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We invoke a basic lemma from the theory of so-called penalty methods of nonlinear program-
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a suitable Weak Continuity (WC) regularization parameter by matching the complexity (“prior”)
of the resulting solution to that of a desired response. The matching is achieved using a simple
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WC.
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I. INTRODUCTION

Weak Continuity (WC) is an optimization that finds application in nonlinear filtering, and,
in particular, segmentation and edge detection. It has been proposed and studied by Mumford-
Shah [1], [2] and Blake-Zisserman [3]. Its digital counterpart, in broad terms, can be stated as
follows: Given a sequence of finite extent, y = {y(n)}f:'v:_o1 € RY, find a finite-alphabet sequence,

N-1
SEA%V o= {fc‘,\‘z” o (n)}nzo € AV, that minimizes
Tz, (¥, %) = d(y, %) + Ny ce(x)

where d(y,x) = YY1 d, (y(n), z(n)) is a distortion measure (i.e., a cost that measures fidelity to
the observed data), c(x) = SN gn(z(n), z(n—1)) is a roughness-complezity measure, and A2
is a regularization parameter. From a Bayesian perspective, WC may be interpreted as Mazimum
A Posteriori (MAP) estimation of a first-order Markov signal embedded in i.i.d. noise, provided
that d,(y(n), z(n)) is taken to be d(y(n)—=z(n)), where d(-) is proportional to minus the logarithm
of the noise marginal, and c¢(x) reflects minus the logarithm of the signal prior. Higher-order
Markov models and/or correlated noise may be handled by an appropriate state expansion; this
entails a significant increase in complexity. Throughout, we consider y to be given, and drop
the dependence of d(), JA%V C() on y. In addition, for brevity, we usually refer to ¢() simply as
complezity, and to d() simply as distortion.

WC is so called because it can be thought of as using a weak, elastic membrane to fit noisy
data. Elasticity implies that the resulting fit is, generally speaking, smooth; however, as a result
of membrane weakness, the fit may occasionally be torn to follow a significant feature (e.g.,
edge) in the data. WC is fundamentally a trade-off between fidelity to the observed data and
complexity of the solution. This interplay is governed by A%VC. The choice of A%/VC has a direct
impact on the solution.

The problem of choosing a regularization parameter in signal and image restoration is of great
enough interest to have been addressed in several special cases in the signal processing literature;
see [7], the follow-up work [8], [9], and references therein, in particular [10]. Common approaches
include constrained least squares (CLS) [11], the chi-squared choice, generalized cross-validation,
equivalent degrees of freedom, and several possible Bayesian approaches [9].

These methods primarily address the problem of choosing the regularization parameter for a

least squares formulation in which roughness is measured via a linear operator. In particular,
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the objective function to be minimized incorporates a roughness-complexity measure that is the
square of the Euclidean norm of a linear high-pass operator acting on x € R¥, and the solution
(and the resulting I/O map) is ezplicit and linear in the observation y. In contrast, WC employs
a roughness-complexity penalty that is assessed via a nonlinear operator, its solution (and the
resulting I/O map) is highly nonlinear, and, except for trivial special cases, it cannot be written
in closed form; it has to be computed algorithmically. Thus the above methods are not directly
applicable to the problem of choosing the regularization parameter of WC, although, as we will
see in section III, there exists some common ground.

In this paper, we invoke a key lemma from the theory of so-called penalty methods of nonlin-
ear programming [4], [5] to come up with a simple yet highly efficient block-adaptive training
procedure that selects a suitable )\%VC by matching the complexity of the resulting solution to
that of a desired response. This is close, in spirit, to traditional block-adaptive least squares
(LS) [6]. Unlike LS adaptation, the procedure proposed herein is based on partial but critical
side information about the desired response. As a result of the former attribute the procedure
is robust; as a result of the latter, it retains sufficient flexibility to allow for proper adaptation.
The matching per se is achieved using a simple binary search technique that is guaranteed to
converge in very few steps; as such, it avoids many of the potential pitfalls of other iterative
adaptation methods. Guaranteed fast convergence implies that the “filter” can occasionally be
retrained without sustaining significant overhead. We call the proposed fast matching procedure
complexity matching pursuit.

Complexity matching pursuit, when viewed from a statistical perspective, amounts to matching
the a priori probability of the solution (as measured with respect to a given model prior) to
the a priori probability of a reference signal. This is different from the Bayes and empirical
Bayes approaches in [9], which suggest using various conditional modes for choosing a suitable
regularization parameter value.

WC employs a “soft” complexity constraint, in the sense that high complexity solutions are
penalized but not disqualified @ priori; and the incurred penalty is proportional to complexity,
the proportionality constant being A%, . A related optimization is the following, which we shall

dub CLA, for Complexity-Limited Approximation:
minimize d(x)
subject to: ¢(x) < P, x € AV

January 13, 1997 DRAFT



Here, again, d(y,x) = YN 1d,(y(n),z(n)), c(x) = YN g (z(n), z(n — 1)), and we further
assume that ¢(x) is a non-negative integer Vx € AY. A special instance of this latter problem
dates back to the work of Bellman [12]. CLA employs a hard complexity constraint. We will
provide an asymptotically optimal O(]A]?PN) Dynamic Programming (DP) solution to this
latter problem, compare it with Bellman’s solution (O(PN?)) [12], discuss the relative merits of
WC versus CLA, and shed light into the connection between the two. In particular, we show
how WC can be used to approximately solve the CLA problem in O(|A|>N); compare with
O(|A|2PN) for our exact solution, and Bellman’s O(PN?) exact solution [12]. We will also
verify the validity of our results by means of simulation.

The idea that one may obtain a solution to a constrained optimization problem by solving

instead a suitable unconstrained problem employing an objective function that looks like
Ia(x) = T (x) + Ac(x)

where J(x) is the objective function of the original constrained problem, ¢(x) is a measure of
conformity of x to thé given constraint, and A > 0, is certainly a very familiar one: this is
the basic idea behind the method of Lagrange multipliers [4]. However, this latter method is
not directly applicable to optimization problems involving discrete variables, like CLA [13]. In
general, classical optimization techniques, like steepest descent, are not applicable to nonconvex
problems [13], like WC, even if these problems only involve continuous variables; this is due
to the existence of local minima [13]. We emphasize that WC solutions have to be computed
algorithmically for each value of the regularization parameter. We use DP over “time” [14]
to obtain an exact solution to WC for each such parameter value. In contrast, the method of
Lagrange multipliers usually results in a parametric solution, parameterized by the regularization
parameter; one then chooses this parameter to satisfy the constraint of the original constrained
optimization problem. Since we have to solve WC for each value of the regularization parameter,
we have to choose a suitable value for this parameter iteratively i.e., by trial and error. This

paper proposes, among other things, a simple yet effective way to do this in an intelligent fashion.

A. Organization

The rest of this paper is organized as follows. Section II provides some background on WC and
related themes. Section III describes the proposed method for adapting the WC regularization

parameter. Section IV provides details of two complete adaptation suites. Section V discusses
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the CLA problem and an alternative Viterbi algorithm for solving it (C-like pseudo-code can be
found in the Appendix); Finally, Section VI discusses the connections between WC and CLA,

while Section VII summarizes conclusions and points to further research directions.

II. BACKGROUND

One of the classic problems of nonlinear filtering is that of detecting and estimating edges
in noise. Among the many approaches proposed so far, a particularly noteworthy one is WC,
proposed and studied by Mumford-Shah [1], [2] and Blake-Zisserman [3] (see also Morel and
Solimini {15]). Weak continuity attempts to fit piecewise-smooth candidate “interpretations” to
the observable data.

Following Blake and Zisserman [3], we present a digital version of discrete-time WC. Given
a (generally real-valued) sequence of finite extent y = {y(n) 71:r=—01 € RY, find a finite-alphabet
sequence, X = {EE(n)}TI:’:_(,1 € AN (the “reproduction process”; in practice Aise.g. {0,1,---,255}),
and a sequence of boolean “edge markers”, € = {€(n) ,1:’;11 € {0, 1}V (the “edge process”), so

that the following cost is minimized
N-1 N-1
Vwe(y,x.e) = 3 (uln) —2(m)? + 3 [Nyola(n) — 2(n - 1)*(1 - e(n) + ae(n)]
n=0 n=1

Here, o is a non-negative real. Intuitively, if (z(n) — z(n — 1))? is too large, one has the option
of declaring an “edge” in between z(n) and z(n — 1) by choosing e(n) = 1, and thus paying only
a, instead of A}, (z(n) — z(n — 1))2. One can first minimize with respect to the edge process,
then minimize the resulting functional with respect to the reproduction process. Since the first
sum in the combined cost does not depend on the edge process, it is easy to see [3] that the

optimization above is equivalent to minimizing

, N-1 N-1
Ve, x) = D (y(n) —2(n))* + D hapwe(@(n) —2z(n 1)
n=0 n=1

by appropriate choice of reproduction process, x, where hy 2y, : Z — R is defined as

Myct? < =
A

havAWC’ (t) = we

a , otherwise

The associated optimal edge process can be implicitly inferred, once the optimal reproduction
process is determined, by level tests on the first order residuals, Z(n) — Z(n — 1), of the optimal

reproduction process.
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A. Solving WC

There exist essentially two ways to go about solving WC: DP [16], [17], [18], [19], and the so-
called Graduated Non Convezity (GNC) algorithm [3]. The GNC is suitable for optimization over
% € RV, i.e., the continuous-valued case, and it does not lend itself to discrete-valued problems,
ie., X € AN [13]. DP is exact, i.e., it provides a true minimizer; GNC has been proven to do
so for a large class of inputs [3], but not for an arbitrary input. The drawback of DP is that
it becomes computationally very demanding in higher dimensions. The GNC, by comparison,
carries over quite effortlessly in higher dimensions. The GNC is a special case of Mean Field
Annealing [20].

Let us briefly review the basic idea behind DP.

A.1 Dynamic Programming: The Viterbi Algorithm

The VA is the name by which many engineers refer to an instance of forward DP. In a nutshell,
the VA is nothing but a clever method to search for an N-tuple {s('n)}f:[:_o1 of variables (each one
of which can take on only a finite number of values) that minimizes:

N-1

> enls(n),s(n~1)) (1)

n=0
where s(—1) is a (given) dummy variable, ¢, (-,-) is some arbitrary one-step transition cost, and
the s(n)’s are thought of as state variables, i.e., variables that summarize the past of a system
in so far as its future evolution is concerned. Without loss of generality we may assume that
all state variables take on values in the same alphabet, A. The VA avoids exhaustive search
and brings the complexity of this minimization from a brute-force O(|.A|"Y) down to a reasonable
O(]AA]2N) in the worst case; actual complexity depends on the given c,(-,-)’s.

The VA achieves substantial computational savings by capitalizing on a simple observation:
by taking the last summation term out of the sum, and conditioning on any given choice of
the s(IN — 2) state variable, the resulting two terms of the cost functional can be minimized
independently; this effectively decouples the problem and results in two independent problems,
one of which can be trivially solved. By iterating this argument backwards in time, one may
realize significant computational gains.

Simplistic as it may sound, this is one of the most powerful and pervasive optimization tech-

niques [35], and it finds application in many diverse areas, including, but not limited to:
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o Optimum decoding of convolutional codes [36], [37], [38].
+ Speech and character recognition [39)].
« State estimation in Hidden Markov Models (HMM’s) [39].
 Optimal Control [19].
o Game theory [19].
In the context of solving constrained optimization problems, the key to successfully using the

VA is to come up with a state of partial solutions with respect to the given set of constraints

[40], [41], [23].

A.2 Choice of DP algorithm

There are two DP algorithms for WC, one that works by DP over “time”, and requires x
to be quantized [14]; and another that works by DP over “edges” [13], and works for either
continuous or discrete-valued x, i.e., either X € RY, or X € AY. The latter is much slower than
the former for moderate |.A|. Here we consider the discrete-valued problem, so we opt for the
former; throughout, we use forward DP over “time” (the VA) to solve WC in O(|A|*>N).

As mentioned earlier, WC can be interpreted from a Bayesian estimation viewpoint, and is
closely related to MAP inference for Markov models and associated annealing-type algorithms
[24], [20], {25], [26], [27], [28], [29], [30], [31], [32], [33]. In this context, the complexity measure
reflects the signal prior, and, therefore, matching complexity may be interpreted as matching the
a priori probability of the solution (as measured with respect to a given model prior) to the a

priori probability of a reference signal.
III. A METHOD FOR CHOOSING THE WC REGULARIZATION PARAMETER

A. Key Lemma

The following result appears in the theory of so-called penalty methods in nonlinear program-
ming [4], [5].
Lemma 1: Consider;
WC: Xy mindyz (x)
where

Tty () = d(x) + Myce(@)
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Then:
dZz ) T Ayc
(R ) + Ao
where 1 stands for non-decreasing in, and | stands for non-increasing in.

Proof: ~ This works for any d(-),c(-), and x in some arbitrary space. In the theory of
penalty methods it is assumed that d(-),c(-) are continuous functions in continuous variables,
and ¢(x) > 0, Vx, yet these are really needed for reasons other than the proof of this Lemma [4,
pp. 279]. [ |

The basic idea of adaptation is depicted in figure 1. This is a block-adaptive training procedure,
similar in spirit to block-adaptive LS [6]. In training mode, we assume that we have access to a
block of training data and a desired response block, which are representative of the operational
environment which will be encountered during actual runtime. The purpose is to adapt the A%VC
WC parameter to match the output of WC to the desired response. What we propose here is to
select a suitable )\%VC by matching the complexity of the resulting solution (WC output) to that
of the desired response, instead of matching the output per se to the desired response in a LS
sense. This is motivated by two observations.

o« WC is fundamentally a trade-off between fidelity to the observed data and complexity of the
solution; therefore the complexity of the desired solution is a critical and highly informa-
tive attribute. As we will see, matching complexity affords enough flexibility to allow for
meaningful and effective adaptation.

o Matching the WC output to the desired response in a LS sense seems intractable, due to (i)
the nonlinearity of the WC I/O map, and (ii) the lack of an analytical closed-form solution
(in contrast, in the LTI FIR case the I/O map is linear and of very simple closed form). On
the other hand, matching the complexity of the solution (WC output) to that of the desired
response is made particularly easy by Lemma 1.

Had we known the complexity versus A%, curve, we could have selected an appropriate A%,
by inspection. We do not, hence we have to search for a suitable A%, in an intelligent fashion.
Lemma 1 tells us that complexity is nonincreasing in A%, (a typical plot is presented in Figure
8); thus, even though we do not know the specifics of the complexity versus A%, curve, we may

search for a suitable A%, using a simple binary search technique:
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o Select a candidate range for A3, since for A2, > ming,d(xo), where c(x) = 0, further
increase in Ajyo does not affect the solution, we may choose the initial range: M\, €
[0, miny,d(xo)], where ¢(xo) = 0. Let I,r denote the limits of the current search range.
Thus, in the beginning, we set | = 0, r = minx,d(xo), where c¢(xg) = 0.

+ Run WC with A3, = m = 4r.

o If the complexity of the resulting solution is more than that of the desired response, then
set: | = m; else if it is less than that of the desired response, then set: r = m; else if the
same exit;

e Repeat the last two steps until some prespecified accuracy in the localization of )\%VC is
reached (i.e., |l — r| < prespecified accuracy), or the target complexity is attained.

Due to binary search, the effective search range is at least halved in each iteration; convergence
is therefore logarithmic in the effective range of A%, ;. This means that less than 10 iterations
are usually enough.

In practice, it pays to use an integer )‘%VC for it allows for integer trellis arithmetic. In addition,
complexity as a function of )\%VC typically exhibits a piecewise-constant behavior. As a result, a
complexity-matching value of A%, may be highly non-unique. In view of these, it is beneficial to
quantize A%, beforehand (this may require appropriate scaling), and execute a discrete binary
search. In this case, the statement “until some prespecified accuracy is reached” should be
replaced by “until |r — | < ¢”, where g is the A%, -quantization step.

Each run of WC takes O(|A|2N). If we quantize A%, to A levels, then the entire adaptation
takes O(log(A)|A|2N). Since we are matching complexity in an intelligent way (by binary search),
it is appropriate to call the procedure a complezity matching pursuit (CMP).

Complexity matching pursuit is close, in spirit, to a classic polynomial root-finding technique,
known as bisection [34]. The difference here is that, at each step, we implement WC via DP,
instead of simply evaluating a polynomial. It is also close in spirit to CLS [11], which is an
iterative technique that may be used to select the regularization parameter in such a way that
the solution to the resulting optimization problem attains a prespecified level of either distortion
or roughness. CLS also builds on monotonicity, and uses a Newton-Raphson-like iteration. The
differences between CLS and CMP are summarized below.

¢ CLS has been developed for choosing the regularization parameter for a least squares problem

in which roughness is measured via a linear operator. CMP addresses the same problem for
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10

WC, in which roughness is measured via a nonlinear operator. In general, WC need not
employ the square of the Euclidean norm.

o CLS matches distortion, whereas CMP matches complexity. CLS may oversmooth the data
(e.g., cf. [7] and references therein). In the context of segmentation, CMP matches number of
segments, a much more informative attribute, and as a result the matching is more effective.

e In CLS there is always a unique value of the regularization parameter that exactly satisfies
the constraint. In WC-CMP this is typically not the case.

o CLS uses a Newton-Raphson-like iteration, which is not suitable for integer problems due to
the possibility of oscillations. CMP uses a binary search that is guaranteed to converge to an
optimal discrete value of the regularization parameter. Recall that a discrete value is sought
for the sake of reduced runtime complexity, as it translates to integer trellis arithmetic. This
benefit of binary search versus Newton-Raphson is only exhibited in the case of discrete-
parameter problems.

o For each interim value of the regularization parameter, the CLS signal estimate is explicit,
and linear in the observation. At each step, the corresponding WC-CMP estimate has to be
computed algorithmically, using Dynamic Programming.

Obviously, a similar adaptation can be proposed on the basis of distortion, which is the other
aspect of WC. This gives rise to a distortion matching pursuit, which, in general, leads to a
different choice of )\%VC than complexity matching pursuit. However, just like complexity, dis-
tortion as a function of A%, exhibits a piecewise-constant behavior. With twice the original
matching pursuit effort, one may identify candidate ranges of )\%VC and check for intersection.
We would like to point out that distortion matching pursuit appears to be less powerful than
complexity matching pursuit. This can be attributed to the fact that complexity carries more
prior information about the desired response than distortion does. We thus focus on complexity

matching pursuit.

IV. SIMULATION

Let us now present two complete WC adaptation experiments. These experiments use complex-
ity matching pursuit; here, due to the special choice of g,(z(n),z(n — 1)) (see below) complexity
is tantamount to number of edges.

The first experiment is concerned with the estimation of a synthetic edge signal embedded in

noise, using WC. Figure 3 depicts the input sequence. This particular input has been generated
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by adding i.i.d. noise on the data depicted in Figure 2. This latter data is also overlaid on
subsequent plots using a dashed line style. The target complexity of the desired response is 9.

For this example, we take d,, (y(n), z(n)) = |y(n)—z(n)|, Vn € {0,1,---,N — 1}, gu(z(n), z(n—
1)) =1-6(z(n)—z(n-1)),Vne {l,---,N -1}, A={0,---,99}, and N = 512. Four iterations
of WC adaptation on the basis of the desired response of Figure 2, and the input data of Figure
3, are depicted in Figures 4, 5, 6, and 7, respectively. The plots are self-explanatory. The initial
choice of A2, is really irrelevant; it is corrected in one iteration step.

Figures 8, 9, depict plots of c(i,\‘z” C) versus A%, ., and d(SEA%V C) versus A%, , respectively, for
the input data of Figure 3. These have been computed essentially by brute-force. They are
not needed for adaptation, and they are presented here to build the reader’s understanding and
intuition.

The second experiment is concerned with a segmentation problem. Figure 10 depicts left ven-
tricular pressure data (dog), from the Signal Processing Information Base at www.spib.rice.edu.
A noisy version of this data (corrupted by AWGN) is depicted in Figure 11. The noise-free data
is quasi-periodic, and the goal is to segment the pulses. By periodicity, the target complexity is
5.

For this example, we take d,(y(n),z(n)) = |y(n) — z(n)|? (consistent with the fact that the
noise is Gaussian), and g, (z(n),z(n — 1)) = 1 —é(z(n) —z(n — 1)). We use a total of |A| = 200
reproduction levels. Two iterations of WC adaptation are depicted in Figures 12, and 13. For

this data the pursuit ends in just two steps.

V. CLA

Let us now return to the CLA approximation problem:
minimize d(x)

subject to: ¢(x) < P, x € AV

Recall that d(y,x) = SN d,(y(n), z(n)), c(x) = SN0 gu(x(n), z(n — 1)), and we further as-
sume that c(x) is a non-negative integer ¥x € AN. This problem can be solved using Dynamic
Programming. A particular instance of this latter problem, namely, for ¢(x) = Y7 g, (z(n), z(n—
1)) = N1 - é(z(n) — z(n —1))] (i.e., complexity is measured by number of edges), and
d(x) = SN} y(n) — z(n)]?, is a special case of the problem of fitting curves by line segments

subject to an upper bound on the number of segments that can be used, and under a quadratic
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fidelity criterion. This has been solved in 1961 by Bellman [12]. Bellman’s solution employs
DP over number of segments, i.e., his recursion is over the number of segments; the resulting
DP algorithm is O(PN?) [12]. An alternative way to approach the CLA problem is by DP over
“time”, i.e., over the N variable. The motivation is that DP is always linear in the recursion

variable, and this may be beneficial for large N.

A. CLA solution by DP over “time”

The CLA problem involves a global rather than local constraint. As such, it doesn’t naturally
fall along the lines of [40], [41], [23]. Nevertheless, one can readily see that the pair (value(n),
complexity-accrued-sofar(n)) is a state for the CLA problem, which allows one to recast CLA
in the form of minimizing a cost of the type that appears in Equation 1, and, therefore, set
up a suitable Viterbi-type trellis to solve it. A fairly detailed yet compact C-like Viterbi-type
algorithm to solve CLA (for the special case of measuring complexity by number of segments, and
d(x) = S N1 jy(n) — z(n)]; it easily generalizes to other choices) can be found in the Appendix.
It is also straightforward to see that the resulting complexity is O(]A|?PN). For fixed A, P this
is asymptotically optimal in N; depending on the particular value of |4|, it may be worse than

Bellman’s O(PN?) original solution for small to moderate N, but it clearly beats it for larger

N.
VI. CONNECTIONS BETWEEN WC AND CLA
We now turn our attention to the following problem:
minimize d(x) + A\2Tp(c(x))

over x € AN, where
0 ,I<P
1 ,JI>P

Tp(l) =

It is easy to see that if d(x) > 0, Vx, ¢(x) > 0, Vx, and A? > minx,d(xg), where c(xg) = 0,
then the minimization above is, in fact, equivalent to CLA. It also looks a lot like WC, which is

reproduced here for convenience:
minimize d(x) + A} oc(x)

over x € AN. The difference between the two lies in the fact that the latter employs a penalty

that is proportional to complexity, whereas the former employs a penalty that is a nonlinear

January 13, 1997 DRAFT



13

function of complexity. As a result, the former (which, by suitable choice of A\?, can be made
equivalent to CLA) does not directly admit a Viterbi solution; rather it requires a state expansion,
just like CLA, and this leads to complexity O(|.A|?PN), as for CLA. On the other hand, WC is
directly amenable to Viterbi solution, and the resulting complexity is O(|A|2N). This, along with
the fact that the WC regularization parameter can be automatically tuned to match complexity
to a prespecified number, suggests that one may be able to train WC to provide at least an
approximate solution to the CLA problem in time O(|.A|?N) (compare with O(]4|?PN) for our
exact solution of CLA, and Bellman’s O(PN?) exact solution [12]). This is indeed the case.
Consider Figure 14. It depicts the solution of CLA for P = 9, complexity measured by number
of edges, and d(x) = 37! |y(n) — z(n)|. The result is actually identical to that of Figure 7.
This can be explained as follows: once the WC parameter is tuned to match the complexity of
WC output to P, the hard upper bound on complexity in the statement of CLA, and assuming
that the CLA problem is non-degenerate (in the sense that the optimum is not achieved using
fewer than P segments), then WC picks the best among all solutions of complexity P by simply
minimizing distortion, which is precisely what the CLA does. This assumes, again, that: (i) the
WC parameter can be selected to match the complexity of WC output to P (potential problem:
discontinuities in the complexity vs. A%, curve), (ii) the CLA problem is non-degenerate for the
given P, and (iii) the training data is indeed representative of the actual operational environment.
In practice, these considerations imply that, in general, WC (properly tuned) only provides an
approzimate solution to the CLA problem; this is, however, often good enough.

A final note is in order. It is quite obvious that CLA can be designed to provide a solution of a
given complexity (providing results comparable to adaptive WC) without any adaptation effort.
The drawback is, of course, increased runtime computational complexity with respect to WC.
Thus, adaptive WC can be viewed as successfully trading on-line computational complexity for

a modest off-line training effort.

VII. SUMMARY

We have proposed a simple yet highly efficient block-adaptive training procedure that selects
a suitable Weak Continuity (WC) regularization parameter by matching the complexity of the
resulting solution to that of a “desired response”. The matching is achieved using a simple binary
search technique that is guaranteed to converge in very few steps. This technique may be useful

in the context of other related nonlinear regularization problems.
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We have also considered CLA, a “hard” counterpart of WC, provided an asymptotically optimal
algorithm for solving it, and discussed connections with WC. In particular, we discussed the

potential of WC to provide an approximate but computationally cheaper solution to the CLA

problem.

It would be interesting to investigate the potential of matching pursuit in other related reg-
ularization problems. The next logical step would be to consider the adaptation of d(y,x) =
SN -t du(y(n), z(n)) and c(x) = SNt gn(z(n),z(n — 1)). This is a difficult problem that in-
volves many more degrees of freedom. From a Bayesian viewpoint, these should reflect the noise
characteristics, and signal prior, respectively; from an MDL perspective, the second should be
commensurate to model coding complexity. Other perspectives may also be appropriate. Work

in this direction is currently underway.
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VIII. ApPENDIX - CLA - VA (DP) CoDE

Uses:

typedef struct _state {

int cumcost; /* cost of reaching this state */
/* using the best path to it */
struct _state *prevstate; /* pointer to best previous state */
/* NULL if unreachable */

} state;
static state trellis([R][P][N]; /* Viterbi Trellis */

/* trellis[value] [sofar] [n]: */
/* state (value,sofar) at */

/* time n */

Init all states in the trellis to UNREACHABLE;

Init for n = 0 (first trellis stage); /* certain states */
/* reachable */
/* main loop */
for (n = 1; n < N; n++) /* do sequentially for all n */
{
for (sofar = 1; sofar <= P; sofar++) /* for all */
{
for (v = 0; v < R; v++) /* states at time n */
{
/* look back @ all states Q@ time n-1 that are */
/* reachable and may lead to the given state @ time n */

if (sofar > 1)

{
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/* then these states include: */
for (pv = 0; pv < R; pv++)
{
if ((pv !'= v) && (trellis[pv][sofar - 1] [n-1].prevstate != NULL))
{
cost = trellis[pv] [sofar - 1] [n-1].cumcost +
absolute_value({(v-y[n]));
if (cost < trellis[v] [sofar] [n].cumcost)
{
trellis[v] [sofar] [n].cumcost = cost;

trellis[v] [sofar] [n] .prevstate = &trellis[pv] [sofar - 1] [n-1];

}
/* in any case, even if sofar = 1, (v,sofar) @ time n-1, */
/* if reachable, is a valid candidate: */
if (trellisl[v][sofar] [n-1] .prevstate != NULL)
{

cost = trellis[v] [sofar] [n-1].cumcost +

absolute_value((v-y[n]));
if (cost < trellis[v] [sofar] [n].cumcost)
{
trellis[v] [sofar] [n].cumcost = cost;

trellis[v] [sofar] [n] .prevstate = &trellis[v] [sofar] [n-1];

January 13, 1997 DRAFT



