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EULERIAN MANY-BODY PROBLEMS
P.S. Krishnaprasad *

ABSTRACT. The hamiltonian dynamics of coupled structures is discussed.

There are geometric parallels in earlier work on the Newtonian (gravitational)

many- body problem. In the study of relative equilibria, a theorem due to

Smale has a useful role. Relative stability modulo a group of symmetries can

be determined using the energy-Casimir (or energy - momentum) method.

For nongeneric values of momenta, the Poisson structure can affect stability.
1. INTRODUCTION. The central role of the Newtonian (gravitational) many-body prob-
lem in celestial mechanics has inspired major advances in mathematics and physics. For an
exposition see (Abraham and Marsden [1]) and (Smale [31]). In recent years, engineering
applications have brought to the forefront, questions concerning the dynamics of systems
of kinematically coupled structures composed of rigid and flexible bodies. We refer to these
as Eulerian many-body problems to emphasize the role of Euler forces (or frame forces)
in determining the interactions. Eulerian many-body problems arise as models of robotic
manipulators, high speed mechanical machinery, complex spacecraft with articulated com-
ponents, space-based sensors etc. See (Wittenburg [36]) and [8], [12] for expositions of

engineering aspects and basic formulations of underlying models.

In recent work, [13] [17] (18] {26] [27] [29] [33], we have explored the rich geometry
of Eulerian many-body problems. We have used the geometry of symplectic manifolds,
Poisson structures, and reduction by symmetry groups in creating a framework for the
study of the dynamic behavior of certain classes of Eulerian many-body problems. Among
the classes of problems we have investigated, we include rigid bodies carrying rotors, planar
many- body systems, three dimensional systems coupled by ball and socket joints, and rigid
bodies with flexible attachments modeled by geometrically exact formulations of elasticity.

Our methods shed light on questions regarding relative equilibria, periodic orbits, stability,
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conservation laws (e.g. Casimir functions) and controllability on level sets of conservation

laws.

The present paper simply highlights some key geometric aspects of these later devel-

opments.
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2. GEOMETRY
The abstract framework for Eulerian many-body problems is the one isolated by Smale
in his study of the gravitational many-body problem. Let (JM,L) be a Riemannian
manifold and let G be a Lie group with associated action,
.G x M- M
(9,9) = % ()

where @, is an isometry for all g ¢ G . The Riemannian metric induces a vector bundle

isomorphism

K . TM — T*M

defined by

K (vg) -wy = K (vq, w,), forall vy, w, e TM, -

The canonical symplectic structure w = —df, on T*M can be pulled back to

Q= (1K) (),

also an exact symplectic structure on TM/. The action & lifts to symplectic actions T'®
and T®* on TM and T*M respectively.

Let V : M —» R be a G-invariant (potential) function on A7 . The hamiltonian
H : T*M — IR, is defined by,
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1, o b
H(aq) = 3 K (K ay, (K )ay)

+ Vors (@)
where Ty ¢ T*M — M is the canonical projection.

Associate to H a vector field Xy on T*M by requiring that,

dH (Y) = w (Xx,Y)

for all vector fields ¥ on T*M. The hamiltonian system (T*M, w, Xpy) is a simple

mechanical system with symmetry in the sense of Smale. It admits a momentum mapping

in a natural way. To see this, let § denote the Lie algebra of G and $* the dual space
of & . The symplectic action T®* on T*Af, defines a Lie algebra homomorphism, of
< into hamiltonian vector fields on T*M; we denote this correspondence as £ + Er-py.
Then the map,
J:T*M — g~
defined by,
T (ag) € = (lgpey B0) (0g), €€

is an Ad* - equivariant momentum mapping. Hence J is a conserved quantity of the
system (T*M,w,Xy) .

The framework sketched so far is the proper setting for Eulerian many-body problems

in our sense (as it is for Smale’s approach to the gravitational many-body problem).
EXAMPLE 1 (Planar two-body problem)

Imagine two rigid laminae connected by a pin joint, floating in a gravity-free planar
universe (see figure 1). For an observer at the center of mass of the system of two bodies,
the absolute orientations of the two bodies, determined say by attaching body-frames,
are sufficient to determine the absolute configuration of the pair. The group S' of
spatial rotations of the observer’s frame is a symmetry group for the problem. Thus,
M = 8' x 8, G = 5! actingon M via the diagonal action and the metric on M

is given by

K (61, 6;) = 2 x Kinetic energy
- (b ] (2) - (2))
A L 6:) ' \ b
= (Lw, w)
where, I, = I, + e d¥ i = 1,2, are augmented inertias of the bodies,

e = my ms [/ (m; + ma) is a reduced mass, and for the choice of body frames as in figure 1,
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observer

N

Figure 1. Planar Two-Body Problem

)

h

observer

Figure 2. Rigid Bodies Coupled by a Ball and Socket Joint
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MO) = edidy sin (8, — 6,) is afunction of the joint angle. Since K depends only on the
difference 6, — 65, it is invariant under the S? action (6;, ;) — (8, + ¢, 62 + g), ge S*.

The subscript in I, is in reference to planarity. The vector bundle map K is given by

K' (W) = p = Iw.

The momentum mapping for the S* action is then,

Jp : T*(S'x 8 = R

(91)927#17/“2) =y + 12

It is just the angular momentum of the system with respect to the observer at the center
of mass.
EXAMPLE 2. (Rigid bodies coupled by a ball and socket joint)

This is a spatial analog of the previous planar example. The two bodies are free to
move in three dimensions, subject to a (three degrees of freedom) ball and socket coupling,.

As before, the observer is at the center of mass of the system of two bodies. See figure 2

below for a representation.
In this case M = S0(3) x SO(3) and G = SO(3) acts diagonally on M
® :503) x M - M
(P, 41,4;) — (PA4;,P4;).

This is just the symmetry associated to the freedom of the observer to make arbitrary

spatial rotations of his frame.

The action & leaves the kinetic energy metric invariant, the latter given by a 6 x 6
positive definite quadratic form I, analogousto I, in example 1, with only off-diagonal
terms dependent on configurations. For SO(3) invariance, these in fact depend only on
AT'A; the relative configuration of two bodies. Once again an Ad*- equivariant moment
mapping J, : T*(SO(3) x SO(3)) — SO(3)* ~ R® can be written down. It is just

the angular momentum of the system with respect to the observer at the center of mass.

In the thesis of Sreenath and in the papers by Oh, Sreenath, Marsden and Krish-

naprasad, planar coupled systems such as that in example 1 are investigated.
In the paper of Grossman, Krishnaprasad and Marsden the example 2 is discussed.

For the most part, in these references the situations analyzed require that the potential

V = 0. However, in Sreenath’s thesis, control functions at the joints of planar many-body
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systems are considered and the associated feedback laws may in certain cases be interpreted

as arising from potential functions due to torsional springs at the joints.

Other interesting examples including flexible bodies (attachments) appear in [18], [27],
[30], and in the papers of Baillieul and Levi [5] [6] [7].

Poisson structures are central to our point-of-view. A Poisson manifold P is simply

a smooth manifold equipped with an IR -bilinear map (Poisson structure),

{;:}p 1 C®°(P) x C=(P)— C*(P)

satisfying the axioms

@) {figtr = —{9.f}P
(i) {fg,h}p = g{f,h}r + Fflg,h}p
(i) {f, {g,h}p }p + {9,{h, f}P}p + {h,{f,9}P}Pp =0.
We outline the general theory a little before we specialize to the mechanical set-

ting. First, associated to a Poisson structure, there is a unique, twice contravariant skew-

symmetric, smooth tensor field A on P such that,

{fv.(/}P = A (dfadg)

For a proof see p. 109 of [19]. The tensor A defines a vector-bundle morphism,

A*#.T*P - TP
oy > A#(a,) e TP,

satisfying,

B: (A*(az)) = A (z) (az,B:) for all B; e TP;.

The rank of the Poisson structure at z ¢ P is defined to be the rank of the
Poisson tensor A at . This is simply the rank of the (characteristic) distribution
C = A#¥(T*M) C TM at the point . The rank may vary on P. However, it is a theo-
rem of Kirillov [16] that A#(T*M) defines a generalized foliation on P such that through
each point ¢ P, passes a leaf carrying a unique symplectic structure that makes the in-
jection map of that leaf a Poisson morphism. (See Weinstein [34] and Libermann-Marle
[19]). Thus a Poisson manifold is a union of symplectic leaves.

A function f e C®°(P) is called a Casimir function if
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{figlp = 0 VgeC>®(P).

Casimir functions are constant on symplectic leaves.

Let G bea Liegroupandlet ¥:G x P — P,(g,z)— ¥y(z), be a group action
such that, ¥,(-) is a Poisson morphism for every g ¢ G. Further, suppose that the action
is proper and free. Then there exists a good quotient P/G that carries a Poisson structure

{*»-}pjc induced from the one on P satisfying,

{fag}P/G = {fOWaQOW}P'

Here m: P — P/G is the canonical projection. By construction, it is a Poisson morphism.
G-equivariant dynamics on P induce dynamics on P/G. Suppose h: P - R isa

G-invariant hamiltonian function on P , i.e.,

(T, (2)) = h(z) VygeG.

Define a vector field X, by

Xuf = {f,h}p V f e C=(P).

The hamiltonian h descendsto % :P/G — R and determines a reduced dynamics X i

on P/G by

X () = {fih}pje ¥feC™ (P/Q).

Here h ([z]) = h(z) for any equivalence class [z] in P/G. From, the definition of
the characteristic distribution C = A#* (T*M), it follows that the hamiltonian vector
fields ]{’,—‘ leave invariant the symplectic leaves. Thus any Casimir function is an integral
of motion for X #- The trajectories of X, project under 7 to trajectories of X 3+ The
steps just outlined constitute the essence of Poisson reduction. See [22] for more details.

We give some examples of Poisson structures.

EXAMPLE 3. (P,w) is a connected symplectic manifold and {f,g}p 1= w(Xs, X,).
Here the rank = dimension of P and there is just one symplectic leaf. Simple
mechanical systems with symmetry yield interesting rank-degenerate cases. Referring to
example 1 (the planar two-body problem), set (P,w) = (T*(S' x S'),w). The diagonal
5! action, being symplectic, also lcaves the Poisson structure on T*(S! x S!) invariant.

The Poisson-reduced phase space (T*(S' x S'))/S' has a bracket structure
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_ (%£ 9 _ 9f 9
et = (39 opr O 092)

_ <3f 9 of 39)

08 duz Ou, 08

where § = 6; — 8, = joint angle.
Symplectic leaves on (T*(S' x S'))/S* are cylinders (the corresponding charac-
teristic distribution is of rank 2 everywhere) and are level sets of the Casimir function

¢(,Lt1,ﬂ2,€) = py + po.

EXAMPLE 4 (dual space of <)

$™* carries the Lie-Berezin-Kirillov-Kostant-Souriau Poisson structure (s), defined by

uods @ = 7 (m |5 52])

where f,g ¢ C® (S*) and p e §*. The minus (plus) bracket is obtained by viewing *
as the left (right) Poisson reduction of T*G by G .

The symplectic leaf through p is O, = {(eS* : £ = Ady_ (1), 9 € G} the
coadjoint orbit through u.

When § = s0(3), the Poisson structure on $* is of rank 2 everywhere except at
the origin where 1t is of rank 0.

We close this section with some remarks about dual pairs. Given a symplectic manifold
S and Poisson manifolds P;, P, suppose maps J; and J, can be found such that the

following is a diagram of Poisson morphisms:

pdstop

The diagram is a dual pair in the sense of Marsden and Weinstein [24] [34] if the
function algebras F; = J}(C®(P1)) and Fp = J3(C=(F;)) are polarie,

{F,F} = 0.

In that case the Casimir functions on P, and P; are in one-to-one correspondence
and to the space F; N Fo.
Suppose the G action & on a simple mechanical system with symmetry is proper

and free. Then there is an associated dual pair,

L M5 T*M/G.
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Let O, be the coadjoint orbit through u € $* andlet G, = isotropy subgroup of
j¢ under the coadjoint action. Then O, =~ G/G,. Furthermore, the symplectic leaves
in T*M/G are the manifolds = (J7}(0,)) = J~'(0,)/G. They are isomorphic to the

Marsden - Weinstein - Meyer spaces of symplectic reduction [23].

3. RELATIVE EQUILIBRIA. Much work on the gravitational many-body problem has con-
centrated on special uniformly rotating configurations (e.g. Moulton’s theorem on collinear
configurations). These are relative equilibria. The search for relative equilibria in Eulerian

many-body problems has yielded some interesting results [33] [26].

Consider the dual pair

L (5,w) 5 5/G

and h : S — R a hamiltonian invariant under the action of G

DEFINITION. z. ¢S isarelative equilibrium (or the flow FY, (z.) is a stationary motion)

if there exists £ ¢ & such that

F_'\,h (ze) = ¥ (exp (t€), Xe¢).

THEOREM (Relative Equilibrium)
The following are equivalent:
(i) z. is a relative equilibrium;

(ii) z. is a critical point of he = h — < J,£ >, for some £ e 3

(iii) = (2.) is an equilibrium for the dynamics X; on S/G ]

REMARK. See Abraham & Marsden, chapter 4, for proofs. Part (ii) above is also a

consequence of the Souriau-Smale-Robbin theorem.

For simple mechanical systems with symmetry, there is an elegant characterization of

relative equilibria (due to Smale [31], although special versions have been known earlier).

THEOREM (Smale). Consider a simple mechanical system with symmetry (T*M,w,Xy)

as defined in Section 2. Define,
Ve: M- R

g V(¢) — = K (éa(q),€m(q))

(ST

for each £ € S.
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Then z. = (ge,pe) € T*M is a relative cquilibrium iff, ¢, is a critical point of Ve
for some £ €S and p. = K°(&pr (¢e)). "

For a proof of Smale’s theorem see Smale [31) or Abraham & Marsden, pp 355. In his
well-known paper [31], Smale uses this theorem to prove Moulton’s theorem on the number

of collinear configurations for the gravitational many-body problem.

Smale’s theorem provides a convenient technique to compute relative equilibria. Ve

is a Ge-invariant function on M the configuration space, where
Ge = {9eG : Ady (§) = ¢}

and we are in the setting of equivariant Morse theory [3].

EXAMPLE 5. (planar 2-body problem continued). Returning to examples 1 and 3, we

note, for £ € ¥ = R, &pr is given by

e (6, 02)) = ¢ (3% ; a—‘;’,;)

Thus, setting V = 0,

Ve ((61, 62))

-F o ()

2

S (Lt b+ - ).

The S'-equivalence classes of critical points of Vi are given by,
q p ¢

%:-9\- =0« 6 =0orm.
More generally, for a chain of n planar laminae, one expects at least (1 + 1)*~! = 27!

relative equilibrium classes since the Poincare’ polynomial of the (n—1) torusis (1+4#)*71,

We add that L-S. Wang, at the University of Maryland, has begun a numerical search
for stable relative equilibria in the ball and socket problem of example 2 by numerical

minimization of V.

4. RELATIVE STABILITY MODULO G . In the presence symmetries, a natural notion
of stability is the following.

DEFINITION. Let 2, ¢ S be a relative equilibrium for the dynamics X, corresponding

to a G-invariant hamiltonian h on (S,w) . We say that 2. is relatively stable modulo
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G if w (2.) is a Lyapunov stable equilibrium for the Poisson reduced dynamics X ; on
S/G .

There is a sufficient condition for relative stability modulo G.

THEOREM (Relative Stability). = (z.) is an equilibrium point of X i iff it is a critical
point of iz| L the restriction of A to the symplectic leaf L through = (2¢) . In that case,
7 (2.) is Lyapunov stable if,

(i) the Hessian D? (iz|L) (7 (2¢)) is definite.
(ii) the point 7 (z¢) has a neighborhood W on which the rank of the Poisson structure

{-, ‘}sjc is constant.

REMARKS. In the form stated, the relative stability theorem appears to be due to Arnold.
See also [19], Theorem 12.4 in chapter [II. Pointsin S/G satisfying condition (ii) are called
generic points. At generic points, nontrivial (local) Casimir functions Cy exist. One can
verify condition (i) by seeking a (local) Casimir C, such that = (z.) is an unconstrained
critical point of A + Cg and D? (A + C4) at = (z.) is definite. This is the essence of
the energy - Casimir method. Equivalently one can find £ ¢ & such that dhg (z.) = 0

and D? h¢ (z.) is definite in directions transversal to neutral directions associated to Ge.

This is the essence of the energy - momentum method. For simple mechanical systems with

symmetry (S = T*M), using Smale’s theorem of section 3 and a splitting of T(T™ M),
this reduces to checking D?V (g.) is positive definite (see the paper of Marsden and Simo

in this volume).

At nongeneric points (where condition (ii) above does not hold), one may, by ad hoc

methods find conserved Lyapunov functions for .‘;’h. But there exist examples due to
Weinstein [35] and Libermann - Marle [19] indicating that at nongeneric points in S/G,
definiteness of D? 72‘ . does not imply stability. The Poisson bracket in {-, ‘}s/g can
affect relative stability modulo G. See the appendix to this paper for details of an example

due Libermann and Marle.

We must add that we are aware of no “physically motivated” example that parallels

the one in the appendix. It would be interesting to explore this further.
EXAMPLE 6. (Planar 2-body Problem)

By energy-Casimir the stretched out relative equilibrium (§ = 0) is relatively stable mod
S' and the folded over relative equilibrium (# = =) is unstable. This is true even at

zero total angular momentum since the Poisson tensor is of constant rank 2.

5. HOLONOMY. In 1987, Jair Koiller introduced us to the concept of Berry’s geometric

phase. Inspired by his remarks, we worked out a formula for planar n-body chains that
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admits interpretation via holonomy of a connection.

Consider a chain of planar rigid bodies floating in a planar gravity-free universe as in
figure 3. Suppose each joint is actuated so as to permit free adjustment of joint angles.

Assume that the whole assembly is at rest (angular momentum =0).

PROBLEM. Suppose the joint angles are varied continuously in a prescribed manner and
brought back to their initial condition of rest. What will be the displacement of body 1

from its initial absolute orientation?

In geometric terms, a loop is traversed in T"~! the joint angle space (or labelled
shape space in the terminology of R. Montgomery) and we are interested in measuring the
holonomy or extent to which it fails to lift to a loop in the absolute configuration space T™ .
Such liftings require connections [20] and there is a natural one in the problem obtained
by taking the orthogonal complement of the subspace spanned by vertical vector fields.
Postponing the details to a future publication we would like to give a formula answering

the problem above.

Let I} denote the n x n quadratic form associated to the planar n-body system
analogous to I, in example 1. (see the thesis of Sreenath for explicit form of I7}). Then

the angular momentum relative to the observer at the center of mass is.
c = e- I; w,

where ¢ = (1,1,---,1), and w 1is the vector of angular velocities of the system.

Admissible motions of the system leave,
e-Ipw = 0.

Then the phase shift of body 1 is given by

I Md
NG, = _/ i_rJ__jl’

e-I%e
7 P

where d¢ = (déy,--,ddn1) is the vector of joint differentials and M isan n x (n—1)

matrix satisfying

0 :1=1
]\,’[,’j = { 1 i>5321
0 otherwise,

and T is the loop traversed in joint-angle space.
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Figure 3. Planar n-Body System

The above formula can be useful in practical computations. Nonabelian analogs of
this formula applicable to say the ball and socket problem can be derived from the theory

of connections.
There is a related question of great interest in control theory.

PROBLEM. Among all possible parameterized paths T' in joint angle space, find one that

/w-I},‘wdt
r

and attains a prescribed phase shift A#6;.

minimizes the action,

Control theoretic antecedents of this problem in the setting of Lie groups go back to
the early papers of Brockett [9] and the Ph.D thesis of Baillicul [4]. The work of Brockett
(10} [11] on singular Riemannian geometry and the recent results of Richard Montgomery

[25) are directly applicable. We hope to report on this at a later date.
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APPENDIX. On An Example of P. Libermann and C.-M. Marle

(written with the assistance of L-S. Wang)

In this appendix, we work out an example suggested by Libermann & Marle (p. 274,
[1]) to investigate the notion of relative stability modulo a group G of symmetries in
the sense of Liapunov. The main purpose here is to show that for nongeneric momenta,

stability may depend on the Poisson structure also.
First, the symplectic manifold in this example is

(.’\f,UJ) = (IR'47dq1 Adpl + dq2 Ade)'

The Lie group here is

G= Aff+(R)
(a,b)] a,beR® with group law
= (a,b) - (d',0")
=(a + a,,b + 6“’)')

G acts on (M,w) by the following rule.

.G X M- M
(9,2) = @4(z)

((avb):(ql,q27l’1,]’2)) ""(a + qlvb + eaq2’p1’e—-ap2)
= @4(z). (1)
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It is easy to check that this is an action. Moreover, since
da + ¢")Adpy + d(b + €*¢*) Ad(e™*p2)

= d¢* Adpy + dq® Adp,
this action is actually symplectic (i.e. leaves w invariant).

Let 8 = pdg' + p2dg®. Then w = —df. The action of G also leaves ¢ invariant.
Hence by theorem 4.2.10 (Abraham & Marsden (3]) thereis an Ad* equivariant momentum
mapping J, defined by,

J:R*> 3" =R?

J(2)- &= (ley 6)().

We now compute J explicitly.

First, the Lie algebra corresponding to G with the Lie bracket [,-] is
$ = {£=(,6)eR?|
[5)77] = (07‘517/2 - 62771)} .

It follows that for £ € S, the exponential map from S to G is given by

(0,£%) £ =0
exp(tf) = {(tgl’(etfl ~1&) e # 0. @)

The adjoint action of G on S is given by

Ad:G x § = §

= T.(Rg-1Ly ).

In our case, for g = (q,b), & = (£1,€2),

Adg€ = (€,e¢* - ¢,

or

($) = (4 2)E)



204 P. S. KRISHNAPRASAD

The coadjoint action of G on $* is
Ad* .G x §* — G*

(9,0) = Ad;_ (0).

For €= (£1,£2), g = (a,b), we have
" 4 1 e % 4
Adg- <€2> (0 e ) (52)' @

The infinitesimal generator of the action corresponding to ¢ = (£!,£2) can be obtained

as, for = = (q¢',¢%,p1,p2),

Ear(a) = 3 2(exp (1),2)lms
= (fl)q;’{l + 6270’—611)2)' (5)

We are now ready to compute the momentum mapping J . The computation is as

follows.
J(z) (§) = (iga 0)(2)
=(p1dg" + padg®) (6‘5:—1 + (¢°€ + 62)-(92—2—5‘1725%)
=pé + p(d®8 + &)
We may then write J as

J:R* - R? = &

¢

2 2

q — (Pl + p2g¢ ) (6)
2! P2

D2

We now carry out the Marsden-Weinstein (symplectic) reduction procedure, {2].
First, we choose u = (0,0) e 3*. By (6), we know that, J~}(0) = {(¢',¢%,0,0,)l¢',*eR}.

Since the Jacobian matrix of J is
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which has rank 2 for all points in J™1(0), it follows that u = (0,0) is a regular value of

J . Next, we find that the isotropy group at (0,0) is just the whole group G , which can
be checked from (4).

Go = {g = (a,b)lAd]_, (0) = 0}
= (.

The action of Gy on J~!(0) is just the action G on J71(0).

In order to have a good quotient space, we need to check if the action is free and proper

(which implies the action is simple.) Obviously, the map,

(a,8) — (a + ¢} b + e%¢%,0,0) is one-to-one. Thus, the «.:.on is free. Next, assume

that, as n — oo,

(q7ll’q121.’0’0 - (ql’q2a070) and (an + quubn + ea"q%,0,0) - (71772a0’0)7

1_ 41
an — ' —¢q
Then {bn . ‘)/2—671—(11((2,

which shows the action is proper. Now we can apply Thm. 4.3.1. [Abraham and Marsden)]
to find the symplectic reduced manifold. In fact Go acts transitively on J~!(0), and
hence Py is a 1 point manifold. From the reduction theorem, there exists a unique wq

(symplectic form) on Py such that

Ty Wy = Iow
where 7o : J7}0) — Py is the canonical projection,
ig: J71(0)— P  is the inclusion map.

In our case, wy degenerates to 0. Now we consider the dynamics on the manifold. If we

define the Hamiltonian function on R* by
H:R* - R
1
(¢',4% p1,p2) — pae’,

It is easy to check that H is G invariant and,

H = e“la‘% - pgeqlaipl is the Hamiltonian vector field on (R*,w) associated to H.

The flow of Xy is given by,

Fi, (¢ d% p1,p2)) =(a", 4% + te” ,p1 —tp2e? ,p2) )
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Now, we can apply Theorem 4.3.5. in {2] to find the reduced dynamics as
H, =0,
Xy, = 0.

»

Obviously, the reduced dynamics is trivially Lyapunov stable.

Now we are ready to investigate the notion of relative stability. Before doing that, we note
that any point in J~!(0) maps to one point in Py = J~!(0)/Go . Hence any point z
in J~!(0) is a relative equilibrium, (i.e. the corresponding flow F%,_ (z) is a stationary

motion ( in the sense of Libermann-Marle)).

The following computations confirm the argument we have made above.

For z ¢ J71(0), we have to find £eS such that

Fxyi-1(0) (2) = ®(exp (86),2). (8)

In coordinates,

Fiyo-roy () = (¢',¢" + te?,0,0)

1 1 te! 2 et _ 2 e el
wentn =[5 000, B 21

If we choose,

61 =0, 62 = eq’
then (8) is satisfied.
Remark

M/G =~ R? is a good quotient.

The G invariant dynamics Xy descends to A{/G. We denote the quotient dynamics
as X.

If we denote by 7 : M — A//G the canonical projection, then the following are

equivalent characterizations of relative equilibria.
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zeJ"!(u) is a relative equilibrium

—

Fi, (z) = 3(exp (t¢),2)
for some e

o

Ff\’” (z) is a stationary motion
« Xpg, (ru(z)) =0

o X(x(z)) =0

Definition We say that F}, (z) is relatively stable mod G if m(z) is a Lyapunov

stable equilibrium point of X.

Now consider z = (q‘,qz,pl,pgj = (0,0,0,0)eRR*
F%, (z) = (0,4,0,0) is a stationary motion since Fi, (z) c J7'(0O)Vte R

Is this motion relatively stable mod G? We can coordinatize M/G via

we( )

This is because

is in the G orbit of
0
0
P
el P2

i

Clearly, = {(0,t,0,0,){teR} = (0,0)

equilibrium of X

as it should be.

The question of relative stability mod G of the flow (0,¢,0,0) reduces to a question of
Lypunov stability of the equilibrium = (z) = (0,0)e M/G.

_ A _ P1
A= ()\2) - (e“”olpg)

Choose
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in a neighborhood of (8) e M/G. Let ax = (0,0,),A2) e m~1(N).

Then,

F;{n (zx) = (0,8, A1 — tAz, A2)

Ay —th
7!'01‘-"{»”(2',\) = < 1)‘2 2).

Clearly if Ay #0, mo F§, (xa) leaves any neighborhood of (8

) e M/G in finite time!

Hence the stationary motion (0,¢,0,0) is not relatively stable mod G.
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