
Layout Appropriateness:
A metric for evaluating user interface widget layout

Andrew Sears
Human-Computer Interaction Laboratory &

Computer Science Department
University of Maryland

College Park, MD 20742
sears@cs.umd.edu

December 8, 1992

Abstract
Numerous methods to evaluate user interfaces have been investigated. These methods vary greatly
in the attention paid to the users’ tasks. Some methods require detailed task descriptions while
others are task-independent. Unfortunately, collecting detailed task information can be difficult.
On the other hand, task-independent methods cannot evaluate a design for the tasks users actually
perform. The goal of this research is to develop a metric, which incorporates simple task
descriptions, that can assist designers in organizing widgets in the user interface. Simple task
descriptions provide some of the benefits, without the difficulties, of performing a detailed task
analysis. The metric, Layout Appropriateness (LA), requires a description of the sequences of
widget-level actions users perform and how frequently each sequence is used. This task
description can either be from observations of an existing system or from a simplified task
analysis. The appropriateness of a given layout is computed by weighting the cost of each
sequence of actions by how frequently the sequence is performed. This emphasizes frequent
methods of accomplishing tasks while incorporating less frequent methods in the design.
Currently costs are based on the distance users must move the mouse. Other measures such as the
number of eye fixations necessary to extract the relevant information or measure like the number of
changes in direction may also prove useful, but must be validated before they are made available
for use. In addition to providing an comparison of a proposed or existing layouts, an LA-optimal
layout is presented to the designer. The designer can compare the LA-optimal and existing layouts
or start with the LA-optimal layout and modify it to take additional factors into consideration.
Software engineers who occasionally face interface design problems and user interface designers
can benefit from the explicit focus on the users’ tasks that LA incorporates into automated user
interface evaluation.

Introduction
Software engineers and interface designers often face the challenge of creating or redesigning an
interface. Many methods to evaluate interfaces have been developed to aid in this process. Some
methods, such as GOMS, require detailed task descriptions [3, 14]. While these methods can take
many aspects of the interactions into consideration, detailed task descriptions can be difficult to
obtain and small changes in the tasks may require extensive reanalysis. In addition, performing
detailed task analyses can require training that may be both expensive and impractical [14]. Other
methods, like the work of Tullis, require no task descriptions [29]. Task-independent methods can
provide useful information, but cannot evaluate the appropriateness of an interface for the tasks
users actually perform.

1

If methods requiring detailed task descriptions are viewed as one end of a spectrum, task-
independent methods could be the other end. The difficulties created by working with information
from either end of this spectrum provide motivation to develop techniques that can take advantage
of simple task descriptions. Simple task descriptions provide some of the benefits, without the
difficulty, of performing a detailed task analysis.

This research focuses on developing methods that take advantage of simple task descriptions when
designing or evaluating interfaces. This paper will present one method based on a metric, Layout
Appropriateness (LA), which can be used to evaluate the layout of widgets in an interface. The
process of computing LA generates a layout that is optimal with respect to the method used to
assign costs. This LA-optimal layout can be compared to proposed layouts or it can be used as a
starting point when designing a new interface.

Of course, if detailed task descriptions are available, all the available information should be used
when designing or evaluating an interface. In this situation, designers can extract task frequencies
from the detailed task description allowing LA to be calculated. LA can then be used to supplement
the detailed task information.

Related research
User Interface Design and Evaluation
Tullis investigated predicting user performance for non-interactive alphanumeric displays [29]. He
explored the relationship between several metrics including overall density of the screen, local
density of the screen, grouping of objects, and layout complexity and time required for users to
extract information from the display. He conducted several experiments and developed equations
that could predict search times and preference ratings. However, without any description of the
users’ tasks, Tullis’ model cannot evaluate the appropriateness of an interface for the specific tasks
users actually perform. Tullis did provide recommended values for each metric to guide designers,
but did not explore the benefits of task descriptions.

Perlman developed an Axiomatic Model of Information Presentation [22]. His model allows
designers to specify relationships between the information to be presented and rules for how to
show these relationships. A prototype system incorporated this model and provides feedback
about potential problems with an interface design. However, there is no mechanism to directly
compare alternative layouts. The unique contribution of this model is that it “begins with the
intentions of the designer” [22]. This is an advance over Tullis’ work which did not directly
incorporate either the designer’s intent or the users’ tasks. However, it stresses the intentions of
the designer and not the users’ tasks. Although the designer’s intent may be to generate rules and
relationships that reflect the users’ tasks, no task description is explicitly incorporated into the
model. In addition, there is no method to indicate the relative importance of the various
relationships.

GOMS is a method that requires a detailed task analysis. A GOMS analysis results in a set of
Goals, Operators, Methods, and Selection Rules which are used to describe the knowledge a user
must have to perform a task with a given system [3]. Performing the analysis in a reliable way and
constructing the necessary production rule models can make GOMS difficult to use [14]. The
hierarchical structure of a GOMS analysis provides a good framework for performing a task
analysis. This hierarchical structure often limits the amount of reanalysis that is necessary when
small changes are made to the task description. However, using GOMS effectively often requires
training that can be both expensive and impractical. Much of the current GOMS research focuses
on overcoming this limitation [14]. The difficulties with this, and the two previous methods,
provide motivation to develop methods that can take advantage of simple task descriptions.

2

Lohse developed a model to predict the amount of time necessary to extract information from a
graph [17]. This work focused on where users must look and the cognitive tasks required at each
step. This model emphasizes the tasks users are performing, but there are major differences
between Lohse’s work and the current research. First, Lohse’s model deals with low level
cognitive tasks and the current research focuses on widget level tasks. Second, Lohse’s model
simply predicts the amount of time necessary to answer a question. The current research
emphasizes determining an optimal layout and evaluating existing layouts, allowing designers to
generate improved interfaces.

Cognitive Walkthroughs are a relatively new technique in which the designer (or design team)
specifies the tasks to be performed, the sequences of actions necessary to complete the tasks. Once
these steps are completed they evaluate the ease of learning for the proposed interface [16].
Initially, cognitive walkthroughs were developed for evaluating Walk-Up-and-Use systems and
several applications of this technique have been reported with varying success [10, 16 and 31].
The results indicate that cognitive walkthroughs have potential for evaluating user interfaces, but
several important issues must be addressed before they will be practical. First, cognitive
walkthroughs appear to place too much of a demand on developers who must focus on many
aspects of design including usability. Second, this technique currently requires more time than
management may be willing to allocate to usability test. Although problems exist, cognitive
walkthroughs appear promising as a technique for evaluating many aspects of the usability of a
new or proposed interface.

Automatic Layout Generation
Numerous research systems have been developed to automatically or semi-automatically lay out
user interfaces [5, 15, 19, 28 and 32]. These systems have varied in many ways. Some systems
are based on the underlying structure of the information to be presented and others are based on
sets of guidelines. Most of these systems allow designers to modify the automatically generated
layouts. While these systems are useful, and often generate interfaces that appear well balanced,
follow general guidelines, and group related information, they do not directly include information
concerning the users’ tasks in the design process.

Casner and Larkin developed a system, which uses task descriptions to generate graphical displays
for information extraction tasks [4]. This system automatically substitutes visual operators for
logical operators in an attempt to reduce the cognitive demands placed on users. This results in
numerous displays being generated for each set of user tasks. Unfortunately, no analysis of these
displays is provided to the designer, leaving the designer many alternative displays and little
information about which displays may result in better performance.

Other Disciplines
For over 20 years human factors specialists have used link analysis for redesigning displays,
equipment, and rooms [13]. Link analysis depends on a description of the location of the objects
and the value of the links between objects. Link values may be the relative frequency of moving
from one object to another, importance, or any other value of interest. The goal is to minimize the
sum of the link values multiplied by the link lengths. This is similar to the current problem except
that formal methods for using link analysis have not been developed. Figures 1 and 2 present an
example of an office reorganized to shorten the distance traveled. Link labels indicate how
frequently workers must move from one location to another. Note, not all links are of minimal
length, but the links with the highest frequencies were dramatically shortened.

3

A very similar problem involves organizing the various departments and equipment in a building.
This problem is referred to as Facilities Layout. A particular step in this process, Block Layout, is
very similar to the problem solved by the Layout Appropriateness metric [8].

Desk

B
ooks

File File File

B
ooks

B
ooks

Table

510

2

1
15

10

8

20

3 1

5

7

Desk

B
ooks

File File File

B
ooks

Books

T
able

10

5

2

15

5
201

8

10

7

1

3

Fig. 1. An office where links labels Fig. 2. Some layout improvement by
indicate average travel per day. reducing the length of highly traveled links.

Layout Appropriateness
The idea behind Layout Appropriateness (LA) is that every layout can be assigned a cost that will
correspond to measures such as time and user preference. To compute LA, the designer must
provide the set of widgets used in the interface, the sequences of actions users perform, and how
frequently each sequence is used. Each sequence of actions represents one method of
accomplishing a task. The sequences can be described using a transition diagram where link labels
indicate how frequently each sequence is used or a table of actions (see Figure 4 and Table 2). If a
layout exists or has been proposed, the designer can provide a description of that layout for
evaluation.

The designer must also specify the method LA should use to assign a cost to each sequence of
actions. The cost of a sequence can be related to the distance the user must travel (or the Fitts’
Index of Difficulty. Fitts’ Law states that the time to complete a movement is a logarithmic
function of the ratio of the distance to the target and the size of the target [2, 18].), the number of
eye fixations needed to extract the necessary information [17], the number of changes in direction,
or any other measure the designer feels is important. Currently, a measure of the distance involved
in completing the tasks (based on Fitts' Law) is used to assign a cost to a layout. This method has
been validated to demonstrate its effectiveness for evaluating interfaces. Each method of assigning
costs must be validated before it is made available for use.

The cost of a layout is computed by assigning a cost to each sequence of actions and weighting
those costs by how frequently each sequence is used. Although this may not minimize the cost of
the most frequent sequence, it does minimize the average cost of all sequences based on how
frequently they are used. The following formula is used to compute the cost for a specific layout:

4

cost =∑ [Frequency of the Transition * Cost of the Transition]

all transitions

The first step in computing LA is to find a layout that is optimal for the tasks users perform with
respect to the method used to assigning costs. The algorithm used to search for the LA-optimal
solution is presented later in this section. Next, the cost of a proposed layout is computed, and LA
is used to compare the proposed and LA-optimal layouts. The following formula is used to
compute LA:

cost of the LA-optimal layout
LA = 100 * − 

 cost of the proposed layout

This formula results in LA = 100 for an LA-optimal layout, and as LA decreases the proposed
layout is less appropriate. This formula also results in LA being most sensitive to changes in the
cost of “good” layouts.

Computing LA is most useful in two situations. First, if a layout does not already exist, LA can
generate an initial layout that the designer can modify if necessary. Second, if several alternative
layouts have been created, the designer can use LA to compare them. The LA-optimal layout can
also be compared to a single designer generated layout. The most promising use of LA would be
in conjunction with automatic layout programs that take other factors, such as, style guidelines and
common conventions into account. LA could be used when generating the initial design. As the
designer alters the layout, LA and other metrics could provide feedback concerning the expected
effects on user performance. Since minimal semantic information is used when computing LA,
designers must be allowed to make the final decision concerning which improvements to make.

Generating Task Descriptions
The designer must generate task descriptions indicating the sequences of actions users perform and
how frequently each sequence is used. The task descriptions can be represented as transition
diagrams that indicate how frequently users move between various widgets or by an equivalent
table of actions. The transition diagram reduces the task description to transitions between
widgets, while a table clearly indicates the sequences used to complete each task. The tabular
representation is easier to interpret and is more useful when analyzing the sensitivity of LA to
changes in the task description. Formal methods for describing the tasks may prove useful for
verifying the accuracy and completeness of the task descriptions [27]. Reisner proposed a formal
grammar to describe the actions users perform [25]. Payne and Green expanded on this work by
addressing multiple levels of consistency and the completeness of the language [21]. A more
recently developed task description language, the User Action Notation (UAN), may also prove
useful for describing the users’ tasks [9]. Using the task descriptions, LA appropriately
emphasizes each sequence of actions when computing the cost of a layout.

There are two methods for generating task descriptions. If an interface already exists, designers
can generate task descriptions by observing users working with the system. This can be done
either by using software to automatically collect data, or manually by observing users
accomplishing their tasks. Of course, if data is collected for an existing system, it can be biased by
the system being observed. For instance, if certain features are more difficult to access than
others, users may not take advantage of these features. However, identifying biases created by the
system can also be useful to the designer when redesigning the interface. Exploring the sensitivity

5

of LA to changes in the task description may help designers identify biases created by the current
design (see the section on the Sensitivity of LA to changes in the task description).

The second method is useful when an interface is being developed for the first time. When an
interface does not already exist, designers must identify all sequences of actions used to
accomplish the tasks. Once this is done, the designer assigns frequencies to each method based on
either expected or desired usage patterns. If a certain method is intended to be the primary method
for accomplishing a task, the designer assigns it a high frequency. This will result in LA
optimizing the layout based on that method being used more frequently than others.

Designers should use a structured, systematic approach to specify the tasks. First, the designer
must identify each task that is performed. Second, each method used to accomplish each task must
be identified. Once the methods have been identified frequencies must be assigned. This can be
done in the same way that the tasks and methods were identified. First, how frequently is each
task performed (what percentage of the time). Second, how frequently is each specific method
used. This is a general outline of the procedure used for the examples presented in this paper. The
information was gathered either by observing users, analyzing the tasks, interviews, or a
combination of these approaches. The examples presented in this paper required 0.5-3 hours to
gather the necessary information. Like many other critical applications, the tasks were well
understood for the NASA example. As a result, approximately 30 minutes was required to gather
the necessary information. Understanding how sensitive the LA metric is to changes in the task
description can help determine how accurate a task analysis must be. These times compare
favorably with other, more comprehensive, methods such as heuristic evaluations, cognitive
walkthroughs, and usability testing [10].

The level of detail required for a GOMS analysis may introduce difficulties, but the structured
hierarchical approach to a task analysis is a valuable tool [14]. A GOMS analysis involves
specifying four types of information. First, the users Goals must be identified. This step is also
necessary for an LA task analysis. Second, the Operators or actions that the user executes must be
identified. For GOMS this is typically a recursive process with the end result being a set of
external and mental operators. External operators are observable actions while mental operators are
non-observed hypothetical operators which are inferred by the analyst. LA, as described in this
paper, only requires external operators which correspond to selecting or using individual widgets.
Third, the Methods which are used to accomplish each goal are identified. This involves
specifying a sequence of operators that are executed. Since we only define a subset of the external
operators, these are the only steps that must be specified. Finally, the Selection rules for deciding
when each method used must be specified. This corresponds to specifying how frequently each
method is used. As you can see, a GOMS analysis and the analysis necessary for LA can follow
the same basic procedure. One of the primary difficulties with performing a GOMS analysis is
knowing when and how to use mental operators. Mental operators are non-observable,
hypothetical, inferred actions. Removing mental operators and simplifying the external operators
to the selection of widgets should make performing the task analysis more practical.

Fath and Bias also discuss a structured approach for performing a task analysis which is guided by
a workbook [7]. Providing a written document for designers to follow may make the task analysis
easier to understand and perform. Understanding how sensitive LA is to changes in the task
description will provide a better understanding of how accurate the task description must be.
Current investigations indicate that misallocating 5 - 10% of the tasks does not result in large
changes in LA. This issue is discussed in more detail in the section on the Sensitivity of LA to
changes in the task description.

6

It is critical that some form of task description be available when interfaces are being designed and
evaluated. Although many methods for performing task analyses exist, additional research is
necessary to make these methods easier to use. These methods are not discussed here, but for
further references see: [1, 6, 7, 11, 12, 14, 20 and 23].

Computing the LA-optimal Layout
The method used to search for an LA-optimal solution requires unit sized objects be placed in a
rectangular grid. Larger objects are created using constraints as discussed in the section describing
the implementation of LA. When searching for an LA-optimal layout for an interface where there
are N possible locations and K widgets to place, the number of possible layouts is equal to the
number of ways to choose K locations multiplied by the number of ways to organize the widgets in
those locations. Therefore, the following formula is used to compute the number of possible
layouts:

 N 
Number of possible layouts =   ∗ Κ!

 K 

 N  Ν!
where   = −−−−−−−−−

 K  Κ! ∗ (Ν−Κ)!

As the formula indicates, the number of layouts increases rapidly as the number of locations
increases. Evaluating all possible solutions quickly becomes impractical. Therefore, a branch and
bound algorithm with several enhancements is used to find the LA-optimal solution.
Enhancements were made as follows:

• under-estimates of the remaining cost reduced the number of nodes not on the
solution path that were expanded.

• the order to place widgets in the layout is computed. The order is determined in a
manner similar to that used by Protsko et al. to arrange data flow diagrams [24]. The
object with the highest link value connecting it to the start node is placed first. Then
the object with the highest link value connecting it to a previously placed object or the
start node is placed. This continues until all widgets are placed. This results in
getting the actual cost for the most expensive parts of the layout first, allowing bad
layouts to be identified faster. Constraining a widget to be in a fixed location forces
that widget to be placed first. If two widgets are constrained to be next to each other,
then as soon as one of them is placed, the second is placed.

• a ‘good’ layout is found using a heuristic. The cost of this layout is used as a
threshold allowing any partial-solution with an estimated cost higher than the
threshold to be pruned. This heuristic places the widgets in the order determined by
the second enhancement. The widgets are placed as close to the starting point as
possible while maintaining any constraints which have been specified.

7

Efficiency of search algorithm
In a problem where there are N possible locations to place K widgets, the total number of nodes in
the search tree is computed using the following formula:

K  N 
Total number of nodes in search tree = Σ   ∗ Μ!

Μ=1  M 

For a sample layout problem, placing 6 widgets in a 3x3 grid, there are 79,209 nodes in the search
tree. Using a simple branch and bound algorithm, without any enhancements, requires 53,841
nodes be expanded to find the optimal solution. Using under-estimates of the remaining cost
reduces this to 2,009 nodes. Only 71 must be expanded when widgets are placed in the
predetermined order. Figure 3 illustrates the entire tree that is generated when searching for the
optimal solution for this example. Costs with asterisks(*) indicate nodes pruned from the search
tree. It is important to remember that varying the transition diagram can have a dramatic impact on
the efficiency of the search algorithm.

Start

1--
6.43

1--

5.80

-1-

6.40

--1

7.00*

1--

5.83

-1-

6.43

--1

7.03*

-1-
6.46

--1
7.06*

12-

6.20

1-2

7.60*

1--
2--

5.82

1--
-2-

6.27

1--
--2

7.67*

1--

2--
7.22*

1--

-2-
7.29*

1--

--2
7.74*

14-
2--

5.84

1-4
2--

6.64

1--
24-

5.85

1--
2-4

6.65

1--
2--
4--
6.32

1--
2--
-4-
6.36

1--
2--
--4
6.69

2--
1--

5.83

-2-
1--

6.28

--2
1--

7.68*

12-

6.25

1-2

7.65*

1--
2--
6.25

1--
-2-
6.32

1--
--2
7.72*

2-4
1--

6.66

2--
14-

5.85

2--
1-4

6.65

2--
1--
4--
6.13

2--
1--
-4-
6.17

2--
1--
--4
6.69

24-
1--

5.86

143
2--

5.94

14-
23-

5.84

14-
2-3

5.99

14-
2--
3--
6.99*

14-
2--
-3-
6.94*

14-
2--
--3
6.99*

145
23-

5.95

14-
235

5.99

14-
23-
5--
6.89

14-
23-
-5-
6.85

14-
23-
--5
7.00*

23-
14-

5.85

2-3
14-

6.00

2--
143

5.95

2--
14-
3--
5.90

2--
14-
-3-
5.85

2--
14-
--3
6.00

13-
24-

5.85

1-3
24-

6.00

1--
243

5.95

1--
24-
3--
6.00

1--
24-
-3-
6.00

1--
24-
--3
6.01

135
24-

6.00

13-
245

5.95

13-
24-
5--
5.90

13-
24-
-5-
5.90

13-
24-
--5
6.00

136
24-
-5-
5.89

13-
246
-5-
5.85

13-
24-
65-
5.89

13-
24-
-56
5.89

1

2

3

4

5

6

7
8

9

10

Optimal

Fig. 3. Entire tree generated when searching for an LA-optimal solution with an
initial threshold of 6.89. Link labels indicate the order that the tree was expanded.
Costs with asterisks (*) indicate nodes pruned from search tree.

8

Widgets Constraints Grid # Layouts # Possible Nodes # Expanded CPU (sec)
3 0 3x3 5.0x102 5.9x102 24 < .05

6 0 4x4 5.8x106 6.3x106 526 .10

7 0 4x4 5.8x106 6.3x106 989 .20

8 0 4x4 5.2x108 5.8x108 916 .30

10 0 5x5 1.2x1013 1.3x1013 2377 1.00

17 13 7x5 1.6x1024 1.7x1024 14734 3.30

19 15 7x6 5.4x1028 5.7x1028 8443 1.40

20 16 7x5 7.9x1027 8.4x1027 24155 5.90

*28 23 7x6 1.6x1040 1.7x1040 33053 4.60

Table 1: Number of nodes expanded and cpu time (in seconds) required to find LA-
optimal layout for various examples. * example used to illustrate the computation of LA.

After implementing the enhancements discussed above, data were collected on a Sun Sparcstation
1+ concerning the number of nodes expanded and cpu time required to find the optimal layout for
each of nine examples. Of course, the efficiency of the algorithm will depend on many factors
including: the number of nodes, size of the grid, transition diagram frequencies, and the constraints
used. Table 1 presents a summary of these results. Of course, the more complex the interface the
longer the search for the optimal solution may take. The slowest search at this time required
approximately 35 seconds to expand over 88,000 nodes.

Details of an Implementation of LA
The algorithms used to determine an LA-optimal layout and to compute the cost for any given
layout are implemented on a Sun workstation. This section describes the features and restrictions
included in this implementation. The implementation discussed here has several restrictions:

• widgets are all of equal size (Widgets that vary in size are constructed using
constraints as discussed below.),

• movement is assumed to be to the center of a unit sized widget (For compound
widgets the designer specifies which unit sized widget users move to.),

• widgets are placed in a rectangular grid,
• the designer specifies the size of the grid (The program could compute the appropriate

size for the grid.),
• the designer specifies the size of each grid cell (Grid cells do not have to be square,

but must all be equal in size.),
• costs are based on Fitts’ Index of Difficulty (Costs can be based on many measures

including: distance, number of eye fixations, or the number of changes in direction.
Currently, Fitts’ Index of Difficulty is used [2,18], but other measures can be added
easily. Each measure should be validated before it is made available for use.).

Constraints
The current implementation allows three types of constraints on widgets [24]. Constraints can be
used to create compound widgets or to enforce design guidelines. Each time a widget is placed
when searching for the LA-optimal solution all constraints on that widget are verified. If any
constraints have been violated the partial solution is removed from the search. Widgets can be
constrained to be:

9

• in a fixed location (The designer can force the Cancel button to be in the lower left
corner of the screen.),

• directly to the right of another object (The designer can create larger compound
widgets by combining unit sized widgets. The designer can force two widgets, such
as the Drive and Eject buttons, to be next to each other.),

• directly below another object (These constraints are used in the same was as the
second type of constraint.).

An Example
The following example is based on the dialog box used to open a file in the text editor Write
running under Microsoft Windows. This example illustrates how LA is computed and how the
designer can use the LA-optimal layout either as an initial layout when organizing a new interface,
or to evaluate an existing layout. To compute LA, the designer must provide the sequences of
actions users perform and a description of how frequently each sequence is used. For this example
the following assumptions are made:

• users start with the mouse at the upper left corner of the dialog box (This dialog box
is called up by selecting an item from a pull-down menu. The start location
corresponds to where the cursor was prior to the dialog box being called up.),

• grid cells are two units high and three units wide (width = 1.5*height),
• the cost of a transition is proportional to Fitts’ Index of Difficulty,
• the size of a target the user moves the mouse to is assumed to be the size of a single

grid square.

Figure 4 is a transition diagram indicating how often users move from one object to another. These
transitions are based partially on observations of actual users and partially on an analysis of the
tasks users typically perform. Table 2 is an equivalent representation of the users’ tasks which
proves more practical in many situations.

Start

OK

File

Filename

Cancel

Directory

0.50

0.02

0.10

0.38 0.45

0.05

0.02

0.05

Fig. 4. Sample transition diagram.
Link labels indicate how frequently each transition is made.

10

Task Frequency Objects used
1 5 Directory Filename
2 33 File
3 2 Cancel
4 2 Filename Ok
5 8 Filename
6 5 File Ok
7 45 Directory File

Table 2. An equivalent tabular representation of the sequences of
actions and how frequently each sequence is performed.

This example involves organizing 28 widgets in a 7x6 grid. The OK and Cancel widgets are made
of two widgets each. The Filename, Directory, and File widgets each consist of eight widgets.
Twenty-one constraints force various widgets to be next to each other, creating larger compound
widgets. One constraint forces the Cancel button to be directly below the OK button. After the
constraints are considered, the 28 widgets are reduced to five compound widgets. Figure 5
illustrates the LA-optimal layout in the 7x6 grid (compare to Figure 6). Shaded areas represent
compound widgets, solid lines represent constraints which force widgets to be next to each other.

Filename Widget

Directories Widget File Widget OK Widget

Cancel WidgetConstraints

Fig. 5. Grid representation of the LA-optimal layout in Figure 6. Dashed lines represent
the grid. Shaded areas represent compound widgets. Solid lines represent constraints used
to create compound widgets and to group the OK and Cancel Widgets.

There are 1.6x1040 possible layouts to consider, if constraints are not considered, when searching
for an LA-optimal layout for this example. Using the techniques described previously, an LA-
optimal layout was determined to cost 3.92 (Figures 5 and 6). The lines in Figure 6 represent the
two most common sequences of actions users perform.

11

As stated earlier, computing LA is most useful in two situations. First, when creating a new
interface, LA can be used to generate an initial layout. In this example, the optimal layout may
prove to be usable as it was generated. If the designer decides that certain changes are necessary,
they can make the changes and compute LA for the proposed interface to determine the possible
impact on user performance.

The second situation where LA is useful is to compare alternative designs. For this example,
assume the designer begins with the existing layout (Figure 7). Using the formulas presented
earlier we can compute the cost of the layout to be 4.39, with LA = 100 * [3.92/4.39] = 89. Two
differences become apparent when comparing the LA-optimal and existing layouts. First, since
users frequently access directories, although not as frequently as files, the Directory widget has
been placed closest to the starting location. Although it may be tempting to place the File widget
closest to the start location, analyzing the average cost of all tasks indicates that this is not the LA-
optimal organization. Second, since users access the Filename widget less frequently than the
Directory and File widgets, it was be placed at the bottom of the dialog box. The designer may
decide to investigate impact of each of these changes separately. Evaluating the layout in Figure 8
indicates that it costs 4.23 with LA=93. This is a relatively small increase in LA, indicating that the
majority of the difference between the LA-optimal and existing layouts is due to the placement of
the Filename widget. The designer is then free to choose the existing, proposed, LA-optimal, or
any other layout, but now they are more informed about the possible impact on user performance.
This example also illustrates how comparing the LA-optimal layout to a proposed layout can result
in valuable information.

Start

Fig. 6. LA-optimal layout, cost=3.92, LA=100.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions

12

Start

Fig. 7. Existing layout. Cost 4.39 and LA = 89.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions.

Start

Fig. 8. Proposed layout. Cost = 4.23 and LA = 93.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions.

Sensitivity of LA to changes in the task description
It is important for designers to understand the sensitivity of LA to small changes in the task
description. Since the sensitivity depends on the layouts and the task description, the best
approach is to provide a measure of the sensitivity of LA for each layout that is evaluated.
Changes may occur due to changing work patterns or errors in the task analysis. Small changes to
the task description should not result in dramatic changes to LA. On the other hand, large changes

13

in the task description may result in larger changes in LA (although not necessarily). Altering the
task description changes the cost of the proposed and original LA-optimal layouts. In addition, the
LA-optimal layout may change.

The cost of a layout changes in a regular and predictable way. As less expensive tasks become
more frequent the overall cost of a layout decreases. How fast the cost decreases depends on the
difference in cost between the task being discontinued and the task being started. Since changes in
the cost of a layout will be smooth and continuous, changes in LA for a layout will also be smooth
and continuous. For a given set of layouts the sensitivity of LA to changes in the task description
can be explored. What cannot be determined without recomputing the optimal layout is when a
different layout, which has not been explored, will become optimal. My investigations explored
the effects of doubling the number of occurrences of a particular task or eliminating a task entirely.
These changes resulted in a new layout becoming optimal approximately 10% of the time. When a
new layout did become optimal, the original optimal layout had an average LA of 97 indicating that
changes in the LA value of other layouts should also be relatively small.

Assuming the original LA-optimal layout will remain optimal allows more detailed exploration into
the effects of changing the task description. Restricting changes in the task description to
decreasing the frequency of one task and increasing the frequency of another task allows precise
calculations of how LA will change.

Given: • CL,1 is the cost of completing task 1 on interface L,
• CL is the cost of completing all tasks weighted appropriately using interface L,
• ∆ CLayout = CL2 - CL1.

We can derive the following formula which approximates ∆ LA with a known error for each pair of
tasks:

∆ LA = 100*[COpt/CProp]*[(C Opt2/COpt - CProp2/CProp) - (COpt1/COpt - CProp1/CProp)]

Percent error = {1 - [CProp/(CProp+ CProp2- CProp1)]}

Experience indicates that the error is typically too small to have an impact on design decisions.
Plotting 100*[COpt/CProp]*[C Opt1/COpt - CProp1/CProp] for each task allows designers to quickly
identify changes which will increase or decrease LA (Figure 9 is adjusted so the minimum value
is zero). Figure 9 was created assuming a 5% error in the allocation of tasks for both the
original and proposed layouts (i.e. change tasks 2 and 7 from 33% and 45% to 38% and 40%).
Subtracting the value for the task being discontinued from the value for the task being started
gives the change that can be expected in LA. Decreasing the frequency of one task and increase
the frequency of a task to its left increases LA. Similarly, decreasing the frequency of a task and
increasing the frequency of a task to its right decreases LA. The larger the difference between
the two tasks the larger the change in LA.

Using these graphs we can quickly determine the maximum possible effect of a 5% error in the
allocation of tasks. A 5% error will result in changing LA by less than ±3.3 (the maximum
difference between two values) for the original layout and ±2.4 for the proposed layout. We
can also identify task pairs which will result in large or small changes in LA. For example,
confusing tasks 4 and 7 would result in the largest error in LA for the original layout. Similarly,
confusing tasks 3 and 6 would result in a small error in LA for the original layout.

14

Task Number
(Task Frequency)

∆LA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 2 5 3 6 1 7

Increase LA Decrease LA

Task Number
(Task Frequency)

∆LA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 5 1 3 2 6 7

Increase LA Decrease LA

(5)(5) (33)(33) (2)(2) (2)(2) (8) (8) (5) (5)(45) (45)

Original Layout Proposed Layout

Fig. 9. Sensitivity graph for the original and proposed layouts for the Write dialog box.

The designer can also investigate the effect of errors they feel are likely in the task description.
For instance, what if the designer were unsure of the frequencies for tasks 2 and 5 (selecting the
file vs. typing a filename)? For the original layout changing between tasks 2 and 5 would have
no change on LA. For the proposed interface, increasing the frequency of task 5 would
increase LA, while increasing the frequency of task 2 would decrease LA.
Designers may also be able to identify user biases using the sensitivity graph. If two methods
exist for accomplishing a task we would expect users to choose the easier method more
frequently (the method which would increase LA for the interface). Comparing how frequently
various methods are used and the relative position of the two methods in the sensitivity graphs
can aid the designer in identifying methods which appear more difficult to users. Improving the
layout for methods that are used frequently, but have small values in the sensitivity graph, will
often result in an overall increase in LA.

Validating LA using distance
An experiment was conducted to evaluated the effectiveness of using LA to evaluate interfaces
[26]. The cost of an interface was based on distance as described above. Subjects used three
alternative layouts for two interfaces to simulate actual tasks. Task completion times and user
preferences were measured.

Three mockups were created which contained all of the major components of a screen developed
for NASA. A task description was obtained from NASA personnel through an interview that
required less than one-half of an hour [30]. The first layout, Figure 10, was the layout originally
created for NASA and has an LA value of 72. The second layout was created by moving the
confirmation dialog box closer to the button which causes it to appear and has an LA value of 83.
The third layout, Figure 11, was created by making minor adjustments to the LA-optimal layout
and has an LA value of 99.8. These three layouts were all create by a designer allowing accurate
comparisons to be made using the LA metric.

Subjects completed sixty tasks with each of the three layouts. Task completion times and user
preferences were evaluated. It is important to remember that LA is intended to indicate differences
in overall performance. Differences in LA will not necessarily correspond directly to differences in
time or satisfaction.

15

Fig. 10. Original screen as developed for NASA. LA=72.

Fig. 11. Near-optimal layout for NASA screen. LA=99.8.

16

3

2

1
Orig N-optProp

1 = Best
3 = Worst

Time
(Sec)

1.75

2.00

N-optPropOrig

2.25

Fig. 12. Task completion times (in seconds) for Fig. 13. User preference ratings for three
three alternative layouts for NASA screen. alternative layouts for NASA screen.

Although differences in task completion times were not significant, LA did accurately predict the
ordering of the layouts (Figure 12). Significant differences for user preferences indicated that
users found the third layout (LA=99.8) to be the best and the first (LA=72.0) to be the worst
(Figure 13). These results support the claim that LA values accurately compare the overall
performance of interfaces.

The second interface to be evaluated was a dialog box from MacDraw II. Once again, three
alternative layouts were compared. The task description was obtained by observing users working
with the system and analyzing the tasks users typically perform using this dialog box. This was
completed in less than 3 hours spread over a period of approximately one week. This dialog box
was called up by a menu selection and the start location was selected to represent the location of the
cursor when the dialog box first appears. The first layout was the original dialog box as it
currently exists and has an LA value of 75 (Figure 14). The second layout was created by
modifying the LA-optimal layout to align the various widgets and has an LA value of 86 (Figure
15). The third layout was the LA-optimal layout as generated by the LA algorithm and was
included to illustrate one of the limitations of the LA metric (LA=100, Figure 16). The
effectiveness of the LA metric depends on designers paying equal attention to many aspects of the
screen design. If everything is equal except the distance involved in completing tasks, LA will
accurately evaluate the alternatives.

Comparing the first and second layouts (LA=75, LA=86) indicates that the second layout resulted
in significantly faster performance and received significantly better preference ratings as would be
expected (Figures 17 and 18 respectively). The LA-optimal layout resulted in similar performance
as the second layout (LA=86), but was faster than and preferred to the first layout (LA=75). This
indicates that larger differences in LA may be necessary before differences can be expected when
comparing a layout to the algorithm generated LA-optimal layout.

17

Start

Fig. 14. Existing dialog box used to save a file. LA=75.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions.

Start

Fig. 15. Dialog box resulting from designer modifying the LA-optimal layout. LA=86.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions.

18

Start

Fig. 16. LA-optimal layout for dialog box to save a file. LA=100.
The solid line represents the most frequent sequence of actions.
The dashed line represents the second most frequent sequence of actions.

OptPropOrig
1

3

2

1 = Best
3 = Worst

OptProp

Time
(Sec)

1.50

1.75

2.00

2.25

Orig
Fig. 17. Task completion times (in seconds) for Fig. 18. User preference ratings for three
three alternative layouts for Macintosh dialog box. alternative layouts for dialog box.

Dividing the tasks into two groups allows the correlation between the cost of a layout and the time
to complete the tasks to be analyzed. The first group of tasks for each interface had a relatively
high cost for the original layout. The second group had a relatively low cost for the original
layout. The correlation between the cost and time was r=.97 for both the NASA and Macintosh
data indicating that assigning costs based on distance should provide relatively accurate estimates
of the time necessary to complete tasks (Figures 19 and 20). Therefore, even if the times are not
significantly different, the relative performance should be accurately predicted by the cost of the
layout which is used to compute LA.

19

 Layout Cost

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time
(Sec)

Task Group 1
Task Group 2

Layout Cost

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0 2.0 3.0 4.0 5.0 6.0

Time
(Sec)

Task Group 1
Task Group 2

Fig. 19. Task completion times (in seconds) vs.Fig. 20. Task completion times (in seconds) vs.
the cost of the layout for NASA layouts. the cost of the layout for NASA layouts.

Overall the results of this experiment support the use of LA (using a measure of distance to assign
costs). In some instances the benefits were in terms of user preferences. In other instances, the
benefits were in terms of both time and user preferences. LA appears to be most useful for
comparing alternative layouts which have been created by a designer and for creating an initial
layout which the designer can alter if necessary. The comparison of the LA-optimal layout for the
Macintosh dialog box illustrated one of the limitations of the current version of LA. Evaluating a
single layout with the current version of LA requires larger differences in LA before differences in
performance should be expected. The feedback provided by the sensitivity analysis also provides
information about the how changing the task description will effect user performance.

Future Directions
There are many interesting research topics involving the computation and use of LA. First,
experiments must be conducted to provide additional empirical validation of the LA metric, testing
LA using not only distance but other measures that may prove useful. Additional research is also
necessary to provide easier methods for performing task analyses.

One interesting direction would be to explore using LA to provide more direct advice to designers.
Currently, a frequently used sequence of actions that appears on the left of the sensitivity graph
indicates an opportunity for improvement. This corresponds to a frequent task that is not efficient
with the given layout. Improving the layout for this task may result in better overall performance.
Analyzing the subtasks may allow LA to provide advice which the designer can apply more
directly. Another interesting direction would be to explore the use of near-optimal solutions for
computing LA. Using near-optimal solutions would allow the use of faster algorithms such as
simulated annealing. This would speed the search, making these techniques more practical for
much larger problems.

It would be interesting to incorporate LA as well as other metrics into interface design packages.
Currently these packages provide little feedback to the designer about the effects changes to the
design will have on user performance. If automatic layout is available, these metrics could be
used, along with guidelines, to generate an initial design. Once an interface has been created,
either automatically or manually, these metrics could be used to provide feedback about user

20

performance. It would also be interesting to explore the use of LA in other disciplines, such as,
Facilities Layout [8] and applications which currently use Link Analysis [13].

Conclusions
Interface designers monitor many aspects of an interface design as it is being created. LA can
automatically monitor various measures, such as distance, reducing the demands on designers,
allowing them to concentrate on other aspects of the design. The computation of LA takes
advantage of simple task frequency descriptions to determine an LA-optimal layout. Ideally, a
detailed task analysis would be available and all the available information, including LA, would be
considered when evaluating or designing an interface. However, performing a detailed task
analysis may be difficult or expensive. In these cases, designers can perform a simplified version
of the task analysis to collect the action sequences and frequency information necessary to compute
LA. If an interface already exists, designers can collect data for actual usage. Given a simple task
description and the set of widgets to organize, an LA-optimal layout can be computed. By
weighting each method of accomplishing a task (sequence of actions) by how frequently it is used,
LA emphasizes frequent methods while incorporating less frequent methods into the layout.
Designers can compare existing or proposed layouts both visually and using the LA metric to
determine if any changes should be made. Since all important criteria cannot be included in
interface generation algorithms, designers mustbe given the freedom to make the final decisions
concerning interface layout and design.

Computing LA is most useful in two situations. First, if a new interface is being designed, LA can
generate an initial layout that the designer can modify if necessary. Second, if several alternative
layouts exist, the designer can use LA to compare them. The LA-optimal layout can also be
compared to a single designer generated layout.

The most exciting possibility for LA would be to use it in conjunction with an automated layout
program that incorporates additional details about information content and style guidelines. LA
could be used when generating the initial layout. Subsequently, as the designer makes changes,
LA and other metrics could provide feedback concerning the possible effects of the changes on
user performance. LA is intended to supplement other metrics, not to stand alone. Ideally,
additional metrics will be developed and used in conjunction with LA to provide feedback to
designers concerning the possible effects of changes in the user interface on user performance.
Providing additional feedback will be beneficial to both software engineers who occasionally face
the challenge of designing an interface and experienced designers who frequently design interfaces.

Acknowledgements
I would like to thank Ben Shneiderman for his guidance and support for this research project. I
would also like to thank the reviewers and fellow researchers for their many thoughtful comments
which have improved this paper, and NASA for providing funding for this research through grant
#NGT-50762.

References
[1] R. I. Anderson, “Task Analysis: The Oft Missing Step in the Development of Computer-
Human Interfaces; Its Desirable Nature, Value, and Role,” Proceedings of INTERACT ‘90,
August 1990, pp. 1051-1054.

[2] S. Card, W. English, and B. Burr, “Evaluation of Mouse, Rate-Controlled Isometric
Joystick, Step Keys and Text Keys for Text Selection on a CRT,” Ergonomics, Vol. 21, No. 8, pp.
601-613, 1978.

21

[3] S. Card, T. Moran, & A. Newell, The Psychology of Human-Computer Interaction,
Hillsdale, NJ: Erlbaum, 1983.

[4] S. Casner and J. H. Larkin, “Cognitive Efficiency Considerations for Good Graphic
Design,” Cognitive Science Society Proceedings, August 1989.

[5] D. de Baar, J. Foley, and K. Mullet, “Coupling Application Design and User Interface
Design,” CHI ‘92 Proceedings, May 1992, pp. 259-266.

[6] C. G. Drury, B. Paramore, H. P. Van Cott, S. M. Grey, and E. N. Corlett, “Task Analysis,”
In G. Salvendy (Ed.), Handbook of Human Factors (pp. 370-401), New York: John Wiley &
Sons, 1987.

[7] J. Fath and R. Bias, “Taking the ‘Task’ out of task analysis,” Proceedings of the 36th
Annual Meeting of the Human Factors Society, pp. 379-383, 1992.

[8] R. Gupta and J. Sharit, “Human-Computer Interaction in Facilities Layout,” In M Helander
(Ed.), Handbook of Human-Computer Interaction (pp. 729-736). Amsterdam: Elsevier Science
Publishers, 1988.

[9] H. R. Hartson, A. Siochi and D. Hix, “The UAN: User-oriented representation for direct
manipulation interface designs,” ACM Transactions on Information Systems , vol. 8, no. 3, pp.
269-288.

[10] R. Jeffries, J. Miller, C. Wharton and K. Uyeda, “User interface evaluation in the real
world: A comparison of four techniques,” CHI ‘91 Proceedings, April 1991, pp. 119-124.

[11] H. Johnson and P. Johnson, “Designers-identified requirements for tools to support task
analyses,” INTERACT ‘90 Proceedings, August 1990, pp. 259-264.

[12] P. Johnson and E. Nicolosi, “Task-based user interface development tools,” INTERACT
‘90 Proceedings, August 1990, pp. 383-387.

[13] B. Kantowitz and R. Sorkin, Human Factors: Understanding poeple-system relationships.
New York: John Wiley & Sons, 1983, pp. 226-227.

[14] D. Kieras, “Towards a Practical GOMS Model Methodology for User Interface Design,” In
M Helander (Ed.), Handbook of Human-Computer Interaction (pp. 135-157). Amsterdam:
Elsevier Science Publishers, 1988.

[15] W. Kim and J. Foley, “DON: User Interface Presentation Design Assistant,”UIST ‘90
Proceedings, October 1990, pp. 10-20.

[16] C. Lewis, P. Polson, C. Wharton and J. Rieman, “Testing a walkthrough methodology for
theory-based design of Walk-Up-and-Use interfaces,” CHI ‘90 Proceedings, April 1990, pp. 235-
242.

[17] J. Lohse, “A Cognitive Model for the Perception and Understanding of Graphics,” CHI
‘91 Proceedings, April 1991, pp. 137-144.

22

[18] I. S. MacKenzie and W. Buxton, “Extending Fitts’ Law to Two-Dimensional Tasks,” CHI
‘92 Proceedings, May 1992, pp. 219-226.

[19] J. Mackinlay, “Applying a Theory of Graphical Presentation to the Graphic Design of User
Interfaces,” UIST ‘88 Proceedings, October 1988, pp. 179-189.

[20] R. B. Miller, “Task Description and Analysis,” In R. M. Gagne (Ed.), Psychological
principles in system development, New York: Holt, Rinehart and Winston, 1963.

[21] S. Payne and T. Green, “Task-Action Grammars: A model of the mental representation of
task languages,” Human-Computer Interaction, vol. 2, no. 2, pp. 93-133.

[22] G. Perlman, “An Axiomatic Model of Information Presentation,” Proceedings of the 31st
Annual Meeting of the Human Factors Society, pp. 1129-1233, 1987.

[23] M. D. Phillips, H. S. Bashinski, H. L. Ammerman, and C. M. Fligg Jr., “A Task Analytic
Approach to Dialogue Design,” In M Helander (Ed.), Handbook of Human-Computer Interaction
(pp. 835-857). Amsterdam: Elsevier Science Publishers, 1988.

[24] L. B. Protsko, P. G. Sorenson, J. P. Tremblay, and D. A. Schafer, “Towards the Automatic
Generation of Software Diagrams,” IEEE Transactions on Software Engineering, vol. 17, no. 1,
pp. 10-21, 1991.

[25] P. Reisner, “Formal grammar and human factors design of an interactive graphics system,”
IEEE Transactions on Software Engineering, vol. SE-7, no. 2, pp. 229-240.

[26] A. Sears, “Layout Appropriateness: Guiding interface design and evaluation with simple task
descriptions”, PhD Dissertation, Computer Science Department, University of Maryland, College
Park, MD.

[27] B. Shneiderman, Designing the User Interface (2nd Edition), Reading, MA: Addison-
Wesley, 1992, pp. 55-60.

[28] P. Szekely, “Template-Based Mapping of Application Data to Interactive Displays,” UIST
‘90 Proceedings, October 1990, pp. 1-9.

[29] T. Tullis, “A system for evaluating screen formats: Research and application,” In: R. Hartson
& D. Hix (Eds.), Advances in Human-Computer Interaction,vol. 2, pp. 214-286, 1988.

[30] L. Veach, Personal Communication, NASA, Houston, TX, December 3, 1991.

[31] C. Wharton, J. Bradford, R. Jeffries and M. Franzke, “Applying cognitive walkthroughs to
more complex user interfaces: Experiences, issues, and recommendations,”CHI ‘92 Proceedings,
May 1992, pp. 381-388.

[32] B. V. Zanden and B. A. Myers, “Automatic, Look-and-Feel Independent Dialog Creation for
Graphical User Interface,” CHI ‘90 Proceedings, April 1990, pp. 27-34.

23

