank thanX(i) [56] (see also section 3.3 for a detailed discussion of

the truncation operator). Low-rank approximation and truncation have been used

for Krylov subspace methods [7, 56, 60] and multigrid methods (chapter 3, [27]).

More details can be found in these references. We will use examples of such solvers

for linear systems arising in eigenvalue computations, as discussed in sections 4.4

and 4.5.

4.3.2 Orthonormalization

In algorithm 4.1, if ne = 1, the solution vs,(i+1)(ξ) is normalized so that

||us,(i+1)(ξ)||2 = 1 almost surely. With the superscripts omitted, assume u(ξ) =∑nξ
j=1 ujψj(ξ) is the normalized random vector constructed from v(ξ). This expan-

64

sion can be computed using sparse grid quadrature {ξ(q), η(q)}nqq=1, where {η(q)} are

the weights [32]:

uj = 〈u(ξ)ψj(ξ)〉 =

〈
v(ξ)

‖v(ξ)‖2

ψj(ξ)

〉
≈

nq∑
q=1

v(ξ(q))

‖v(ξ(q))‖2

ψj(ξ
(q))η(q). (4.13)

Suppose the “matricized” version of the expansion coefficients of v(ξ) is represented

in low-rank form

V = [v1, v2, . . . , vnξ] = YvZ
T
v , (4.14)

where Yv ∈ Rnx×κv , Zv ∈ Rnξ×κv . With Ψ(ξ(q)) = [ψ1(ξ(q)), ψ2(ξ(q)), . . . , ψnξ(ξ
(q))]T ,

we have

v(ξ(q)) =

nξ∑
j=1

vjψj(ξ
(q)) = VΨ(ξ(q)) = YvZ

T
v Ψ(ξ(q)). (4.15)

Let U = [u1, u2, . . . , unξ]. Then eq. (4.13) yields

[U]:,j = uj =

nq∑
q=1

YvZ
T
v Ψ(ξ(q))

‖YvZT
v Ψ(ξ(q))‖2

ψj(ξ
(q))η(q), (4.16)

and

U =

nq∑
q=1

YvZ
T
v Ψ(ξ(q))

‖YvZT
v Ψ(ξ(q))‖2

Ψ(ξ(q))Tη(q). (4.17)

Thus, the matrix U can be expressed as an outer product of two low-rank matrices

U = YuZ
T
u with

Yu = Yv ∈ Rnx×κv , Zu =

nq∑
q=1

Ψ(ξ(q))(Ψ(ξ(q))TZv)

‖Yv(ZT
v Ψ(ξ(q)))‖2

η(q) ∈ Rnξ×κv . (4.18)

This implies that the expansion coefficients of the normalized vector u(ξ) can be

written as a low-rank matrix with the same rank as the analogous matrix associated

with v(ξ). The cost of computing Zu is O((nx +nξ)nqκv). Since in general nq � κv,

it can be further reduced to O((nx + nq)κ
2
v + nξnqκv) by first computing a QR

factorization of Yv and factoring out the orthogonal matrix in the denominator.

65

In the general case where more than one eigenvector is computed (ne > 1), a

stochastic version of the Gram–Schmidt process is applied to compute an orthonor-

mal set {us,(i+1)(ξ)}nes=1 [67,86]. With the superscript (i+ 1) omitted, the process is

based on the following calculation

us(ξ) = vs(ξ)−
s−1∑
t=1

χts(ξ) = vs(ξ)−
s−1∑
t=1

〈vs(ξ), ut(ξ)〉Rnx
〈ut(ξ), ut(ξ)〉Rnx

ut(ξ) (4.19)

for s = 2, . . . , ne. If we write χts(ξ) =
∑nξ

k=1 χ
ts
k ψk(ξ), and assume ut(ξ) is already

normalized in previous steps, then

χtsk = 〈vs(ξ)Tut(ξ)ut(ξ)ψk(ξ)〉

≈
nq∑
q=1

vs(ξ(q))Tut(ξ(q))ut(ξ(q))ψk(ξ
(q))η(q)

=

nq∑
q=1

(Ψ(ξ(q))TZvsY
T
vs)(YutZ

T
utΨ(ξ(q)))YutZ

T
utΨ(ξ(q))ψk(ξ

(q))η(q).

(4.20)

The last line follows eq. (4.15). Let ζts(ξ(q)) = (Ψ(ξ(q))TZvsY
T
vs)(YutZ

T
utΨ(ξ(q))), then

the matrix X ts = [χts1 , χ
ts
2 , . . . , χ

ts
nξ

] can be expressed in low-rank form X ts = YχtsZ
T
χts

with

Yχts = Yut , Zχts =

nq∑
q=1

Ψ(ξ(q))(Ψ(ξ(q))TZut)ζ
ts(ξ(q))η(q). (4.21)

With low-rank representaion, the computational cost is O((nx+nξ)nq max(κvs , κut)).

Note that in eq. (4.19) the summation will increase the matrix rank, and thus a

truncation operator is applied to compress the rank.

4.3.3 Rayleigh quotient

The Rayleigh quotient in step 7 of algorithm 4.1 is computed (only once)

after convergence of the inverse subspace iteration to find the eigenvalues. Given a

66

normalized eigenvector u(ξ) of problem eq. (4.1), the computation of the stochastic

Rayleigh quotient

λ(ξ) = u(ξ)TA(ξ)u(ξ) (4.22)

involves two steps:

(1) Compute matrix-vector product w(ξ) = A(ξ)u(ξ) where w(ξ) =
∑nξ

k=1wkψk(ξ)

and wk = 〈Auψk〉. In Kronecker product form,

w =
m∑
l=0

(Gl ⊗ Al)u. (4.23)

If u has low-rank representation U = YuZ
T
u , then

W =
m∑
l=0

(AlYu)(GlZu)
T . (4.24)

This is followed by a truncation operation to compress the matrix rank.

(2) Compute eigenvalue λ(ξ) = u(ξ)Tw(ξ) where λ(ξ) =
∑nξ

r=1 λrψr(ξ) and λr =

〈uTwψr〉. Equivalently,

λr = 〈Hr, C〉Rnξ×nξ =

nξ∑
j,k=1

[Hr]jkCjk (4.25)

where Cjk = uTj wk and thus C = UTW = Zu(Y
T
u Yw)ZT

w . The matrices

{Hr}
nξ
r=1 are sparse with [Hr]jk = 〈ψrψjψk〉. In fact, if the basis functions

are written as products of univariate polynomials, i.e.,

ψr(ξ) = ψr1(ξ1)ψr2(ξ2) · · ·ψrm(ξm), (4.26)

then [Hr]jk is nonzero only if |jl − kl| ≤ rl ≤ jl + kl and rl + jl + kl is even for

all 1 ≤ l ≤ m [29]. This observation greatly reduces the cost of assembling the

67

matrices {Hr}. For example, if m = 11, the degree of the gPC basis functions

is p ≤ 3, and nξ = (m+ p)!/(m!p!) = 364, then with the above rule, a total of

31098 nonzero entries must be computed, instead of the much larger number

n3
ξ = 48228544 if the sparsity of {Hr} is not used.

4.3.4 Convergence criterion

To check convergence, we can look at the magnitude of the expected value of

the residual

rs(ξ) = A(ξ)us(ξ)− λs(ξ)us(ξ), s = 1, 2, . . . , ne. (4.27)

Alternatively, without computing the Rayleigh quotient at each iteration, error as-

sessment can be done using the relative difference of the gPC coefficients of two

successive iterates, i.e.,

ε
s,(i)
∆u =

1

nξ

nξ∑
k=1

‖us,(i)k − us,(i−1)
k ‖2

‖us,(i−1)
k ‖2

. (4.28)

However, in the case of clustered eigenvalues (that is, if two or more eigenvalues

are close to each other), the convergence of the inverse subspace iteration for single

eigenvectors will be slow. Instead, we look at the angle between the eigenspaces [12]

in two consecutive iterations

θ(i)(ξ) = ∠(span(u1,(i)(ξ), . . . , une,(i)(ξ)), span(u1,(i−1)(ξ), . . . , une,(i−1)(ξ))). (4.29)

The expected value E[θ(i)] is taken as error indicator and is also calculated using

sparse grid quadrature

ε
(i)
θ = E[θ(i)] ≈

nq∑
q=1

θ(i)(ξ(q))η(q). (4.30)

68

At each quadrature point, θ(i)(ξ(q)) is evaluated by MATLAB function subspace for

the largest principal angle.

4.4 Stochastic diffusion equation

In this section we consider the following elliptic equation with Dirichlet bound-

ary conditions
−∇ · (a(x, ω)∇u(x, ω)) = λ(ω)u(x, ω) in D × Ω

u(x, ω) = 0 on ∂D × Ω

(4.31)

where D is a two-dimensional spatial domain and Ω is a sample space. The uncer-

tainty in the problem is introduced by the stochastic diffusion coefficient a(x, ω).

Assume that a(x, ω) is bounded and strictly positive and admits a truncated KL

expansion

a(x, ω) = a0(x) +
m∑
l=1

√
βlal(x)ξl(ω), (4.32)

where a0(x) is the mean function, (βl, al(x)) is the lth eigenpair of the covariance

function, and {ξl} are a collection of uncorrelated random variables. The weak form

is to find (u(x, ξ), λ(ξ)) such that for any v(x) ∈ H1
0 (D),

∫
D
a(x, ξ)∇u(x, ξ) · ∇v(x)dx = λ(ξ)

∫
D
u(x, ξ)v(x)dx (4.33)

almost surely.

Finite element discretization in the physical domain D with basis functions

{φi(x)} gives

K(ξ)u(ξ) = λ(ξ)Mu(ξ) (4.34)

69

where K(ξ) =
∑m

l=0Klξl, and

[Kl]ij =

∫
D

√
βlal(x)∇φi(x) · ∇φj(x)dx,

[M]ij =

∫
D
φi(x)φj(x)dx, i, j = 1, 2, . . . , nx,

(4.35)

with β0 = 1 and ξ0 ≡ 1. The result is a generalized eigenvalue problem where the

matrix M on the right-hand side is deterministic. With the Cholesky factorization

M = LLT , eq. (4.34) can be converted to standard form

A(ξ)w(ξ) = λ(ξ)w(ξ), (4.36)

where A(ξ) = L−1K(ξ)L−T , w(ξ) = LTu(ξ).

We use stochastic inverse subspace iteration to find ne minimal eigenvalues

of eq. (4.36). As discussed in section 4.2, the linear systems to be solved in each

iteration are in the form

m∑
l=0

(Gl ⊗ (L−1KlL
−T))vs,(i+1) = us,(i), s = 1, 2, . . . , ne. (4.37)

Let vs,(i) = (I ⊗ LT)v̂s,(i). Then eq. (4.37) is equivalent to

m∑
l=0

(Gl ⊗Kl)v̂
s,(i+1) = (I ⊗ L)us,(i). (4.38)

4.4.1 Low-rank multigrid

We discussed a low-rank geometric multigrid method in chapter 3 for solving

linear systems with the same structure as eq. (4.38). The complete algorithm for

solving A (X) = F is given in algorithm 3.2, where A is a generic matrix operator

and for eq. (4.38), A (X) =
∑m

l=0KlXG
T
l . All the iterates are expressed in low-

rank form, and truncation operations are used to compress the ranks of the iterates.

70

Trel and Tabs are truncation operators with a relative tolerance εrel and an absolute

tolerance εabs, respectively. In each iteration, one V-cycle is applied to the residual

equation. On the coarse grids, coarse versions of {Kl} are assembled while the

matrices {Gl} stay the same. The prolongation operator is P = I ⊗ P , where P

is the same prolongation matrix as in a standard geometric multigrid solver, and

the restriction operator is R = I ⊗ P T . The smoothing operator S is based on

a stationary iteration, and is also a Kronecker product of two matrices. The grid

transfer and smoothing operations do not affect the rank. For instance, for any

matrix iterate in low-rank form X(i) = Y (i)Z(i)T ,

P(X(i)) = (PY (i))(IZ(i))T . (4.39)

On the coarsest grid (h = h0), the system is solved with direct methods.

4.4.2 Rayleigh–Ritz refinement

It is known that in the deterministic case with a constant diffusion coeffi-

cient, eq. (4.34) typically has repeated eigenvalues [26], for example, λ2 = λ3. The

parametrized versions of these eigenvalues in the stochastic problem will be close to

each other. In the deterministic setting, Rayleigh–Ritz refinement is used to acceler-

ate the convergence of subspace iteration when some eigenvalues have nearly equal

modulus and the convergence to individual eigenvectors is slow [88, 89]. Assume

that a Hermitian matrix S has eigendecomposition

S = V ΛV T = V1Λ1V
T

1 + V2Λ2V
T

2 (4.40)

71

where Λ = diag(λ1, λ2, . . . , λnx) with eigenvalues in increasing order and V = [V1, V2]

is orthogonal. Let the column space of Q be a good approximation to that of

V1. Such an approximation is obtained from the inverse subspace iteration. The

Rayleigh–Ritz procedure computes

(1) Rayleigh quotient T = QTSQ, and

(2) eigendecomposition T = WΣW T .

Then Σ and QW represent good approximations to Λ1 and V1.

The stochastic inverse subspace iteration algorithm produces solutions {usSG(ξ)}

expressed as gPC expansions as in eq. (4.3) and sample eigenvectors are easily com-

puted. The sample eigenvalues are generated from the stochastic Rayleigh quotient

eq. (4.22). However, in the case of poorly separated eigenvalues, the sample solu-

tions obtained this way are not accurate enough. Experimental results that demon-

strate this are given in section 4.4.3, see table 4.2. Instead, we use a version of the

Rayleigh–Ritz procedure to generate sample eigenvalues and eigenvectors with more

accuracy. Specifically, a parametrized Rayleigh quotient T (ξ) is computed using the

approach of section 4.3.3, with

[T]st(ξ) = usSG(ξ)TA(ξ)utSG(ξ), s, t = 1, 2, . . . , ne. (4.41)

Then one can sample the matrix T , and for each realization ξ(r), solve a small

(ne × ne) deterministic eigenvalue problem T (ξ(r)) = W (ξ(r))Σ(ξ(r))W (ξ(r))T to get

72

better approximations for the minimal eigenvalues and corresponding eigenvectors:

λ̃sSG(ξ(r)) = [Σ(ξ(r))]ss,

ũsSG(ξ(r)) = [u1
SG(ξ(r)), u2

SG(ξ(r)), . . . , uneSG(ξ(r))][W (ξ(r))]:,s.

(4.42)

The effectiveness of this procedure will also be demonstrated in section 4.4.3, see

table 4.3.

4.4.3 Numerical experiments

Consider a two-dimensional domainD = [−1, 1]2. Let the spatial discretization

consist of piecewise bilinear basis functions on a uniform square mesh. The finite

element matrices are assembled using the IFISS software package [82]. The number

of spatial degrees of freedom is nx = (2/h − 1)2 where h is the mesh size. Define

the grid level nc such that 2/h = 2nc . In the KL expansion eq. (4.32), we use an

exponential covariance function

c(x, y) = σ2exp

(
−1

b
‖x− y‖1

)
(4.43)

and (βl, al(x)) is the lth eigenpair of c(x, y). The correlation length b affects the

decay of the eigenvalues {βl}. The number of random variables m is chosen so

that (
∑m

l=1 βl)/(
∑∞

l=1 βl) ≥ 95%. Take the standard deviation σ = 0.01, the mean

function a0(x) ≡ 1.0, and {ξl} to be independent and uniformly distributed on

[−
√

3,
√

3]m. Legendre polynomials are used for gPC basis functions, whose to-

tal degree does not exceed p = 3. The number of gPC basis functions is nξ =

(m + p)!/(m!p!). For the quadrature rule in section 4.3.2, we use a Smolyak sparse

grid with Clenshaw–Curtis quadrature points and grid level 3, computed from the

73

SPINTERP toolbox [52]. For m = 11, the number of sparse grid points is 2069. All

computations in this chapter are done in MATLAB 9.4.0 (R2018a) on a MacBook

with 4 GB SDRAM.

We apply low-rank stochastic inverse subspace iteration to compute three

minimal eigenvalues (ne = 3) and corresponding eigenvectors for eq. (4.34). The

smallest 20 eigenvalues for the mean problem K0u = λMu are plotted in fig. 4.2a.

For the stochastic problem, the three smallest eigenvalues consist of one isolated

smallest eigenvalue λ1(ξ) and (as mentioned in the previous subsection) two eigen-

values λ2(ξ) and λ3(ξ) that have nearly equal modulus. For the inverse subspace

iteration, we take ε
(i)
θ in eq. (4.30) as error indicator and use a stopping criterion

ε
(i)
θ ≤ tolisi = 10−5. The low-rank multigrid method of section 4.4.1 is used to solve

the system eq. (4.38), where damped Jacobi iteration is employed for the smoothing

opeator S = ωsdiag(A)−1 = ωs(I ⊗K−1
0) with weight ωs = 2/3. Two smoothing

steps are applied (ν = 2). We also use the idea of inexact inverse iteration meth-

ods [36,58] so that in the first few steps of subspace iteration, the systems eq. (4.6)

are solved with milder error tolerances than in later steps. Specifically, we set the

multigrid tolerance as

tol(i)mg = max{min{10−2 ∗ ε(i−1)
θ , 10−3}, 10−6}, (4.44)

and truncation tolerances ε
(i)
abs = 10−2 ∗ tol(i)mg, εrel = 10−2 [27]. This is shown to be

useful in reducing the computational costs while not affecting the convergence of

the subspace iteration algorithm (see fig. 4.2b).

Table 4.1 shows the ranks of the multigrid solutions in each iteration. It

74

(a) (b)

Figure 4.2: (a) Smallest 20 eigenvalues of the mean problem. (b) Reduction of the

error indicator ε
(i)
θ for an adaptive multigrid tolerance eq. (4.44) and a fixed tolerance

tolmg = 10−6. nc = 6, b = 4.0, m = 11.

75

indicates that all the systems solved have low-rank approximate solutions (nx =

3969, nξ = 364). With the inexact solve, the solutions have much smaller ranks in

the first few iterations. In the last row of table 4.1 are the numbers of multigrid steps

itmg required to solve eq. (4.38) for s = 1; similar numbers of multigrid steps are

required for s = 2, 3. In addition, in algorithm 4.1 an absolute truncation operator

with εabs = 10−8 is applied after the computations in eqs. (4.19) and (4.23) (both

require addition of quantities represented as low-rank matrices in implementation)

to compress the iterate ranks. Rayleigh–Ritz refinement discussed in section 4.4.2

is used to obtain good approximations to individual sample eigenpairs.

Table 4.1: Iterate ranks after the multigrid solve and numbers of multigrid steps
required in the inverse subspace iteration algorithm. nc = 6, b = 4.0, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13

Rank
u1 11 22 26 32 40 44 44 46 49 49 49 49 49
u2 17 23 25 33 41 41 41 41 41 41 41 41 41
u3 17 25 28 37 39 40 40 40 40 40 40 40 40

itmg 3 5 5 6 6 6 6 7 7 7 7 7 7

To show the accuracy of the low-rank stochastic Galerkin solutions, we com-

pare them with reference solutions from Monte Carlo simulation. The stochastic

Galerkin method produces a surrogate stochastic solution expressed with gPC basis

functions that can be easily sampled. The Monte Carlo solutions are computed

by the eigs function from MATLAB, which uses the implicitly restarted Arnoldi

method to compute several minimal eigenvalues [85]. For both methods, we use the

same sample values {ξ(r)} of the random variables to generate sample eigenvalues

76

and eigenvectors. Define the relative errors

ελs =
1

nr

nr∑
r=1

|λsSG(ξ(r))− λsMC(ξ(r))|
|λsMC(ξ(r))|

,

εus =
1

nr

nr∑
r=1

‖usSG(ξ(r))− usMC(ξ(r))‖2

‖usMC(ξ(r))‖2

,

(4.45)

where λsSG and usSG denote the stochastic Galerkin sample solutions (they are re-

placed by λ̃sSG and ũsSG in eq. (4.42) if Rayleigh–Ritz refinement is used), λsMC and

usMC are the Monte Carlo solutions, nr is the sample size, and s = 1, 2, . . . , ne. We

use a sample size nr = 10000.

We examine the accuracy for the three smallest eigenvalues obtained from in-

verse subspace iteration when they are computed both with and without Rayleigh–

Ritz refinement. table 4.2 shows the results (for one spatial mesh size) when

Rayleigh–Ritz refinement is not used. It can be seen that (the poorly separated)

eigenvalues λ2 and λ3 are significantly less accurate than λ1, and that the eigenvec-

tors u2 and u3 are highly inaccurate. In contrast, table 4.3 (with results for three

mesh sizes) demonstrates dramatically improved accuracy when refinement is done.

In all cases, convergence takes 13 iterations.

Table 4.2: Relative differences between low-rank stochastic Galerkin solutions (with-
out Rayleigh–Ritz refinement) and Monte Carlo solutions. nc = 6, b = 4.0, m = 11.

ελ1 4.8752× 10−10 εu1 2.2318× 10−7

ελ2 5.1938× 10−4 εu2 5.2216× 10−1

ελ3 5.1872× 10−4 εu3 5.2215× 10−1

There are several things to consider in order to assess the efficiency of the

low-rank algorithm. First, note that the stochastic Galerkin method depends on

77

Table 4.3: Relative differences between low-rank stochastic Galerkin solutions (with
Rayleigh–Ritz refinement) and Monte Carlo solutions. b = 4.0, m = 11.

nc 6 7 8

ελ1 4.8753× 10−10 4.8789× 10−10 4.8777× 10−10

ελ2 1.7339× 10−9 1.7996× 10−9 1.7856× 10−9

ελ3 1.6481× 10−9 1.7122× 10−9 1.7189× 10−9

εu1 1.1390× 10−7 1.8687× 10−7 3.8855× 10−7

εu2 8.2047× 10−6 8.3449× 10−6 8.5969× 10−6

εu3 8.2795× 10−6 8.4110× 10−6 8.6885× 10−6

two separate computations, the inverse subspace iteration algorithm to compute the

surrogate stochastic solution, and the repeated evaluation of the surrogate solution,

to be done in a simulation. (The associated costs are denoted as tsolve and tsample

respectively.) In the parlance of reduced basis methods [94], the first part can be

viewed as an offline computation and the second part as an online computation. One

issue is how the costs of each of these steps for the low-rank algorithm compare with

a more standard version of inverse subspace iteration that does not use low-rank

constructions, which we refer to as the full-rank version. In contrast, each step of the

Monte Carlo method requires the solution of a single eigenvalue problem. The cost of

this computation will be much smaller than that of the offline computation required

for the stochastic Galerkin method, but each step of a Monte Carlo simulation will

be more costly than when a surrogate approximation is used.

Thus, the efficiency of the low-rank algorithm is demonstrated by comparison

with (i) stochastic inverse subspace iteration with the full-rank stochastic Galerkin

78

method, with the same tolerances tolisi and tolmg, and (ii) the Monte Carlo method.

For the latter method, each deterministic eigenvalue problem is now solved by an

LOBPCG method [54], preconditioned with one V-cycle of AMG of the mean ma-

trix K0, using a stopping tolerance 10−3 for the norm of the eigenvalue residual

‖K(ξ(r))uMC(ξ(r))−λMC(ξ(r))MuMC(ξ(r))‖2, chosen so that LOBPCG produces sam-

ple solutions of accuracy comparable to that obtained using the stochastic Galerkin

approach. (There are choices for the deterministic solver used for Monte Carlo. We

also tried eigs with a mild stopping tolerance. For this (diffusion) problem, we

found the costs of eigs and LOBPCG to be similar; however, LOBPCG is more

efficient for the Stokes problem considered in section 4.5 below, since it does not

require solving linear systems associated with BK(ξ(r))−1BT for each sample ξ(r).

We used LOBPCG for all cost assessments.)

Computational costs are shown in table 4.4. It can be seen that the low-rank

approximation greatly reduces both tsolve and tsample for the stochastic Galerkin

approach, especially as the mesh size is refined. Moreover, the total time required

by the low-rank stochastic Galerkin method is much less than that for the Monte

Carlo method with a sample size nr = 10000, whereas the full-rank counterpart can

be more expensive than Monte Carlo. This will be discussed further in section 4.5

below (see section 4.5.2).

More details on the computational costs of the low-rank stochastic Galerkin

method are given in table 4.6 for various nx and nξ. The table shows the percentages

of tsolve used for the low-rank multigrid solver (tmg), the Gram–Schmidt process (tgs),

the convergence criterion (terr), and the Rayleigh quotient (trq) in the stochastic

79

Table 4.4: Time comparison (in seconds) between stochastic Galerkin method and
Monte Carlo simulation for various nc. b = 4.0, m = 11, nξ = 364, nr = 10000.

nc 6 7 8

nx 3969 16129 65025

low-rank SG
tsolve 265.63 792.06 2971.15
tsample 4.16 15.41 66.17

full-rank SG
tsolve 452.11 1898.85 19699.92
tsample 25.29 94.70 426.99

MC 385.39 1989.60 8897.27

inverse subspace iteration algorithm. It is clear that the dominant cost is that

associated with solving the linear systems. As nξ increases, the percentages of time

for the Gram–Schmidt process and the Rayleigh quotient both increase, although

they are still much smaller than that for system solves.

More details on the computational costs of the low-rank stochastic Galerkin

method are given in table 4.6 for various nx and nξ. The table shows the per-

centages of tsolve used for the low-rank multigrid solver (tmg), the Gram–Schmidt

process (tgs), the convergence criterion (terr), and the Rayleigh quotient (trq) in the

stochastic inverse subspace iteration algorithm. It is clear that the dominant cost

is that associated with solving the linear systems. The computation for checking

convergence is also relatively expensive. As nξ increases, the percentages of time for

the Gram-Schmidt process and the Rayleigh quotient both increase, although they

are still much smaller than that for system solves.

80

Table 4.5: Time comparison (in seconds) between stochastic Galerkin method and
Monte Carlo simulation for various m. nr = 10000.

m(b) 8(5.0) 11(4.0) 16(3.0)

nξ 165 364 969

low-rank SG
tsolve 296.51 792.06 3198.15
tsample 11.56 15.41 22.56

full-rank SG
tsolve 642.16 1898.85 12229.23
tsample 45.77 94.70 260.40

MC 1963.53 1989.60 1809.25

(a) nc = 7, nx = 16129

m(b) 8(5.0) 11(4.0) 16(3.0)

nξ 165 364 969

low-rank SG
tsolve 1137.60 2971.15 10720.43
tsample 39.95 66.17 86.19

full-rank SG
tsolve 4673.44 19699.92 out of
tsample 194.66 426.99 memory

MC 7515.48 8897.27 8536.08

(b) nc = 8, nx = 65025

Table 4.6: Time consumption percentages for different parts of computations in the
low-rank stochastic Galerkin method for various nc and m.

m(b) 8(5.0) 11(4.0) 16(3.0)

nξ 165 364 969

tmg 79.84% 76.57% 72.46%
nc = 7 tgs 5.93% 8.11% 9.10%

nx = 16129 terr 10.49% 11.68% 9.98%
trq 1.62% 2.60% 8.02%

tmg 76.27% 74.54% 74.35%
nc = 8 tgs 6.50% 8.59% 8.84%

nx = 65025 terr 11.30% 12.97% 12.05%
trq 1.96% 2.05% 3.48%

81

4.5 Stochastic Stokes equation

The second example of a stochastic eigenvalue problem that we consider is

used to estimate the inf-sup stability constant associated with a discrete stochastic

Stokes problem. Consider the following stochastic incompressible Stokes equation

in a two-dimensional domain
−∇ · (a(x, ω)∇~u(x, ω)) +∇p(x, ω) = ~0 in D × Ω

∇ · ~u(x, ω) = 0 in D × Ω

(4.46)

with a Dirichlet inflow boundary condition ~u(x, ω) = ~uD(x) on ∂DD × Ω and a

Neumann outflow boundary condition a(x, ω)∇~u(x, ω) · ~n− p(x, ω)~n = ~0 on ∂DN ×

Ω. Such problems and more general stochastic Navier–Stokes equations have been

studied in [75, 87]. As in the diffusion problem, we assume that the stochastic

viscosity a(x, ω) is represented by a truncated KL expansion eq. (4.32) with random

variables {ξl}ml=1. The weak formulation of the problem is: find ~u(x, ξ) and p(x, ξ)

satisfying
∫
D
a(x, ξ)∇~u(x, ξ) : ∇~v(x)− p(x, ξ)∇ · ~v(x) dx = 0∫

D
q(x)∇ · ~u(x, ξ) dx = 0

(4.47)

almost surely for any ~v(x) ∈ H1
0 (D)2 (zero boundary conditions on ∂DD) and q(x) ∈

L2(D). Here ∇~u : ∇~v is a componentwise scalar product (∇ux1 ·∇vx1 +∇ux2 ·∇vx2

for two-dimensional (ux1 , ux2)). Finite element discretization with basis functions

{~φi(x)} for the velocity field and {ϕk(x)} for the pressure field results in a linear

82

system in the form K(ξ) BT

B 0

~u(ξ)

p(ξ)

 =

f
g

 , (4.48)

where K(ξ) =
∑m

l=0Klξl, and

[Kl]ij =

∫
D

√
βlal(x)∇~φi(x) : ∇~φj(x)dx,

[B]kj = −
∫
D
ϕk(x)∇ · ~φj(x)dx,

(4.49)

for i, j = 1, 2, . . . , nu and k = 1, 2, . . . , np. The Dirichlet boundary condition is

incorporated in the right-hand side.

We are interested in the parametrized inf-sup stability constant γ(ξ) for the

discrete problem. Evaluation of the inf-sup constant for various parameter values

plays an important role for a posteriori error estimation for reduced basis methods

[69,94]. For this, we exploit the fact that γ(ξ) has an algebraic interpretation [26]

γ2(ξ) = min
q(ξ)6=0

〈BK(ξ)−1BT q(ξ), q(ξ)〉Rnp
〈Mq(ξ), q(ξ)〉Rnp

(4.50)

where M is the mass matrix with [M]ij =
∫
D ϕi(x)ϕj(x), i, j = 1, 2, . . . , np. Thus,

finding γ(ξ) is equivalent to finding the smallest eigenvalue of the generalized eigen-

value problem

BK(ξ)−1BT q(ξ) = λ(ξ)Mq(ξ) (4.51)

associated with the stochastic pressure Schur complement BK(ξ)−1BT . This can

be written in standard form as

L−1BK(ξ)−1BTL−Tw(ξ) = λ(ξ)w(ξ) (4.52)

where M = LLT is a Cholesky factorization, and w(ξ) = LT q(ξ).

83

The eigenvalue problem eq. (4.52) does not have exactly the same form as

eq. (4.1), since it involves the inverse of K(ξ). If we use the stochastic inverse itera-

tion algorithm to compute the minimal eigenvalue of eq. (4.52), then each iteration

requires solving

〈L−1BK−1BTL−Tv(i+1)ψk〉 = 〈u(i)ψk〉, k = 1, 2, . . . , nξ, (4.53)

for v(i+1)(ξ). We can reformulate eq. (4.53) to take advantage of the Kronecker

product structure and low-rank solvers. Let s(ξ) = −K(ξ)−1BTL−Tv(i+1)(ξ) and let

v̂(i+1)(ξ) = L−Tv(i+1)(ξ). Then eq. (4.53) is equivalent to the coupled system

〈(Ks+BT v̂(i+1))ψk〉 = 0, 〈Bsψk〉 = 〈−Lu(i)ψk〉, k = 1, 2, . . . , nξ. (4.54)

As discussed in section 4.2, the random vectors are expressed as gPC expansions.

Thus, eq. (4.54) can be written in Kronecker product form as a discrete Stokes

system for coefficient vectors s, v̂(i+1),
∑m

l=0(Gl ⊗Kl) I ⊗BT

I ⊗B 0

 s

v̂(i+1)

 =

 0

−(I ⊗ L)u(i)

 , (4.55)

and v(i+1) = (I ⊗ LT)v̂(i+1).

In addition, for the eigenvalue problem eq. (4.52), computing the Rayleigh

quotient eq. (4.22) requires solving a linear system. In the first step of eq. (4.22),

for the matrix-vector product, one needs to compute w(ξ) = K(ξ)−1û(ξ), where

û(ξ) = BTL−Tu(ξ). For the weak formulation, this corresponds to solving a linear

system (
m∑
l=0

Gl ⊗Kl

)
w = û. (4.56)

84

4.5.1 Low-rank MINRES

We discuss a low-rank iterative solver for eq. (4.55). The system is symmetric

but indefinite, with a positive-definite (1, 1) block. A low-rank preconditioned MIN-

RES method for solving A (X) = F is used and described in algorithm 4.2. The

preconditioner is block-diagonal,

M =

M11 0

0 M22

 . (4.57)

We use an approximate mean-based preconditioner [74] for the (1, 1) block: M11 =

G0⊗K̂0 = I⊗K̂0. Here, K̂−1
0 is defined by approximation of the action of K−1

0 , using

one V-cycle of AMG. For the (2, 2) block, we take M22 = I ⊗ M̂ , where the action

of M−1 is approximated by 10 steps of Chebyshev iteration [83]. As in the multigrid

method, all the quantities are in low-rank format, and truncation operations are

applied to compress matrix ranks. algorithm 4.2 requires the computation of inner

products of two low-rank matrices 〈X1, X2〉Rnx×nξ . Let X1 = Y1Z
T
1 , X2 = Y2Z

T
2 with

Y1 ∈ Rnx×κ1 , Z1 ∈ Rnξ×κ1 , Y2 ∈ Rnx×κ2 , Z2 ∈ Rnξ×κ2 . Then the inner product can

be computed with a cost of O((nx + nξ + 1)κ1κ2) [56]:

〈X1, X2〉 = trace(XT
1 X2) = trace(Z1Y

T
1 Y2Z

T
2) = trace((ZT

2 Z1)(Y T
1 Y2)). (4.58)

We apply the low-rank MINRES method to the matricized version of eq. (4.55),

and represent the components of the solution vector, s and v̂(i+1), as two sepa-

rate low-rank matrices S and V̂ (i+1). This representation is suitable for computing

matrix-vector products. For instance, the first equation becomes
∑m

l=1KlSG
T
l +

85

BT V̂ (i+1)IT = 0. Other computations in algorithm 4.2, including vector additions

and truncations, are applied to each low-rank matrix component of the iterates.

Algorithm 4.2: Low-rank preconditioned MINRES method

1: initialization: V (0) = 0, W (0) = 0, W (1) = 0, γ0 = 0. Choose X(0), compute

V (1) = F −A (X(0)). P (1) = M−1(V (1)), γ1 =
√
〈P (1), V (1)〉. Set η = γ1,

s0 = s1 = 0, and c0 = c1 = 1.
2: for j = 1, 2, . . . do
3: P (j) = P (j)/γj
4: R̃(j) = A (P (j)), R(j) = Trel(R̃

(j))

5: δj = 〈R(j), P (j)〉
6: Ṽ (j+1) = R(j) − (δj/γj)V

(j) − (γj/γj−1)V (j−1), V (j+1) = Trel(Ṽ
(j+1))

7: P (j+1) = M−1(V (j+1))

8: γj+1 =
√
〈P (j+1), V (j+1)〉

9: α0 = cjδj − cj−1sjγj

10: α1 =
√
α2

0 + γ2
j+1

11: α2 = sjδj + cj−1cjγj
12: α3 = sj−1γj
13: cj+1 = α0/α1, sj+1 = γj+1/α1

14: W̃ (j+1) = (P (j) − α3W
(j−1) − α2W

(j))/α1, W (j+1) = Trel(W̃
(j+1))

15: X̃(j) = X(j−1) + cj+1ηW
(j+1), X(j) = Trel(X̃

(j))
16: η = −sj+1η
17: Check convergence

18: end

4.5.2 Numerical experiments

Consider a two-dimensional channel flow on domain D = [−1, 1]2 with uniform

square meshes. Let ∂DD = {(x1, x2) | x1 = −1, or x2 = 1, or x2 = −1} and

∂DN = {(x1, x2) | x1 = 1}. Define grid level nc so that 2/h = 2nc , where h is the

mesh size. We use the Taylor–Hood method for finite element discretization with

biquadratic basis functions {~φi(x)} for the velocity field and bilinear basis functions

{ϕk(x)} for the pressure field. For the velocity field the basis functions are in the

86

form
{(

φi(x)
0

)
,
(

0
φi(x)

)}
, where {φi(x)} are scalar-value biquadratic basis functions.

The number of degrees of freedom in the spatial discretization is nx = nu+np where

nu = 2((2nc+1 + 1)2 − n∂DD
), n∂DD

is the number of Dirichlet boundary nodes, and

np = (2nc + 1)2. Assume the viscosity a(x, ξ) has a KL expansion with the same

specifications as in the diffusion problem. For the quadrature rule in section 4.3.2,

we use a Smolyak sparse grid with Clenshaw–Curtis quadrature points and grid level

3.

We use stochastic inverse iteration algorithm to find the minimal eigenvalue

of eq. (4.51). The eigenvalues of BK−1
0 BT q = λMq are plotted in fig. 4.3a with

nc = 3. It shows that the minimal eigenvalue is isolated from the larger ones.

For the inverse iteration, we take ε
(i)
θ in eq. (4.30) as error indicator and use a

stopping criterion ε
(i)
θ ≤ tolisi = 10−5. The error tolerance for the MINRES solver

tol
(i)
minres is set as in eq. (4.44). Figure 4.3b shows the convergence of the low-rank

MINRES method for different relative truncation tolerances εrel. It indicates the

accuracy that MINRES can achieve is related to εrel. In the numerical experiments

we use ε
(i)
rel = 10−1 ∗ tol(i)minres. In addition, we have observed that in many cases the

truncations in Lines 4, 6, 14 of algorithm 4.2 produce relatively high ranks, which

increases the computational cost. To handle this, we impose a bound on the ranks κ

of the outputs of these truncation operators such that κ ≤ nξ/4 (in general nx ≥ nξ).

It is shown in Figure 4.3b that the convergence of low-rank MINRES is unaffected

by this strategy.

Table 4.7 shows the ranks of the MINRES solutions s and v̂(i) in eq. (4.55) and

numbers of MINRES steps itminres required in each iteration. The solution matrices

87

S and V̂ (i) have sizes nu × nξ and np × nξ (for nc = 4 and m = 11, nu = 1984,

np = 289, nξ = 364), whereas their respective ranks are no larger than 31 and 50.

In the Rayleigh quotient computation, the system eq. (4.56) is solved by a low-rank

conjugate gradient method [56] with a relative residual smaller than 10−8.

(a) (b)

Figure 4.3: (a) Eigenvalues of BK−1
0 BT q = λMq. nc = 3. (b) Reduction of the

relative residual for the low-rank MINRES method with various truncation criteria.
Solid lines: relative tolerance εrel; dashed lines: relative tolerance εrel with rank
κ ≤ nξ/4. nc = 4, b = 4.0, m = 11.

As in the diffusion problem, we show the accuracy of the low-rank stochastic

Galerkin approach by comparing the results with the reference solutions from Monte

Carlo simulations using eigs. Let m = 11, p = 3, nξ = 364. We use a sample size

nr = 1000. Table 4.8 shows the accuracy of the stochastic Galerkin solutions where

ελ1 and εu1 are defined in eq. (4.45) (no Rayleigh–Ritz procedure is used here). In

all cases, convergence of the inverse iteration takes 16–18 steps.

88

Table 4.7: Iterate ranks after the MINRES solve and numbers of MINRES steps
required in the inverse iteration algorithm. nc = 4, b = 4.0, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rank
s 4 12 13 13 17 18 21 24 28 31 30 31 30 30 31 30
v̂ 7 12 13 16 19 25 31 38 44 49 49 49 50 49 50 50

itminres 22 35 35 37 37 39 39 41 42 43 43 43 43 43 43 43

Table 4.8: Relative difference between stochastic Galerkin solutions and Monte Carlo
solutions. b = 4.0, m = 11, nξ = 364.

nc 4 5 6

ελ1 5.8903× 10−9 6.8722× 10−9 7.6883× 10−9

εu1 4.4363× 10−5 5.1253× 10−5 5.3235× 10−5

As we did for the diffusion problem, we assess the the efficiency of the low-rank

stochastic Galerkin method by comparison with the full-rank method and Monte

Carlo simulation. For the latter, we use an LOBPCG solver preconditioned with

the pressure mass matrix M , and the action of M−1 is again approximated by 10

steps of Chebyshev iteration. In this case, a stopping tolerance of 10−6 is used for

LOBPCG to produce solutions with accuracy comparable to those obtained using

the stochastic Galerkin approach. Table 4.9 shows the comparative costs of these

methods when 1000 samples are used in a simulation. It is clear that the low-rank

stochastic Galerkin method is more efficient than its full-rank counterpart, and

the simulations using the surrogate solution obtained from the stochastic Galerkin

approach are very cheap compared with Monte Carlo simulation. If we take the

total cost of the stochastic Galerkin method to be the sum of tsolve and tsample,

89

then the comparison depends on the number of samples used, and in this measure,

for 1000 samples it is cheaper to perform Monte Carlo simulation. This issue is

explored in more detail in section 4.5.2, which interpolates the costs from timings

using 1000, 5000 and 10000 samples and shows “crossover” sample sizes for which

the stochastic Galerkin methods will be more efficient than Monte Carlo methods;

these are approximately 2500 for the low-rank version and 4000 for the full-rank

one.

Table 4.9: Time comparison (in seconds) between stochastic Galerkin method and
Monte Carlo simulation for various nc. nr = 1000.

nc 4 5 6

np 289 1089 4225

nx 2273 9153 36737

low-rank SG
tsolve 269.84 1006.36 4382.16
tsample 0.11 0.13 0.25

full-rank SG
tsolve 324.74 1264.05 6272.26
tsample 0.11 0.22 0.97

MC 122.58 417.62 1594.47

(a) b = 4.0, m = 11, nξ = 364

nc 4 5 6

np 289 1089 4225

nx 2273 9153 36737

low-rank SG
tsolve 79.48 323.40 1557.33
tsample 0.06 0.07 0.09

full-rank SG
tsolve 132.63 538.44 2636.93
tsample 0.07 0.07 0.40

MC 128.16 411.34 1539.16

(b) b = 5.0, m = 8, nξ = 165

90

Figure 4.4: Computational time required by the low-rank stochastic Galerkin
method, the full-rank stochastic Galerkin method, and the Monte Carlo method
to generate large numbers of sample solutions. nc = 6, b = 4.0, m = 11,
nr = 1000, 5000, 10000.

4.6 Conclusions

We studied low-rank solution methods for the stochastic eigenvalue problems.

The stochastic Galerkin approach was used to compute surrogate approximations

to the minimal eigenvalues and corresponding eigenvectors, which are stochastic

functions with gPC expansions. We introduced low-rank approximations to en-

hance efficiency of the stochastic inverse subspace iteration algorithm. Two detailed

benchmark problems, the stochastic diffusion problem, and an operator associated

with a discrete stochastic Stokes equation, were considered for illustrating the ef-

fectiveness of the proposed low-rank algorithm. It was confirmed in the numerical

experiments that the low-rank solution method produces accurate results with much

less computing time, making the stochastic Galerkin method more competitive com-

91

pared with the sample-based Monte Carlo approach.

92

Chapter 5: Low-rank solvers for the stochastic unsteady Navier–Stokes

equations

5.1 Introduction

In this chapter, we develop some new computational methods for solving the

stochastic unsteady Navier–Stokes equations, using stochastic Galerkin methods to

address the stochastic nature of the problem and so-called all-at-once treatment of

time integration.

For a time-dependent problem, the solutions at different time steps are usually

computed in a sequential manner via time-stepping. For example, a fully-implicit

scheme with adaptive time step sizes was studied in [24,39,49]. On the other hand,

an all-at-once system can be formed by collecting the algebraic systems at all the

discrete time steps into a single one, and the solutions are computed simultaneously.

Such a formulation avoids the serial nature of time-stepping, and allows paralleliza-

tion in the time direction for accelerating the solution procedure [31, 64, 66]. A

drawback, however, is that for large-size problems, the all-at-once system may re-

quire excessive storage. In this chapter, we address this issue by using a low-rank

tensor representation of data within the solution methods.

93

We develop a low-rank iterative algorithm for solving the unsteady Navier–

Stokes equations with an uncertain viscosity. The equations are linearized with

Picard’s method. At each step of the nonlinear iteration, the stochastic Galerkin

discretization gives rise to a large linear system, which is solved by a Krylov subspace

method. Similar approaches have been used to study the steady-state problem [75,

87], where the authors also proposed effective preconditioners by taking advantage of

the special structures of the linear systems. To reduce memory and computational

costs, we compute low-rank approximations to the discrete solutions, which are

represented as three-dimensional tensors in the all-at-once formulation. We refer

to [38] for a review of low-rank tensor approximation techniques, and we will use

the tensor train decomposition [70] in this work. The tensor train decomposition

allows efficient basic operations on tensors. A truncation procedure is also available

to compress low-rank tensors in the tensor train format to ones with smaller ranks.

Our goal is to use the low-rank tensors within Krylov subspace methods, in

order to efficiently solve the large linear systems arising in each nonlinear step. The

basic idea is to represent all the vector quantities that arise during the course of

a Krylov subspace computation as low-rank tensors. With this strategy, much less

memory is needed to store the data produced during the iteration. Moreover, the

associated computations, such as matrix-vector products and vector additions, be-

come much cheaper. The tensors are compressed in each iteration to maintain low

ranks. This idea has been used for the conjugate gradient method and the GM-

RES method, with different low-rank tensor formats [2, 4, 18, 56]. In addition, the

convergence of Krylov subspace methods can be greatly improved by an effective

94

preconditioner. In conjunction with the savings achieved through low-rank tensor

computations, we will derive preconditioners for the stochastic all-at-once formula-

tion based on some state-of-the-art techniques used for deterministic problems, and

we will demonstrate their performances in numerical experiments. We also explore

the idea of inexact Picard methods where the linear systems are solved inexactly

at each Picard step to further save computational work, and we show that with

this strategy very small numbers of iterations are needed for the Krylov subspace

method.

We note that a different type of approach, the alternating iterative meth-

ods [19, 46, 81], including the density matrix renormalization group (DMRG) algo-

rithm and its variants, can be used for solving linear systems in the tensor train

format. In these methods, each component of the low-rank solution tensor is ap-

proached directly and optimized by projecting to a small local problem. This ap-

proach avoids the rank growth in intermediate iterates typically encountered in a

low-rank Krylov subspace method. However, these methods are developed for solv-

ing symmetric positive definite systems and require nontrivial effort to be adapted

for a nonsymmetric Navier–Stokes problem.

The rest of the chapter is organized as follows. In section 5.2 we give a formal

presentation of the problem. Discretization techniques that result in an all-at-once

linear system at each Picard step are discussed in section 5.3. In section 5.4 we

introduce the low-rank tensor approximation and propose a low-rank Krylov sub-

space iterative solver for the all-at-once systems. The preconditioners are derived

in section 5.5 and numerical results are given in section 5.6.

95

5.2 Problem setting

Consider the unsteady Navier–Stokes equations for incompressible flows on a

space-time domain D × (0, tf],

∂~u

∂t
−∇ · (ν∇~u) + ~u · ∇~u+∇p = ~0,

∇ · ~u = 0,

(5.1)

where ~u and p stand for the velocity and pressure, respectively, ν is the viscos-

ity, and D is a two-dimensional spatial domain with boundary ∂D = ∂DD ∪ ∂DN.

The Dirichlet boundary ∂DD consists of an inflow boundary and fixed walls, and

Neumann boundary conditions are set for the outflow,

~u = ~uD on ∂DD,

ν∇~u · ~n− p~n = ~0 on ∂DN.

(5.2)

We assume the Neumann boundary ∂DN is not empty so that the pressure p is

uniquely determined. The function ~uD(x, t) denotes a time-dependent inflow, typi-

cally growing from zero to a steady state, and it is set to zero at fixed walls. The

initial conditions are zero everywhere for both ~u and p.

The uncertainty in the problem is introduced by a stochastic viscosity parame-

ter ν, which is modeled as a random field depending on a finite collection of random

variables {ξl}ml=1 (or written as a vector ξ). Specifically, we consider a representation

as a truncated KL expansion,

ν(x, ξ) = ν0(x) +
m∑
l=1

νl(x)ξl, (5.3)

96

where ν0 is the mean viscosity, and {νl}ml=1 are determined by the covariance function

of ν. We assume the viscosity satisfies ν(x, ξ) ≥ νmin > 0 almost surely for any

x ∈ D. We refer to [75, 87] for different forms of the stochastic viscosity. The

solutions ~u and p in eq. (5.1) will also be random fields which depend on the space

parameter x, time t, and the random variables ξ.

5.3 Discrete problem

In this section, we derive a fully discrete problem for the stochastic unsteady

Navier–Stokes equations eq. (5.1). This involves a time discretization scheme and

a stochastic Galerkin discretization for the physical and stochastic spaces at each

time step. The discretizations give rise to a nonlinear algebraic system. Instead

of solving such a system at each time step, we collect them to form an all-at-once

system, where the discrete solutions at all the time steps are solved simultaneously.

The discrete problem is then linearized with Picard’s method, and a large linear

system is solved at each step of the nonlinear iteration.

5.3.1 Time discretization

For simplicity we use the backward Euler method for time discretization, which

is first-order accurate but unconditionally stable and dissipative. Divide the interval

(0, tf] into nt uniform steps {tk}ntk=1 with step size τ = tf/nt and initial time t0 = 0.

Given the solution at time tk−1, we need to solve the following equations for ~uk and

97

pk:

~uk − ~uk−1

τ
−∇ · (ν∇~uk) + ~uk · ∇~uk +∇pk = ~0,

∇ · ~uk = 0.

(5.4)

The implicit method requires solving an algebraic system at each time step. In

the following we discuss how the system is assembled from the stochastic Galerkin

discretization of eq. (5.4).

5.3.2 Stochastic Galerkin method

At time step k, the stochastic Galerkin method finds parametrized approxi-

mate velocity solutions ~ukh and pressure solutions pkh in finite-dimensional subspaces

of (H1(D))2 ⊗ L2(Γ) and L2(D)⊗ L2(Γ), where Γ is the joint image of the random

variables {ξl}. The functional spaces are defined as follows,

(H1(D))2 ⊗ L2(Γ) :=
{
~v : D × Γ→ R | E

[
‖~v‖2

(H1(D))2

]
<∞

}
,

L2(D)⊗ L2(Γ) :=
{
q : D × Γ→ R | E

[
‖q‖2

L2(D)

]
<∞

}
.

(5.5)

The expectations are taken with respect to the distribution of random variables {ξl}.

In the following we use 〈·〉 to denote the expected value. Let the finite-dimensional

subspaces be X = span{~φi(x)} ⊂ (H1(D))2, Y = span{ϕi(x)} ⊂ L2(D), and Z =

span{ψr(ξ)} ⊂ L2(Γ). Let X k
D and X0 be the spaces of functions in X with Dirichlet

boundary conditions ~uD(x, tk) and ~0 imposed for the velocity field, respectively.

Then for eq. (5.4) the stochastic Galerkin formulation entails the computation of

98

~ukh ∈ X k
D ⊗Z and pkh ∈ Y ⊗ Z, satisfying the weak form

τ−1〈(~ukh, ~vh)〉 − τ−1〈(~uk−1
h , ~vh)〉+ 〈(ν∇~ukh,∇~vh)〉

+ 〈(~ukh · ∇~ukh, ~vh)〉 − 〈(pkh,∇ · ~vh)〉 = 0,

〈(∇ · ~ukh, qh)〉 = 0,

(5.6)

for any ~vh ∈ X0 ⊗ Z and qh ∈ Y ⊗ Z. Here, (·, ·) means the inner product in

L2(D). For the physical spaces, we use a stable Taylor–Hood discretization [26] on

quadrilateral elements, with biquadratic basis functions {~φi}nui=1 =
{(

φi
0

)
,
(

0
φi

)}nu/2
i=1

for velocity, and bilinear basis functions {ϕi}npi=1 for pressure. The stochastic ba-

sis functions {ψr}
nξ
r=1 are m-dimensional orthonormal polynomials constructed from

generalized polynomial chaos (gPC, [96]) satisfying 〈ψrψs〉 = δrs. The stochastic

Galerkin solutions are expressed as linear combinations of the basis functions,

~ukh(x, ξ) =

nξ∑
s=1

nu∑
j=1

ukjs
~φj(x)ψs(ξ),

pkh(x, ξ) =

nξ∑
s=1

np∑
j=1

pkjsϕj(x)ψs(ξ).

(5.7)

The coefficient vectors uk = [uk11, u
k
21, . . . , u

k
nu1, . . . , u

k
1nξ
, uk2nξ , . . . , u

k
nunξ

] and simi-

larly defined pk are computed from the nonlinear algebraic system Fk(u) Inξ ⊗BT

Inξ ⊗B 0

uk

pk

+

−τ−1(Inξ ⊗M) 0

0 0

uk−1

pk−1

 =

fu,k

f p,k

 (5.8)

where

Fk(u) = τ−1(Inξ ⊗M) +
m∑
l=0

(Gl ⊗Al) +

nξ∑
l=1

(Hl ⊗N (~ukh,l)). (5.9)

Here Inξ is the nξ × nξ identity matrix, and ⊗ means the Kronecker product of two

matrices. The boldface matrices M , Al, and N (~ukh,l) are 2× 2 block-diagonal, with

99

the scalar mass matrix M , weighted stiffness matrix Al, and discrete convection

operator N(~ukh,l) as diagonal components, where

[M]ij = (φj, φi), [Al]ij = (νl∇φj,∇φi), [N(~ukh,l)]ij = (~ukh,l · ∇φj, φi), (5.10)

for i, j = 1, . . . , nu/2. Note the dependency on uk comes from the nonlinear con-

vection term N , with convection velocity ~ukh,l =
∑

j u
k
jl
~φj(x). Let x = (x1, x2). The

discrete divergence operator B = [Bx1 , Bx2], with

[Bx1]ij = −(ϕi,
∂φj
∂x1

), [Bx2]ij = −(ϕi,
∂φj
∂x2

), (5.11)

for i = 1, . . . , np and j = 1, . . . , nu/2. The matrices {Gl}ml=0 and {Hl}
nξ
l=1 of eq. (5.9)

come from the stochastic basis functions and have entries

[Gl]rs = 〈ξlψrψs〉, [Hl]rs = 〈ψlψrψs〉, (5.12)

for r, s = 1, . . . , nξ, where ξ0 ≡ 1. These matrices are also sparse due to orthogonality

of the basis functions [29]. The Dirichlet boundary conditions are incorporated in

the right-hand side of eq. (5.8).

5.3.3 All-at-once system

As discussed in the beginning of the section, we consider an all-at-once system

where the discrete solutions at all the time steps are computed together. Let

u =

u1

u2

...

unt

∈ Rntnξnu (5.13)

100

and let p, fu, and f p be similarly defined. By collecting the algebraic systems

eq. (5.8) corresponding to all the time steps {tk}ntk=1, we get the single systemF(u) + C BT

B 0

u

p

 =

fu

f p

 , (5.14)

where F(u) is block diagonal with Fk(u) as the kth diagonal block, B = Int⊗Inξ⊗B,

and C = −τ−1Cnt⊗ Inξ ⊗M with Cnt =

(
0
1 0

... ...
1 0

)
∈ Rnt×nt . Note that the zero

initial conditions are incorporated in eq. (5.8) for k = 1. The all-at-once system

eq. (5.14) is nonsymmetric and blockwise sparse. Each part of the system contains

sums of Kronecker products of three matrices, i.e., in the form
∑

lX
(1)
l ⊗X

(2)
l ⊗X

(3)
l .

In fact, from eq. (5.9),

F(u) = τ−1Int ⊗ Inξ ⊗M +
m∑
l=0

(Int ⊗Gl ⊗Al) + N(u). (5.15)

We discuss later (see section 5.4.3) how the convection matrix N can also be put in

the Kronecker product form. It will be seen that this structure is useful for efficient

matrix-vector product computations.

5.3.4 Picard’s method

We use Picard’s method to solve the nonlinear equation eq. (5.14). Picard’s

method is a fixed-point iteration. Let u(i), p(i) be the approximate solutions at the

ith step. Each Picard step entails solving a large linear systemF(u(i−1)) + C BT

B 0

u(i)

p(i)

 =

fu

f p

 . (5.16)

101

Instead of eq. (5.16), one can equivalently solve the corresponding residual equation

for a correction of the solution. Let u(i) = u(i−1) + δu(i), p(i) = p(i−1) + δp(i). Then

δu(i) and δp(i) satisfyF(u(i−1)) + C BT

B 0

δu(i)

δp(i)

 =

ru,(i−1)

rp,(i−1)

 , (5.17)

where the nonlinear residual

r(i) =

ru,(i)

rp,(i)

 =

fu

f p

−
F(u(i)) + C BT

B 0

u(i)

p(i)

 . (5.18)

The complete algorithm is summarized in algorithm 5.1. The initial iterates u(0),

p(0) are given by solving a Stokes problem, for which in eq. (5.16) the convection

matrix N is set to zero.

Algorithm 5.1 Picard’s method

1: Solve Stokes problem for initial u(0), p(0), update convection matrix N(u(0)),
and compute nonlinear residual r(0). i = 0.

2: while ‖r(i)‖2 > tol ∗ ‖r(0)‖2 and i < maxit do
3: i = i+ 1
4: Solve linear system eq. (5.17) for δu(i), δp(i)

5: Update solution u(i), p(i)

6: Update convection matrix N(u(i))
7: Compute nonlinear residual r(i)

8: end while
9: return u(i), p(i)

5.4 Low-rank approximation

In this section we discuss low-rank approximation techniques and how they

can be used with iterative solvers. The computational cost of solving eq. (5.17) at

each Picard step is high due to the large problem size ntnξ(nu+np), especially when

102

large numbers of spatial grid points or time steps are used to achieve high-resolution

solutions. We will address this using low-rank tensor approximations to the solu-

tion vectors u and p. We will develop efficient iterative solvers and preconditioners

where the solution is approximated using a compressed data representation in or-

der to greatly reduce the memory requirement and computational effort. The idea

is to represent the iterates in a Krylov subspace method in a low-rank tensor for-

mat. The basic operations associated with the low-rank format are much cheaper,

and as the Krylov subspace method converges it constructs a sequence of low-rank

approximations to the solution of the system.

5.4.1 Tensor train decomposition

A tensor z ∈ Rn1×···×nd is a multidimensional array with entries z(i1, . . . , id),

where il = 1, . . . , nl, l = 1, . . . , d. The solution coefficients in eq. (5.7) can be

represented in the form of three-dimensional nt×nξ×nx tensors u (where nx = nu)

and p (nx = np), such that u(k, s, j) = ukjs and p(k, s, j) = pkjs. Equivalently, such

tensors can be represented in vector format, where the vector version u and p are

specified using the vectorization operation

u = vec(u) ⇔ u(i1i2i3) = u(i1, i2, i3) (5.19)

where i1i2i3 = i3 + (i2 − 1)nx + (i1 − 1)nξnx, and p = vec(p) in a similar manner.

In an iterative solver for the system eq. (5.17), any iterate z can be equivalently

represented as a three-dimensional tensor z ∈ Rnt×nξ×nx . In the sequel we use vector

z and tensor z interchangebly. The tensor train decomposition [70] is a compressed

103

low-rank representation to approximate a given tensor and efficiently perform tensor

operations. Specifically, the tensor train format of z is defined as

z(i1, i2, i3) ≈
∑
α1,α2

z(1)(i1, α1)z(2)(α1, i2, α2)z(3)(α2, i3), (5.20)

where z(1) ∈ Rnt×κ1 , z(2) ∈ Rκ1×nξ×κ2 , z(3) ∈ Rκ2×nx are the tensor train cores, and

κ1 and κ2 are called the tensor train ranks. It is easy to see that if κ1, κ2 ≈ κ, the

memory cost to store z is reduced from O(ntnξnx) to O((nt + nξκ+ nx)κ).

The tensor train decomposition allows efficient basic operations on tensors.

Most importantly, matrix-vector products can be computed much less expensively

if the vector z is in the tensor train format. For z as in eq. (5.20), the vector z has

an equivalent Kronecker product form [19]

z = vec(z) =
∑
α1,α2

z(1)
α1
⊗ z(2)

α1,α2
⊗ z(3)

α2
, (5.21)

where in the right-hand side z
(1)
α1 , z

(2)
α1,α2 , and z

(3)
α2 are vectors of length nt, nξ, and

nx, respectively, obtained by fixing the indices α1 and α2 in z(1), z(2), and z(3). Then

for any matrix X = X(1) ⊗X(2) ⊗X(3), such as the blocks in eq. (5.17),

Xz =
∑
α1,α2

(X(1)z(1)
α1

)⊗ (X(2)z(2)
α1,α2

)⊗ (X(3)z(3)
α2

). (5.22)

The product is also in tensor train format with the same ranks as in z (of the

right-hand side of eq. (5.20)), and it only requires matrix-vector products for each

component of X. The component matrices from eq. (5.15) are sparse with numbers

of nonzeros proportional to nt, nξ, and nx, respectively, and the computational cost

is thus reduced from O(ntnξnx) to O((nt + nξκ+ nx)κ).

104

Other vector computations, including additions and inner products, are also

inexpensive with the tensor train format. One thing to note is that the additions

of two vectors in tensor train format will tend to increase the ranks. This can be

easily seen from eq. (5.20), since the addition of two low-rank tensors end up with

more terms for the summation on the right-hand side. An important operation for

the tensor train format is the truncation (or rounding) operation, used to reduce the

ranks for tensors that are already in the tensor train format but have suboptimal

high ranks. For a given tensor z as in eq. (5.20), the truncation computes

z̃ = Tε(z), (5.23)

such that z̃ has smaller ranks than z and satisfies the relative error ‖z̃−z‖F/‖z‖F ≤

ε. (Note that ‖z‖F = ‖z‖2.) The truncation operator is based on the TT-SVD

algorithm [70], given in algorithm 5.2, which is used to compute a low-rank tensor

train approximation for a full tensor z ∈ Rn1×···×nd . In the algorithm, a sequence

of singular value decompositions (SVDs) are computed for the so-called unfolding

matrix Z, obtained by reshaping the entries of a tensor into a two-dimensional

array. Terms corresponding to small singular values are dropped such that the error

‖E‖F ≤ δj, j = 1, . . . , d− 1 (see line 4 of algorithm 5.2). It was shown in [70] that

the algorithm produces a tensor train z̃ which satisfies

‖z − z̃‖F ≤
(d−1∑
k=1

δ2
k

)1/2

. (5.24)

Thus, one can choose δ1 = · · · = δd−1 = ε‖z‖F/
√
d− 1 to achieve the relative

error ‖z̃ − z‖F/‖z‖F ≤ ε. Note the algorithm is costly since it requires SVDs on

matrices Z ∈ Rκj−1nj×nj+1···nd . However, when the tensor z is already in the tensor

105

train format, the computation can be greatly simplified, and only SVDs on the

much smaller tensor train cores are needed. The cost of the truncation operation is

O(dnκ3) if n1, . . . , nd ≈ n and κ1, . . . , κd−1 ≈ κ. We refer to [70] for more details. In

the numerical experiments, we use TT-Toolbox [71] for tensor train computations.

Algorithm 5.2 TT-SVD

1: Let Z = z. Set truncation parameters {δj}. κ0 = 1.
2: for j = 1, . . . , d− 1 do
3: Z ← reshape(Z, [κj−1nj, nj+1 · · ·nd])
4: Compute truncated SVD Z = UΣV T + E, ‖E‖F ≤ δj, κj = rank(Σ)
5: New core z̃(j) ← reshape(U, [κj−1, nj, κj])
6: Update Z ← ΣV T

7: end for
8: New core z̃(d) ← Z
9: return z̃ in tensor train format with cores {z̃(j)}

5.4.2 Low-rank GMRES

The tensor train decomposition offers efficient tensor operations and we use it

in iterative solvers to reduce the cost of the computations. The all-at-once system

eq. (5.17) to be solved at each step of Picard’s method is nonsymmetric. We use a

right-preconditioned GMRES method to solve the system. The complete algorithm

for solving L z = f is summarized in algorithm 5.3. The preconditioner P−1 entails

an inner iterative process and is not exactly the same for each GMRES iteration,

and therefore a variant of the flexible GMRES method (see, e.g., [?]) is used. As

discussed above, all the iterates in the algorithm are represented in the tensor train

format for efficient computations, and the truncation operation is used to compress

the tensor train ranks so that they stay small relative to the problem size. It should

106

be noted that since the quantities are truncated, the Arnoldi vectors {vi} do not

form orthogonal basis for the Krylov subspace, and thus this is not a true GMRES

computation. In section 5.5, we construct effective preconditioners for the system

eq. (5.17).

Algorithm 5.3 Low-rank GMRES method

1: Choose initial z0, compute r0 = Tε(f −L z0), β = ‖r0‖2, and v1 = r0/β. Let
k = 0.

2: while ‖rk‖2 > tol ∗ ‖f‖2 and k < maxit do
3: k = k + 1
4: Compute v̂k = P−1vk
5: Compute s = Tε(L v̂k)
6: for i = 1, . . . , k do
7: hik = sTvi
8: s = s− hikvi
9: end for
10: hk+1,k = ‖s‖2, vk+1 = Tε(s/hk+1,k)

11: Define V̂k = [v̂1, . . . , v̂k] and H̄ ∈ R(k+1)×k with H̄ij = hij
12: Compute yk = argminy‖βe1 − H̄y‖2, where e1 = [1, 0, . . . , 0]T

13: Compute zk = Tε(z0 + V̂kyk)
14: Compute rk = Tε(f −L zk)
15: end while
16: return zk

5.4.3 Convection matrix

We now show that in eq. (5.15) if the velocity u is in the tensor train format,

the convection matrix N(u) can be represented as a sum of Kronecker products

of matrices [6], which allows efficient matrix-vector product computations as in

eq. (5.22). Assume the coefficient tensor in eq. (5.7) is approximated by a tensor

train decomposition,

ukjl = u(k, l, j) =
∑
α1,α2

u(1)(k, α1)u(2)(α1, l, α2)u(3)(α2, j). (5.25)

107

Note the entries of N (~ukh,l) are linear in ~ukh,l and

~ukh,l =
∑
j

ukjl
~φj(x) =

∑
α1,α2

u(1)(k, α1)u(2)(α1, l, α2)(
∑
j

u(3)(α2, j)~φj(x)). (5.26)

Let ~u
(3)
α2 =

∑
j u

(3)(α2, j)~φj(x). Then the kth diagonal block of N(u) is

nξ∑
l=1

(Hl ⊗N (~ukh,l)) =
∑
α1,α2

u(1)(k, α1)

nξ∑
l=1

(u(2)(α1, l, α2)Hl)⊗N (~u(3)
α2

). (5.27)

The convection matrix N(u) can be expressed as

N(u) =
∑
α1,α2

diag(u(1)
α1

)⊗
nξ∑
l=1

(u(2)(α1, l, α2)Hl)⊗N (~u(3)
α2

). (5.28)

Here u
(1)
α1 is a vector obtained by fixing the index α1 in u(1), and diag(u

(1)
α1) is a diag-

onal matrix with u
(1)
α1 on the diagonal. The result is a sum of Kronecker products of

three smaller matrices. Such a representation can be constructed for any iterate u(i)

in the tensor train format. However, given the number of terms in the summation

in the right-hand side of eq. (5.28), the matrix-vector product with N will result in

a significant tensor train rank increase from κ to κ2. In section 5.6.2 we discuss how

an approximation to N can be constructed in Picard’s method to alleviate the rank

increase. Also, in the iterative algorithm a truncation operation is applied after each

matrix-vector product L z to compress the tensor ranks.

5.5 Preconditioning

In this section we discuss preconditioning techniques for the all-at-once system

eq. (5.17) so that the Krylov subspace methods converge in a small number of

iterations. To simplify the notation, we use w instead of u(i−1), and the associated

108

approximate solution at the kth time step is

~wkh(x, ξ) =

nξ∑
l=1

nu∑
j=1

wkjl
~φj(x)ψl(ξ) (5.29)

with ~wkh,l =
∑

j w
k
jl
~φj(x). In the following the dependence on w in F(w) is omitted

in most cases. We derive a preconditioner by extending ideas for more standard

problems [26], starting with an “idealized” block triangular preconditioner

P =

F + C BT

0 −S

 . (5.30)

With this choice of preconditioner, the Schur complement is S = B(F+C)−1BT , and

the idealized preconditioned system derived from a block factorizationF + C BT

B 0

P−1 =

 I 0

BF−1 I

 (5.31)

has eigenvalues equal to 1, and Jordan blocks of order 2. Thus the right-precon-

ditioned GMRES method will converge in two iterations. However, the application

of P−1 involves solving linear systems associated with S and F + C. These are too

expensive for practical computation and to develop preconditioners we will construct

inexpensive approximations to the linear solves. Specifically, we derive mean-based

preconditioners that use results from the mean deterministic problem. Such precon-

ditioners for the stochastic steady-state Navier–Stokes equations have been studied

in [75]. We generalize the techniques for the all-at-once formulation of the unsteady

equations.

109

5.5.1 Deterministic operator

We review the techniques used for approximating the Schur complement in the

deterministic case [26]. The approximations are based on the fact that a commutator

of the convection-diffusion operator with the divergence operator

E = ∇ · (−ν∇2 + ~wkh,1 · ∇)− (−ν∇2 + ~wkh,1 · ∇)p∇· (5.32)

is small under certain assumptions about smoothness and boundary conditions. The

subscript p means the operators are defined on the pressure space. For a discrete

convection-diffusion operator F = A0 +N (~wkh,1) (which is part of the mean problem

we discuss later), as defined in eq. (5.10), an approximation to the Schur complement

S = BF−1BT is identified from a discrete analogue of eq. (5.32),

E = (M−1
p B)(M−1F)− (M−1

p Fp)(M
−1
p B) ≈ 0, (5.33)

where the subscript p means the corresponding matrices constructed on the pressure

space. Equation (5.33) leads to an approximation to the Schur complement matrix,

S = BF−1BT ≈MpF
−1
p BM−1BT . (5.34)

The pressure convection-diffusion (PCD) preconditioner is constructed by replac-

ing the mass matrices with approximations containing only their diagonal entries

(denoted by a subscript ∗) in eq. (5.34),

S−1
PCD = (BM−1

∗ BT)−1FpM
−1
p∗ . (5.35)

110

The least-squares commutator (LSC) preconditioner avoids the construction of ma-

trices on the pressure space, with the approximation to Fp,

Fp ≈ (BM−1FM−1BT)(BM−1BT)−1Mp (5.36)

(see [26, section 9.2] for a derivation). The LSC preconditioner is obtained by

substituting Fp in eq. (5.34) and replacing the mass matrices with their diagonals,

S−1
LSC = (BM−1

∗ BT)−1(BM−1
∗ FM−1

∗ BT)(BM−1
∗ BT)−1. (5.37)

For both preconditioners, the only use of the matrices F and Fp is through matrix-

vector products with them.

5.5.2 Approximations to S−1

The Schur complement S involves (F + C)−1 and is impractical to work with.

For our stochastic unsteady problem, we consider mean-based preconditioners that

use approximations to the Schur complement matrix

S0 = B(F0 + C)−1BT , (5.38)

where the “mean” matrix F0 is block-diagonal with Fk0 as the kth diagonal block,

and

Fk0 = τ−1(Inξ ⊗M) + Inξ ⊗A0 + Inξ ⊗N (~wkh,1). (5.39)

This corresponds to taking only the first term in the two summations on the right-

hand side of eq. (5.9). Since the gPC basis functions are orthonormal with 〈ψrψs〉 =

δrs and ψ1 ≡ 1, it follows 〈ψs〉 = δ1s, and G0 = H1 = Inξ . The matrices A0 and

111

N (~wkh,1) are constructed from the mean of ν and ~wkh,

〈ν〉 = ν0, 〈~wkh〉 =
∑

j
wkj1

~φj(x) = ~wkh,1. (5.40)

The matrix Fk0 can be expressed as Inξ⊗(τ−1M+A0+N (~wkh,1)) and this enables use

of approximations associated with a deterministic problem. Now, similarly define

Fp,0 on the pressure space, with

Fkp,0 = τ−1(Inξ ⊗Mp) + Inξ ⊗ Ap,0 + Inξ ⊗Np(~w
k
h,1). (5.41)

Let M = Int⊗Inξ⊗M and Mp = Int⊗Inξ⊗Mp. Assuming the validity of eq. (5.33)

it is easy to check that

M−1
p BM−1F0 −M−1

p Fp,0M−1
p B ≈ 0. (5.42)

On the other hand, let Cp = −τ−1Cnt ⊗ Inξ ⊗Mp, so that C satisfies

M−1
p BM−1C−M−1

p CpM−1
p B = 0. (5.43)

Combining eq. (5.42) and eq. (5.43) gives an approximation to S0,

S0 = B(F0 + C)−1BT ≈Mp(Fp,0 + Cp)
−1BM−1BT . (5.44)

Then the mean-based PCD preconditioner is given as

S−1
PCD,0 = (BM−1

∗ BT)−1(Fp,0 + Cp)M−1
p∗ , (5.45)

where M∗ = Int ⊗ Inξ ⊗M∗ and Mp∗ = Int ⊗ Inξ ⊗Mp∗. Similarly from eq. (5.36),

it holds that

Fp,0 + Cp ≈ (BM−1(F0 + C)M−1BT)(BM−1B)−1Mp. (5.46)

112

Substituting Fp,0 +Cp in eq. (5.45) and replacement of the mass matrices with their

diagonals gives the mean-based LSC preconditioner

S−1
LSC,0 = (BM−1

∗ BT)−1(BM−1
∗ (F0 + C)M−1

∗ BT)(BM−1
∗ BT)−1. (5.47)

The two mean-based preconditioners in eqs. (5.45) and (5.47) have the same form

as for the deterministic problem, except that there is an extra term C or Cp from

the all-at-once formulation. Computations associated with the two approxima-

tions to the Schur complement are also inexpensive. For example, (BM−1
∗ BT)−1 =

Int ⊗ Inξ ⊗ (BM∗B
T)−1, and this only requires solving a system with BM∗B

T a

discrete Laplacian. Multiplications with the mean matrix F0 + C are reduced to its

components (see eq. (5.22)),

F0 + C = τ−1(Int ⊗ Inξ ⊗M) + Int ⊗ Inξ ⊗A0 + N0 − τ−1(Cnt ⊗ Inξ ⊗M). (5.48)

The matrix N0 is block-diagonal with Nk
0 = Inξ ⊗N (~wkh,1) and can be expressed as

a sum of Kronecker products of matrices as discussed in section 5.4.3,

N0(w) =
∑
α1,α2

diag(w(1)
α1

)⊗ (w(2)(α1, 1, α2)Inξ)⊗N (~w(3)
α2

). (5.49)

5.5.3 System solve with F + C

The application of the preconditioner P−1 in eq. (5.30) also involves solving

a linear system asspciated with the (1,1) block F + C. For approximation, we also

replace it with the mean matrix F0 + C. This is a block-triangular matrix in the

113

form

F1
0

−τ−1(I ⊗M) F2
0

.

−τ−1(I ⊗M) Fnt−1
0

−τ−1(I ⊗M) Fnt0

. (5.50)

For such a system it is easy to compute matrix vector products and we again use

a low-rank GMRES method for solving the system. This inner GMRES solver is

preconditioned with Int ⊗ Inξ ⊗ (τ−1M + A0 + N (~wavg
h,1)), where ~wavg

h,1 means the

average of ~wkh,1 over all time steps. The linear system has the form

(F0 + C)v = y, (5.51)

and we note that this system need not to be solved accurately. In particular, with a

stopping criterion ‖y− (F0 +C)v‖2 ≤ tol‖y‖2, a relatively large stopping tolerance,

e.g., tol = 10−1, will suffice for the mean-based preconditioner P to be effective.

5.6 Numerical experiments

5.6.1 Benchmark problem

Consider a flow around a symmetric step where the spatial domain D is a

two-dimensional rectangular duct with a symmetric expansion (see section 5.6.1).

The Dirichlet inflow boundary conditions at (−1, x2), |x2| ≤ 0.5 are deterministic

114

and time-dependent, growing from zero to a steady parabolic profile,

~uD((−1, x2), t) =

1− 4x2
2

0

 (1− e−10t). (5.52)

Neumann boundary conditions ν∂ux1/∂x1 = p, ∂ux2/∂x1 = 0 are imposed at the

outflow boundary (12, x2), |x2| ≤ 1, and no-flow conditions ~u = ~0 at the fixed walls

(x1,±1), 0 ≤ x1 ≤ 12; (x1,±0.5), −1 ≤ x1 ≤ 0; (0, x2), 0.5 ≤ |x2| ≤ 1. The

initial conditions are zero everywhere for both ~u and p. The Taylor–Hood spatial

discretization with biquadratic basis functions for the velocity space and bilinear

basis functions for the pressure space is defined on a uniform grid of square elements

with mesh size h, and it is constructed using the IFISS software package [82].

∂DN∂DD

∂DD

∂DD

0

0.5

1

-0.5

-1

-1 12

Figure 5.1: Symmetric step domain with boundary conditions.

The stochastic viscosity ν(x, ξ) is represented as a truncated KL expansion

ν(x, ξ) = ν0

(
1.0 + σ

m∑
l=1

√
βlal(x)ξl

)
. (5.53)

The constants ν0 and σ represent the mean and the standard deviation of the

stochastic field. We use an exponential covariance function c(x, y) = exp(−‖x −

y‖1/b), where b is the correlation length. The pair (βl, al(x)) is the lth largest

eigenvalue and the corresponding eigenfunction of c(x, y), satisfying

∫
D
c(x, y)al(y)dy = βlal(x). (5.54)

115

This can be computed with a standard finite element method. The random vari-

ables {ξl}ml=1 are assumed to be independent and each of them uniformly distributed

on the interval [−
√

3,
√

3], so they have zero means and unit variances. For the

stochastic Galerkin method, the basis functions {ψr}
nξ
r=1 are m-dimensional Legen-

dre polynomials, with total degrees bounded by dψ. Then the number of stochastic

basis functions is nξ = (m + dψ)!/(m!dψ!). In the numerical experiments, unless

otherwise stated, the parameter values associated with the discrete problem are

chosen as in section 5.6.1. This gives a problem with dimensions nt = 64, nξ = 20,

nu = 2992, np = 461, and ntnξ(nu + np) = 4419840. All computations are done in

MATLAB 9.4.0 (R2018a) on a desktop with 64 GB memory.

Table 5.1: Parameter values for numerical experiments.

ν0 σ b m dψ tf τ h

1/50 0.01 4.0 3 3 1.0 2−6 2−2

5.6.2 Inexact Picard method

The main computational cost associated with Picard’s method is to solve an

all-at-once system eq. (5.17) at each step. In section 5.4 we discussed how to con-

struct low-rank approximate solutions in tensor train format with much cheaper

computations. To further reduce the cost, we adopt the idea of inexact Picard

method [11], where the linear systems are solved inexactly to save unnecessary com-

putational work. Let eq. (5.17) be denoted as L z(i) = r(i−1), and define the residual

norm ‖rk‖2 = ‖r(i−1)−L z
(i)
k ‖2 for an approximate solution z

(i)
k . It was shown in [11]

116

that if the stopping criterion for the linear solve is given as

‖rk‖2 ≤ tolgmres‖r(i−1)‖2, (5.55)

then Picard’s method converges as long as tolgmres < 1. This is especially helpful

for our low-rank GMRES method. The best accuracy that the low-rank GMRES

method can achieve is related to the truncation tolerance εgmres used in the algo-

rithm (see fig. 5.2a). A relaxed stopping tolerance not only reduces the number of

GMRES iterations, but it also allows use of larger truncation tolerances for ten-

sor rank compressions, resulting in smaller ranks for the iterates and more efficient

computations in the iterative solver. In the numerical tests, we set tolgmres = 10−1

and εgmres = 10−3. The same tolerances are used in the preconditioners for solving

the linear system eq. (5.51). For the initial u(0), p(0), the Stokes problem is solved

to satisfy ‖rk‖2 ≤ tolgmres‖f‖2 where f is the right-hand side of eq. (5.16).

When solving the linear system eq. (5.17), we also use an approximation to the

convection matrix N to improve efficiency. As discussed in section 5.4.3, the matrix-

vector product with the convection matrix N results in a dramatic rank increase

from κ to κ2. Unless κ is very small, a tensor train with rank κ2 will require too

much memory and also be expensive to work with. To overcome this difficulty, in

the all-at-once system we use a low-rank approximation of u(i) to construct N(u(i)).

Specifically, let

ũ(i) = Tεconv(u(i)) (5.56)

with some truncation tolerance εconv. Since ũ(i) has smaller ranks than u(i), the ap-

proximate convection matrix N(ũ(i)) contains a smaller number of terms in eq. (5.28),

117

and thus the rank increase becomes less significant when computing matrix-vector

product with it.

The choice of stopping and truncation tolerances are summarized in sec-

tion 5.6.2. The stopping tolerance of Picard’s method is tolpicard = 10−4, and a

small truncation tolerance εsoln = 10−7 is used to compress the ranks of the approxi-

mate solutions u(i) and p(i) at each Picard step. It is shown in fig. 5.2b that, like the

exact method, the inexact Picard method still exhibits a linear convergence rate. It

takes 5 Picard steps to reach the required accuracy. Section 5.6.2 shows the ranks of

the iterates at each Picard step. As the Picard iteration converges, the right-hand

side of eq. (5.55) becomes smaller, and the corrections δu(i) and δp(i) computed

from the low-rank GMRES method have increasing ranks. On the other hand, for

the approximate solutions u(i) and p(i), their ranks drop to smaller values in the

end. Also shown in fig. 5.3b are the ranks of ũ(i) for constructing the approximate

convection matrices. They have much smaller values than the ranks of u(i).

Table 5.2: Stopping and truncation tolerances.

GMRES stopping tolerance tolgmres = 10−1

GMRES truncation tolerance εgmres = 10−3

Picard stopping tolerance tolpicard = 10−4

Truncation tolerance for solutions εsoln = 10−7

Truncation tolerance for convection matrix εconv = 10−3

118

(a) (b)

Figure 5.2: (a) Convergence of the low-rank GMRES method (at the first Picard
step) with different truncation tolerances. (b) Convergence of the inexact Picard
method.

(a) (b)

Figure 5.3: (a) Ranks of corrections δu(i) and δp(i). (b) Ranks of approximate
solutions u(i) and p(i), and ranks of ũ(i) for convection matrix.

119

5.6.3 Numerical results

In the following, we examine the performance of the proposed algorithm in

different settings. First of all, we compare the two mean-based preconditioners dis-

cussed in section 5.5. Section 5.6.3 shows the number of GMRES iterations required

at each Picard step, and the associated computational costs when the two precon-

ditioners are used. For two different mesh sizes, the PCD preconditioner results in

larger numbers of GMRES iterations, and thus higher computational times, than

the LSC preconditioner. It should also be noted that for both preconditioners, only

a small number of GMRES iterations is needed for solving the linear system at each

Picard step. This is partially due to the large stopping tolerance used in eq. (5.55).

It shows that with inexact Picard method and effective preconditioners, the work

required for GMRES is greatly reduced. The LSC preconditioner will be used for

the numerical tests below.

Next, we test the algorithm with several variants of the benchmark problem

determined by various values of parameters associated with it. Figure 5.5a shows the

solution ranks and computational times for three different values of the standard

deviation σ. When σ is smaller, the discrete solution can be approximated by a

tensor train with smaller ranks, and it is also less expensive to solve the nonlinear

problem. On the other hand, even for σ = 0.1, the low-rank solution takes much

less storage than a full tensor. For example, the ranks of the approximate solution

u(i) are κ1 = 13, κ2 = 93. The ratio of storage requirements between such a tensor

120

(a) (b)

Figure 5.4: (a) Number of GMRES iterations at each Picard step. (b) Accumulative
computational time after each Picard step.

train and a full tensor is

ntκ1 + nξκ1κ2 + nuκ2

ntnξnu
=

303268

3829760
≈ 7.9%. (5.57)

The same quantities are plotted in fig. 5.5b for different values of the mean viscosity

ν0. The ranks and computational times are not significantly affected by ν0.

Finally, the algorithm is applied to solve discrete problems with various mesh

sizes h or time step sizes τ . It can be seen from fig. 5.6a that there is only a slight

increase in the solution ranks as the spatial mesh is refined. It is also shown in

fig. 5.6a that the computational time increases as O(h−2). In other words, as the

spatial mesh is refined, no extra computational burden is introduced except for the

increased problem size. However, this is not the case for the time step size τ . The

computational time increases much faster than O(τ−1) (see fig. 5.6b). This is due to

solving the linear system eq. (5.51) within the preconditioner P. As τ gets smaller,

the off-diagonal blocks have larger values, and the block-diagonal preconditioner

121

(a) (b)

Figure 5.5: Solution ranks and computational times for different values of σ and ν0.

Int⊗ Inξ ⊗ (τ−1M +A0 +N (~wavg
h,1)) seems to be less effective. More inner iterations

for solving this system results in higher computational costs.

5.7 Conclusions

In this chapter, we developed and studied efficient low-rank iterative methods

for solving the time-dependent Navier–Stokes equations with a random viscosity.

We considered an all-at-once formulation where the discrete solutions at all the

time steps are solved together in a single system. To address the high storage

and computational costs of this strategy, we used low-rank tensor approximations

in a Newton–Krylov type algorithm. For the all-at-once system, we proposed two

mean-based preconditioners using results from the deterministic problem. The com-

putational costs were further reduced with inexact Picard method and approximate

convection matrices. It was shown in the numerical experiments that the low-rank

122

(a) (b)

Figure 5.6: Solution ranks and computational times for different values of h and
τ . In (a), ne = 2/h is the number of elements in the vertical interval [−1, 1] of the
domain D.

method is able to solve the nonlinear problem efficiently and the discrete solutions

have small tensor ranks.

123

Chapter 6: Concluding Remarks

In this thesis we developed efficient computational methods for stochastic

PDEs, including the linear diffusion problem and nonlinear eigenvalue problems

and time-dependent Navier–Stokes equations. The stochastic Galerkin method gen-

erates surrogate solutions to the stochastic models, which greatly facilitate the task

of uncertainty quantification. On the other hand, to compute the surrogates in

general entails solving large-size and computationally challenging algebraic systems.

We designed iterative algorithms to construct low-rank approximations to the so-

lutions, and demonstrated that with low-rank methods the systems can be solved

with much lower costs than the problem size suggests.

For the stochastic diffusion problem, we developed a low-rank multigrid solver

for the linear system obtained from stochastic Galerkin discretization. With a linear

parametrization of the input data via KL expansion, the resulting system can be

expressed as a sum of Kronecker products of smaller matrices. Such a structure

enables cheap computations when the quantities in an iterative algorithm is rep-

resented as low-rank matrices. By combing low-rank matrix approximations with

the multigrid method, and repeatedly applying a truncation operation to compress

the ranks of intermediate quantities, the proposed method was shown to result in

124

significant cost savings. For a better understanding about the effect of truncation,

we conducted a rigorous error analysis for the method. We remark that the low-rank

solver handles problems with small variances very well, where the discrete solutions

can be well approximated by low-rank matrices. Also, a more efficient truncation

procedure will be helpful to further improv efficiency.

The stochastic inverse subspace iteration method for computing smallest eigen-

values and corresponding eigenvectors requires solving a large linear system at each

step of iteration. We developed a low-rank variant of the algorithm where the

linear systems are efficiently solved with a low-rank multigrid or Krylov subspace

method. With low-rank approximation, the computational costs associated with

the Gram–Schmidt process and the Rayleigh quotient construction are also greatly

reduced. For a diffusion problem with poorly separated eigenvalues, we showed that

a Rayleigh–Ritz procedure can be used to significantly improve the accuracy of the

solution. In a Stokes model, we applied the low-rank method for an eigenvalue

problem derived from the inf-sup constant, and a saddle-point system was solved at

each iteration. It was demonstrated in the numerical experiments that the proposed

method produces accurate results and uses less memory and computational work

than its full-rank counterpart.

For the Navier–Stokes problem we designed a Newton–Krylov type solver with

low-rank tensor approximations. With an all-at-once treatment of time integration

and stochastic Galerkin method for the stochastic part, the discrete solution is

represented as a three-dimensional tensor. Again, the Kronecker product structure

of the system and the low-rank tensor train format allow cheap computations for a

125

large-size problem. Low-rank iterative methods typically encounter rank growth for

intermediate quantities, and for a nonlinear problem this may be more dramatic.

To address this difficulty, we adopted the idea of inexact Picard method where

the linear system at each nonlinear step is only solved inexactly to save unnecessary

computational work. Also, we derived mean-based preconditioners for the system so

the Krylov subspace method has faster convergence and requires a small number of

iterations. These techniques make the low-rank iterative solver efficient in handling

large-size problems. As a side note, it will be interesting to see how one can borrow

the advantages of the optimization-based DMRG-type methods to compute low-rank

approximations for the Navier–Stokes equations.

126

Bibliography

[1] R. Andreev and C. Schwab, Sparse tensor approximation of parametric
eigenvalue problems, in Numerical Analysis of Multiscale Problems, I. G. Gra-
ham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., Springer, Berlin, 2012,
pp. 203–241.

[2] R. Andreev and C. Tobler, Multilevel preconditioning and low-rank tensor
iteration for space-time simultaneous discretizations of parabolic PDEs, Numer-
ical Linear Algebra with Applications, 22 (2015), pp. 317–337.

[3] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element
approximations of stochastic elliptic partial differential equations, SIAM Journal
on Numerical Analysis, 42 (2004), pp. 800–825.

[4] J. Ballani and L. Grasedyck, A projection method to solve linear sys-
tems in tensor format, Numerical Linear Algebra with Applications, 20 (2013),
pp. 27–43.

[5] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Low-rank solvers
for unsteady Stokes–Brinkman optimal control problem with random data, Com-
puter Methods in Applied Mechanics and Engineering, 304 (2016), pp. 26–54.

[6] , Solving optimal control problems governed by random Navier–Stokes equa-
tions using low-rank methods. http://arxiv.org/abs/1703.06097, Mar. 2017.

[7] P. Benner, A. Onwunta, and M. Stoll, Low-rank solution of unsteady
diffusion equations with stochastic coefficients, SIAM/ASA Journal on Uncer-
tainty Quantification, 3 (2015), pp. 622–649.

[8] , Block-diagonal preconditioning for optimal control problems constrained
by PDEs with uncertain inputs, SIAM Journal on Matrix Analysis and Appli-
cations, 37 (2016), pp. 491–518.

[9] , A low-rank inexact Newton–Krylov method for stochastic eigenvalue prob-
lems, Computational Methods in Applied Mathematics, 19 (2019), pp. 5–22.

127

[10] P. Benner, Y. Qiu, and M. Stoll, Low-rank eigenvector compression of
posterior covariance matrices for linear Gaussian inverse problems, SIAM/ASA
Journal on Uncertainty Quantification, 6 (2018), pp. 965–989.

[11] P. Birken, Termination criteria for inexact fixed-point schemes, Numerical
Linear Algebra with Applications, 22 (2015), pp. 702–716.

[12] Å. Björck and G. H. Golub, Numerical methods for computing angles
between linear subspaces, Mathematics of Computation, 27 (1973), pp. 579–
594.

[13] A. Brandt, S. McCormick, and J. Ruge, Algebraic multigrid (AMG)
for sparse matrix equations, in Sparsity and its Applications, D. Evans, ed.,
Cambridge University Press, Cambridge, 1984, pp. 257–284.

[14] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tuto-
rial, SIAM, Philadelphia, second ed., 2000.

[15] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best N-
term Galerkin approximations for a class of elliptic sPDEs, Foundations of
Computational Mathematics, 10 (2010), pp. 615–646.

[16] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods,
SIAM Journal on Numerical Analysis, 19 (1982), pp. 400–408.

[17] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: the
quasi-Monte Carlo way, Acta Numerica, 22 (2013), pp. 133–288.

[18] S. V. Dolgov, TT-GMRES: solution to a linear system in the structured
tensor format, Russian Journal of Numerical Analysis and Mathematical Mod-
elling, 28 (2013), pp. 149–172.

[19] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy meth-
ods for linear systems in higher dimensions, SIAM Journal on Scientific Com-
puting, 36 (2014), pp. A2248–A2271.

[20] C. Eckart and G. Young, The approximation of one matrix by another of
lower rank, Psychometrika, 1 (1936), pp. 211–218.

[21] M. Eiermann, O. G. Ernst, and E. Ullmann, Computational aspects of
the stochastic finite element method, Computing and Visualization in Science,
10 (2007), pp. 5–15.

[22] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an
inexact Newton method, SIAM Journal on Scientific Computing, 17 (1996),
pp. 16–32.

[23] H. Elman and D. Furnival, Solving the stochastic steady-state diffu-
sion problem using multigrid, IMA Journal of Numerical Analysis, 27 (2007),
pp. 675–688.

128

[24] H. Elman, M. Mihajlović, and D. Silvester, Fast iterative solvers for
buoyancy driven flow problems, Journal of Computational Physics, 230 (2011),
pp. 3900–3914.

[25] H. C. Elman, O. G. Ernst, D. P. OLeary, and M. Stewart, Efficient
iterative algorithms for the stochastic finite element method with application to
acoustic scattering, Computer Methods in Applied Mechanics and Engineering,
194 (2005), pp. 1037–1055.

[26] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and
Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics,
Oxford University Press, Oxford, second ed., 2014.

[27] H. C. Elman and T. Su, A low-rank multigrid method for the stochastic
steady-state diffusion problem, SIAM Journal on Matrix Analysis and Applica-
tions, 39 (2018), pp. 492–509.

[28] , Low-rank solution methods for stochastic eigenvalue problems.
http://arxiv.org/abs/1803.03717, Mar. 2018.

[29] O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, SIAM Journal
on Matrix Analysis and Applications, 31 (2010), pp. 1848–1872.

[30] I. Fumagalli, A. Manzoni, N. Parolini, and M. Verani, Reduced basis
approximation and a posteriori error estimates for parametrized elliptic eigen-
value problems, ESAIM: Mathematical Modelling and Numerical Analysis, 50
(2016), pp. 1857–1885.

[31] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel
multigrid algorithm for parabolic problems, SIAM Journal on Scientific Com-
puting, 38 (2016), pp. A2173–A2208.

[32] T. Gerstner and M. Griebel, Numerical integration using sparse grids,
Numerical Algorithms, 18 (1998), pp. 209–232.

[33] R. Ghanem and D. Ghosh, Efficient characterization of the random eigen-
value problem in a polynomial chaos decomposition, International Journal for
Numerical Methods in Engineering, 72 (2007), pp. 486–504.

[34] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral
Approach, Springer-Verlag, New York, 1991.

[35] M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015),
pp. 259–328.

[36] G. H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue
problems, BIT Numerical Mathematics, 40 (2000), pp. 671–684.

129

[37] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM
Journal on Matrix Analysis and Applications, 31 (2010), pp. 2029–2054.

[38] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-
rank tensor approximation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–
78.

[39] P. M. Gresho, D. F. Griffiths, and D. J. Silvester, Adaptive time-
stepping for incompressible flow part I: Scalar advection-diffusion, SIAM Jour-
nal on Scientific Computing, 30 (2008), pp. 2018–2054.

[40] W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag,
Berlin, 1985.

[41] , Solution of linear systems in high spatial dimensions, Computing and
Visualization in Science, 17 (2015), pp. 111–118.

[42] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Approx-
imate iterations for structured matrices, Numerische Mathematik, 109 (2008),
pp. 365–383.

[43] H. Hakula, V. Kaarnioja, and M. Laaksonen, Approximate methods
for stochastic eigenvalue problems, Applied Mathematics and Computation,
267 (2015), pp. 664–681.

[44] H. Hakula and M. Laaksonen, Asymptotic convergence of spectral inverse
iterations for stochastic eigenvalue problems. http://arxiv.org/abs/1706.03558,
June 2017.

[45] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving
linear systems, Journal of Research of the National Bureau of Standards, 49
(1952), pp. 409–436.

[46] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear
scheme for tensor optimization in the tensor train format, SIAM Journal on
Scientific Computing, 34 (2012), pp. A683–A713.

[47] T. Horger, B. Wohlmuth, and T. Dickopf, Simultaneous reduced basis
approximation of parameterized elliptic eigenvalue problems, ESAIM: Mathe-
matical Modelling and Numerical Analysis, 51 (2017), pp. 443–465.

[48] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive
constraint linear optimization method for lower bounds of parametric coercivity
and inf-sup stability constants, Comptes Rendus Mathematique, 345 (2007),
pp. 473–478.

[49] D. A. Kay, P. M. Gresho, D. F. Griffiths, and D. J. Silvester,
Adaptive time-stepping for incompressible flow part II: Navier–Stokes equations,
SIAM Journal on Scientific Computing, 32 (2010), pp. 111–128.

130

[50] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, 1995.

[51] B. N. Khoromskij and C. Schwa, Tensor-structured Galerkin approxima-
tion of parametric and stochastic elliptic PDEs, SIAM Journal on Scientific
Computing, 33 (2011), pp. 364–385.

[52] A. Klimke and B. Wohlmuth, Algorithm 847: SPINTERP: Piecewise mul-
tilinear hierarchical sparse grid interpolation in MATLAB, ACM Transactions
on Mathematical Software, 31 (2005), pp. 561–579.

[53] O. M. Knio and O. P. Le Mâıtre, Uncertainty propagation in CFD using
polynomial chaos decomposition, Fluid Dynamics Research, 38 (2006), pp. 616–
640.

[54] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally opti-
mal block preconditioned conjugate gradient method, SIAM Journal on Scientific
Computing, 23 (2001), pp. 517–541.

[55] T. G. Kolda and B. W. Bader., Tensor decompositions and applications,
SIAM Review, 51 (2009), pp. 455–500.

[56] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for
parametrized linear systems, SIAM Journal of Matrix Analysis and Applica-
tions, 32 (2011), pp. 1288–1316.

[57] D. Kressner and C. Tobler, Preconditioned low-rank methods for high-
dimensional elliptic PDE eigenvalue problems, Computational Methods in Ap-
plied Mathematics, 11 (2011), pp. 363–381.

[58] Y.-L. Lai, K.-Y. Lin, and W.-W. Lin, An inexact inverse iteration for
large sparse eigenvalue problems, Numerical Linear Algebra with Applications,
4 (1997), pp. 425–437.

[59] O. P. Le Mâıtre and O. M. Knio, Spectral Methods for Uncertainty Quan-
tification: With Applications to Computational Fluid Dynamics, Springer, Dor-
drecht, 2010.

[60] K. Lee and H. C. Elman, A preconditioned low-rank projection method with a
rank-reduction scheme for stochastic partial differential equations, SIAM Jour-
nal on Scientific Computing, 39 (2017), pp. 828–850.

[61] M. Loève, Probability Theory, Van Nostrand, New York, 1960.

[62] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Com-
putational Stochastic PDEs, Cambridge University Press, New York, 2014.

131

[63] L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V.
Rovas, Output bounds for reduced-basis approximations of symmetric positive
definite eigenvalue problems, Comptes Rendus de l’Académie des Sciences -
Series I - Mathematics, 331 (2000), pp. 153–158.

[64] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-
product space–time solvers, Comptes Rendus Mathematique, 346 (2008),
pp. 113–118.

[65] H. G. Matthies and E. Zander, Solving stochastic systems with low-rank
tensor compression, Linear Algebra and its Applications, 436 (2012), pp. 3819–
3838.

[66] E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative
solution of all-at-once systems for evolutionary partial differential equations,
SIAM Journal on Scientific Computing, 40 (2018), pp. A1012–A1033.

[67] H. Meidani and R. Ghanem, Spectral power iterations for the random eigen-
value problem, AIAA Journal, 52 (2014), pp. 912–925.

[68] H. N. Najm, Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics, Annual Review of Fluid Mechanics, 41 (2009),
pp. 35–52.

[69] N. Ngoc Cuong, K. Veroy, and A. T. Patera, Certified real-time so-
lution of parametrized partial differential equations, in Handbook of Materials
Modeling, S. Yip, ed., Springer Netherlands, Dordrecht, 2005, pp. 1529–1564.

[70] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific
Computing, 33 (2011), pp. 2295–2317.

[71] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebe-
deva, P. Zhlobich, T. Mach, and L. Song, TT-Toolbox, Ver. 2.2.
http://github.com/oseledets/TT-Toolbox.

[72] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of
linear equations, SIAM Journal on Numerical Analysis, 12 (1975), pp. 617–629.

[73] M. F. Pellissetti and R. G. Ghanem, Iterative solution of systems of
linear equations arising in the context of stochastic finite elements, Advances
in Engineering Software, 31 (2000), pp. 607–616.

[74] C. E. Powell and H. C. Elman, Block-diagonal preconditioning for spec-
tral stochastic finite-element systems, IMA Journal of Numerical Analysis, 29
(2009), pp. 350–375.

[75] C. E. Powell and D. J. Silvester, Preconditioning steady-state Navier–
Stokes equations with random data, SIAM Journal on Scientific Computing, 34
(2012), pp. A2482–A2506.

132

[76] H. J. Pradlwarter, G. I. Schuëller, and G. S. Szekely, Random eigen-
value problems for large systems, Computers & Structures, 80 (2002), pp. 2415–
2424.

[77] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. F.
McCormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadel-
phia, 1987, pp. 73–130.

[78] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,
second ed., 2003.

[79] , Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia,
second ed., 2011.

[80] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific
and Statistical Computing, 7 (1986), pp. 856–869.

[81] U. Schollwöck, The density-matrix renormalization group, Reviews of Mod-
ern Physics, 77 (2005), pp. 259–315.

[82] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and It-
erative Solver Software (IFISS), Ver. 3.5. http://www.manchester.ac.uk/ifiss,
Sept. 2016.

[83] D. J. Silvester and V. Simoncini, An optimal iterative solver for symmetric
indefinite systems stemming from mixed approximation, ACM Transactions on
Mathematical Software, 37 (2011), p. 42.

[84] P. Sirković and D. Kressner, Subspace acceleration for large-scale
parameter-dependent Hermitian eigenproblems, SIAM Journal on Matrix Anal-
ysis and Applications, 37 (2016), pp. 695–718.

[85] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi
method, SIAM Journal on Matrix Analysis and Applications, 13 (1992),
pp. 357–385.

[86] B. Soused́ık and H. C. Elman, Inverse subspace iteration for spectral
stochastic finite element methods, SIAM/ASA Journal on Uncertainty Quan-
tification, 4 (2016), pp. 163–189.

[87] , Stochastic Galerkin methods for the steady-state Navier–Stokes equations,
Journal of Computational Physics, 316 (2016), pp. 435–452.

[88] G. W. Stewart, Accelerating the orthogonal iteration for the eigenvectors of
a Hermitian matrix, Numerische Mathematik, 13 (1969), pp. 362–376.

[89] G. W. Stewart, Matrix Algorithms: Volume II: Eigensystems, SIAM,
Philadelphia, 2001.

133

[90] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained
optimization, SIAM Journal on Scientific Computing, 37 (2015), pp. B1–B29.

[91] T. Sullivan, Introduction to Uncertainty Quantification, Springer, Cham,
2015.

[92] E. Ullmann, A Kronecker product preconditioner for stochastic Galerkin fi-
nite element discretizations, SIAM Journal on Scientific Computing, 32 (2010),
pp. 923–946.

[93] C. V. Verhoosel, M. A. Gutiérrez, and S. J. Hulshoff, Iterative so-
lution of the random eigenvalue problem with application to spectral stochastic
finite element systems, International Journal for Numerical Methods in Engi-
neering, 68 (2006), pp. 401–424.

[94] K. Veroy and A. T. Patera, Certified real-time solution of the parametrized
steady incompressible Navier–Stokes equations: rigorous reduced-basis a poste-
riori error bounds, International Journal for Numerical Methods in Fluids, 47
(2005), pp. 773–788.

[95] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method
Approach, Princeton University Press, Princeton, 2010.

[96] D. Xiu and G. E. Karniadakis, The Wiener–Askey polynomial chaos for
stochastic differential equations, SIAM Journal on Scientific Computing, 24
(2002), pp. 619–644.

[97] , Modeling uncertainty in flow simulations via generalized polynomial
chaos, Journal of Computational Physics, 187 (2003), pp. 137–167.

134

	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Existing work
	Contributions of this thesis

	Preliminaries
	Stochastic Galerkin method
	Input parametrization
	Generalized polynomial chaos

	Iterative solvers for linear systems
	Krylov subspace methods
	Multigrid methods

	Numerical methods for eigenvalue problems
	Inverse subspace iteration
	LOBPCG method

	Nonlinear iterative methods
	Low-rank approximation

	Low-rank multigrid for the stochastic diffusion problem
	Introduction
	Model problem
	Stochastic Galerkin method
	Multigrid

	Low-rank approximation
	Low-rank truncation
	Low-rank multigrid
	Convergence analysis

	Numerical experiments
	Exponential covariance
	Squared exponential covariance

	Conclusions

	Low-rank methods for stochastic eigenvalue problems
	Introduction
	Stochastic inverse subspace iteration
	Low-rank approximation
	System solution
	Orthonormalization
	Rayleigh quotient
	Convergence criterion

	Stochastic diffusion equation
	Low-rank multigrid
	Rayleigh–Ritz refinement
	Numerical experiments

	Stochastic Stokes equation
	Low-rank MINRES
	Numerical experiments

	Conclusions

	Low-rank solvers for the stochastic unsteady Navier–Stokes equations
	Introduction
	Problem setting
	Discrete problem
	Time discretization
	Stochastic Galerkin method
	All-at-once system
	Picard's method

	Low-rank approximation
	Tensor train decomposition
	Low-rank GMRES
	Convection matrix

	Preconditioning
	Deterministic operator
	Approximations to S-1
	System solve with F+C

	Numerical experiments
	Benchmark problem
	Inexact Picard method
	Numerical results

	Conclusions

	Concluding Remarks
	Bibliography

