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Although today’s aircraft provide a safe and reliable form of transportation,

in this era of stringent safety requirements and increased hostile threat at home

and abroad, accidents do occur. In the event of an emergency, rapid and precise

action is required to avoid the loss of aircraft, crew, and any potential passengers.

Some of the most difficult emergencies to manage are those that alter or reduce

aircraft performance. When such failures occur, aircraft control can become more

complex, requiring in some cases the pilot to re-learn how to fly. Moreover, once

these new dynamics are learned, the pilot must effectively utilize them to ensure

a safe landing. Providing this capability has been the goal of many researchers

as they improve aircraft avionics and mechanical systems, although work done

to develop emergency flight planners for reduced performance aircraft has been

lacking.

This thesis presents a general method of autonomously generating emergency

flight trajectories for post-failure aircraft connecting the aircraft with a desired



landing site. This emergency flight planner utilizes a simplified aircraft kine-

matic model allowing rapid computation of aircraft configuration changes from a

sequence of trimmed, i.e., non-accelerating, flight conditions. The complete set

of attainable trimmed flight conditions yields an accurate approximation of the

post-failure flight envelope, guaranteeing the production of feasible flight plans.

To facilitate accurate results, the feasibility and configuration impact of the dy-

namic transitions between these trim states must also be addressed. The flight

planner uses a combination of discrete search and local continuous optimization

techniques to piece together from compiled trim and transition databases, find-

ing the necessary flight segment durations that produce the desired feasible flight

trajectory to a known desired landing site. A case study focusing on lateral ac-

tuator (aileron and rudder) jams of an F-16 aircraft is used to demonstrate flight

planner performance.
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Chapter 1

Introduction

On November 22, 2003, an Airbus A300 took off from Baghdad International

Airport [1]. The aircraft, owned and operated by DHL International, was bound

for Bahrain to deliver a load of mail from the Iraqi capital. Due to the opera-

tional hazards inherent to flying in and out of a war zone, DHL flight crews were

instructed to take special operational precautions during take-off and landing;

the new procedures were aimed at maximizing the take-off climb rate to limit

the duration the aircraft would be vulnerable to potential ground threats. De-

spite their best efforts, the flight crew felt the force of an explosion as a rocket

impacted the aircraft, removing a significant portion of the out board section of

the left wing.

The result of the missile impact was the total loss of hydraulic power to all

control surfaces: the ailerons, elevator, and rudder were all free floating, the

spoilers were inoperative, and the flaps and slats were frozen. However, the two

under-wing mounted engines were still running. Such a configuration allowed the

aircraft to stay aloft long enough for the flight crew to learn the new dynamics of

the aircraft resulting from the missile impact. After gaining some experience, the

flight crew understood how they could alter the engine thrust to produce both
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Figure 1.1: Damaged DHL Airbus A300

Source: Rosay [1]

pitch control, by altering the thrust symmetrically, and roll control, utilizing

differential thrust. Using only the engines, the flight crew were able to success-

fully pilot the aircraft back to the airport and land the aircraft under controlled

conditions.

1.1 Motivation

Although today’s aircraft provide a safe and reliable form of transportation, in

this era of stringent safety requirements and increased hostile threat at home

and abroad, accidents do occur. In the event of an emergency, fast and precise

action is required to avoid the loss of aircraft, crew, and any potential passen-

gers. Providing this capability has been the goal of many researchers as they

seek to improve aircraft avionic and mechanical systems to not only reduce the
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probability of such incidents, but also provide pilots with the ability to manage

emergencies when they arise.

Some of the most difficult emergencies to manage are those that result in

altered or reduced aircraft performance. When such a failure occurs, the aircraft

becomes more difficult to control, and in some cases, requires the pilot to re-learn

how to fly. Moreover, once these new dynamics have been learned, it is critical

that the pilot use them to make efficient and accurate decisions to ensure a safe

landing. In A300 incident, the altered flight envelope—the feasible maneuver

suite of the post-failure vehicle—was drastically different than the one the pilots

were trained with. However, the new dynamics were such that the pilots could

retain stable control of the aircraft as well as plan a feasible trajectory to the

nearest runway. While in this case, the pilots were able to successfully land

the aircraft, many emergency situations result in aircraft loss due to untrained

pilots, or even more severe failures that the flight crew would be incapable of

compensating for. As a result, the use of advanced avionics must be able to supply

the pilot with the necessary additional information for landing the aircraft, or,

in the most severe cases, automatically perform the required flight planning and

execution activities.

The goal of this thesis is to present a general method of autonomously con-

structing emergency flight trajectories for reduced performance aircraft connect-

ing the aircraft with a desired landing site. To validate the planning method, this

thesis presents a case study showing implementation of the planner on an F-16

under varying degrees of lateral actuator—rudder and aileron—failure.
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1.2 Approach

This thesis has two main thrusts. First, a simplified aircraft model is developed

allowing rapid computation of aircraft configuration (position and orientation)

changes in inertial space. This model builds sequences of trimmed, i.e., unaccel-

erated, segments and the appropriate dynamic transitions connecting them. The

complete set of attainable trimmed flight conditions yields an accurate approxi-

mation of the post-failure flight envelope, guaranteeing the production of feasible

flight plans for nominal or reduced performance conditions. The kinematic prop-

erties of these trimmed flight conditions allows the derivation of an analytical

expression for the configuration change accumulated while maintaining the flight

condition for a nonzero length of time.

This simplified aircraft model requires a detailed dynamic analysis to deter-

mine the feasibility and impact of transitioning between trimmed flight condi-

tions. Indeed, it is shown that the natural dynamics of the aircraft prohibit the

use of open-loop control techniques. As a result, a nonlinear controller, designed

using techniques from linear systems theory, is presented, as well as a method of

computing the flight path change incurred to build each transition.

Second, a flight planning algorithm is described to build sequences of these

trimmed flight conditions into a valid trajectory connecting some initial aircraft

location with a desired landing site. This flight planner uses a combination of

discrete search and continuous local optimization techniques to piece together

elements from trim and maneuver transition databases, finding the necessary

durations to hold each trim segment to produce an acceptable flight plan.

Chapter 2 presents the rigid-body aircraft equations of motion as well as spe-

cific model information to simulate actuator failures of an F-16 aircraft. Chapter
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3 rigorously defines trimmed flight and shows the creation of a trim database that

approximates the continuous flight envelope. Chapter 3 also defines the simpli-

fied aircraft model by solving the aircraft kinematic equations of motion during

a trimmed flight segment and shows how a flight plan of sequenced trimmed

flight conditions can be modeled via simple matrix transformations. Chapter 4

examines the dynamic motion of the transitioning aircraft and presents a design

of a nonlinear controller that allows accurate mapping of the overall flight path

change during a transition. Chapter 5 defines the flight planning algorithm and

the reduction of the initial trim database of Chapter 3 used to limit the total

search space. Chapter 6 presents a case study examining flight planner efficiency

and landing trajectory characteristics for a variety of rudder and aileron jam sce-

narios for an F-16 aircraft. This thesis concludes with a summary and directions

for future work in Chapter 7.

1.3 Background

1.3.1 Emergency Flight Management Systems

Today’s flight management systems (FMS) [2, 3] are capable of controlling the

aircraft from take-off through landing so long as nominal flight conditions exists.

However, in cases where a damaged aircraft responds differently than the nominal

reference model, these systems are challenged to adapt appropriately. As a result,

researchers have begun designing flight management architectures capable of ef-

fectively assisting the pilot during emergencies. Emergency flight planners (EFP)

[4, 5] have shown the potential to reduce pilot errors provided accurate presen-

tation of data or provide feasible post-failure flight plans for implementation by

an autopilot. Similar architectures have also been developed for unmanned aerial
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vehicle (UAV) applications [6] as well as emergency flight planning algorithms

for specific failures, such as the engine out scenario [5, 7].

While development of EFP-type architectures is relatively new, previous re-

search has focused on human factors aspects [4] of flight management systems,

that is, analyzing the pilot’s situational awareness and the impact various levels

of automation can play in effective decision making. Research has also focused

on the use of adaptive control techniques, coupled with advanced system identifi-

cation modules [6], to compensate for changes in the nominal FMS performance

model. While most researchers focus on one primary topic, EFP-type architec-

tures typically include a representation of the following flight planning modules:

an automatic plan generator, a trajectory predictor, autopilot, pilot interface,

and system identification tools. The goal of the combined system is to produce a

feasible waypoint sequence that the pilot or autopilot can navigate to a desired

landing site.

A general EFP-type architecture is presented in Figure 1.2 [7, 8] and shows

the interface of the research contributions of this thesis highlighted in yellow. At

the highest level, EFPs normally contains a variable autonomy pilot interface and

flight plan monitor that propagates the currently executing flight plan through

the post-failure performance model. If the flight plan is deemed infeasible or

unsafe, the pilot is notified and the adaptive flight planner (AFP) is activated.

The AFP has two tasks: selecting a safe landing site, ideally an open runway,

and planning a post-failure trajectory to that runway via the adaptive trajectory

planner.
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Figure 1.2: Post-Failure Trajectory Planning in Context of an Emergency Flight

Planner

1.3.2 Adaptive Flight Control

An emergency flight planner is only one component of the overall management

structure of an in-flight failure. It is essential that the controller, pilot or autopi-

lot, maintain stable flight at all times, avoiding conditions outside the post-failure

flight envelope. Much research has been conducted in maintaining aircraft sta-

bility for a variety of failure situations. In particular, adaptive controllers have

been implemented to compensate for control surface failures [9–11], as well as

airframe icing [12]. Adaptive critics [11, 13] have also been shown to improve

piloting ability during an emergency by adjusting dynamic parameters inside the

reference model so long as the pilot commanded trajectories are still within the

flight envelope. Intelligent flight controllers [14, 15], augmented with a reference

model, have enabled pilots to maintain control of a damaged aircraft following
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extensive failures on a C-17 aircraft with redundant control surfaces. Such post-

failure flight envelope protection is crucial for any autopilot or FMS to maintain

stable flight.

1.3.3 Emergency Flight Planning

Producing feasible flight plans has been a topic of considerable research during

the recent decade, but these efforts have typically considered nominal aircraft

performance characteristics. UAV researchers have developed flight management

tools more directed at fully-autonomous operation. In particular, Boskovic and

Mehra [6, 16] define a layered control architecture consisting of modules for strate-

gic decision making, tactical planning, and reconfigurable flight control analogous

to a piloted flight management model combining the pilot, emergency flight plan-

ner, and flight controller. In their work, Boskovic and Mehra construct a set of

alternate routes offline to respond to anomalous events, handling the set of most

probable emergency situations that might otherwise require extensive delibera-

tion to handle given a complex battle scenario. Similarly, Schouwenaars, Mettler,

et al. [17–19] have applied dynamic programming to a minimal time-to-go cost

function in order to dynamically define UAV flight plans from a database of trim

conditions and maneuvers. Such techniques require a non-trivial planning cycle

at each time step which necessitates the generation of rescue paths, such as a loi-

ter or holding pattern, to buy planning time when unexpected events occur. In

addition, Tomlin et al. [20] have devised a provably-correct real-time algorithm

to guarantee two-aircraft collision avoidance and have evaluated it as a tool for

the pilot and air traffic controllers.
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1.3.4 Trajectory Generation

Much of the literature on automatic aircraft trajectory generation uses elements

of optimal control theory to develop continuous state-space solutions that min-

imize fuel and time subject to airspace and air traffic constraints. Betts [21]

presents a thorough review of two-point boundary value problems with direct

and indirect solution techniques. Seywald et al. [22, 23] and Schultz [24] discuss

trajectory optimization for aircraft flying in the longitudinal plane using a point

mass performance model. Slattery and Zhao [25] synthesize trajectories for air

traffic management to enable controllers to better guarantee safety and increase

efficiency via minimal spacing. Wu and Guo [26] optimize trajectories based on

total energy control over the climb, cruise, and descent phases of flight; the climb

and descent profiles are produced by integrating the equations of motion with

total energy as the independent variable.

Pilot-preferred commercial and general aviation (GA) flight plans are typi-

cally defined by a sequence of waypoints connected by constant-trim segments

and transitions between these trim states. Such segmented routes [27] enable

intuitive comprehension by pilots and ATC, facilitate communication of the tra-

jectory, and can reduce computational complexity relative to numerical optimiza-

tion processes. Frazzoli [28–30] used this concept to develop a hybrid automaton

model of aircraft motion through a quantization of the system dynamics; Fraz-

zoli restricts vehicle motion to trajectories of time-parameterized trimmed flight

segments (what he calls motion primitives) connected by appropriately defined

elements from a maneuver library. While he is mostly concerned with proving

certain qualities such as well-posedness, consistency, and reachability for hybrid

aircraft automaton, Frazzoli has also applied this method to highly maneuverable
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helicopter motion planning.

This thesis describes an application of Frazzoli’s hybrid framework on a less

maneuverable platform, a conventionally controlled aircraft, as well as an exten-

sion of his motion primitives to a heterogenous atmosphere. Rather than prove

hybrid automaton properties for fixed-wing aircraft, this work instead focuses on

building trim sequences for the emergency flight planning problem.
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Chapter 2

Aircraft Flight Model

This chapter presents the set of nonlinear differential equations that define the

motion of a rigid aircraft operating in three-dimensional space. The union of

these equations of motion with detailed aerodynamic and propulsion data for a

specific vehicle fully characterize that vehicle’s post-failure performance. Section

2.1 presents the rigid-body vector equations of motion for a six-degree-of-freedom

vehicle as well as a description of the variables used, coordinate reference frames,

and the underlying assumptions. Section 2.2 describes an alternate velocity ref-

erence frame commonly used by the aerospace industry. Section 2.3 discusses

connecting the general equations of motion to specific vehicles through the use of

aerodynamic and propulsion databases containing the necessary force and torque

information, as well as the specific F-16 aircraft model used for this work. Finally,

Section 2.4 presents a compact representation for the equations of motion.
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2.1 Nonlinear Equations of Motion

2.1.1 Aircraft Dynamics

The dynamics of a rigid aircraft [31] can be expressed in vector form as

Bv̇ = −S(Bω)Bv + RBI
Ig +

BF

m
(2.1)

Bω̇ = −H−1S(Bω)HBω + H−1BT (2.2)

where Bv and Bω are three dimensional vectors defining respectively the linear

and angular velocity of the system. The preceding superscript denotes that the

velocities are measured in the aircraft body coordinate B frame which is rigidly

embedded at the center of gravity of the vehicle and aligned so that the x-axis

is pointed out the vehicle’s nose, the y-axis is pointed down the right wing,

and the z-axis projects out the underside of the aircraft. BF and BT are also

measured in the aircraft body frame and respectively define the vector sum of the

three dimensional aerodynamic and propulsion forces and torques acting on the

aircraft. H is a matrix representing the inertia properties of the system, while

m is the mass of the vehicle. RBI is the rotation matrix that converts vectors

expressed in the inertial frame to components in the aircraft body frame and Ig

is the influence of gravity on the system measured in inertial (I) coordinates.

Finally, the matrix operator S is a matrix representation of the cross product.

For example, the cross product x× y can be represented as

x× y = S(x)y
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where S is the skew-symmetric matrix

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0


Sometimes, it will be desirable to address the individual components of the vectors

Bv and Bω which are conventionally expressed as

BvT = [U, V, W ]

BωT = [p, q, r].

Because B is aligned along the aircraft’s lines of symmetry, p, q, and r are often

called the roll, pitch, and yaw rates, respectively.

2.1.2 Aircraft Kinematics

Aircraft position is expressed by the three dimensional vector p which locates the

center of the aircraft body frame with respect to an inertial reference frame. The

origin of the inertial coordinate frame can be placed arbitrarily on the surface of

the Earth, as long as it is fixed, and is traditionally oriented such that the x and

y axes are aligned respectively with the North and East cardinal directions, and

the z-axis is directed downward. With this definition of the inertial coordinate

frame, the aircraft position vector obeys the kinematic relation

ṗ = RT
BI

Bv (2.3)

which shows how the velocity, measured in body frame B, results in a change in

position, measured in inertial frame I.

RBI is the rotation matrix that converts vectors measured in the inertial frame

to aircraft body frame components. Representing a rotation in three dimensional
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space, it can be expressed more compactly as a sequence three planar rotations

about the aircraft body axes. Therefore, for any vector Iv, the coordinate trans-

formation rotating vectors between the inertial to the aircraft body frame can be

expressed as

Bv = Rφ Rθ Rψ
Iv (2.4)

where

Rφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,

Rψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 .
(2.5)

The angles φ, θ, ψ are referred to as, respectively, the roll (or bank), pitch,

and yaw angles and correspond to the body-axis angular rates p, q, r. Roll repre-

sents wing tilt, while pitch represents nose angle with respect to the horizon—the

inertial x-y plane. These angles have values in the interval [−π, π], where positive

angles match right-handed rotations about the aircraft x and y body axes. The

yaw angle is the angle the nose makes with the inertial x direction, measured

counter-clockwise when viewed along the negative inertial z-axis, and takes on

values in the interval [0, 2π]. This three-variable attitude description is known as

the Euler representation where φ, θ, ψ are the Euler angles. Using the above rep-

resentation for the aircraft orientation yields the following kinematic relationship
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between the Euler angles, their rates, and the body-axes angular rates:
φ̇

θ̇

ψ̇

 =


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0
sinφ
cos θ

cosφ
cos θ



p

q

r

 . (2.6)

This relationship can also be expressed in vector form as

Φ̇ = E(Φ)Bω (2.7)

where ΦT = [φ, θ, ψ].

2.1.3 Modeling Assumptions

Together, (2.1), (2.2), (2.3), and (2.7) are known as the rigid, flat Earth, body-

axes equations of motion for a six-degree of freedom system. The most important

assumption used in deriving the above equations is that the aircraft is a rigid

body. An aircraft is anything but rigid, which is not a surprise to any air traveler

who has observed the wings of their aircraft flex and bend throughout a flight.

Adding the appropriate equations accurately modeling this flexure would severely

complicate the equations of motion, but, in actuality, only minimally affects the

position and orientation states. The influence of these flexible dynamics are

neglected in the above equations.

The other main assumption is that the Earth is flat. The Earth is actually

an ellipsoid and for accurate around-the-Earth navigation, this curvature must

be accounted for as well as the slow rotation of the Earth about its axis. In

this work presented here, it is assumed that the lengths of the paths planned are

negligible compared to the radius of the Earth and that compensating for such

errors would not significantly improve accuracy. It should also be noted that
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the flight planning methodology presented here takes no major liberties with

this assumption and can be appropriately modified to use the more traditional

latitude and longitude parameterization if desired.

Another consideration is the use of Euler angles to define aircraft orientation.

One side-effect of using a three-variable attitude representation is the existence of

a singularity in the orientation kinematics. Specifically, a singularity exists when

the pitch angle reaches π/2; this results in an area around the singularity where

a simulation will experience numerical instability. In this work, practical limits

on aircraft performance prevent the singularity from being reached in nominal

and post-failure scenarios.

2.2 Wind Axes Coordinates

The equations of motion provided above make use of an aircraft body reference

frame to define aircraft linear velocity. Aerodynamicists, however, have tradition-

ally used an alternative representation parameterizing linear velocity in terms of

vehicle orientation with respect to the relative wind vector. When an aircraft

moves through the air, the airflow over the body is uniform and, as such, can be

defined by the free-stream velocity v, also known as the airspeed, and two angles

describing the direction of the oncoming wind, the angle-of-attack α and side slip

angle β.

Figure 2.2 shows α and β in terms of the wind vector and B frame. The angle

of attack describes how much “nose-up” orientation the aircraft with respect to

the wind and the side slip angle describes the angle the wind makes with the

center line of the aircraft. The angle of attack and side slip are the angles by

which, respectively, the aircraft B frame must be rotated to align the wind vector
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Figure 2.1: Definition of Wind Axes and Angles

Source: Stevens & Lewis [31]

with the negative x body axis, defining the new W (for “wind”) reference frame.

As a result, for a given Bv,

Wv =


cos β sin β 0

− sin β cos β 0

0 0 1




cosα 0 sinα

0 1 0

− sinα 0 cosα

 Bv

= Rβ Rα
Bv

= RWB
Bv

(2.8)

where WvT = [v, 0, 0]. Expanding (2.8) yields the explicit definitions of the
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aerodynamic variables in terms of the linear velocity measured in the B frame.

v = (U2 + V 2 +W 2)1/2

tanα =
W

U

sin β =
V

(U2 + V 2 +W 2)1/2
.

(2.9)

Differentiating (2.9) leads to the following differential equations for v, α, β:

v̇ =
UU̇ + V V̇ +WẆ

v

α̇ =
UẆ −WU̇

U2 +W 2

β̇ =
V̇ v − V v̇
v2 cos β

(2.10)

which can be used in conjunction with (2.1) to completely define aircraft dynam-

ics.

2.3 Aerodynamic Forces and Moments

While the governing equations of motion for a rigid vehicle in three dimensional

space are the same for all aircraft, specific vehicles differ in the aerodynamic

forces BF and torques BT acting on them. In order to build a precise aircraft

performance model, a detailed aerodynamic study of each aircraft type must be

formed. This mathematical model can be used for any nominal and emergency

path planning.
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2.3.1 Aerodynamic and Propulsion Effects

Aircraft forces and torques are primarily governed by aerodynamic effects and

engine thrust and can be expressed as

BF = BF A + BF T

BT = BT A + BT T

(2.11)

where subscripts A and T denote the influence of aerodynamic effects and engine

thrust respectively. BF A and BT A are typically determined through wind tunnel

tests on scale models of the aircraft, and in many cases are supplemented by

actual flight test data. These aerodynamic effects are highly dependent on aircraft

velocity, both linear and angular, as well as atmospheric characteristics given by

the altitude at flight altitude. BF T and BT T are determined by the engine

manufacturer and also depend on both aircraft speed and altitude.

Aircraft control is provided through actuators on aerodynamic surfaces, al-

tering the airflow over individual lifting surfaces on the vehicle, thereby effecting

the magnitude and direction of BF A and BT A. Similarly, the pilot has complete

authority over BF T . These actuator and engine settings are combined to form µ

an m dimensional vector of control inputs to the system.

2.3.2 F-16 Aircraft Force & Torque Data

For this work, the mathematical model for BF and BT are based on aerodynamic

data from NASA-Langley wind tunnel tests on a scale model F-16 aircraft [31]

designed to explore stall and post-stall regions of a relaxed stability aircraft. As

a result, the aerodynamic data is valid for speed ranges up to Mach 0.6, angle-of-

attacks ranging from −10◦ to 45◦, and side slip angles in the range of ±30◦. The
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thrust model is based on the F-16 after-burning engine and neglects the spool-up

time of the engine rotors.

The control input µ for the F-16 consists of elevator, aileron, and rudder

deflections, together with the thrust or throttle setting:

µ = [µt, µe, µa, µr]
T

where the subscript on each scalar µ denotes the particular control setting. The

range of possible inputs µ are limited by the physical properties of the system.

For the F-16, the elevators µe are limited to deflections of ±25◦, the ailerons

µa to ±21.5◦, and the rudder µr to ±30◦. However, the control models neglect

the lag between command and actual deflections. The throttle input µt is often

normalized with respect to the maximum setting so that the corresponding fea-

sible values it can take on are constrained to lie between zero, no thrust, and 1,

maximum thrust.

To simulate failures using the available data, the only failure modes consid-

ered in this work are “jammed” actuators where one of the three aerodynamic

actuators will be stuck at some constant deflection. Such a failure will influence

BF and BT while preventing the pilot from directly controlling the failed actu-

ator. In particular, the results presented in this work will focus on rudder and

aileron jam failure scenarios. Thus, the control vector µ used is three dimensional

and can be expressed as

µT = [µt, µe, µa or µr]

where the use of either µa or µr will be specified explicitly based on the fail-

ure case. With this representation, BF and BT must contain the aerodynamic

contribution of the failed rudder or aileron at its jammed setting.
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While the method above will be used to develop specific rudder and aileron

failure models emergency flight planning discussed in this work, the fundamental

method places no restrictions on the type of failure. However, the specific method

described in this work requires at least three post-failure controllable actuators.

Aerodynamic data modeling failed actuators, reduced authority actuators, miss-

ing wings and other structural damage, etc. can also be used in conjunction with

the flight planner and controller combination developed in this thesis, provided

this minimum controllable actuator criterion is met. Removing this restriction

would require the development of new feedback control law that would work given

a more limited set of remaining actuators.

2.4 State Representation

Note that (2.1), (2.2), (2.3), and (2.7) can be more compactly represented as

ż = f(z,µ) (2.12)

The 12-dimensional state vector z can be expressed in a partitioned form as

zT = [ ηT νT ]

where

ηT = [ x, y, h, φ, θ, ψ ]

is the 6-dimensional configuration of the vehicle—its position and attitude—while

νT = [ v, α, β, p, q, r ]

fully defines the linear and angular velocities of the aircraft. Here, altitude h

replaces inertial z to conform with traditional aerospace notation, and can be
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used interchangeably through the relation

h = −z.

An alternate, and equivalent, view of the state vector is that it completely

defines the stored energy of the system. The configuration η specifies the stored

potential energy, while the velocities ν naturally describe the system’s kinetic

energy. As the aircraft moves through its environment, the equations of motion

describe the flow of energy through the system, requiring that the state vector

update to reflect changes. Knowledge of the state vector at any initial time and

the applied control inputs from that time forward, completely defines aircraft

motion, or state trajectory, which will expressed as the time varying state vector

z(t).
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Chapter 3

Trim Analysis

This chapter describes a discrete representation of the flight envelope that defines

nominal and post-failure flight conditions to be assembled as landing trajectories.

Computing this flight envelope requires the definition of a trim state—a non-

accelerating flight condition—as well as a systematic procedure for trim state

computation for any desired flight condition. Next, a simplified aircraft kine-

matic model is presented that determines the change in flight path (position and

heading) due to a sequence of trimmed flight conditions. This model requires

accurate characterization of the flight path change during a single trimmed flight

segment as well as the compounded changes over a general sequence of feasible

trim states.

Section 3.1 defines trimmed flight conditions, trim state families, and con-

stant trimmed control settings computed with a constrained nonlinear optimiza-

tion technique. In Section 3.2, aircraft stability and controllability are defined

in small neighborhoods surrounding a trim state using results from linear sys-

tems theory. Test are presented that grade each trim state with respect to each

property. This analysis leads into the definition of a trim database in Section 3.3

which is a discrete representation of the post-failure flight envelope. In Section
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3.4, a set of equations are derived to express the evolution of the flight path pa-

rameters as a function of time, yielding the simplified aircraft kinematic model

defined in Section 3.5. Finally, Section 3.6 presents a simple altitude-feedback

trim controller that enables tracking of generic trimmed flight conditions.

3.1 Trimmed Flight Conditions

A trimmed flight condition occurs when an aircraft experiences an equilibrium

stable non-accelerating flight. In a trim state, aircraft linear and angular velocities

are constant and can be explicitly stated as a condition for which

ν̇∗ = 0 (3.1)

or, equivalently, a flight condition for which ν∗ = constant, where an asterix

will be used to denote an equilibrium quantity. Since the equations of motion

are a function of not only the state of the system, but also the control input,

as shown (2.12), trimmed flight conditions are also control dependent. In fact,

different constant control settings can produce different trim states, so that more

generally, ν∗
k(µ

∗
k) where ν∗

k is the specific steady-state flight condition resulting

from holding the constant control input µ∗
k.

3.1.1 Trimmed Climbing-Turning Flight

While the above condition (3.1) is necessary for all trimmed flight conditions,

this work will requires steady climbing/descending turns as well as straight and

level flight. To maintain these flight conditions, additional conditions must be

placed on the required trim configuration rates η̇. For an aircraft to perform a
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steady climbing/descending turn,

v̇, α̇, β̇, ṗ, q̇, ṙ ≡ 0

φ̇, θ̇ ≡ 0

ψ̇ ≡ ψ̇∗

ḣ ≡ ḣ∗,

(3.2)

where ḣ∗ and ψ̇∗ are respectively the desired climb rate and turn rate for the trim

condition. The climbing/descending turn is a more general flight condition for

which level turning flight (ḣ ≡ 0), straight climbing/descending flight (ψ̇ ≡ 0),

and straight and level flight (ḣ ≡ 0, ψ̇ ≡ 0) are all special instances. The suite of

basic flight maneuvers performed by commercial and general aviation pilots can

be represented by (3.2). Since trimmed flight requires aircraft pitch and roll to

remain constant, a trim state can be fully defined by via the reduced state vector

z̄T = [φ, θ, v, α, β, p, q, r] (3.3)

as z̄∗k(µ
∗
k), where z̄∗k is the trim state arising from the constant control setting µ∗

k.

The trim values µ∗
k and z∗k can be found be solving ˙̄z∗k = 0 for a specified ḣ∗

and ψ̇∗. However, atmospheric density variation as a function of altitude means

requires gradual control setting changes to maintain a trimmed flight condition.

Each trim maneuver can also be executed over a range of airspeeds. Thus, there

actually exists a family of trim state solutions given by

z̄∗k(h
∗, v∗, ḣ∗, ψ̇∗)

µ∗
k(h

∗, v∗, ḣ∗, ψ̇∗)

(3.4)

where h∗ and v∗ are respectively the altitude and forward airspeed of the de-

sired trim state. Note that for climbing or descending flight, h∗ is defined as the
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initial altitude. The relatively slow variation of density allows the resulting con-

stant trim computation to hold for a short amount of time after the start of the

maneuver and subsequently be maintained by altering control surface positions.

3.1.2 Nonlinear Constrained Optimization

One method of computing the above family of trim solutions is to solve the related

constrained nonlinear optimization problem that minimizes

Jtrim(z, µ) =
1

2
˙̄zT Q ˙̄z (3.5)

subject to the equality constraint g(z, h∗, v∗, ḣ∗, ψ̇∗) = 0 and the inequality

constraint s(µ) ≤ 0. g is a nonlinear function that enforces the commanded

trimmed flight condition [31] and can be expressed by

g(z, h∗, v∗, ḣ∗, ψ̇∗) =



h− h∗

v − v∗

tan θ − ab+ sin γ∗
√
a2 − sin γ∗2 + b2

a2 − sin γ∗2

p+ sin θ ψ̇∗

q − cos θ sinφ ψ̇∗

r − cos θ cosφ ψ̇∗


(3.6)

where γ∗ is the trimmed flight path angle defined as v∗ sin γ∗ = ḣ∗, and

a = cosα cos β

b = sinφ sin β + cosφ sinα cos β.

The first two constraints in (3.6) directly constrain the altitude and airspeed,

whereas the specified climb rate is indirectly specified by the third constraint

on the required flight path angle. Similarly, the turn rate is indirectly specified
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through the last three constraints which are derived from the rotational kinemat-

ics and constrain the roll and pitch rates to be zero. The nonlinear function s

describes the physical deflection limits on the actuators and for the F-16 can be

expressed as

s(µ) =



µt

1− µt

25− |µe|

21.5− |µa| or 30− |µr|


(3.7)

The matrix Q can be any positive definite matrix and describes the relative

weighting between the trim state derivatives so that each derivative contributes

equally to (3.5).

When (3.5) is minimized with respect to the trimmed flight condition (h∗, v∗, ḣ∗, ψ̇∗),

J∗
trim can be expressed as

J∗
trim = Jtrim(z∗, µ∗) = min

z,µ
{Jtrim(z, µ)} (3.8)

where z∗ and µ∗ are the solution to the minimization. A trim state is considered

feasible if

J∗
trim = 0. (3.9)

The additional—non-trim—values in z∗, namely x∗, y∗, and ψ∗, can be set to

zero and ignored.

In practice, however, (3.5) can not be minimized analytically and a multi-

dimensional numerical optimization algorithm must be used to compute an ap-

proximate solution. This algorithm will iteratively adjust a set of independent

values until some internal, algorithm-specific solution criterion signals that J has

reached a minimum. Variables the algorithm is able to independently adjust can
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be found by examining (3.6) and are listed in Table 3.1, together with the re-

maining dependent variables and those that can be neglected in computing trim

solutions.

Table 3.1: Numerical Trim Routine Variables

Independent Dependent No-Effect

α h x

β v y

φ θ ψ

µt p

µe q

µa or µr r

The feasibility condition (3.9) must be altered to accommodate numerical

optimization. Specifically, the numerical trim algorithm cannot be expected to

compute true zero-cost solutions due to numerical round-off error. As a result, a

small positive scalar εtrim can be defined such that if

J∗
trim < εtrim � 1 (3.10)

then the flight condition can be considered feasible. Thus, εtrim defines the largest

trim cost a feasible flight condition is allowed to have and represents a numerical

zero.

3.1.3 Feasible Flight Envelope

In solving (3.5), it becomes apparent that not every turn and climb combination

is feasible at every altitude and airspeed due to the limited range of allowable
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µ. Indeed, there will be maneuvers which cannot be performed regardless of the

airspeed or altitude. These limitations define the flight envelope of the aircraft.

More explicitly, the flight envelope is defined as the complete set of flight con-

ditions (h∗, v∗, ḣ∗, ψ̇∗) which satisfy (3.9) and therefore can be represented by

a four-dimensional volume in the flight condition space. Thus, the flight enve-

lope defines the complete feasible set of trimmed flight conditions available to the

post-failure aircraft from which the flight planner will define feasible trajectories

to a desired landing site.

3.2 Linear Trim Analysis

Besides feasibility, there are additional desired properties that trim states should

possess. One such property is stability. A nonlinear system is considered stable,

with respect to a trim state, if the system will naturally converge to the trim

state if the state of the system is near the trim state [32]. When applying this

definition to aircraft, the additional provision that the control input be fixed to

the associated trim setting corresponding to the particular trim state leads to the

more specific stick-fixed stability. Such a property is ideal when considering an

aircraft is constantly influenced by wind gusts causing perturbations away from

the trim linear and angular velocities. However, if these trim states are stable,

these perturbations can be guaranteed to decay over time.

A more important and necessary property of trim states is that the system is

controllable in the region surrounding a trim state. More specifically, a system

is controllable if there exists an input that can transfer the aircraft between

two distinct states in finite time [33]. For the purposes of this thesis, a more

practical definition is that controllability implies that the actuators can be varied
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in proportion to deviations in the aircraft state from trim in a manner which can

stabilize the aircraft, even if the natural “stick-fixed” motion is unstable.

While a full analysis of nonlinear aircraft dynamics is daunting given the

complex coupling of the state variables, it is impossible when the aerodynamic

and propulsion data is supplied in tabular form, as with the F-16 model used

in this work. Fortunately, a full nonlinear analysis is not needed to determine

stability and controllability in regions around a trim state. In fact, an important

result from nonlinear systems theory shows that, at least in a small neighbor-

hood surrounding a trim state, the nonlinear system can be approximated by a

linearization of its dynamics about that trim state [32]. The remainder of this sec-

tion will develop this concept and use it to determine stability and controllability

properties of aircraft trim states.

3.2.1 Linear Perturbation Models

Aircraft motion about each feasible trim point z̄∗k computed above maybe de-

scribed by a linear differential equation:

ẋk = Akxk + Bkuk (3.11)

where xk = z̄ − z̄∗k, uk = µ − µ∗
k, and Ak and Bk are the constant Jacobian

matrices

Ak =
∂ f̄

∂z̄

∣∣∣∣
z̄=z̄∗k,µ=µ∗

k

(3.12)

Bk =
∂ f̄

∂µ

∣∣∣∣
z̄=z̄∗k,µ=µ∗

k

(3.13)

where f̄ is the system of nonlinear equations defining the dynamics of z̄ at an

altitude of h∗k. The use of tabular aerodynamic and propulsion data complicates
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an analytic derivation. However, in practice, Ak and Bk can be reasonably well

approximated by first-order difference equations:

Ak,i ≈
f̄(z̄∗k + εiei,µ

∗
k)− f̄(z̄∗k,µ

∗
k)

εi

Bk,i ≈
f̄(z̄∗k,µ

∗
k + εiei)− f̄(z̄∗k,µ

∗
k)

εi

(3.14)

where Ak,i is the ith column of A and Bk,i is the ith. εi is a sufficiently small,

positive number and ei is the ith column of an n-dimensional identity matrix

where n is the size of the corresponding z∗k or µ∗
k.

3.2.2 System Stability

As a direct consequence of the equivalence of a nonlinear system and (3.11) near

a trim state, the aircraft is asymptotically stable with respect to z̄∗k if

<{λi(Ak)} < 0 ∀i = 1, . . . , 8 (3.15)

where λi(A) represents the ith eigenvalue of A and small perturbations away

from the kth trimmed flight condition will decay asymptotically to zero [32].

As mentioned above, stable trim states are desirable since aircraft motion is

inherently robust to small perturbations in the state variables. An unstable trim

state, in which any one of the eigenvalues of Ak is positive, should be avoided

since the aircraft will tend to diverge rapidly away from the trim state after ex-

periencing any perturbation. Unstable trim states, however, may be stabilizable,

i.e., they can be made stable, by appropriately coupling compensating actuator

deflections to the difference between the actual state of the system and the desired

trim state. Therefore, if the system is stabilizable, then by varying the actuator

settings according to the control law uk = −Kkxk, the closed-loop dynamics of
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(3.11) can be shown to be

ẋk = (Ak −BkKk)xk. (3.16)

which can then be made stable through an appropriate choice of Kk.

3.2.3 System Controllability

Similarly, an aircraft is controllable in a neighborhood of z̄∗k if the matrix pair

[Ak, Bk] is controllable, which is equivalent to a controllability matrix

UC =

[
Bk AkBk A2

kBk . . . A
(n−1)
k Bk

]
(3.17)

with full row rank [33]. More explicitly, the linear system in controllable if

ρ(UC) = n (3.18)

where ρ(A) represents the rank of the matrix A and n is the leading dimension—

the number of rows—of both Ak and Bk. For the linear systems examined in

this work, n = 8.

While stabilizability allows the closed-loop system matrix to be made Hurwitz,

if the linear system is controllable, then the feedback control law uk = −Kkxk

arbitrarily place the closed-loop eigenvalues. More specifically, if the matrix pair

[Ak, Bk] is controllable, then there exists a matrix Kk such that the eigenvalues

of the closed-loop system (3.16) have the property

λi(Ak −BkKk) = λdes,i ∀i = 1, . . . , 8 (3.19)

where λdes,i is the ith component of λdes, a vector containing the desired eigen-

values. Given a specific choice for λdes, a variety of algorithms exist to determine

what Kk satisfies (3.19) [34]. The ability to completely control the aircraft in
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a neighborhood surrounding the trim state z̄∗k is a much stronger property than

stability or stabilizability. In future chapters, it will be shown that while stability

can guarantee the eventual convergence of the aircraft to a specified trim state,

controllability can significantly improve convergence speed.

3.3 Trim Database

The above procedure can be used to compute a discrete set of feasible post-failure

trim conditions and then characterize each as stable, controllable, or unstable.

Executing this procedure over the spectrum of flight conditions yields a multidi-

mensional (4-D) database which, although difficult to visualize, is quite useful in

planning feasible trajectories for the aircraft after a failure. This trim database is

a discrete representation of the continuous post-failure flight envelope, completely

defining the performance characteristics of the aircraft after a specific failure. Al-

though difficult to visualize in its original form, a three-dimensional slice of the

trim database can be examined by fixing one variable (like h∗) as shown in Fig-

ure 3.1. Each feasible flight condition is represented by a plotted point whose

color corresponds to the two properties discussed in Section 3.2; the green points

denote stable and controllable trim states, yellow denotes unstable, but control-

lable trim states, and the red denotes those trim states that are unstable and

uncontrollable. Those trim states that are infeasible, that is, J∗
trim > εtrim, are

not colored.
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Figure 3.1: F-16 0◦ Rudder Failure Trim Database at Sea-Level

3.4 Trim Flight Path Displacement

When the aircraft maintains a feasible (stable or controllable) trimmed flight

condition for a nonzero length of time ∆t, its configuration will undergo a corre-

sponding change. In particular, accurate flight planning is primarily concerned

with identifying changes in the flight path parameters ψ and p; The changes in

θ and φ are implicitly defined via the specific trim states used.
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3.4.1 Trim Kinematics

Aircraft flight path changes can be computed directly from the kinematic equa-

tions

ṗ = RT
ψ RT

θ RT
φ
Bv (3.20)

ψ̇ =
q sinφ+ r cosφ

cos θ
. (3.21)

that were presented in Chapter 2. When the aircraft is maintaining a trimmed

flight condition, the change in the position and heading over the time interval ∆t

can be written as

∆p =

∫ t1

t0

RT
ψ(t) RT

θ∗ RT
φ∗

Bv∗(t) dt (3.22)

∆ψ = ψ̇∗∆t (3.23)

where t0 and t1 are respectively the times at which the trim state begins and

ends and ∆t = t1 − t0. While the solution to (3.23) is intuitive, (3.22) shows

that an analytic solution to the integral is possible because it consists primarily

of constant trim variables.

3.4.2 Pseudo-Body Velocity

For an aircraft flying at a true trim state, the roll and pitch rotation matrices and

linear velocities in the ∆p equation remain constant for the duration of the flight

segment. These “trim dependent” values can be grouped together to form the

three dimensional vector Pv∗ which describes the velocity of the trimmed aircraft

with respect to an intermediate pseudo-body coordinate frame. The orientation

of the P frame with respect to both the I and B frames is shown in Figure 3.2.

The z-axis of the pseudo-body and inertial frames are aligned, while the x and y
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Figure 3.2: Definition of Pseudo-Body Axes Using Trim Variables

axes of the pseudo-body frame and the x and y-axis of the body-axes frame are

aligned, respectively. Therefore, the P frame rotates with a change in aircraft

heading while keeping its x-y plane parallel to the surface of the Earth. As a

result, Pv∗ remains constant during trimmed flight.

Aircraft velocity, as measured in the P frame, can be expressed as

Pv∗ = RT
θ∗ RT

φ∗
Bv∗ (3.24)

relative to the B frame trimmed velocity Bv∗ and

Pv∗ = Rψ
Iv (3.25)

relative the inertial velocity Iv. For any specific flight condition, starting at an

altitude of h∗, the trimmed state variables can be determined using as shown

above, which in turn can be used to compute the constant Pv∗ via

Pv∗ = RT
θ∗ RT

φ∗ RT
α∗ RT

β∗ [v∗, 0, 0]T . (3.26)
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3.4.3 Exact Trim Solution

Using pseudo-body coordinates, the change in position resulting from holding a

constant trim state over the interval ∆t can be written as

∆p =

∫ t1

t0

RT
ψ(t)Pv∗ dt. (3.27)

In this form, the integral can now be easily written as

∆p =

∫ t1

t0

RT
ψ(t) Pv∗ dt

= RT
ψ(t0)

∫ ∆t

0

RT
ψ(t) Pv∗ dt

=
1

ψ̇∗
RT
ψ(t0)

∫ ∆ψ

0

RT
ψ
Pv∗ dψ

Performing the integration, and using the explicit expression of Rψ in (2.5), yields

the following analytical solution:

∆p = RT
ψ0

Ω1
Pv∗ (3.28)

where

Ω1 =



1
ψ̇∗


sin ∆ψ cos ∆ψ − 1 0

1− cos ∆ψ sin ∆ψ 0

0 0 ∆ψ

 , if ψ̇∗ 6= 0

∆tI, if ψ̇∗ = 0

(3.29)

where Rψ0 = Rψ(t0) and I is the 3× 3 identity matrix.

Together, (3.23) and (3.28) fully define the flight path displacement over a

trim segment held for time ∆t. The new position and heading after this trim

segment can be found via

p = p0 + RT
ψ0

Ω1
Pv∗ (3.30)

ψ = ψ0 + ψ̇∗∆t (3.31)
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where p0 and ψ0 are the initial position and heading before the trim segment.

This result agrees with previous work of Frazzoli in mapping trimmed flight

path displacements using elements of Lie algebra [28]. In fact, the screw motion

Frazzoli utilizes results in helices of motion in the position and heading space

is equivalent to the trimmed flight conditions defined above. To calculate the

trim displacement, Frazzoli makes use of the pseudo-body velocity and coordi-

nate frame, without explicitly defining it as such. More specifically, Frazzoli

decomposes Pv∗ into

Pv∗ =


VF cos βF cos γF

VF sin βF cos γF

−VF sin γF

 (3.32)

where VF = v∗, γF = γ∗, and

tan βF =
sin β cosφ+ sinα cos β sinφ

cosα cos β cos θ + sin β sinφ sin θ + sinα cos β cosφ sin θ
(3.33)

representing the pseudo-body side slip angle. Frazzoli calls βF the “sideslip”

angle, however, it should be noted that this is different than the conventional

definition presented in Section 2.2.

With this formulation, Frazzoli then defines the aircraft position displacement,

with respect to the initial pseudo-body coordinate reference, as

∆Pp =


r(sin ∆ψ cos βF + cos ∆ψ sin βF − sin βF )

r(sin ∆ψ sin βF − cos ∆ψ cos βF + cos βF )

VF sin γF∆t

 (3.34)

where r = VF cos γ/ψ̇∗. Frazzoli then uses a matrix multiplication technique

when computing the final inertial change in position which is equivalent to

∆p = p0 + RT
ψ0

∆Pp (3.35)
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which immediately presents the relationship

Ω1
Pv∗ =


r(sin ∆ψ cos βF + cos ∆ψ sin βF − sin βF )

r(sin ∆ψ sin βF − cos ∆ψ cos βF + cos βF )

VF sin γ∆t

 . (3.36)

3.4.4 Varying Trim Solution

However, not all the trim states defined in Section 3.1.1 are constant. Slight

variations in the atmosphere require the trimmed control settings µ∗, as well as

the trim state z̄∗, to change in order to maintain a constant flight condition. As

a result, the pseudo-body velocity also varies along climbing trim trajectories.

In his research, Frazzoli assumed a uniform atmosphere and therefore neglected

this variation, however, such a simplification can lead to significant errors in

computing accurate ground track displacement, especially if the trim segment is

held for long durations. As a fix, empirical results obtained during the current

research have shown that the pseudo-body velocity varies roughly linearly with

altitude, that is, dPv/dh is roughly constant over a trim segment. Thus, an

additional correction term can be added to (3.28) to compensate for altitude

induced variations in Pv.

The trim state at the beginning and end of the trimmed flight segment can

be respectively computed as

z̄∗i = z̄∗(h∗(ti), v
∗, ḣ∗, ψ̇∗)

z̄∗i+1 = z̄∗(h∗(ti) + ḣ∗∆t, v∗, ḣ∗, ψ̇∗)

where h∗(ti) is the altitude at the beginning of the trim segment. Initial and ter-

minal pseudo-body velocities Pv∗
i and Pv∗

i+1 then can be computed using (3.26).

The presumed linear acceleration can be expressed using the simple difference
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formula

P v̇∗
i =

Pv∗
i+1 − Pv∗

i

∆t
(3.37)

where ∆t = ti+1− ti. As a result, the pseudo-body velocity of the aircraft during

a trim segment can be expressed as a function of time:

Pv∗(t) = Pv∗
i + P v̇∗

i (t− ti). (3.38)

By substituting (3.38) for (3.26), (3.27) can now be written as

∆p =

∫ t1

t0

RT
ψ(t)

(
Pv∗

i + P v̇∗
i (t− t0)

)
dt. (3.39)

Using similar simplification and variable substitution steps from Section 3.4.3

yields

∆p =

∫ t1

t0

RT
ψ(t)

(
Pv∗

i + P v̇∗
i (t− t0)

)
dt.

= RT
ψ(t0)

∫ ∆t

0

RT
ψ(t)

(
Pv∗

i + P v̇∗
i t

)
dt.

= RT
ψ(t0)

[∫ ∆t

0

RT
ψ(t) Pv∗

i dt+

∫ ∆t

0

RT
ψ(t) P v̇∗

i t dt

]
= RT

ψ(t0)

[
1

ψ̇∗

∫ ∆ψ

0

RT
ψ
Pv∗

i dψ +
1

ψ̇∗2

∫ ∆ψ

0

RT
ψ
P v̇∗

i ψ dψ

]
which can be solved analytically as

∆p = RT
ψ0

(
Ω1

Pv∗
i + Ω2

P v̇∗
i

)
(3.40)

with

Ω2 =



1
ψ̇∗2


cos ∆ψ + ∆ψ sin ∆ψ − 1 − sin ∆ψ + ∆ψ cos ∆ψ 0

sin ∆ψ −∆ψ cos ∆ψ cos ∆ψ + ∆ψ sin ∆ψ − 1 0

0 0 ∆ψ2

 , if ψ̇∗ 6= 0

∆t2

2 I, if ψ̇∗ = 0

(3.41)
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It is important to note that the empirical linear relationship between the Pv∗

and altitude is not precise. However, the method of incorporating an additional

correction term for this variation is general to any type of pseudo-body veloc-

ity/altitude relationship. In fact, (3.38) is a first-order Taylor series expansion of

the true Pv(t), and it is possible to improve accuracy, as well as account for more

general pseudo-body velocity shapes, with each additional term in the expansion.

For this work, the additional term Ω2
P v̇∗

i is necessary for accurate calculation

of (3.27) for rudder and aileron failure trim states. The severity of these failures

will be shown to require side slipping flight that results in larger, though still

linear, variations in the pseudo-body velocity. For example, over a typical 10,000

ft flight path, Frazzoli’s uniform trim displacement kinematics leads to ground

track errors of ∼10 ft, whereas, the new higher-order expansion (3.40) reduces

this error to about 1 inch.

3.5 Aircraft Kinematic Model

Using the analysis above, a simplified kinematic model is now described that

maps sequences of trimmed flight conditions to flight path displacements. This

model is analogous to the method of mapping joint space to Cartesian space used

in robotics, and, as a result, will use much of the same notation.

A useful, compact representation of the aircraft’s flight path configuration

uses the 4× 4 matrix [35]

F =

RT
ψ p

0 1

 . (3.42)

The effect of holding a single trim state for a time ∆t, shown above in (3.40),

41



can be similarly represented using the mapping [28]

G(v∗, ḣ∗, ψ̇∗,∆t) =

RT
∆ψ Ω1

Pv∗
i + Ω2

P v̇∗
i

0 1

 (3.43)

where

R∆ψ =


cos (ψ̇∗∆t) sin (ψ̇∗∆t) 0

− sin (ψ̇∗∆t) cos (ψ̇∗∆t) 0

0 0 1

 . (3.44)

The specific values Pv∗(t0) and P v̇∗ can be determined by using the altitude

specified in F . After this maneuver, the new flight path configuration can be

computed as [28]

F new = FG(v∗, ḣ∗, ψ̇∗,∆t). (3.45)

More generally, the total change in position and heading after a sequence of N

consecutive trim states, held for durations ∆ti, can be represented by

FN = F 0

N∏
i=1

Gi−1,iG(v∗i , ḣ
∗
i , ψ̇

∗
i ,∆ti) (3.46)

where F 0 is the initial aircraft flight path configuration and Gi−1,i describes the

flight path displacement over the transition from trim state i− 1 to i. Note that

the G0,1 transition allows the initial trim state at F 0 to differ from the trim state

used in G(v∗i , ḣ
∗
i , ψ̇

∗
i ,∆ti).

3.5.1 Kinematic Databases

When using (3.46), computing the trim states and their associated transitions

for each FN calculation would require more time and computational resources

than available. A more practical approach is to precompute a representative

set and store these values in database form. The database can be accessed via
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an interpolation routine to approximate intermediate values. The trim database

already contains trim state information and therefore can be used to compute

the database T containing pseudo-body velocity values for a variety of flight

conditions. The input/output operation of T can be expressed by the function

Pv∗ = T (h∗, v∗, ḣ∗, ψ̇∗). (3.47)

Similarly, a database M can be computed containing values for Gi−1,i asso-

ciated with transitions between any two trimmed flight conditions found in T .

Since Gi−1,i also varies with density, the input/output operation of M can be

expressed by the function

Gi−1,i = M(h∗, v∗i−1, ḣ
∗
i−1, ψ̇

∗
i , v

∗
i , ḣ

∗
i , ψ̇

∗
i ). (3.48)

Unlike the configuration change during a trim segment, the computation of in-

dividual Gi−1,i cannot be performed using the trim states presented above. In

fact, computing Gi−1,i requires a full dynamic analysis of the aircraft. Such an

analysis, and explicit definition of Gi−1,i is presented in the next chapter.

3.6 Trim Controller

Using the method from Section 3.1.2, an open-loop trim controller C capable of

commanding all feasible trim trajectories can be defined as

C(h∗, v∗, ḣ∗, ψ̇∗) = µ∗ (3.49)

which translates the current altitude and desired flight condition into the required

trimmed control settings. Such a controller is shown coupled with an aircraft

dynamic simulator AC in Figure 3.3. To compensate for the constant adjustment
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Figure 3.3: Trim Controller Block Diagram

Figure 3.4: Trim Controller Block Diagram with Altitude Feedback

to µ∗ during climbing flight, the altitude loop is closed as shown in Figure 3.4.

While relatively trivial in its current form, provides a foundation on which more

sophisticated closed-loop controllers can be built.

3.6.1 Controller Scheduling

In practice, the method of computing the required trimmed control settings is

not accomplished by performing the actual calculations discussed in Section 3.1.2

in the control loop. The computational complexity of the constrained minimiza-

tion would result in extremely slow controller update rates. Instead, C contains

the trimmed control settings from the trim database and can be scheduled ac-

cording to the actual flight condition supplied on-line using a four-dimensional

interpolation routine.
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Chapter 4

Transition Analysis

The emergency flight planner builds post-failure flight trajectories from a se-

quence of trimmed flight conditions. Trim states have been defined with an

aircraft kinematic analysis. This chapter presents the dynamic and control anal-

ysis required to accurately characterize the transition between trim states. A

closed-loop control law is defined that reduces transition settling time and that

provides close tracking of a desired flight path.

Section 4.1 defines trim transitions and demonstrates that open-loop control

techniques are unable to produce adequate transition performance. Section 4.2

examines the reasons the open-loop system failed and and defines a full-state

feedback control law to correct these deficiencies. Section 4.3 adds an integral

term to the closed-loop controller to provide configuration tracking capabilities.

Finally, Section 4.4 provides an explicit definition for Gi−1,i and introduces the

concept of transition connectivity.
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4.1 Open-Loop Transitions

4.1.1 Trim Transitions

A trim transition is defined as a finite time change between two trim states. For

an aircraft traveling along a trim trajectory specified by the constant initial flight

condition v∗i , ḣ
∗
i , and ψ̇∗

i , a trim transition corresponds to the change

(v∗i , ḣ
∗
i , ψ̇

∗
i )→ (v∗j , ḣ

∗
j , ψ̇

∗
j ) (4.1)

over time ∆t, where (v∗j , ḣ
∗
j , ψ̇

∗
j ) defines the terminal flight condition. The results

of the trim analysis in Chapter 3 show that (4.1) requires the corresponding

change in the trim state variables

z̄∗i (hi, v
∗
i , ḣ

∗
i , ψ̇

∗
i )→ z̄∗j(hj, v

∗
j , ḣ

∗
j , ψ̇

∗
j ) (4.2)

where hi and hj are respectively the initial and resulting terminal altitude. Sim-

ilarly, the control input must also be changed so that

µ∗
i (hi, v

∗
i , ḣ

∗
i , ψ̇

∗
i )→ µ∗

j(hj, v
∗
j , ḣ

∗
j , ψ̇

∗
j ) (4.3)

where µ∗
i and µ∗

j are respectively the trimmed control settings for the trim states

z̄∗i and z̄∗j .

When performing the above transitions, there are many methods to quantify

the configuration and control setting changes over the maneuver. Generally, there

are three different strategies a transition can be performed open-loop, i.e., without

the aid of state feedback. Moreover, when evaluating these open-loop methods,

the performance of the nonlinear response must be considered. Normally, good

performance is characterized by quick rise and settling times and little overshoot.
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4.1.2 Discontinuous Transitions

The simplest method to characterize (4.1) is instantaneously switching actuator

settings from µ∗
i to µ∗

j , where a value of hj = hi can be used to determine the

specific value of the terminal trimmed control setting. To see the performance of

such a discontinuous control law, Figure 4.1 shows the flight condition response

for an example transition from

v∗i = 400 ft/s, ḣ∗i = −8.33 ft/s, ψ̇∗
i = −3 deg/s

to

v∗j = 425 ft/s, ḣ∗j = 0 ft/s, ψ̇∗
j = 0 deg/s

using the nominal F-16 aircraft model at an initial altitude of hi = 1000 ft the

control signal shown in Figure 4.2. While this discontinuous method may be the

easiest open-loop control law to implement, its performance characteristics are

poor, resulting in large short-term transients and long settling times.

4.1.3 Trim Interpolated Transitions

A more logical approach would be smoothly varying the actuator settings over

time ∆t. With this strategy, the actuator variation, initiating at time t0, could

be linearly transitioned by

µ∗(t) = µ∗
i +

µ∗
j − µ∗

i

∆t
(t− t0) (4.4)

for all t ∈ [t0, t0 + ∆t] where the terminal control setting µ∗
j can be found from

the terminal altitude estimate

hj = hi +
ḣ∗j + ḣ∗i

2
∆t.
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Figure 4.1: Flight Condition Response using Discontinuous Controller
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Figure 4.2: Applied Control Input using Discontinuous Controller
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The performance of this controller can be gauged by observing the aircraft re-

sponse in Figure 4.3 which shows the example transition defined above being

commanded with the applied control signal, provided in Figure 4.4. Again, the

presence of large transients and long settling times shows poor controller perfor-

mance. The applied control signal in this example used a ∆t = 20 sec. While the

magnitude of the transient can be reduced by increasing ∆t, this further increases

the time it takes the aircraft to arrive at the terminal flight condition.

4.1.4 Trajectory Interpolated Transition

As an alternative to directly varying the actuator settings in an attempt to smooth

the transition, the interpolation can instead be performed on flight condition

variation. This is done by defining an ideal transition explicitly describing the

desired flight condition variation during the maneuver as

v∗(t) = v∗i +
v∗j − v∗i

∆t
(t− t0)

ḣ∗(t) = ḣ∗i +
ḣ∗j − ḣ∗i

∆t
(t− t0)

ψ̇∗(t) = ψ̇∗
i +

ψ̇∗
j − ψ̇∗

i

∆t
(t− t0).

(4.5)

The altitude-feedback controller C from Section 3.6 can be used to translate

(4.5), or any other flight condition interpolation, into the equivalent changes in

trimmed actuator settings. For comparison with the other open-loop techniques,

the flight condition response using this technique is shown Figure 4.5 and the

actuator signal supplied by C is displayed in Figure 4.6.
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Figure 4.3: Flight Condition Response using Trim Interpolated Controller

51



0 10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

th
tl 

(p
er

. m
ax

)

Control Input

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

el
ev

 (d
eg

)

0 10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

ai
l d

eg
)

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

ru
d 

(d
eg

)

Time (sec)

Figure 4.4: Applied Control Input using Trim Interpolated Controller

52



0 10 20 30 40 50 60 70 80 90 100
350

400

450

500

V
 (f

t/s
)

Flight Condition

0 10 20 30 40 50 60 70 80 90 100
−100

0

100

dh
/d

t (
ft/

s)

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

dψ
/d

t (
de

g/
s)

Time (sec)

0 100 200 300 400 500 600 700 800
350

400

450

500

V
 (f

t/s
)

Flight Condition

0 100 200 300 400 500 600 700 800
−100

0

100

dh
/d

t (
ft/

s)

0 100 200 300 400 500 600 700 800
−4

−2

0

2

dψ
/d

t (
de

g/
s)

Time (sec)

Figure 4.5: Flight Condition Response using Trajectory Interpolated Controller
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Figure 4.6: Applied Control Input using Trajectory Interpolated Controller

54



4.2 Performance Tracking

Despite smooth actuation strategies, open-loop controllers provide poor tran-

sition performance because they unable to compensate for the natural aircraft

dynamics that create large amplitude and long duration transients. To combat

these transients, a more active feedback control strategy is required. As will

be shown below, each additional layer of feedback control design improves the

quality of the transition by reducing the undesirable transients and by partially

tracking an ideal flight path response. The added tracking in h and ψ minimizes

possible deviations to promote accurate mapping of the overall transition flight

path displacement in the simplified kinematic aircraft model.

4.2.1 Transient Behavior

To understand how to design a compensating controller, it is first necessary to

examine sources of poor open-loop performance. Recall that, in small neigh-

borhoods surrounding the trim states z̄∗k, the nonlinear aircraft dynamics can

be approximated by (3.11) (see Section 3.2). This simplification provides a more

straightforward method of determining transient performance characteristics than

complex nonlinear stability techniques such as Lyapunov analysis [32]. As will be

shown below, the performance of a linearized dynamic system can be determined

by examining the eigenvalues of the Jacobian matrix Ak.

Good performance is typically characterized by quick rise and settling times,

as well as minimal oscillations. While specific nonlinear system responses depend

on both Ak’s eigenvectors and eigenvalues, as a general rule, the time domain

criteria associated with good performance translates to requiring all the eigen-

values of the system to lie inside the region Λ, shown in Figure 4.7 [33], which is
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Figure 4.7: Performance Minded Eigenvalue Location

bounded on the right by a vertical line, and from above and below by two lines

emanating from the origin. Increasing σ decreases settling time and decreasing θ

reduces transient oscillation magnitude.

However, typical aircraft performance yields eigenvalues outside Λ. The pres-

ence of the phugoid mode, a slow, lightly damped oscillatory mode coupling

altitude and velocity, and the spiral mode, a slow exponential mode coupling the

roll angle and yaw rate, result in poor open-loop transition performance. The

contribution of these natural modes can be seen in Figures 4.1, 4.3, and 4.5. The

phugoid mode drives the velocity and climb rate oscillations, exchanging potential

and kinetic energy within the system as the aircraft slowly settles to an energy

equilibrium. The spiral mode causes slow convergence of ψ̇. Thus, providing

better transition performance requires a controller that can alter the location of

the eigenvalues of the closed-loop system.
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4.2.2 Nonlinear PD Control

As previously discussed, if the linearized aircraft dynamics are controllable, then

the state feedback control law

uk −Kkxk

is capable of arbitrarily placing the resulting closed-loop eigenvalues. More specif-

ically, it was shown that if

ẋk = Akxk + Bkuk

was controllable, then there exists a specific choice for Kk such that the closed-

loop system

ẋk = (Ak −BkKk)xk

has the property

λi(Ak −BkKk) = λdes,i ∀i = 1, . . . , 8.

Thus, aircraft controllability, at least locally around trim states, is necessary to

reshape the transition transients. The open-loop examples of Section 4.1 show

that stability alone is insufficient when performing transitions and that control-

lability should be the driving factor in choosing what trim states are suitable for

the trajectory flight path planner. This freedom to reshape the transients is what

drives the desire to grade feasible trim states according to their controllability.

The above analysis can be used to design a full-state feedback nonlinear con-

troller. The trajectory interpolated open-loop controller, discussed in Section

4.1.4, can be augmented with the feedback control signal

u(t) = −K(t)x(t),
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where

x(t) = z̄(t)− z̄∗(t),

to form the nonlinear control law

µ(h(t), v∗(t), ḣ∗(t), ψ̇∗(t)) = µ∗(t)−K(t)
(
z̄(t)− z̄∗(t)

)
. (4.6)

where h(t) represents altitude-feedback and v∗(t), ḣ∗(t), and ψ̇∗(t) are varied ac-

cording to (4.5). At each instant in time, the specified flight condition is used

to to compute the instantaneous feed-forward trim control setting µ∗(t), which

effectively linearizes the aircraft at that flight condition. The controller also

computes the corresponding trim state z̄∗(t) which acts as the desired tracking

response and the feedback gain matrix K(t) which places the closed-loop eigen-

values of the instantaneous linear system at a specified λdes.

As mentioned above, (4.6) is commonly referred to as a state feedback control

law, but it also loosely resembles a classical proportional-plus-derivative (PD)

controller. Traditionally, a PD controller produces feedback signal u(t) that

changes proportional to a change in an error signal e(t) and to the rate at which

the error signal changes (de(t)/dt). In this case, no such error signal is present,

however, the deviation x(t) acts as a combined measure of the error in the trim

state, through deviations in θ(t) and φ(t), as well as the rate at which the trim

state error is evolving, through deviations in ν(t). An input/output block dia-

gram of (4.6) is provided in Figure 4.8.

4.2.3 Closed-Loop Eigenvalue Placement

Although aircraft controllability allows for the general placement of the closed-

loop eigenvalues of the linearized aircraft dynamics, in practice, additional con-

cerns arise in the selection of reasonable values when designing Kk. If the desired
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Figure 4.8: PD Control Block Diagram

eigenvalues are closely-spaced, the time response of the closed-loop system will

tend to be slow and the feedback control signal will be large. A straightforward

method of selecting appropriate λdes is to place them around the circle of radius

r within region Λ as shown in Figure 4.7 [33]. Increasing r decreases transient

settling times but requires larger actuation signals. While this work adopted this

straightforward eigenvalue placement technique, additional methods do exist in

optimal control literature able to explicitly handle trade-offs between transient

settling times and actuator power [36–38].

4.2.4 State Feedback Scheduling

In practice, CPD is scheduled, in much the same way as C in Section 3.6. Specif-

ically, values for µ∗
k, z̄∗k, and Kk would be computed at a variety of flight condi-

tions (h∗k, v
∗
k, ḣ

∗
k, ψ̇

∗
k) and stored in a tabular database. On-line, the controller

would then supply approximate values for µ∗(t), z̄∗(t), and K(t) by performing

a four-dimensional table lookup on the database using the current specified flight

condition (h∗(t), v∗(t), ḣ∗(t), ψ̇∗(t)). This scheduled controller was used to pro-

duce the response, provided in Figure 4.9. For reference, the ideal flight condition

response and trim control settings are also provided. The benefits of utilizing the
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Figure 4.9: PD Controller Response
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full-state feedback controller are immediately apparent. The transient settling

time and oscillation magnitudes have been drastically reduced. Note that the

jagged response is a direct result of scheduling, i.e., a lack of smoothness in the

supplied z̄∗(t), µ∗(t), and K(t).

4.3 Configuration Tracking

Besides good performance characteristics, trim transitions must also produce re-

peatable flight paths for the simplified aircraft kinematic model to accurately

predict vehicle motion. Small deviations in the measured position or heading

after a transition can potentially produce even larger errors after the succeeding

trim segment. The influence of these errors can be limited by designing a control

law capable of tracking desired flight paths specified by the ideal transition—(4.5)

implicitly defines an ideal p∗(t), and ψ∗(t) through the kinematic effect of ν∗(t).

Figure 4.10 shows that the full-state feedback controller of the previous section

cannot provide the desired tracking objective. However, augmenting a full-state

feedback control with an additional control loop coupling corrective actuator de-

flection rates flight condition deviations can provide better tracking accuracy. To

guarantee closed-loop stability, though, both the integral and full-state feedback

controllers must be designed simultaneously.

4.3.1 MIMO Linearized Dynamics

Analyzing this coupled stability requires viewing the linearized aircraft dynamics

as the multi-input multi-output system

ẋk = Akxk + Bkuk

yk = Ckxk

(4.7)
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Figure 4.10: Ground Track Error using PD Controller

where now yk is the output measurement of flight condition perturbations

yk =


v − v∗k

ḣ− ḣ∗k

ψ̇ − ψ̇∗
k

 (4.8)

and the matrix Ck is the constant matrix

Ck =
∂yk
∂z
|z∗k,µ∗

k
. (4.9)

Unlike Ak and Bk, (4.9) can be computed analytically using the kinematic rela-

tionships for the climb and turn rates

ḣ = cosα cos β sin θ − sinφ sin β cos θ − cosφ sinα cos β cos θ

ψ̇ =
q sinφ+ r cosφ

cos θ
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and evaluating the partial derivatives at the trimmed flight condition. As a result,

Ck can be expressed, component-wise, as

c1,1 = 1

c2,1 = cosα∗
k cos β∗k sin θ∗k − sinφ∗k sin β∗k cos θ∗k − cosφ∗k sinα∗

k cos β∗k cos θ∗k

c2,2 = v∗k(− sinα∗
k cos β∗k sin θ∗k − cosφ∗k cosα∗

k cos β∗k cos θ∗k)

c2,3 = v∗k(cosα∗
k cos β∗k cos θ∗k + sinφ∗k sin β∗k sin θ∗k + cosφ∗k sinα∗

k cos β∗k sin θ∗k)

c2,5 = v∗k(− cosα∗
k sin β∗k sin θ∗k − sinφ∗k cos β∗k cos θ∗k + cosφ∗k sinα∗

k sin β∗k cos θ∗k)

c2,6 = v∗k(− cosφ∗k sin β∗k cos θ∗k + sinφ∗k sinα∗
k cos β∗k cos θ∗k)

c3,3 =
(q∗k sinφ∗k + r∗k cosφ∗k) sin θ∗k

cos θ∗k
2

c3,4 =
sinφ∗k
cos θ∗k

c3,6 =
q∗k cosφ∗k + r∗k sinφ∗k

cos θ∗k

c3,8 =
cosφ∗k
cos θ∗k

where ci,j is the component of Ck located in the ith row and jth column. All

components not listed are zero.

As a result, the integral feedback control law then can be expressed as

u̇k = −Ki,kyk, (4.10)

where Ki,k is a constant output feedback gain matrix. Coupling controller and

linearized aircraft dynamics yields the augmented systemẋk

ξ̇k

 =

 Ak 0

−Ck 0


xk

ξk

 +

Bk

0

uk (4.11)

where ξ̇k = −yk. The substitution

ζTk = [xTk ξTk ]
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allows (4.11) to be written compactly as

ζ̇k = Âkζk + B̂kuk. (4.12)

Furthermore, if the augmented system is controllable, i.e., the controllability

matrix

ÛC =

[
B̂k ÂkB̂k Â

2

kB̂k . . . Â
(n−1)

k B̂k

]
(4.13)

is full rank, then, using the feedback control law

uk = −K̂kζk,

there exists a K̂k such that the eigenvalues of the closed-loop system

ζ̇k =
(
Âk − B̂kK̂k

)
ζk (4.14)

has the property

<{λi(Âk − B̂kK̂k)} = λ̂des,i < 0 ∀i = 1, . . . , 11.

where λ̂des,i is the ith component of λ̂des. Thus, the linearized closed-loop aug-

mented system is stable and asymptotically converges to the point ζk = 0. In

other words, the closed-loop nonlinear system is stable and asymptotically con-

verges to the trim state and and desired flight condition. The controllability of

the matrix pair [Âk, B̂k] is dependent on the size of uk and the controllability of

[Ak, Bk]: the size of uk must be greater than the size of yk and, given the defi-

nition of Ck above, results show that if [Ak, Bk] are controllable, then [Âk, B̂k]

are controllable.
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4.3.2 Nonlinear PID Control

Extending the linear analysis to the time-varying nonlinear aircraft yields the

proportional-integral-derivative (PID) nonlinear controller

µ(h(t), v∗(t), ḣ∗(t), ψ̇∗(t)) = µ∗(t)− K̂(t)ζ(t)

= µ∗(t)−Kx(t)x(t) + Kξ(t)

∫ t

t0

y(τ)dτ

= µ∗(t)−Kx(t)
(
z̄(t)− z̄∗(t)

)

+ Kξ(t)

∫ t

t0


v(τ)− v∗(τ)

ḣ(τ)− ḣ∗(τ)

ψ̇(τ)− ψ̇∗(τ)

 dτ
(4.15)

where K̂k = [Kx(t) Kξ(t)] and t0 is transition start time. (4.15) works anal-

ogously to (4.6): at each instant in time, the supplied flight condition defines

the feed-forward and feedback controller parameters, with the only exception the

introduction of an additional integral term. Again, (4.15) can be represented

by the block diagram shown in Figure 4.11 where h(z) represents the nonlinear

function measuring the actual flight condition:

h(z) =


v

ḣ = cosα cos β sin θ − sinφ sin β cos θ − cosφ sinα cos β cos θ

ψ̇ =
q sinφ+ r cosφ

cos θ

 (4.16)

The improvement provided by implementing (4.15) is shown in Figure 4.12,

which shows the output response and control signal for the example transition of

the previous sections. The response in Figure 4.12 was produced by scheduling

CPID, in the same way as CPD, now with the Kξ database. Whereas the PD

controlled relied on interpolated estimates of the trim state, the desired flight

condition is included resulting in much smoother transients than in the PD case.
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Figure 4.11: PID Control Block Diagram

The flight path following capabilities of CPID are also improved, as shown in

Figure 4.13. The steady-state error between the desired and actual altitude and

heading angle have been eliminated; a constant steady-state error remains in the

x and y position variables.

One thing that should be noted is that the linear analysis used to design

the controller above does not equate similar properties to the full nonlinear sys-

tem. Most importantly, the stability of (4.14) does not guarantee the stability of

the closed-loop system occurring from implementation of (4.15). The controller

design assumes time-invariant linear dynamics, when in fact, the linearized air-

craft dynamics vary over the changing desired flight condition, and hence, over

time. Rather than tackling the full time-varying analysis to prove closed-loop

stability, this work assumes the empirical stability properties are sufficient and

instead focuses on the good performance and tracking characteristics seen from

implementing the PID controller.
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Figure 4.12: PID Controller Response
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Figure 4.13: Ground Track Error using PID Controller
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4.4 Transition Flight Path Displacement

The transition maps Gi−1,i do not have exact analytical or accurate approximate

solutions. To a first approximation, Gi−1,i can be approximated by the ideal flight

path displacement above, though the steady-state error present in x and y would

produce equivalent errors between the simplified aircraft kinematic model and

the actual aircraft response. Such errors will also be compounded over numerous

segments, producing even larger deviations.

Alternatively, these transition maps can be quantified using a time propaga-

tion (numerical simulation) of the full nonlinear model. Suppose the transition

(4.1) is numerically simulated between times t1 and t2, where t1 marks when the

transition is initiated and by t2, all the transients have died away, producing the

time histories p(t) and ψ(t). The transition map Gi,j can then be quantified via

Gi,j =

RT
∆ψ RT

ψ1
(p(t2)− p(t1))

0 1

 , (4.17)

where

R∆ψ =


cos (ψ(t2)− ψ(t1)) sin (ψ(t2)− ψ(t1)) 0

− sin (ψ(t2)− ψ(t1)) cos (ψ(t2)− ψ(t1)) 0

0 0 1

 (4.18)

Rψ1 =


cos (ψ(t1)) sin (ψ(t1)) 0

− sin (ψ(t1)) cos (ψ(t1)) 0

0 0 1

 . (4.19)

Performing similar numerical simulations over the spectrum of different trimmed

flight conditions yields the maneuver database M of Section 3.5. While the choice

of t2 is arbitrary, it in general occurs sometime after the commanded transition.
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Figure 4.14: Example Transition Maps

This additional coast time is required to allow the integral controller to converge

on the now steady flight condition and can be defined as tc = t2− (t1−∆t). For

consistency, every transition in M is performed with identical ∆t and tc.

4.4.1 Maneuver Database Connectedness

It has thus far been assumed that each transition in M is feasible. If so, the

maneuver database is fully connected. However, this, is not always the case. In

fact, most M are non-convex, i.e., partially-connected, potentially consisting of

infeasible transitions. In general, there exist two instances where transitions are

infeasible: (1) the desired transition passes through an infeasible region of the

flight envelope or (2) the transition results in actuator saturation.

The first case is a result of the type of interpolation used in the controller. At

each instant in time, the PID controller uses trim state z̄∗(t) generated by CPID.

Since the supplied flight condition to CPID varies according to (4.5), transitions
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can also be defined as straight lines connecting feasible trim states in the flight

envelope space. If this straight line passes through an infeasible region of the flight

envelope, then at some point along the transition, the desired trim state z̄∗(t)

returned by CPID will cease to be defined. As a result, the controller will have

no reference state, a condition that leads ultimately to instability. A schematic,

example two-dimensional case of a transition traversing an infeasible part of the

flight envelope is provided in Figure 4.14.

The second source of infeasible transitions, actuator saturation, is a bit more

subtle and varies significantly from failure to failure. Imposing a limit on ∆t and

tc for a given M implicitly defines a limit on the maximum length—the distance

between two trim states in the trim database—a feasible transition can have.

Performing longer transitions over the same ∆t requires more control input than

if ∆t were increased. As a result, some large transitions cannot be performed

without saturating the actuators. Unlike the transitions outside the flight en-

velope, detecting infeasible transitions due to control saturation is impossible

analytically. Moreover, control saturation is directionally-dependent: A transi-

tion from i to j may satisfy the control limitations while a transition from j to i

is infeasible. A transition may also be altitude-dependent, feasible at hi, but not

at hj.

In both cases, during the compilation of M , two checks are performed on each

simulated transition: (1) that the desired terminal trim state has been reached

and (2) that the actuator settings remain within their physical limits. Those

transitions that violate either of these rules are denoted in M by an instantaneous

transition, or, more explicitly, if a transition is infeasible at an altitude h∗, then

Gi,j = M(h∗, v∗i , ḣ
∗
i , ψ̇

∗
i , v

∗
j , ḣ

∗
j , ψ̇

∗
j ) = I4 (4.20)
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where I4 is the 4 × 4 identity matrix. (4.20) works as a flag indicating that a

particular sequence is infeasible. This flag will later alert the planning algorithm

that a candidate plan is not feasible and should not be explored.
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Chapter 5

Trajectory Planning

This chapter describes a flight planning algorithm capable of identifying feasible

paths in the inertial space connecting an aircraft at some initial post-failure state

with a desired landing site. Given a set of feasible trimmed flight conditions

and transitions between them, the planning algorithm must be able to effectively

sequence segments together producing a trajectory having the desired initial and

terminal position and heading values. However, identification of this sequence

is a nontrivial task given the size of typical trim and transition databases. To

enable real-time trajectory planning, the algorithm finds feasible rather than

optimal flight plans allowing the number of states considered by the planner

to be significantly reduced. Once reduced trim and transition databases have

been specified, the resulting trim and maneuver sequences can be exhaustively

searched, using the kinematic aircraft model to validate each sequence.

This chapter contains two sections. Section 5.1 describes the method by which

the full trim database is reduced to a tractable size, and Section 5.2 describes the

hybrid path planning algorithm designed to efficiently sequence trimmed flight

segments into a feasible post-failure flight plan.
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5.1 Database Reduction

The full set of controllable state in the trim database can be represented as the

set

D = {(h∗k, v∗k, ḣ∗k, ψ̇∗
k)}k=1,...,ND

(5.1)

where ND is the total number of points contained within D. Since altitude

cannot be independently specified, D can be contracted over altitude to produce

the flight condition database D′, the intersection of all three-dimensional altitude

slices, from h0 to hn, in the trim database:

D′ =
n⋂
i=0

D(h∗i , v
∗
k, ḣ

∗
k, ψ̇

∗
k) = {(v∗k, ḣ∗k, ψ̇∗

k)}k=1,...,ND′ (5.2)

where ND′ < ND. Further contraction of the database can be accomplished by

removing additional points, retaining a sufficient set approximately spanning the

flight envelope, enabling the planner to find solutions if they exist. The new,

contracted database D̃ can be represented as

D̃ = {(v∗k, ḣ∗k, ψ̇∗
k)}k=1,...,ND̃

(5.3)

where, by definition, D̃ ⊂ D′ and ND̃ is the size of the contracted database such

that ND̃ � ND.

5.1.1 Heuristic Reduction

While the reduction from D → D′ is rigorously defined, a heuristic reduction

process is used to reduce D′ → D̃. The points selected should represent the suite

of possible flight condition classes, that is, flight conditions where −/0/+ turn

and climb/descent combinations are possible.

One possible heuristic reduction process would be to define a series of nested,

concentric cube inside the three-dimensional volume defined by D′ as shown in
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Figure 5.1: Nested Cubes Method for Database Reduction

Figure 5.1. Each cube is aligned so that each axis of the cube is aligned with

one of the dimensions of D′ and defines 27 different points in the airspeed-climb

rate-turn rate space—26 points on the surface of the cube, and the cube’s center.

Each three-dimensional point corresponds to a particular flight condition that

is included in the reduced D̃. By allowing multiple cubes, each of a different

size, multiple layers of the feasible flight envelope can be included in D̃. The

largest cube represents the set of extreme flight conditions considered by the path

planner; the lengths of the cube’s sides are chosen so that the entire volume of

the cube is just inside the boundary of D′. Again, the trade-off between database

size and search speed requires a choice of 2 or 3 nested cubes. Design expertise

of the specific failure and aircraft will guide the choices for the number of cubes,

as well as the size for each.
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An alternate, yet similar, technique would consist of defining squares in the

D′ space, instead of cubes. With this approach, slices of the D′ volume are

taken over a discrete set of airspeeds. Within each slice, a square is placed that

encompasses the range of climb and turn rates of the two-dimensional slice. Over

the discrete range of airspeeds, the combined three-dimensional shape better

matches D′; using the method described above, the irregularness of D′ is not

accounted for leading to an unnecessarily conservative choice for D̃. A graphical

representation of the this method is shown in Figure 5.2. Each square would

define 9 points in the D′ space—8 along the edge and corners and one at the

center. As each square is defined, and stacked on each other, the outer 8 points

can, in a sense, be seen as connected, defining with each slice a larger, multi-

sided, flat-faced three-dimensional shape outlining D̃. Additional points can be

included in D̃ by incorporating both techniques mentioned here; nesting squares

at each selected airspeed includes more of the internal shape of D′ while providing

adequate coverage of the velocity range.

Because this method better captures the shape of D′, the boundary of the

combined volume of squares is more likely to intersect the boundary of D′. The

lines connecting these varied points correspond to the transitions between trim

states, and as mentioned before, the intersection of these lines with the boundary

of D′ represent transitions that occur outside the feasible flight regime. Thus, to

ensure the minimal number of infeasible transitions, the selection of trim values

away from the flight envelope boundary is preferred.
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Figure 5.2: Stacked Squares Method for Database Reduction

5.1.2 Database Reduction: An Example

As an example, consider rudder failure sea-level trim database shown in Figure

5.3. Notice that the aircraft can fly straight and make both left and right turns at

various negative and positive climb rates. Thus, appropriate choices for the trim

states in D̃ could include all possible combinations of positive, negative, and zero

climb rates and positive, negative, and zero turn rates, over a range of reasonable

airspeeds. Furthermore, if Figure 5.3 representsD′, example values for reasonable

D̃ states are shown in Table 5.1. Each row of the table represents an airspeed

slice. For each airspeed, the trim states in D̃ consists of all possible combinations

the climb rates (second column) and turn rates (third column) shown.
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Figure 5.3: F-16 0◦ Rudder Failure Trim Database at Sea-Level

5.1.3 Reduced Kinematic Databases

Once a suitable reduced flight condition database has been selected, the compan-

ion reduced pseudo-body velocity database T̃ and reduced transition database

M̃ can be compiled from the flight conditions in D̃ and a set of altitudes in the

range [h0, hn]. If this set was a subset of the original altitude discretization that

created the trim database, then T̃ ∈ T and M̃ ∈ M , though, this need not be

the case. The range of altitude producing T̃ and M̃ can be finer than in the

original trim database to increase the accuracy of the interpolation routine that

approximates intermediate pseudo-body velocities and transition mappings.

One issue that could arise in compiling M̃ is the reduction in the ratio of fea-

sible to infeasible transitions. That is, the definition of D̃ could eliminate many
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Table 5.1: Example Values for D̃ for Nominal F-16 Aircraft

Airspeed (ft/s) Climb Rate (ft/s) Turn Rate (deg/s)

250 0, ±5, ±10 0, ±1, ±3

300 0, ±7.5, ±15 0, ±1.5, ±4.5

400 0, ±10, ±20 0, ±2, ±6

600 0, ±15, ±30 0, ±3, ±9

of the feasible transitions initially found in M . Such a skew in the transition

mappings would hinder the planner in finding valid flight plans; the selection of

D̃ in this case defines a severely limited search space. If the transition database

is deemed too sparse, the definition of D̃ can be altered until the resulting M̃ is

sufficiently full. Increasing the number of points in D̃ would almost guarantee

a corresponding increase in the feasible transition ratio, although it would neg-

atively impact the solution calculation speed. Similarly, the construction of D̃

could be scrutinized until the a suitable M̃ results.

5.1.4 Feasible Path Existence

Whereas the discussion thus far has focused on reducing the trim database to a

tractable size to increase planner efficiency, decreasing the number of segments of

examined landing plans also improves planner speed. Additionally, minimizing N

facilitates management by pilots and air traffic control. Because fewer segments

also decrease the number of possible solutions, it is desirable to find the minimum

number of segments guaranteeing feasible trajectories while maximizing planning

efficiency.
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Typically, for a nominal aircraft, the minimum number of flight segments

required to produce a feasible landing plan is four: two straight and two turning

segments. Therefore, the minimal path for a nominal aircraft would include

a turn and fly (straight) segment toward the final intercept path, then a turn

onto final (straight) [7]. 3-segment minimal paths can also be constructed for

an aircraft with no constraint on climb rate. However, the constraint to stay

within the feasible post-failure flight envelope, requires an additional segment to

compensate. Thus, with full positive and negative capabilities for climb and turn

rate, a minimum of four segments are required.

As more restricted example, consider a case in which only turns in one di-

rection are possible. The minimum N required then becomes a function of the

maximum and minimum feasible turn rates. In particular, a minimum flight plan

consists of flight segments alternating between the maximum and minimum al-

lowable turn rates. However, if positive and negative climb rates are also feasible,

then there exists a finite number of segments capable of transitioning the aircraft

between any two position and heading locations [29]. Such a complicated flight

path is nonintuitive and would try most pilots concentration necessitating some

form of avionic assistance.

In the opposite case, where both left and right turns, as well as straight

flight, are possible but only negative flight is feasible (only positive flight not a

possible failure scenario), then a minimal flight plan still consists of only four

segments, though, feasible paths only for certain terminal position and heading

combinations. This situation must be addressed when selecting desired landing

sites, and would handled by a coupled site selector. Such an analysis is beyond

the scope of this thesis, though previous work [7] has defined a landing site search
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(LSS) algorithm applied to the case of a total loss of thrust. Such an algorithm

need only be minimally augmented to handle more general failure modes.

A final concern when selecting flight plan lengths is the location of the ini-

tial flight condition of the aircraft at F 0. In some cases, where straight flight is

feasible, the structure of M̃ requires multiple sequences to reach this flight condi-

tion. As a result, the planner will more than likely require additional segments to

compensate for the potentially necessary maneuvering through the feasible flight

condition space. As with all the scenarios addressed in this section, selecting the

number of segments the planner will use in this case could by automated, though

in this work, N is set a priori for all examples.

5.2 Trajectory Planning

The purpose of the planner is to identify a sequence of trimmed flight conditions

from D̃ that allows the aircraft to reach its destination—the desired landing site—

with the correct heading. As described previously, this is equivalent to solving the

inverse aircraft kinematic problem for which no general solution exists because

of the mixture of continuous and discrete quantities. Using a purely discrete

method, such dynamic programming [36–38] where ∆ti are discretized, would

increase the computational complexity of the problem. Instead, the approach

taken in this thesis is to perform a mixed continuous/discrete optimization: a

discrete search over possible flight condition sequences where at each iteration a

continuous optimization is performed to select appropriate values for ∆ti.
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5.2.1 Planning Notation

To facilitate the discussion of the planning algorithm, each flight segment can be

specified as

si = (v∗i , ḣ
∗
i , ψ̇

∗
i , ∆ti) (5.4)

where the triple (v∗i , ḣ
∗
i , ψ̇

∗
i ) ∈ D̃ and ∆ti is the time trim segment i is maintained.

A plan then can be expressed as a sequence of N trim segments si:

P = {si}Ni=1 = {(v∗i , ḣ∗i , ψ̇∗
i , ∆ti)}Ni=1. (5.5)

A candidate plan P̃ is a partially instantiated plan consisting of valid values for

the flight condition for each segment, but without a specific duration specified.

More specifically, a candidate plan P̃ can be expressed by

P̃ = {(v∗i , ḣ∗i , ψ̇∗
i )}Ni=1. (5.6)

5.2.2 Planning Algorithm

The complete planning algorithm is shown in Figure 5.4. Planner takes as vari-

ables the initial aircraft location and heading, (p0, ψ0), the desired landing site

and heading, (pdes, ψdes), the number of segments N , the type of failure Fail,

and the allotted planning time tplan. Upon initialization, the algorithm calls

ReadInData which accesses failure-specific databases D̃, T̃ , M̃ , and stores them

in memory. The number of flight conditions in D̃ is determined and used to

compute the number imax of candidate paths contained in the combinatorial set

defined by D̃ and N . The optimal plan list L is also initialized.

The algorithm examines all possible sequences of N flight conditions in D̃,

within the alloted planning time tplan, to identify a minimum-cost solution con-

necting (p0, ψ0) to the landing site. The procedure GetCanidateP lan uses the
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Algorithm: Planner(p0, ψ0,pdes, ψdes, N, Fail, tplan)

(D̃, T̃ , M̃)← ReadInData(Fail)
ND̃ ← SizeOf(D̃)
imax ← NN

D̃
, i← 0

L← ∅
while (i < imax) and (δt < tplan)

do



P̃i ← GetCandidatePlan(i, D̃, N)

if false ← ValidateSequence(P̃i, M̃)

then

{
i← i+ 1
continue

if false ← PlanConstraints(P̃i)

then

{
i← i+ 1
continue

(J∗
plan, Pi)← GetDurations(P̃i, T̃ , M̃ ,p0, ψ0,pdes, ψdes)

if J∗
plan ≤ εplan

then



if false ← CheckAltitude(Pi)

then

{
i← i+ 1
continue

l← ComputeLength(Pi)
SortList(L, Pi)
i← i+ 1
continue

else

{
i← i+ 1
continue

return (L)

Figure 5.4: Planner Algorithm
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current iteration count as a marker to produce the ith candidate plan P̃i. In

V alidateSequence, each P̃i is tested to make sure all necessary transitions are

feasible with respect to (4.20), at every altitude. The procedure PlanConstraints

then tests P̃i against additional user-defined constraints. A typical constraint is

that the aircraft must be descending or level during its final approach segment.

Additional constraints will typically further restrict the terminal segment by ei-

ther constraining ḣN and/or ψ̇N .

Once a candidate plan has been validated, GetDurations computes the {∆ti}Ni=1

using a numerical optimization algorithm to minimize the cost function

Jplan({Gi−1,i, Gi}Ni=1) = ‖F 0

N∏
i=1

Gi−1,iG(v∗i , ḣ
∗
i , ψ̇

∗
i ,∆ti)− F des‖2 (5.7)

over the N continuous variables {∆ti}Ni=1, where the shorthand Gi was used for

G(v∗i , ḣ
∗
i , ψ̇

∗
i , ∆ti), F des is defined using (pdes, ψdes), and the weight w is used to

balance position and heading penalties. At each iteration, (5.7) is computed from

the kinematic aircraft model to predict the final position and heading (pN , ψN)

for flight condition sequence P̃ and the current iteration of {∆ti}Ni=1. Once the

numerical optimizer has effectively minimized (5.7), GetDurations returns J∗
plan

where

J∗
plan = min

{Gi−1,i,Gi}N
i=1

{Jplan} (5.8)

and stores the fully instantiated plan in Pi. Whereas most optimization routines

available in standard numerical libraries [39] can suitably minimize Jplan, previous

results [40] have shown that the Nelder-Mead simplex algorithm provides accurate

results given a relatively complex cost function (5.7), thus the Nelder-Mead was

adopted for this work, with initial values for {∆ti}Ni=1 set to zero.
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A path is considered considered acceptable if

J∗
plan ≤ εplan (5.9)

where εplan is a small, positive scalar representing the threshold between accept-

able and non-acceptable solutions. When an acceptable solution is identified, Pi

is checked by CheckAltitude for altitude constraint satisfaction, that is,

hi > hmin ∀i = 1, . . . , N. (5.10)

If this single constraint is satisfied, the plan is then added to the plan list L.

Otherwise, the solution is abandoned and the algorithm builds a new candidate

plan from the feasible trim state list. To identify the optimal flight plan, Pi in L

are graded by SortList according to their total duration

∆T =
N∑
i=1

∆ti, (5.11)

and sorted by increasing ∆T . Once all trim sequence combinations have been

examined, the plan list L is returned to the flight management system and/or

pilot for implementation.

The weight w and threshold εplan are independent design parameters allowing

the adjustment of the acceptable solution criterion. By adjusting w, the relative

penalty between one foot of position error and one radian of heading error can

be refined. Since large ψ errors could result in the aircraft running off the side

of the runway, errors in heading should be weighted much more than errors in

position. Thus, the case study presented in this work uses w = 1000 so that

one foot of position error is equivalent to 0.001 radians (or about 0.06 deg) of

heading error. Whereas w equates position and heading error, εplan specifies the

maximum weighted error magnitude allowed in acceptable solutions. In the case
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study to follow, the value εplan = 1 was used. This means that a solution with

one foot of position error magnitude and perfect heading is acceptable. Similarly,

a solution with a perfect position and 0.001 radians of heading error would also

be acceptable. As a result, w also describes how much decrease in the heading

error is required accept an equal increase in position error.

5.2.3 Any-time Emergency Flight Planning

As a final note, to run to completion, the planner must exhaustively search

through NN
D̃

iterations, each of which requires an embedded numerical optimiza-

tion. Although this path planner can identify a shortest-duration solution, in

practice, it cannot efficiently find this solution within the allotted time limit

tplan. However, since feasible solutions are returned to L as quickly as they are

found, L can be returned to the parent function after the time tplan.

Such an anytime [41–43] adaptive flight planner, which trades solution quality

for required computation time, is shown in Figure 5.5 . Upon the determination

of the failure type, the aircraft is commanded to a constant holding pattern

(ḣ = 0) or spiral descent from high altitude. Once at this flight condition, the

aircraft’s position is projected to some known waypoint (p0, ψ0), designated as

the initial location in the flight planner. Using the projected waypoint (p0, ψ0),

the coupled LSS algorithm can select a feasible landing site from an integrated

airport database. The number of segments used in the flight plan is determined as

well as the allotted planning time tplan. From here, the flight planner is called and

returns the current acceptable list L after time tplan. The current most optimal

plan Pmin is selected from the list and executed.

However, if the list L is empty—when the planner cannot find a solution

86



1. Determine type of failure Fail.

2. Command aircraft to safe holding/descent pattern (v∗0, ḣ
∗
0, ψ̇

∗
0).

3. Compute current state (p−1, ψ−1).

4. Use kinematic aircraft model to project aircraft to initial loca-
tion (p0, ψ0).

5. Find feasible landing site via LSS (pdes, ψdes).

6. Set N based on failure type.

7. Determine allowed planning time tplan.

8. L← Planner(p0, ψ0, pdes, ψdes, N, Fail, tplan)
while L = ∅

do

{
(p0, ψ0, tplan)← Loiter()
L← Planner(p0, ψ0, pdes, ψdes, N, Fail, tplan)

Pmin ← L(1)
execute Pmin

Figure 5.5: Outline for Adaptive Flight Planner

within the time tplan—then the Loiter procedure is called and the aircraft is

commanded to a holding pattern, and the initial waypoint (p0, ψ0) and planning

time tplan are recomputed and passed to Planner again. Instead of implementing

the full adaptive flight planner as outlined in Figure 5.5, this thesis examines

solely flight planner functions and assumes that tplan is sufficiently long to allow

the exhaustive search of all candidate plans.
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Chapter 6

F-16 Case Study

This chapter presents a series of failure cases for the nonlinear F-16 aircraft model

from Section 2.3. For each scenario, full and reduced trim databases and transi-

tion map are shown, as well as example post-failure trajectories generated by the

planner. The examples provided in this chapter highlight the non-intuitive air-

craft orientations required to maintain flight, as well as the complicated movement

through the post-failure flight envelope necessary to plan feasible trajectories to

specified landing sites. All presented results were generated on a 2.00GHz Intel R©

Pentium R© 4.

The failure scenarios examined in this thesis reprsent failure of one of the

F-16’s lateral control actuators: the aileron and rudder. It will be assumed that

the control surface jam failures occur, situations that may result from airframe

damage, mechanical binding, or even the loss of hydraulic pressure. In this type

of failure, the uncontrollable actuator is stuck at a fixed deflection, which, when

stuck at a non-zero angle, contributes significant non-zero forces and torques.
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6.1 F-16 Controller Implementation

An F-16 controller was implemented to develop the transition databases and to

verify feasibility of planned post-failure trajectories. Due to the high-computational

cost of interpolating during each controller cycle, the PID controller developed in

Section 4.3.2 was simplified to require only one-dimensional interpolations instead

of four-dimensional. This was done by interpolating over the trim states instead

of over the flight condition, as originally stated. This method is analogous to the

trim state open-loop control law discussed in Section 4.1.3.

While this modified controller structure allows for faster cycles times, it suffers

from potential mismatches between the desired flight condition used in output

feedback controller (the integral controller) and the trim states used as state

feedback. Transitions between trim states were previously defined to be a linear

change in the flight condition between the those of the initial and terminal trim

states. The resulting change of the trim states over these transition, however,

can vary nonlinearly. As a result, in the above interpolated trim state controller,

when the output feedback controller is attempting to regulate the desired flight

condition, it is acting against the state feedback controller attempting to regu-

late the interpolated trim state. The result, if the mismatch is sufficiently large

enough, is loss of stability. Such mismatches can be avoided if the jumps in the

transition maps are small; approximating how small small needs to be is done on

a case by case basis.
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Table 6.1: Discrete Trim Database Flight Conditions

min max ∆ No. Pts.

h (ft) 0 30,000 10,000 4

v (ft/s) 200 600 16.667 25

ḣ (ft/s) -25 25 2.083 25

ψ̇ (deg/s) -25 25 2.083 25

Total Data Points 62,500

6.2 Rudder Failure

6.2.1 Trim Database Calculation

Using the steps outlined in Chapter 3, aircraft performance was characterized for

0◦, 15◦, and 30◦ jammed rudder failures over the four-dimensional grid formed

from combinations of values from Table 6.1. To check for feasibility, a value of

εtrim = 10−7 was used for (3.10).

At each feasible trim state, the linearized dynamics were calculated using

(3.14) with a value ε = .01 for airspeed and εi = .0001 used for all other pa-

rameters. This linear system was then analyzed to characterize stability and

controllability near each trim point using the method from Section 3.2. While

stability is defined by means of (3.15), a more useful criterion is

<{λi(Ak)} < −εstab ∀i = 1, . . . , 8

for some small εstab > 0. This numerical buffer around zero helps protect the

stability calculation against inaccuracies resulting from numerical round-off error.

Similarly, when numerically computing (3.18), a numerical buffer for the rank
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calculation is also needed. One method commonly used to compute the matrix

is the singular value decomposition. The rank of UC is the number of non-zero

singular values of UC [44]. Therefore, a more practical condition for controllability

is that

σi(UC) < −εctrb ∀i = 1, . . . , 8

where σi(A) is the ith singular value of A and εctrb is a small positive scalar.

For the trim databases presented in this chapter, values of εstab = 10−3 and

εctrb = 10−12 were used and correspond to the built-in defaults for the numerical

algorithms used.

The results of the above calculations for each failure trim database are shown

in the altitude slices of Figures 6.1-6.3. Each entry in the database has been

labelled according to its stability and controllability properties: green states are

both stable and controllable, yellow states are unstable but controllable, and red

states are both unstable and uncontrollable. Additionally, those states that are

infeasible at each failure were omitted in the plots to improve clarity.

Notice that the 0◦ failure case differs minimally from the nominal F-16 flight

envelope. These similarities occur because the rudder plays a limited role in

trimming the aircraft, even during turning flight. When the rudder is failed at

non-zero angles, however, the flight envelope starts to show marked degradation

in overall stability. The graphs for the 15◦ and 30◦ failure cases show that when

the rudder is failed with a positive deflection turns to the left remain stable, while

turns to the right become unstable. This behavior is to be expected because in

these non-zero failure configurations, the rudder is supplying forces and torques

that promote left turns and act against right turns. To counter for these adverse

effects, the aircraft requires a much larger angle-of-attack and side slip angle,
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Figure 6.1: 0◦ Rudder Jam Flight Trim Database Slices
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Figure 6.2: 15◦ Rudder Jam Flight Trim Database Slices
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Figure 6.3: 30◦ Rudder Jam Trim Database Slices
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as well as increased aileron deflections to produce the aerodynamic forces and

torques necessary to balance the aircraft. The more aggressive the trim state,

the more the aircraft diverges the inherent stability of symmetric flight conditions

and becomes unstable.

While most of the feasible trim states in the databases are unstable, all remain

controllable, even with the most severe rudder failures. Because neither the

rudder or the aileron contributes significantly to trimming the aircraft under

nominal flight conditions, they provide redundant lateral aircraft control (yaw

and roll). In fact, of the two, the aileron is the more powerful of the two actuators.

As a result, with a failed rudder, the aileron is capable of providing the necessary

balancing action, as well as directing motions against the failed rudder position.

As shown in Figures 6.1-6.3, rudder failures have little effect on the range of

feasible climb rates for the aircraft. Climbing flight conditions are maintained

primarily through throttle adjustment and elevator deflections and only become

infeasible when the thrust required to maintain that trim condition exceeds engine

production limits. The minimal increase in throttle needed to compensate for

rudder failures only affects the outer limits of the flight envelope, which were not

used in the case studies that follow.

6.2.2 Simple 15◦ Rudder Jam Scenario

To test the basic operation of the planner, the first example presented here uses

a relatively simple reduced trim database D̃. In this example, a 15◦ rudder

jam has occured. The states in D̃ are all possible combinations of 5 different

climb rates, 5 different turn rates, but at a single airspeed as shown in Table 6.2.

Furthermore, since the volume of D̃—a two-dimensional plane in this case—lies
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completely within its associated D′, the transition map for D̃ is fully-connected,

as mentioned in Section . M̃ , the transition map for D̃, was computed for every

thousand feet of altitude between sea-level and 10, 000 using the interpolated trim

state controller discussed above with values of ∆t = 15 and tc = 10. For clarity,

a graphical representation of D̃ and the resulting transition map is provided

in Figure 6.4 where the black circles designate valid flight conditions and the

green lines designate valid transitions. Finally, no additional path constraints

were enforced, so each segment could be any flight condition in D̃, expect the

permanent terminal constraint ḣN ≤ 0.

Table 6.2: D̃ Values for Simple 15◦ Rudder Jam

Airspeed (ft/s) Climb Rates (ft/min) Turn Rates (deg/s) Total Points

400 0, ±500, ±1000 0, ±3, ±6 25

The optimal plan returned by the path planner is shown Table 6.3, where the

ith row summarizes the ith trim segment and i = 0 denotes the initial aircraft

flight condition. This solution was found by specifying N = 4 (four segments)

and using the following initial aircraft location and desired landing site:

pT0 = [0, 0, 1000] ft, ψ0 = 0 rad,

pTdes = [10000, 10000, 0] ft, ψdes = 1 rad.

The values in Table 6.3, along with the ramp and coast times used in M̃ , can be

used to produce the flight condition sequence shown in Figure 6.5.

To validate this plan, another simulation of the coupled controller/aircraft

system was performed. In this simulation, the aircraft was initialized at p = p0,

ψ = ψ0, and z̄ = z̄∗(h0, v0, ḣ0, ψ̇0), which is the trim state associated with the
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Figure 6.4: D̃ and M̃ for Simple 15◦ and 30◦ Rudder Jam
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Table 6.3: Optimal Plan for Simple 15◦ Rudder Jam

i v∗i (ft/sec) ḣ∗i (ft/min) ψ̇∗
i (deg/sec) ∆ti (sec)

0 400 0 0 0.00

1 400 −1000 −3 0.604

2 400 0 6 0.397

3 400 −500 3 6.351

4 400 −1000 −6 1.221

Total Plan Cost ∆T 8.573
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Figure 6.6: Solution Trajectories for Simple 15◦ Rudder Jam
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initial flight condition found in Table 6.3. Whereas it found many acceptable so-

lutions, as the trajectory planner iterated toward an optimal solution, it updated

the optimal—first—entry of the plan list L four different times. To show this

iterative process, the resulting three-dimensional position trajectories for these

four different plans are shown in Figure 6.6 where Figure 6.6(a) shows the first

solution found and Figure 6.6(d) shows the final optimal solution. For each up-

date, cost reduction is intuitive with respect to the total time in the air. The

second solution eliminates the initial turn away from the landing site, the third

solution starts descending more rapidly, and the optimal solution removes the

final 360◦ turn.

The times at which these updates occurred, as well as the associated reduction

in cost, is shown in Table 6.4, where the last row shows the information for the

total planning run. Note also the speed at which the first solution is identified

relative to total run time. Besides these “optimal” updates, additional solutions

were found throughout the search space, as shown in Figure 6.7. This type of

solution density can be expected because of the fully-connected nature of the fea-

sible transitions. Note that the lack of solutions over the last third of the solution

space correspond to the constant non-climbing terminal segment constraint.

Because M̃ contains only the accumulated position and heading change dur-

ing a transition, an explicit planned trajectory cannot be built. Therefore, to

characterize the accuracy of the trajectories produced, the planned position at

the start of each segment can be compared to that of the simulated trajectory.

The differences between these two sets of values are presented in Table 6.5 and

show good matching between the planned and simulated trajectories. The Ta-

ble 6.5 results are interesting because the individual component errors are not
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Table 6.4: Solution Updates for Simple 15◦ Rudder Jam

Update Time-to-Solution (sec) Solution Cost (sec)

1 17.54 79.84

2 45.00 37.87

3 131.52 37.48

4 156.79 8.57

Total 5306.10 8.57
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Figure 6.7: Solution Density for Simple 15◦ Rudder Jam
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monotonically increasing over time as would be expected of an open-loop system.

Because the ground track variables, particularly x, y, and ψ, are coupled, errors

in each propagate through the set, making it difficult to discern where the aircraft

diverges from the optimal plan. However, the total error in position and heading,

represented as the norm κi, shows the expected increasing trend.

Table 6.5: Flight Path Errors for Simple 15◦ Rudder Jam

Time (sec) xerror (ft) yerror (ft) herror (ft) ψerror (deg) κ

25.000 0.0805 0.0806 0.0003 0.0000 0.1139

50.604 −0.4936 −0.6002 0.0013 0.0000 0.7771

76.001 0.1584 −0.5362 0.0018 0.0000 0.5591

107.352 −0.3271 −1.2917 0.0091 0.0000 1.3325

108.573 −0.2484 −1.3115 0.0089 0.0000 1.3349

To gain physical understanding of the optimal plan exectuion, Figure 6.8

shows the flight condition over time versus the planned flight conditions of Figure

6.5, as well as the errors between them. To aide in discerning separate trim and

transition segments, the black dots denote trim segment beginnings (or transition

ends) and red dots transition beginnings (or trim segment ends). Note that

motion nonlinearities (non-kinematic motion) are constrained to the transition

segments due to the use of kinematic trim segments; the flight condition error

over trim segments is defined to be zero.

As alluded to above, in order for the aircraft to maintain a specific trim con-

dition, it must assume a very aggressive stance with respect to the local wind.

Figure 6.9 clearly shows this phenomenon by presenting the required orientation
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for the optimal flight plan as well as the differences between the simulated and

ideal trim values. The first interesting thing to note is the initial orientation: the

specified initial flight condition was straight and level flight but requires non-zero

bank and side slip angles. This “slipping” configuration is required to balance

the rudder failure effects: the positive rudder failure produces a negative yawing

moment, pushing the nose to the left, which the positive side slip cancels by

introducing a non-zero side-force that creates a positive yawing moment. The

rudder failure also introduces a positive rolling moment, producing the non-zero

bank angle seen in the response. Since the F-16 produces negative rolling mo-

ments for positive side slip angles, that is, the aircraft has a negative CLβ
stability

derivative over the range of β for which the F-16 model is valid [31], the slipping

motion also cancels the rolling motion produced by the positive rudder failure.

This balancing continues throughout the trajectory with coupled transients in φ

and β.

Similarly, the angle-of-attack and pitch angles also show large transients. Par-

ticularly interesting is the initial divergent response of α from desired reference

values. The unsteady response in climb and turn rate, and the subsequent lag

in compensation, is a by-product of the controller mismatch discussed in Section

6.1; α varies quadratically with climb rate. As the controller tries to minimize

errors in ḣ, it introduces errors in α and vice versa.

The orientation variables also show coupling to the commanded control input

as seen in Figure 6.10. Notice the pronounced coupling between the angle-of-

attack lag and elevator deflections. Figure 6.10 also shows the additional actuator

deflections needed to dampen the undesirable natural aircraft transients, most

notably the phugoid and spiral modes discussed in Section 4.2.1. Note that
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these deviations from the necessary trim settings are minimal and closely mimic

nominal pilot-issued actuator commands.

Also note the time spent in the trim segments is far less than time spent in the

transitions, which is a result of the closeness of the desired landing site. Recall

the planning algorithm can only optimize over trim segment durations and that

transition durations have been fixed off-line. In this case, the planner determined

the most optimal course of action is to “ride” the transients, resulting in a mostly

dynamic trajectory.

6.2.3 Simple 30◦ Rudder Jam Scenario

For the next test, a 30◦ rudder jam was simulated. The D̃ shown in Figure 6.4

and Table 6.2 was used with the same time and altitude values in compiling M̃ .

The optimal plan produced by the planner for this case is summarized in Table

6.6 and shown graphically in Figure 6.11.

To verify the planner iteration, Figure 6.12 shows the three-dimensional tra-

jectory for the first solution found (Figure 6.12(a)), the first update to L (Figure

6.12(b)), the third update (Figure 6.12(c)), and the final optimal plan (Figure

6.12(d)). Note that this iterative adjustment matches that of the 15◦ rudder jam,

though the final solutions differ. The optimal solution here is to climb first, then

descend. These differences in plans affect the final ∆T , which is over three sec-

onds higher here. The time-to-solution and costs for these updates are provided

in Table 6.7 and the solution density graph is shown in Figure 6.13. Both show

trends similar to the 15◦ rudder jam case.

A comparison of the simulated and planned solutions is shown in Table 6.8.

This solution has similar traits to the 15◦ rudder jam: increasing error magnitude
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Figure 6.8: Flight Condition Information for Simple 15◦ Rudder Jam
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Figure 6.10: Controller Information for Simple 15◦ Rudder Jam
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Table 6.6: Optimal Plan for Simple 30◦ Rudder Jam

i v∗i (ft/sec) ḣ∗i (ft/min) ψ̇∗
i (deg/sec) ∆ti (sec)

0 400 0 0 0.00

1 400 500 −3 0.189

2 400 −1000 6 1.857

3 400 −1000 3 2.350

4 400 −1000 −6 0.889

Total Plan Cost ∆T 5.287
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Figure 6.11: Optimal Plan for Simple 30◦ Rudder Jam
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Figure 6.12: Solution Trajectories for Simple 30◦ Rudder Jam
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Table 6.7: Solution Updates for Simple 30◦ Rudder Jam

Update Time-to-Solution (sec) Solution Cost (sec)

1 24.89 80.81

2 28.37 70.63

3 51.69 68.39

4 59.51 66.40

5 71.53 5.28

Total 6489.03 5.28
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Figure 6.13: Solution Density for Simple 30◦ Rudder Jam
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κ and close to perfect matching of heading ψ and altitude h. The evolution of

the flight condition is provided in Figure 6.14. The similarity in the failure

scenario between the 15◦ and 30◦ rudder jams yields similar transients in the

flight condition during transitions. The 30◦ rudder jam also leads to aggressive

stances to maintain trimmed flight as can be seen in Figure 6.15, most notably in

large side slip angles, almost 9◦. The required control response, shown in Figure

6.16, also experiences larger deviations than required in the 15◦ jam scenario.

Table 6.8: Flight Path Errors for Simple 30◦ Rudder Jam

Time (sec) xerror (ft) yerror (ft) herror (ft) ψerror (deg) κ

25.000 0.0007 0.0110 −0.0003 0.0000 0.0131

50.189 0.0025 −0.3321 −0.0008 0.0000 0.3331

77.046 0.2985 −0.0896 0.0029 0.0000 0.3117

104.396 0.0664 0.6867 0.0090 0.0000 0.6899

105.285 0.1753 0.6554 0.0089 0.0000 0.6785

6.2.4 Complex 15◦ Rudder Jam Scenario

In this final example in the rudder case study, a more complicated D̃ will be

examined consisting of feasible flight conditions from the 15◦ trim database with

values selected at now three different airspeeds, climb rates, and turn rates pro-

vided in Table 6.9 and shown in Figure 6.17. This D̃ structure now includes

transitions between airspeeds, as well as climb and turn rates. However, such

transitions require increased throttle response to reach the terminal flight condi-

tion in the alloted time. Therefore, when compiling M̃ with the values ∆t = 20
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Figure 6.16: Controller Information for Simple 30◦ Rudder Jam
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sec and tc = 10 sec, those transitions of more than a ±50 ft/sec change in air-

speed when observed to saturate the throttle setting. Those transitions that are

feasible are denoted as the links in Figure 6.17.

Table 6.9: D̃ Values for Complex 15◦ Rudder Jam

Airspeed (ft/s) Climb Rates (ft/min) Turn Rates (deg/s) Points

250 0, ±500 0, ±3 9

300 0, ±500 0, ±3 9

350 0, ±500 0, ±3 9

Total Points 27

In this example, additional constraints were also placed on the sequencing of

valid solutions requiring non-increasing airspeed seqeunces. Also, a terminal con-

straint requiring vN = 250 ft/sec was specified. Such constraints more accurately

model typical landing scenarios where the pilot slows the aircraft on approach,

with the final airspeed slightly above stall speed.

The optimal solution found, using the same initial aircraft location, desired

landing site, and number of segments as above, is summarized in Table 6.18 and

shown graphically in Figure 6.18. The effect of limiting the range of feasible climb

and turn rates in D̃ is clearly seen in the increased optimal cost than compared

to the simpler D̃ used in Section 6.2.2. Recall that, using this simple D̃, the

planner found that high turn and climb rates gave an optimal result of about 8

seconds. By eliminating these high turn and climb rates, the planner must find

a less aggressivly constrained solution that will likely have higher cost ∆T .

Coincidently, in this example, the optimal solution was also the first solution
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Figure 6.17: D̃ and M̃ for Complex 15◦ Rudder Jam
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Table 6.10: Optimal Plan for Complex 15◦ Rudder Jam

i v∗i (ft/sec) ḣ∗i (ft/min) ψ̇∗
i (deg/sec) ∆ti (sec)

0 350 0 0 0.00

1 300 −500 −3 8.812

2 250 0 3 48.835

3 250 −500 0 30.265

4 250 −500 −3 0.924

Total Plan Cost ∆T 88.836
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found. The three-dimensional trajectory for this solution is shown in Figure

6.19. A summary of the optimal solution, and search properties, is provided in

Table 6.12. Note that the partially-connected transition map significantly reduced

the total computation time, even though the number of iterations increased.

The sparser transition map, along with the additional sequence constraints, also

effected the solution density shown in Figure 6.20. The error in the simulated

trajectory shown in Figure 6.19 is summarized in Table 6.11.

Table 6.11: Flight Path Errors for Complex 15◦ Rudder Jam

Time (sec) xerror (ft) yerror (ft) herror (ft) ψerror (deg) κ

30.000 0.0559 0.0441 −0.0001 0.0000 0.0712

68.812 0.0681 −0.1378 −0.0009 0.0000 0.1537

147.647 −0.1703 −0.3821 0.0065 0.0000 0.4184

207.912 −0.2448 −0.3385 0.0073 0.0000 0.4178

208.836 −0.1265 −0.3840 0.0073 0.0000 0.4044

The flight condition evolution for the optimal solution is shown in Figure

6.21 and shows good matching with minimal deviations. The existence longer

duration trim segments, not seen in the examples above, illustrates the excellent

performance of the controller in tracking a desired trimmed flight condition. The

longer trim segments also accentuate the nonlinearities confined to the transitions.

Figure 6.21 also shows the controller’s ability to track different airspeeds. Not

only does the controller perfectly track each commanded change in airspeed, but

switching between airspeeds does not adversely effect controller performance in

tracking varied climb and turn rates.
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Table 6.12: Solution Updates for Complex 15◦ Rudder Jam

Update Time-to-Solution (sec) Solution Cost (sec)

1 10.15 88.84

Total 1596.61 88.84
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Figure 6.20: Solution Density for Complex 15◦ Rudder Jam
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Figure 6.21: Flight Condition Information for Complex 15◦ Rudder Jam
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The effects of varying the airspeed along the trajectory can be better seen

by examining the required orientation (Figure 6.22) and required control input

(Figure 6.23). Slowing the aircraft reduces the effectiveness of the aerodynamic

surfaces on the vehicle, including the vehicle body itself. To retain sufficient lift,

the aircraft must increase the angle-of-attack to “use” more of the air flowing

over its body. These high angle-of-attack maneuvers are accentuated in segments

two, three, and four.

Additionally, commanding these slower airspeeds is accomplished primarily

through varying the throttle setting. Figure 6.23 shows these “step-like” changes

in throttle used to slow the vehicle. The decreased throttle setting, coupled

with a pitched-up configuration, emulates the standard method used by pilots to

manually perform the same decelerating maneuver. The required control response

also shows that this deceleration requires minimal additional control authority

due to the natural tendency of the aircraft, under low thrust, to slow. Once

the aircraft has attained the desired airspeed, though, a sharp deflection of the

elevator is needed to counter the sharp change in throttle setting. For the non-

decelerating segments (2, 3, and 4), the need for minimal corrective control input

reflects the smaller flight condition transients seen in Figure 6.21, which can be

seen as a result of both smaller transitions and slower airspeeds.

6.3 Aileron Failure

6.3.1 Trim Database Calculation

For the next test series, trim databses calculated for aileron jams at 0◦, 5◦, and

10◦, with the results shown in Figures 6.24-6.26. The same values of εtrim =

10−7, εstab = 10−3, and εctrb = 10−12 were used to grade feasibility, stability, and
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Figure 6.22: Orientation Information for Complex 15◦ Rudder Jam
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Figure 6.23: Controller Information for Complex 15◦ Rudder Jam
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Figure 6.24: 0◦ Aileron Jam Trim Database Slices

125



−20
−10

0
10

20 −20
−10

0
10

20

200

300

400

500

600

V
el

oc
ity

 (f
t/s

)

Climb Rate (ft/s)
Turn Rate (deg/s)

(a) 0 ft

−20
−10

0
10

20 −20
−10

0
10

20

200

300

400

500

600

V
el

oc
ity

 (f
t/s

)

Climb Rate (ft/s)
Turn Rate (deg/s)

(b) 10,000 ft

−20
−10

0
10

20 −20
−10

0
10

20

200

300

400

500

600

V
el

oc
ity

 (f
t/s

)

Climb Rate (ft/s)
Turn Rate (deg/s)

(c) 20,000 ft

−20
−10

0
10

20 −20
−10

0
10

20

200

300

400

500

600

V
el

oc
ity

 (f
t/s

)

Climb Rate (ft/s)
Turn Rate (deg/s)

(d) 30,000 ft

Figure 6.25: 5◦ Aileron Jam Trim Database Slices
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Figure 6.26: 10◦ Aileron Jam Trim Database Slices
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controllability of the aircraft at each sampled point (see Table 6.1).

Similar to the rudder failure case, the 0◦ failure shows no alteration from

the nominal, unfailed configuration due to the limited contribution of the aileron

in nominally trimming the aircraft. The nonzero failure cases, however, show

sizeable flight limitations, particularly for straight or near-straight flight. The

definitive U-shaped flight envelope given an aileron failure reflects the complex

relationship between aileron effectiveness and atmospheric flight conditions. As

with all aerodynamic control surfaces, aileron effectiveness is dictated by the

dynamic pressure acting on the vehicle, which, in turn, is a function of the vehicle

airspeed, as well as density (or altitude). The faster the vehicle flies, or the closer

to sea-level it flies, the more effective the aileron becomes. As a result, countering

the effects of a failed aileron in these same flight regions becomes difficult, and

in some cases, impossible. At high velocities there exist regions where, with

sufficiently large turn rates, feasible flight is possible. As altitude increases, the

gap of infeasible flight conditions becomes narrower and narrower as the lower

density makes the adverse effects of the aileron easier to compensate.

The variation of the shape of the trim database with altitude, though, makes

the choice of reasonable D̃ difficult. The method presented in Section 5.1 re-

quires determining the intersection of the trim databases across altitude, thereby

eliminating altitude as a degree-of-freedom. Given the dependence of trim state

feasiblility, D′ would be largely unpopulated if the intersection was taken from

sea-level to 30,000 ft. To limit the effects of the altitude variation on D̃, in-

tersections will be required to 10,000 ft in the following examples, enabling no

dependence on altitude for landing trajectory generation. The shape of the re-

sulting databases, though, result in partially connected transition maps severely
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limiting flight capabilites.

6.3.2 5◦ Aileron Jam Scenario

This example explores a 5◦ aileron jam, using the same initial location and desired

landing site as previous examples. The D̃ used here must be carefully designed

due to the U-shaped feasible trim database and will demonstrate the inherent

trade-off in D̃. One could define D̃ as points with airspeeds 300 ft/sec and lower

to allow straight and level flight and a fully-connected transition map. However,

D̃ must include the airspeed where this failure occurs. Also, there may be urgency

to land without further delay, given further uncertainty in failure cause.

In the end, the chosen D̃ for this example failure scenario is shown in Figure

6.27 with the specific values used displayed in Table 6.13. Compiling M̃ was done

using the values of ∆t = 20 and tc = 10 and mapping the displaced ground track

over every thousand feet of altitude from sea-level to 10, 000 ft. Examining the

resulting structure of M̃ , the transition mapping was found to exclude transitions

requiring more than a ±50 ft/s airspeed change due to throttle saturation. Those

transitions that were found to feasible are represented in Figure 6.27.

Table 6.13: D̃ Values for 5◦ Aileron Jam

Airspeed (ft/s) Climb Rates (ft/min) Turn Rates (deg/s) Points

300 0, ±500 0, ±3, ±6 15

350 0, ±500 ±6, ±9 12

400 0, ±500 ±9 3

Total Points 33

129



−500

0

500

−10
−5

0
5

10
300

320

340

360

380

400

Climb Rate (ft/s)Turn Rate (deg/s)

V
el

oc
ity

 (f
t/s

)

(a) 3D View

−500 −400 −300 −200 −100 0 100 200 300 400 500
300

310

320

330

340

350

360

370

380

390

400

Climb Rate (ft/s)

V
el

oc
ity

 (f
t/s

)
(b) x-z Projection

−10 −8 −6 −4 −2 0 2 4 6 8 10
300

310

320

330

340

350

360

370

380

390

400

Turn Rate (deg/s)

V
el

oc
ity

 (f
t/s

)

(c) y-z Projection

−500 −400 −300 −200 −100 0 100 200 300 400 500
−10

−8

−6

−4

−2

0

2

4

6

8

10

Climb Rate (ft/s)

Tu
rn

 R
at

e 
(d

eg
/s

)

(d) x-y Projection

Figure 6.27: D̃ and M̃ for 5◦ Aileron Jam
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Again, the simulated landing constraints of non-increasing airspeed segments

and a final airspeed of vN = 300 ft/sec were imposed to compute the five-segment

optimal solution shown in Figure 6.28 and summarized in Table 6.14. The ad-

ditional segment is required to compensate for the shape of D̃. In this example,

multiple segments are needed to transition the aircraft to straight flight, a neces-

sity to meet the terminal position constraints. The downside to increasing the

number of segments used is in the expansion of the search space size. In this

example, the extra segment increased the search space size by a factor of 33.

In the process of finding the optimal solution, the planner updated the opti-

mal list five times as shown in Figure 6.29. Each progressively optimal solution

shortened the two straight segments (segments 3 and 5), which resulted in the

movement of the position of the fourth segment closer to the initial spiral of seg-

ments 1 and 2. To compensate for the increasing angle between the two straight

segments, the planner lengthened the duration of the turns in segments 2 and 4.

The planner could not make this trade-off, however, by directly iterating on the

duration times, but by indirectly iterating over different sequences of climb rates.

Because different climb rate sequences minimally effect the x and y position, the

planner could substitute direct iteration on the duration times for iterations over

the climb rate sequence. This iterative process would not be possible without a

fifth segment.

Additionally, Table 6.16 shows increased time-to-solution data for these up-

dated solutions. This increase is a direct effect of the shape of D̃ and the initial

flight condition. Figure 6.30 shows the sparseness of solutions in the search space.

The exhaustive search does not reach these promising regions until well into its

iterations. If the layout of the solution densitycould be predicted a priori, the
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Table 6.14: Optimal Plan for 5◦ Aileron Jam

i v∗i (ft/sec) ḣ∗i (ft/min) ψ̇∗
i (deg/sec) ∆ti (sec)

0 400 0 −9 0.00

1 350 0 −6 16.487

2 300 −500 −3 34.504

3 300 500 0 1.070

4 300 −500 3 56.576

5 300 0 0 86.108

Total Plan Cost ∆T 194.744
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Figure 6.28: Optimal Plan for 5◦ Aileron Jam
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Figure 6.29: Solution Trajectories for 5◦ Aileron Jam
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Table 6.15: Flight Path Errors for 5◦ Aileron Jam

Time (sec) xerror (ft) yerror (ft) herror (ft) ψerror (deg) κ

30.000 −0.1024 −0.2139 −0.0000 0.0000 0.2372

76.487 0.0540 0.0283 −0.0005 0.0000 0.0609

140.990 0.3005 4.4951 0.0607 −0.0000 4.5055

172.060 0.7384 6.5219 0.0634 −0.0000 6.5639

258.637 0.2839 5.7062 0.0799 −0.0000 5.7138

344.744 0.6272 5.4267 0.0799 −0.0000 5.4634

discrete optimization could be trained on these candidate solutions first. Such a

directed search algorithm may prove critical to real-time performance in future

work.

A comparison between the optimal planned and simulated trajectories is

shown in Table 6.15, with measurements again taken at the beginning of the

trim segments. The results show that the actual trajectory diverges from the

optimal plan between the second and third trim segments. This error is likely

due to inaccuracies in the interpolation routine computing the transition ground

track displacement. It is interesting to note that the error does not propagate

to the altitude or heading due to the integral output tracking on climb rate and

turn rate. Exploration into the various interpolation calculations is critical to

futher decreases in planning errors in future work.

The evolution of the flight condition, displayed in Figure 6.31, shows similar

transient behavior to the rudder failures, as well as near perfect tracking along

the trim segments. Most of the additional errors observed for this aileron jam
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Table 6.16: Solution Updates for 5◦ Aileron Jam

Update Time-to-Solution (sec) Solution Cost (sec)

1 330.40 243.59

2 701.60 216.13

3 702.14 195.26

4 702.72 194.74

Total 1266.07 194.74
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Figure 6.30: Solution Density for 5◦ Aileron Jam
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scenario occur in the orientation (Figure 6.32) and required control inputs (Figure

6.33). Due to the relatively significant aerodynamic forces applied, the aileron is

generally more effective at providing rolling moments than the rudder, which is

clearly seen in the size of the large magnitude rudder deflections. However, even

with this elevated actuation response, the control surfaces remain within their

physical limits (see Section 2.3).

6.3.3 10◦ Aileron Jam Scenario

In this final example, the more severe 10◦ aileron jam is simulated. As with

the 5◦ jam, the trim database is severely contracted. Through careful reduction,

the D̃ used by the planner is shown in Figure 6.34 with Table 6.17 providing the

specific flight condition values. However in this case, the databases T̃ and M̃ were

calculated from sea level to 5,000 ft due to the lack of feasible flight conditions

up to 10,000 ft. The values ∆t = 20 s and tc = 10 s were used to compile M̃ .

Again, the shape of the D̃ lead to numerous infeasible flight conditions in the

reduced transition database; those that are feasible for this failure are shown in

Figure 6.34.

The optimal solution for this example is given in Table 6.18 and shown graph-

ically in Figure 6.35. To produce this solution, the initial aircraft location and

desired landing site were the same as for all previous cases, but the number of

segments was increased to N = 6. The additional segment allows the planner

more freedom to move through D̃ when finding suitable sequences. This example,

as well as the 5◦ D̃ structure, provides a simple strategy which the planner can

use to determine the number of segments to use. Specifically, the planner can

set N equal to four plus the minimal number of segments possible to connect the
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Table 6.17: D̃ Values for 10◦ Aileron Jam

Airspeed (ft/s) Climb Rates (ft/min) Turn Rates (deg/s) Points

216 0, ±500 0 3

232 0, ±500 ±5, ±10 12

280 0, ±500 ±10, ±12.5 12

328 0, ±500 ±12.5 6

376 0, ±500 ±15 6

Total Points 39
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Figure 6.31: Flight Condition Information for 5◦ Aileron Jam
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Figure 6.32: Orientation Information for 5◦ Aileron Jam
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Figure 6.33: Controller Information for 5◦ Aileron Jam
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Figure 6.34: D̃ and M̃ for 10◦ Aileron Jam
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Table 6.18: Optimal Plan for 10◦ Aileron Jam

i v∗i (ft/sec) ḣ∗i (ft/min) ψ̇∗
i (deg/sec) ∆ti (sec)

0 376 −500 15 0.00

1 328 500 12.5 6.008

2 280 −500 10 3.427

3 232 −500 5 13.150

4 216 0 0 8.660

5 232 −500 5 39.434

6 216 0 0 5.157

Total Plan Cost ∆T 75.836
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Figure 6.35: Optimal Plan for 10◦ Aileron Jam
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initial flight condition and a straight flight condition.

The optimal solution was again not the first found. The iterative update

process is outlined in the trajectories shown in Figure 6.36. Notice the tight

spiral trajectory at the beginning of each flight plan: because the planner has

terminal airspeed and turn rate constraints, all acceptable solutions must move

from the initial flight condition down the right section of the U-shaped tildeD,

maintaining a positive turn rate over these segments. Additional segments allow

the planner to choose over a variety of different final approaches to identify the

optimal solution. The planner updates the optimal entry of the list eight different

times as shown in Table 6.20. Notice the large reduction in cost between the

first and second update but the minimal subsequent reduction. As with the 5◦

aileron jam, Figure 6.37 shows the sparseness of acceptable solutions found by

the planner.

In spite of the severity of the 10◦ aileron jam, the error between the simulated

optimal solution (Figure 6.36(a)) and that returned by the planner is extremely

low, as summarized in Table 6.19. Most notably, the capability of the PID

controller to track heading and altitude is clearly seen.

Again, Figure 6.38 shows the ability of the controller to track feasible flight

condition sequences with minimal transient error. What makes the flight condi-

tion tracking performance much more impressive is to note the required aircraft

configuration for these feasible trim states, shown in Figure 6.39. The severity of

the 10◦ aileron jam requires extermely aggressive pitch and angle-of-attack values

and pronounced side-slipping maneuvers. Additionally, feasible flight plans for

this failure require complicated sequencing of the actuators, as seen in Figure

6.40, in order to maintain feasible flight conditions as well as produce necessary
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Table 6.19: Flight Path Errors for 10◦ Aileron Jam

Time (sec) xerror (ft) yerror (ft) herror (ft) ψerror (deg) κ

30.000 0.0241 −0.0080 −0.0009 0.0000 0.0254

66.008 0.2605 0.1031 −0.0044 0.0000 0.2802

99.435 −0.0527 −0.0331 −0.0043 0.0000 0.0624

142.586 1.6018 −0.8377 −0.0003 0.0000 1.3525

181.245 1.5508 −0.6764 0.0010 0.0000 1.6920

250.679 1.4156 −0.7610 0.0194 0.0000 1.6074

255.836 1.3902 −0.7366 0.0194 0.0000 1.5734

144



−1

−0.5

0

0.5

1

x 104

−4000
−2000
0

2000
4000

6000
8000

0
500

1000
1500

East Direction (ft)

3D Trajectory

North Direction (ft)

A
lti

tu
de

 (f
t)

(a) First Solution

0

5000

10000

−2000
0

2000
4000

6000
8000

0
500

1000

East Direction (ft)

3D Trajectory

North Direction (ft)

A
lti

tu
de

 (f
t)

(b) Fourth Solution

0

5000

10000

−2000
0

2000
4000

6000
8000

0
500

1000

East Direction (ft)

3D Trajectory

North Direction (ft)

A
lti

tu
de

 (f
t)

(c) Sixth Solution

0

5000

10000

0
2000

4000
6000

8000

0
500

1000

East Direction (ft)

3D Trajectory

North Direction (ft)

A
lti

tu
de

 (f
t)

(d) Optimal Solution

Figure 6.36: Solution Trajectories for 10◦ Aileron Jam
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Table 6.20: Solution Updates for 10◦ Aileron Jam

Update Time-to-Solution (sec) Solution Cost (sec)

1 192.65 170.45

2 248.19 79.40

3 300.03 77.78

4 304.88 77.34

5 483.60 76.66

6 485.10 76.56

7 738.45 76.40

8 1576.10 75.84

Total 17207.35 75.84
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transitions. Whereas less extreme rudder failures result in sufficiently large fea-

sible flight envelopes to potentially allow pilots time to learn the relationship

between non-intuitive bank and side slip configurations and dynamic responses,

more severe failure scenarios, such as aileron jams, require quicker, more complex

response that pilots could be expected to learn and execute.
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Figure 6.38: Flight Condition Information for 10◦ Aileron Jam
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Figure 6.39: Orientation Information for 10◦ Aileron Jam
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Figure 6.40: Controller Information for 10◦ Aileron Jam
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Chapter 7

Conclusions and Future Work

Piloting an aircraft is a difficult task made more complex when emergency sit-

uations arise. When such emergencies result in significant reduction to the size

and shape of the feasible flight envelope, effective response may challenge or even

exceed most pilot’s capabilities.

This thesis has described a method of autonomously generating feasible land-

ing trajectories for aircraft in emergency situations that reduce flight perfor-

mance. In particular, a method for computing post-failure flight envelopes from

feasible trim states was presented and used to construct feasible trim state databases.

Using a kinematic aircraft model, a trajectory planning algorithm was also de-

fined which utilized the post-failure trim database to construct a feasible landing

trajectory. A case study using an F-16 nonlinear model under varying degrees of

rudder and aileron jams was presented to illustrate the utility of this approach.

The most important aspect of the planning strategy presented in this thesis

is its generality. The use of trimmed flight conditions allows aircraft-specific per-

formance information to be stored in database form. This analysis is performed

off-line and can be refined before defining reduced trim and transition databases.

When the planner is executed on-line, issues of flight envelope protection as well
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as control limitations and saturations have already been addressed, allowing the

planner to work with many different failure scenarios. Additionally, this gener-

ality allows many different post-failure control strategies to be implemented. So

long as the controller used to produce the transition mappings is also used during

the actual emergency, the results from the planner will accurately represent the

actual motion of the aircraft.

The very power provided by trim database concept is also its one weakness.

One has to exhaustively examine all failures before making claims concerning

the “safety” of this system. This method may succeed in the quest for han-

dling jammed actuators, but such success is less certain for more general failures

(floating control surfaces, structural damage, fuel starvation, etc.) unless some

higher-level “generalized” trim/transition analysis can be developed.

The method of trajectory planning proposed by this thesis will be a useful

contribution to the aerospace community, especially in the area of aircraft safety.

The inability of human pilots to fully and accurately characterize the impact

of flight envelope changes due to a severe actuator failure has been the cause of

many accidents. Indeed, the feasible trajectories found by the planning algorithm

presented in this thesis for extreme cases of actuator failure result in very non-

intuitive flight paths which nonetheless accurately navigate the vehicle to the

specified landing site.

7.1 Future Work

7.1.1 Emergency FMS Integration

As mentioned in the introduction, an autonomous trajectory generator is only

one piece of a larger emergency flight management system. One goal of future
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research is to incorporate this planning algorithm into a full adaptive flight plan-

ner (AFP) as outlined in Figure 5.5. As mentioned, previous research has shown

that landing site search (LSS) algorithms are capable of supplying the the au-

tonomous trajectory planner a feasible landing site. The specific LSS algorithm

uses a footprint calculation, based on the post-failure performance characteristics

of the vehicle, to quickly determine the region reachable by the aircraft. The set

of reachable runways—all airport runways within the footprint region—is then

ranked according to a utility function containing terms such as the distance from

the footprint boundary, runway length and width, wind speed and direction, and

instrument approach quality. The current version of the LSS algorithm, however,

has focused on engine-out failures for which the footprint calculation is straight-

forward and would need to be reformulated to account for more general failures,

such as the control surface jams studied in this thesis.

Incorporation of the trim-based autonomous trajectory generation algorithm

into an emergency flight planners (EFP) also requires the adoption of a standard-

ized position reference, such as the global positioning system (GPS). Whereas this

change is necessary to conform to commercial and general aviation standards, it

requires the reevaluation of the equations used to derive the aircraft kinematic

model. Implementation of the round-the-Earth equations of motion is possible,

although future work would require the development of more sophisticated control

systems.

7.1.2 Additional Failure Cases

Another area in which future work is being proposed is testing the planning

scheme presented in this thesis on more diverse failure scenarios. In particular,
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work is underway to test this strategy using a general commercial transport air-

craft model missing a portion of its left wing. This structural change presents

different challenges to an emergency flight planner. The loss of lifting area will

most likely have a greater effect on flight envelope, contracting across both feasi-

ble turn and climb rates. Additionally, the failure model would retain its nominal

control authority, which includes a series of redundant actuators such as spoil-

ers, flaps, and the capability of differentially applying thrust from two different

engines. With this additional control authority, the transition analysis becomes

more interesting; increased control authority allows for more sophisticated con-

trol strategies resulting in better performance and potentially full configuration

tracking.

In addition to the general transport model, future research should also focus

on longitudinal actuator jams. Such failures have a greater potential to limit

aircraft performance. The F-16 case studies from this work have shown that the

control authority necessary to maintain trimmed flight conditions originates from

throttle setting and elevator deflection. Therefore, one would expect a failure

of either to drastically reshape the flight envelope. Indeed, the contraction of

the flight envelope would be expected to simultaneously occur across both the

feasible turn and climb rates. Furthermore, exploration of these failures may

well lead to the discovery of “empty” trim databases. Such results are likely

given the trim state definition presented in this thesis and would require the

relaxation of the trim definition to allow “trim-like”—slightly accelerating—flight

conditions. Previous work has utilized an alternate approach in defining trimmed

flight segments based on energy conservation that allowed effective trajectory

planning for engine-out scenarios [7].
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It would also be interesting, and beneficial, to examine the effects of coupling

different actuator failures together. Such failures would not only affect the set

of feasible trim states, but also their properties. Coupling both lateral actuators

together would most likely result in some set of feasible trim states. However,

with no additional roll control authority, the aircraft would be unable to transition

between these states.

7.1.3 Optimization Refinement

One final area of future research is in refining the mixed continuous/discrete op-

timization utilized by the trajectory planner. The goal of emergency trajectory

planning is finding satisficing flight plans maneuvering the aircraft safely to a

landing site. Accomplishing this task requires the implementation of a continu-

ous optimization routine that effectively balances the trade-off between compu-

tational complexity and solution density. Currently, the Nelder-Mead simplex

routine is a local optimization algorithm and, as such, there may be flight con-

dition sequences capable of producing acceptable solutions which are not fully

explored. Using different algorithms designed to explore larger regions of the solu-

tion space, such as mixed integer programming, simulated annealing, evolutionary

algorithms, etc., would increase the probability that more of these solutions were

found, though, the increase in computational complexity would be nontrivial.

Alternatively, the probability of finding a solution sufficiently close to the global

minimum using less computationally complex routines can be increased with an

additional pre-processing step to compute educated initial guesses. (Currently,

the initial durations for all trim segments are set to zero.) Therefore, future work

should be focused on finding the best algorithm/initial guess combination that
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provides the most effective method of balancing the computational complexity

with solution density.

The discrete (exhaustive) search may also be improved in future work by di-

recting the search to toward promising regions of the search space. With knowl-

edge of regions more likely to contain acceptable solutions, the probability that

the discrete optimization would find a feasible solution, or more optimal solu-

tions, more quickly will certainly increase. Once these more promising regions

have been explored, the search can be continued as time permits to further reduce

solution cost.
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