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Abstract

The notion of limiting norm, introduced by Pokrovskii (Soviet Math. Dokl., vol. 20, pp.
1314-1317, 1979), is generalized to that of block limiting norm. A resemblance of inequalities
shared by both the block limiting norm and the structured singular value, introduced by Doyle
(Proc. IEE, vol. 129, pp. 245-250, 1982), motivates further investigation of their relationships.
To that effect, the concept of generalized spectral radius of a set of linear operators is introduced.
It is then shown that, for block-structure of size less than 4, the block limiting norm is equal to
the structured singular value and that, in the general case, the block limiting norm is always no
less than the structured singular value. Finally, better bounds are obtained for both the block

limiting norm and the structured singular value.

1 Introduction and Preliminaries

The notion of the limiting norm of a linear operator was introduced in 1979 by Pokrovskii {7].
It arises naturally in the study of operators acting in function spaces. The concept of structured
stngular value of a matrix in €™**™ was introduced by Doyle in 1982 [1] as a tool for the analysis

and synthesis of feedback systems with structured uncertainties. A resemblance of inequalities
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shared by both the limiting norm and the structured singular value motivates further investigation
of the relationships between the two quantities. In the case of finite dimension linear operators,
the definition of the limiting norm is first generalized for various structures and we call it the block
limiting norm. Consequently, the usual notion of the limiting norm is the block limiting norm with
respect to a particular structure. By introducing the concept of generalized spectral radius of a
set of linear operators, it is shown that, for block-structures of size less than 4, the block limiting
norm is equal to the structured singular value. For larger size, the block limiting norm is always
no less than the structured singular value. Finally, better bounds are obtained for both the block
limiting norm and the structured singular value.

Let B be a Banach space of functions u with values in R” and defined on some set €. It is
assumed that for any u,v € B, the condition ||u(t)|| < ||v(t)|| for all t € Q implies ||u|ls < ||v||B,

where || - || and || - ||p denote the norms in R™ and B respectively. For any u € B, define
Qu)={ve B : |v)] < lu(®)l| Vi€ Q} . (1)
Analogously, for any set § C B, define

Q)= U Qv .
ues
Let M be a linear operator mapping B into itself. Denote by Tp the unit ballin B. For k =1,2,...,
consider the sequence of sets T, = Q(M Ti—1) and define
dr = sup ||u||B -

uETy

Definition 1 [7]. The limiting norm of linear operator M is the nonnegative scalar
x(M) = lim (dp)% . (2)
k—oo

O

From this definition, it is easily checked that the limiting norm satisfies the inequalities
p(M) < m(M) < |IM||B (3)

where p(M) denotes the spectral radius of M [7]. An immediate application of the limiting norm
is in relation with the fixed points of the compound operator M f where M is linear and f is
nonlinear and both act in B. The following two facts give sufficient conditions under which the

equation u = M fu has either no nonzero solution or a unique solution.



Fact 1 [7]. Suppose that, for all t € Q and all v € B, ||fu(t)|| < a||u(t)|] for some a > 0 and
an(M) < 1. Then the equation u = M fu has no nonzero solution. O
Fact 2 [7]. Suppose that, for all t € 2 and all u,v € B, ||fu(t) — fv(t)]] £ a||u(t) — v(t)|| for some
a > 0 and anr(M) < 1. Then the equation u = M fu has a unique solution u*. Furthermore, for
any ug € B, the sequence up = M fux_1,k=1,2,..., converges to u*. O

In the sequel, given any square complex matrix M, we denote by p(M) its spectral radius
and by o(M) its largest singular value. Given any complex vector z, ||z|| indicates its Euclidean
norm. A block-structure of size m is any m-tuple K = (ky,..., k) of positive integers.! Given a

block-structure K of size m, we make use of the family of diagonal matrices
D = { block diag (d1Iy,,...,dnlk,) : di € (0,00)};
of the family of block unitary matrices
U = { block diag (Uy,...,Um) : U; is a k; X k; unitary matrix} ;
and of the projection matrices
P; = block diag (Ok,,- -, Ok;_ 15 Ik, Okiprs -+ +» Okm) »

where, for any positive integer k, Ij is the k x k identity matrix and Oy the k X k zero matrix.
Definition 2 [4].2 The structured singular value of a complex n X n matrix M with respect to the

block-structure K = (ky, ..., k) of size m, where n = 312, k;, is the nonnegative scalar
u(M) = max{[|Ms] : [|Bal| [Mz] = ||[BMs], i=1,...,m}.
k4

a

Notice in particular that, if K = (n), the structured singular value is equal to the largest singular
value (M). It should be emphasized that D, U, P; and u(M) all depend on the underlying
block-structure. For simplicity of notation however, we will not explicitly indicate this dependence.

The following two important properties of the structured singular value will be used below. The
reader is referred to [1,2,4-6,9] for a complete exposition of this topic.

Fact 3 [1]. The structured singular value satisfies the relations

p(M) < max p(UM) = p(M) < jut o(DMD™) < (M) . (4

!This corresponds, in the terminology of [1], to structures with no repeated blocks.
2This definition of the structured singular value, while more simply expressed, is equivalent to that originally

proposed by Doyle [1].



O

Fact 4 [1]. For block-structure of size less than 4, i.e., m < 4,

uw(M) = inf s(DMD7'). (5)

2 Main Results

In this section, we consider the limiting norm of a linear operator in Euclidean space €C". To avoid
any loss of continuity, all proofs are given in Appendix A.

Given z € €", let the definition of set Q(z) in (1) be replaced by
Q(z)={yeC" : |Py||<||Pzl|i=1,...,m}

and define Q(S), Ti and di accordingly, where § C €" and Tp is the unit ball of C".
Definition 3. The block limiting norm of a complex n X n matrix M with respect to the block-

structure K = (ky, ..., kn) of size m, where n = 37, k;, is the nonnegative scalar
v(M) = limsup (dk)% .
k—o0

O
Thus, the limiting norm is the block limiting norm with respect to block-structure K = (1,...,1).
Note that v(M) also depends on the underlying block-structure K. Furthermore, similar to the

limiting norm, the block limiting norm satisfies the inequalities

p(M) < v(M) < 5(M). 6)

for any block-structure K.

A closer look at (3), (4) and (8) shows that similar properties are possessed by both v(M) and
p(M) and this motivates further investigation on their relationships. A bold conjecture that v(M)
is another appearance of u(M) is false, however.

In order to explore more properties of the block limiting norm, we now introduce a new measure

for sets in €™*". It is well known that for any matrix M € C**",

p(M) = lim 5(M*)E .



This property motivates a generalization of the spectral radius for sets in €**". For § ¢ C™*"

such that sup4cg 7(A) < o0, define
e(8) = sup{a(A1--- Ak)* : A1,...,Ar € S}.
It is easily checked that 4,($) is finite and satisfies, for any k,
sup p(4) < 7($) < sup 5(4) . (7)

Definition 4. Let § C C™" and suppose sup4¢g 8(A) < co. The generalized spectral radius of §

is the nonnegative scalar

7(8) = li;nsup 7(8) .

The following theorem illustrates some properties of the generalized spectral radius.

Theorem 1. Let M € €**" and §,W c C**". Alsolet M§ = {MA : A€ S} and §W =
{A1A; : A1 € S, A2 € W}. Suppose that sup4cs 5(A) < oo and sup4ey G(A) < co. Then the

following properties hold

[y

. For any k, v4(S) 2 7(S). Therefore, limg_.c0 7($) exists and v(8) = limk—ao 74(S)-
2. sup s p(A) < 7(S) < supges 7(A).

3. Y(SW)=~(WS).

4 y(MS) = ~(SM).

5. For M nonsingular, y(MSM™1) = 7(S).

O

The following theorem shows that there is a very close relationship between the block limiting
norm and the generalized spectral radius of a certain family of sets.

Theorem 2. Let M € C™" and let dj be defined as before. Then for any k,
(de)* = 1e(UM) (8)

so that
v(M) = ~(UM)



and
v(M) = lim (di)%.
O

Corollary 1. For any positive integer g¢,

u(M?)7 < v(M).

From properties 4, 5 in Theorem 1, Theorem 2 and the fact that forall U € Y and D € D, U
and D commute, the proposition below follows immediately.
Proposition 1. Forall U € U
v(M)=v(UM) =v(MU)

and, for all D € D,
v(M)=v(DMD™) . (9)

Using (6) and (9), we can obtain a more easily checked but more conservative sufficient condition
such that the claims in Facts 1 and 2 hold. Proposition 1 gives two classes of transformations under
which the block limiting norm is preserved. Recall that the block limiting norm of matrix M is
bounded above and below by its largest singular value and spectral radius, respectively. As a
consequence of Fact 3, (6), Theorem 2 and Proposition 1, tighter bounds for v(M) and pu(M) are
obtained.

Theorem 3.
p(M) < max p(UM) = p(M) < v(M) < inf g(DMD™) < 3(M).

O
By Fact 4 and Theorem 3, the following result is obvious.

Theorem 4. For block-structure of size less than 4,
V(M) = (M) . (10)

O
An example is exhibited in Appendix B with block-structure of size 4, for which (10) does not

hold.



Corollary 2. For block-structure of size less than 4,
M) = UM).
7(UM) = max p(UM)

O

Corollary 3. For block-structure of size less than 4 and for any positive integer ¢,
1
p(M7)3 < p(M).

O
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3 Appendix A

We make use of the following three lemmas in proving Theorem 1.

Lemma 1. Suppose that {a;} is a bounded nonnegative sequence and b > 0. Then the sequence

{ck} defined by
k
Cp = a,f_ﬁbl% — ag

converges to zero. 0

Lemma 2. For any € > 0, there exists K > 0 such that, for all k > K,

Ye+1(8) < (S) + €

Proof. From the definition of vi41($), it follows that

Ts1(S) = sup {(Ar- - Apyr) B Al,... A€ S}

sup {7 (A1 -+ Ax) P10 (Aks1)FT A,...,Ag1 €8}

- sup{a(Al---Ak)I% : Al,...,Akes}sup{a(A)F‘rT . Ae s}
= ($)FFy(S)F

= () + ((S)FFT1(S)FT — mi(8)) -

IA

Since vx($) is bounded, the result then follows from Lemma 1. O

Lemma 3. For any positive integers ¢ and p,

Yap(S) < 7(S) -



Proof. From the definition of 4,(S$), it follows that

Yep(§) = S“P{‘_f(Al"'qu)‘"’ : Al,---,AqPES}
(sup{&(Al---Aq)ﬁ : Al,...,AqES})p
= 7(8).

IA

O
Proof of Theorem 1.

1. By contradiction. Suppose for some integer ¢, v4(S) < 7(§). By Lemma 2, there exists
K > 0 such that, for all k > K,

Ye+1(S) < (S) + j—(—s—.)—%q—w )

Without loss of generality, we assume that K is a multiple of ¢, i.e., K = ¢gp for some p > 0. Then

for any k > K, express k as k = gp; + | for some p; > p and [ < ¢, we have

$)—q($
(8) = Ygp+i(8) < Ygpuria(8) + AW
< Ygp1+i-2 + i(l(i%—qldin < N
(S)=74(S)) $Y—~o(S
S Tap1 + 1 2.;’ S ’qul(S) + :YL)_QMJ .

Thus, using Lemma 3 we have, for k > K,

v(8) = 7(S) _ 2(S) +%($)
2 2

which implies
. S S
1($) = timsups(s) < TEEHE < 55y

2. A direct consequence of (7).
3. The claim trivially holds if either § or W contains only the zero matrix. Thus assume

41(8) > 0 and 41(W) > 0. From the definition of 4x(SW), it follows that

w(SW) = sup{a(AlBl---AkB,c)% . Ay,...,Ax€ S, Bl,...,BkEW}
< 41(S)Esup{a(B14sBs - Ap-1Bp1Ar)E 1 Ai,..., AL €S, By,...,Br € Win(W)E
= 1(S)Epe1(WS) T m(W)E .

Hence,

A(SW) = Jim 3(SW) < Jim 11($)Evea (W) T m(W)E = 4(W$)



Similarly, (W ) < v(SW).

4. A direct consequence of 3.

5. By using 4, y(MSM™1) =4(SM~ M) =~(8). O

In order to prove Theorem 2, we employ the following lemmas.
Lemma 4. For any bounded set § € €, sup,¢s ||2|| = supgecos ||z|l. O
Lemma 5. Let M € C™" and §1,S2 C €*. Then co(S$; U S2) = co(coS; UcoSy) and McoS; =
coM$;. O
Lemma 6. Let Z = {z € R™:|2'| =1, i = 1,...,m} where 2* denotes the ith component of 2.
Let w € R™ and suppose that, for i = 1,...,m, |w*| < 1. Then w € coZ. O
Lemma 7. Let $ ¢ R™ and w € coS. Then there exist s1,...,8m+1 € S, AL,..., A € R such
that fori=1,...,m+1, X* >0, E:{‘__"{lz\" =1land w= E:{‘__‘;lz\"s;. O
Lemma 8.

Q(S)ceo(|J US) .

Uel
Proof. Let W = Uyey US. It suffices to prove that z € Q(S) implies z € coW. Suppose = € Q(S).

Then there exists y € § such that, for s = 1,...,m, ||P;iz]| < ||Py||- Since y € § € W, there exists
Ui € U such that yy = Uy € W and, fori =1,...,m,

aiHyl = Pz (11)

for some 0 < o < 1. Let a = (al---am)T. By Lemmas 6 and 7, there exist 21,...,2m+1 € Z,
Al ...,Am*tl € R such that, for j=1,...,m, X; >0, E;":’ll M=1and a= E;’f__*il M z; where Z

is defined in Lemma 6. Therefore, fori =1,...,m,

] m+1 L.
o' Py1= > NzPuy . (12)
Jj=1
By using (11), we have
m+1 o
Pz = Z Mz; Pyt (13)
j=1

Summing (13) for ¢ = 1, ..., m, we obtain
m+1 m

z= ) X0 z;Hyl) :
=1 =1

Since for any ¢ and j, 2} is either 1 or —1, 1t is clear that, for all 7, 377, z;.P,-yl € W. Therefore,

could be expressed as a convex combination of points in W, This implies that z € coW. O



Proof of Theorem 2. From the definition of v;(UM), it follows that

1
T(UM) = sup{a(UiM---UM)® : Uy,..., U €U}
= sup{|U1M -+ - UpMz||t : Uy,..., Uy €U, z€C", |z|| =1}

= sup{|lyll¥ : ye uM .- UM To, U1,...,Up € U}
where Ty denotes the unit sphere of €*. Define
f;:: {y:ye U&Al---UkAli%, Us,...,.U,elU}.

Therefore
To= U UMTi

Uel
and

1
Te(UM) = sup ||z||* .
z€Ty
Now we want to show that, for all &,

Te € T C coTi (14)

and therefore, by Lemma 4, the claim in (8) holds. We prove both inclusions in (14) by induction.
It is clear that Ty C To. Suppose that for some k, T C Ti. Since, forallU € U, UM T C Q(MT).

Hence,

Ter1i = U UMT, c QM) = Titr -
Uel

For the second inclusion in (14), it is also clear that Tp C co'INB. Suppose that for some k, T, C coTy.

Then by Lemmas 5 and 8, we have

Tir1 = QM Ti) C co(|J UMT) =co(U UMecoTy) = co( | J UMT,) = coTppn
ucl u€el uel

O

Proof of Corollary 1. Let k be a positive integer. Then

o I nd
p(M?)s max p(UM?)?

= rl}lgacp((UMq)k)El”

< max{p(Uqu--.UkM‘I)m‘E L Uy,...,Ure U}
< max{c‘r(Uqu---Uqu)# : U1,...,Uk€U}
< max {o(UsM?-- - Up MY Us,...,Up € U}

’qu(UM) .

10



Since k is arbitrary, it follows that

p(MY)s < lim 9 (UM) = v(M) .

4 Appendix B

We give an example for which (10) does not hold. This example was constructed by Doyle to show
that (5) may not hold for block-structure of size greater than 3 (see, e.g., [3] [8] for details).
Let K = (1,1,1,1) and M = [u; us][v; vo]¥ where the superscript H denotes the Hermitain

operator,
[ o] [ 0 ] [ 0 ] [ e ]
ab ab ab —ab
u — y U2 = y V1 = y V2 = ’
ab abj ab —aby
53 —a?(1+j a?(1—j
| V1-2d? | | T | | s | | V1-2a%

a=1/1- 33@, b= 3@ and j = 4/-1. It has been shown in [3] [8] that infpepd(DMD™!) =
(M) =1 and u(M) < 1. Here we show that v(M) = 1.
It is obvious that (M) < 1. To show v(M) > 1, let Uy, Uz € U be defined as

. . . . 1—-3
U, =diag (1,-1,—7,1) U, = diag (1,1,~J,_m .
Then, it is straightforward to check that

UzMUlM’U]_ = V1

which implies that v(M) > 1.

11
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