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We are interested in finding sparse solutions to systems of linear equations

Ax = b, where A is underdetermined and fully-ranked. In this thesis we examine

an implementation of the orthogonal matching pursuit (OMP) algorithm [11], an

algorithm to find sparse solutions to equations like the one described above, and

present a logic for its validation and corresponding validation protocol results. The

implementation presented in this work improves on the performance reported in

previously published work [2] that used software from SparseLab [19].

We also use and test OMP in the study of the compression properties of A

in the context of image processing. We follow the common technique of image

blocking used in the JPEG and JPEG 2000 standards [3, 22, 25]. We make a small

modification in the stopping criteria of OMP that results in better compression

ratio vs image quality as measured by the structural similarity (SSIM) and mean

structural similarity (MSSIM) indices which capture perceptual image quality [26].

This results in slightly better compression than when using the more common peak



signal to noise ratio (PSNR) [30].

We study various matrices whose column vectors come from the concatenation

of waveforms based on the discrete cosine transform (DCT), and the Haar wavelet.

We try multiple linearization algorithms and characterize their performance with

respect to compression.

An introduction and brief historical review on the topics of information theory,

quantization and coding, and the theory of rate-distortion leads us to compute

the distortion D properties of the image compression and representation approach

presented in this work. A choice for a lossless encoder γ is left open for future work

in order to obtain the complete characterization of the rate-distortion properties of

the quantization/coding scheme proposed here. However, the analysis of natural

image statistics is identified as a good design guideline for the eventual choice of γ.

The lossless encoder γ is to be understood under the terms of a quantizer (α, γ, β)

as introduced in [6].
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Chapter 1

Introduction

1.1 Motivation

In recent years, interest has grown in the study of sparse solutions of under-

determined systems of linear equations because of their many and potential appli-

cations [2]. In particular, these types of solutions can be used to describe images in

a compact form, provided one is willing to accept an imperfect representation.

We are interested in studying this approach to image compression because of

the ever-increasing volume of images in use by many multimedia channels. The

basic idea is the following. Suppose that we have a full-rank matrix A ∈ Rn×m,

where n < m, and that we want to find solutions to the equation,

Ax = b, (1.1)

where b is a given “signal.” Since the matrix A is full-rank, and we have more

unknowns than equations, we have an infinite number of solutions to Equation 1.1.

What if from all possible solutions we could find x0, the “sparsest” one, in the sense

of having the least amount of nonzero entries? Then, if the number of nonzero entries

in x0 happens to be less than the number of nonzero entries in b, we could store

x0 instead of b, achieving a representation of the original signal b in a compressed

1



way.

There are many questions that arise to this approach for image representation

and compression. For example, is there a unique “sparsest” solution of Equation

1.1? How do you find such solutions? What are the practical implications for this

approach to image compression?

We note that this idea can be framed in the context of signal transform com-

pression techniques. For example, the JPEG and JPEG 2000 standards have at

their core transformations that result in different representations of the original im-

age which can be truncated to achieve compression at the expense of some acceptable

error [3, 22, 25].

1.2 Finding sparse solutions

The orthogonal matching pursuit (OMP) algorithm [2, 11] is one of the existing

techniques to find sparse solutions of systems of linear equations, as in Equation 1.1,

where A ∈ Rn×m is a full-rank matrix, and n < m. This is one of many greedy

algorithms that attempt to solve the general problem,

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− b‖2 < ε. (1.2)

Here, ‖x‖0 = #{j : |xj| > 0} is the “zero-norm” of vector x, which counts the

number of nonzero entries in x. A greedy algorithm approach is necessary in the

solution of the optimization problem defined in Equation 1.2 because this is an NP-

complete problem [12]. Moreover, it can be proven that under certain circumstances
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there is a unique sparsest solution to (P ε
0); and, under those same circumstances,

OMP is then guaranteed to find it [2].

We have implemented OMP using a QR matrix decomposition [20] in one of

the steps of the algorithm in a way that takes advantage of calculations performed in

previous steps, resulting in a significant speedup. For details, see Section 2.2. Our

implementation improves on the convergence to the sparsest solution of Equation

1.2 as compared to results previously published and obtained using software from

[19], see Section 2.4. Moreover, compared to our initial naive implementation of

OMP as defined in [2], we modified certain aspects of the algorithm that resulted in

further speedup.

Armed with a tested and validated implementation of OMP (Section 2.3), we

proceeded to study image representation and compression as explained before.

1.3 Image representation and compression

To make a practical implementation of the compression technique described in

the introduction, we looked for inspiration in the JPEG and JPEG 2000 standards

[25, 22]. Also, in order to test our image representation and compression approach,

we selected a set of five commonly used test images, four of them from [24].

All images in our image database are 512 by 512, 8-bit depth, grayscale im-

ages. We proceeded to partition each image in subsets of 8 by 8 non-overlapping

sub-images to process them individually. Partitioning a signal to work with more

manageable pieces is a common technique [29].
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Subsequently, we vectorize each 8 by 8 sub-image into a vector b ∈ R64 to

be used as a right hand side in Equation 1.1. There are many ways to do this

vectorization and we explored three of them in detail, see Sections 3.4 and 3.5. To

complete the setup, we needed a matrix A.

We decided initially on A = [DCT1 Haar1] ∈ R64×128, where DCT1 represents

a basis of one-dimensional discrete cosine transform waveforms, and Haar1 a basis of

Haar wavelets, respectively. See Section 3.2.1 for details. That is, we concatenated

two bases of R64, where b lives. Our initial thought for choice of basis elements

drew from one-dimensional waveforms given that we are trying to approximate a

vector—a one-dimensional object—, however we also considered bases for R64 built

from tensor products of the one-dimensional waveforms mentioned above to capture

the two-dimensional nature of the underlying problem, the representation of an

image, an inherently two-dimensional object. We constructed in specific matrices

A = [DCT2,j Haar2,j] defined in Section 3.2.2.

We have compared the compression properties of A = [DCT1 Haar1] to those

of B = [DCT1] and C = [Haar1] that only use the one-dimensional discrete co-

sine transform waveforms, or the one-dimensional Haar wavelets, respectively, and

found that combining bases results in a representation x0 for each sub-image that

requires fewer nonzero entries. We found similar compression results for the two-

dimensional bases. A comparison between the one-dimensional and two-dimensional

concatenation of bases showed that up to a range of tolerance values ε between ap-

proximately 3 and higher the two-dimensional basis elements perform better than

the one-dimensional ones. See Section 3.6.
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Also, as part of our research we have measured the quality of the reconstruc-

tion from these compressed representations by way of the peak signal-to-noise ratio

(PSNR) [22, 30], the structural similarity index (SSIM), and the mean structural sim-

ilarity index (MSSIM) [26], all as functions of the tolerance ε chosen when solving

(P ε
0), see Sections 3.7 and 3.8. This led us to a novel modification of the termination

criteria in the OMP algorithm in order to achieve a desired PSNR or MSSIM value

for the resulting decompressed image. There is still some work left to do on how to

modify OMP to optimize for a desired MSSIM value.

Even though this is a promising compression technique, the full potential of

this approach to image representation and compression cannot be assessed until a

bit-stream c is produced to be able to quantify the net compression ratio, among

other criteria. That is, we still need to tackle the elements found in complete image

compression standards that draw on the information-theoretical paradigms raised

by the work of Shannon [16], that are incorporated into working JPEG and JPEG

2000 implementations, and in general information transmission/storage systems.

Along these lines, we gave a brief review and historical introduction to the top-

ics of information theory, quantization and coding, and the theory of rate-distortion,

see Chapter 4. The structure of the image compression approach that we have cho-

sen is amenable to a fine computation of its distortion D properties, for details see

Section 4.1

Finally, we offered a few new directions where future research can lead into in

Chapter 5, and in that spirit we briefly explored variations on the matrices we used

in the bulk of our work. For details see Section 3.9.
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Chapter 2

Finding sparse solutions

2.1 Orthogonal Matching Pursuit

In the first half of this project, we are interested in implementing and validating

one of the many greedy algorithms (GAs) that attempt to solve (P ε
0). The general

idea is as follows. Starting from x0 = 0, a greedy strategy iteratively constructs a

k-term approximation xk by maintaining a set of active columns—initially empty—

and, at each stage, expanding that set by one additional column. The column chosen

at each stage maximally reduces the residual `2 error in approximating b from the

current set of active columns. After constructing an approximation including the

new column, the residual error `2 is evaluated; if it now falls below a specified

threshold, the algorithm terminates.

Orthogonal Matching Pursuit (OMP)—a GA for calculating the solution to

(P ε
0):

Task: Calculate the solution to (P ε
0) : minx ‖x‖0 subject to ‖Ax− b‖2 < ε.

Parameters: We are given the matrix A, the vector b, and the threshold ε0.

Initialization: Initialize k = 0, and set

• The initial solution x0 = 0.

6



• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0} = ∅.

Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ε(j) = minzj
‖zjaj − rk−1‖22 for all j

using the optimal choice z∗j = aTj rk−1/‖aj‖22.

• Update Support: Find a minimizer j0 of ε(j): ∀j /∈ Sk−1, ε(j0) ≤

ε(j), and update Sk = Sk−1 ∪ {j0}.

• Update Provisional Solution: Compute xk, the minimizer of

‖Ax− b‖22 subject to Support{x} = Sk.

• Update Residual: Compute rk = b−Axk.

• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another

iteration.

Output: The proposed solution is xk obtained after k iterations.

This algorithm is known in the literature of signal processing by the name

orthogonal matching pursuit (OMP), and this is the algorithm we have implemented

and validated. OMP solves, in essence, (P ε
0) for ε = ε0, a given positive threshold.

See Equation 1.2 in Section 1.2 for details.

2.2 An OMP implementation

For a given matrix A ∈ Rn×m, if the approximation delivered by OMP has

k0 zeros, the method requires O(k0mn) flops in general; this can be dramatically

7



better than the exhaustive search, which requires O(nmk0k2
0) flops.

2.2.1 Least-squares approximation by QR decomposition

We would like to make the following observations about the OMP algorithm

described in Section 2.1. The step that updates the provisional solution seeks to

minimize ‖Ax−b‖22, subject to Support{x} = Sk. This is equivalent to solving the

least-squares approximation problem minx̃ ‖A(k)x̃ − b‖22 for the matrix A(k) that

results from using only the k active columns of A defined by Sk, and x̃ is the vector

in Rk whose i-th entry corresponds to the column of A that was chosen during the

i-th iteration of the main loop. See Figure 2.1.

n

1 1 1

a5 a2 a7
A

=

Q

n

3 n-3

Q2

= x

n-3

3

R

0

0

3

R2

R1

(3) (3) (3)

Q1
(3) (3)

(3)

(3)

Figure 2.1: Suppose that after k = 3 iterations of the main loop, OMP has chosen,
in the following order, columns a5, a2, and a7 from matrix A. We form sub-matrix
A(3) = (a5 a2 a7), and its QR decomposition A(3) = Q(3)R(3), which we use to solve
the least-squares problem ‖A(3)x̃− b‖22 = 0, with x̃ ∈ R3.

For the case when A is a relatively small matrix, we can solve this problem, for

example, by factorizing A(k) = Q(k)R(k) with the QR-algorithm, and then observing
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that

A(k) = Q(k)R(k) = Q
(k)
1 R

(k)
1 + Q

(k)
2 R

(k)
2 = Q

(k)
1 R

(k)
1 + 0 = Q

(k)
1 R

(k)
1 , (2.1)

where—using Matlab notation—

Q
(k)
1 = Q(k)(:, 1:k),

Q
(k)
2 = Q(k)(:, k+1:n),

R
(k)
1 = R(k)(1:k, :),

and R
(k)
2 = R(k)(k+1:n, :).

Then, from Equation 2.1, we have

A(k)x̃0 = b⇔ Q
(k)
1 R

(k)
1 x̃0 = b

⇒ Q
(k)T
1 Q

(k)
1 R

(k)
1 x̃0 = Q

(k)T
1 b

⇔ R
(k)
1 x̃0 = Q

(k)T
1 b

⇔ x̃0 = (R
(k)
1 )−1Q

(k)T
1 b,

where x̃0 ∈ Rk is the solution to the equivalent minimization problem described

above, and the inverse of R
(k)
1 exists because A(k) is full-rank. Finally, when OMP

returns successfully after k0 iterations, we embed x̃0 ∈ Rk0 in 0 ∈ Rm “naturally”

to obtain the solution x0 ∈ Rm to the initial least-squares approximation problem

‖Ax−b‖22 subject to the final active column set Sk0 . The natural embedding refers
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to setting the j-th entry of 0 ∈ Rm equal to the i-th entry in x̃0 ∈ Rk0 if during the

i-th loop of the main algorithm, OMP chose the j-th column of A.

2.2.2 Implementation fine tuning and speedup

We went through a series of code iterations to speedup our original imple-

mentation ompQR, initially done from a simplistic reading of the OMP algorithm

described in Section 2.1. We also had a generic implementation and a couple of

dedicated implementations. In Table 2.1 we show the speedup results for the generic

version, which can take any full-rank matrix A as input. The dedicated implementa-

tions exploited the structure of known input matrices used during OMP testing with

further speedup gains, as in resorting to the FFT as part of the internal calculations,

for example.

Algorithm Seconds Speedup

ompQR 617.802467 —
ompQRf 360.192118 1.715
ompQRf2 308.379138 1.168
ompQRf3 298.622174 1.032

Table 2.1: Algorithm performance. The speedup column refers to the speedup from
the immediately previous implementation. To compute the total speedup from first
to last implementations multiply all speedup values together. Total speedup from
ompQR to ompQRf3 is 2.068, which means we doubled the speed of our implementation
for the generic matrix version of our code. We used Matlab version R2010b Service
Pack 1 to run “experiment.m” which performs many OMP calls on randomized
input.

The first improvement came from computing ‖rk‖| cos(θj)| during the Sweep

portion of the algorithm. In this case θj is the angle between aj and the residue
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rk−1. This number reflects how good an approximation zjaj to the residue is, and

it is faster to compute than ε(j). During this step we also kept track of the best

approximation to the residue so that during the Update Support stage we could

update Sk more efficiently as compared to what was done in ompQR. Finally, we do

the sweep only on the set of columns that have not been added to the support set,

resulting in further time gains on the Sweep stage whenever k > 1. All these changes

where incorporated into ompQRf.

For the next round of improvements, we stop building Ak at each iteration as

explained in Section 2.2.1. Rather, we initialize Q = In and R = ∅, where In ∈ Rn×n

is the identity, and for consistency we define A0 = In · ∅ = ∅. Subsequently, we

update Q and R each time we add a column vector aj of A in the following way.

Suppose that at step k > 0 we have a QR decomposition of Ak−1 = QR, and that

column ajk is chosen from the Update Support step. Set w = (aT
jk

Q)T and let H

be a Householder reflexion such that Hw = v, where v = (#, . . . ,#, 0, . . . , 0)T has

n− k zeros after the first k entries. Then, since HT = H, H2 = In, and HR = R,

it is easy to see that

QHT
(
R|HTw

)
= Q

(
HTR|H2w

)
=
(
QR|Qw

)
=
(
Ak−1|QQTajk

)
=
(
Ak−1|ajk

)
= Ak.

Therefore, if we set Q′ = QHT, and R′ =
(
R|HTw

)
, we would have found a QR

decomposition of Ak = Q′R′ as a function of Q, R, and ajk . The implementation

of this update results in faster code compared to the implementation that com-
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putes a QR decomposition of Ak from scratch for each k. This new approach was

implemented in ompQRf2.

A final time improvement came simply from allocating all required variables

as opposed to have them grow dynamically as needed. This was implemented in the

final version ompQRf3.

2.3 OMP validation protocol and validation results

In this section we present the validation protocol that we followed to verify

the correctness of our OMP implementation.

2.3.1 Theoretical results that motivate and justify the protocol

The following results provide the foundation for the validation protocol that

we adopted. This protocol can be used to validate any OMP implementation.

Given a matrix A ∈ Rn×m with n < m, we can compute its mutual coherence

defined as follows [2].

Definition 1. The mutual coherence of a given matrix A is the largest absolute nor-

malized inner product between different columns from A. Denoting the k-th column

in A by ak, the mutual coherence is given by

µ(A) = max
1≤k,j≤m, k 6=j

|aTk aj|
‖ak‖2 · ‖aj‖2

. (2.2)

The mutual coherence gives us a simple criterion by which we can test when a
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solution to Equation 1.1 is the unique sparsest solution available. In what follows,

we assume that A ∈ Rn×m, n < m, and rank(A) = n.

Lemma 1. If x solves Ax = b, and ‖x‖0 < 1
2

(
1 + 1/µ(A)

)
, then x is the sparsest

solution. That is, if y 6= x also solves the equation, then ‖x‖0 < ‖y‖0.

This same criterion can be used to test when OMP will find the sparsest

solution.

Lemma 2. For a system of linear equations Ax = b, if a solution x exists obeying

‖x‖0 < 1
2

(
1 + 1/µ(A)

)
, then an OMP run with threshold parameter ε0 = 0 is

guaranteed to find x exactly.

The proofs of these lemmas can be found or are inspired by results in [2].

In light of these lemmas, we can envision the following roadmap to validate an

implementation of OMP. We have a simple unified theoretical criterion to guarantee

both solution uniqueness and OMP convergence. The following theorem simply

unifies the previous lemmas into one statement.

Theorem 3. If x is a solution to Ax = b, and ‖x‖0 < 1
2

(
1 + 1/µ(A)

)
, then x is

the unique sparsest solution to Ax = b, and OMP will find it.

In light of this result, we can establish the following protocol to validate any

implementation of OMP.

2.3.2 Validation protocol

Given a full-rank matrix A ∈ Rn×m, with n < m, compute µ(A), and find the

largest integer k smaller than or equal to 1
2

(
1 + 1/µ(A)

)
. That is, find the integer

13



k =
⌊

1
2

(
1 + 1/µ(A)

)⌋
.

Then, build a vector x with exactly k nonzero entries and produce a right

hand side vector b = Ax. This way, you have a known sparsest solution x to which

to compare the output of any OMP implementation.

Pass A, b, and ε0 to OMP to produce a solution vector xOMP = OMP(A,b, ε0).

If OMP terminates after k iterations (or less), and ‖AxOMP −b‖ < ε0, for all

possible x and ε0 > 0, then the OMP implementation would have been validated.

2.3.3 Validation results

Call κA = 1
2

(
1 + 1/µ(A)

)
, the constant dependent on A that guarantees

the results of Theorem 3 for matrix A. To test our implementation, we ran two

experiments involving two random matrices.

1. A1 ∈ R100×200, with entries in the Gaussian distribution N(0, 1), i.i.d., for

which its mutual coherence turned out to be µ(A1) = 0.3713, corresponding

to k = 1 = bκA1c.

2. A2 ∈ R200×400, with entries in the Gaussian distribution N(0, 1), i.i.d., for

which its mutual coherence turned out to be µ(A2) = 0.3064, corresponding

to k = 2 = bκA2c.

We first note that, with probability 1, Ai, (i = 1, 2), is a full-rank matrix [2].

Second, we would like to mention that for full-rank matrices A of size n ×m, the

mutual coherence satisfies µ(A) ≥
√

(m− n)/(n · (m− 1)), with the equality being

sharp [21]. We used these results to guide us into obtaining matrix A2 for which
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k = 2 = bκA2c > 1.

For each matrix Ai, (i = 1, 2), we chose 100 compatible vectors with k nonzero

entries whose positions were chosen at random, and whose entries were in the Gaus-

sian distribution N(0, 1), i.i.d..

Then, for each such vector x, we built a corresponding right hand side vector

b = Aix. Each of these vectors would then be the unique sparsest solution to

Aix = b, and OMP should be able to find them.

Finally, given ε0 > 0, if our implementation of OMP were correct, it should

stop after k steps (or less), and if xOMP = OMP(Ai,b, ε0), then ‖b−AixOMP‖2 < ε0.

We ran these experiments for twelve values of ε0 equal to 10, 1, 10−1, 10−2,

10−4, 10−6, 10−8, 10−10, 10−12, 10−14, 10−15, and 10−16. For each of these values

of ε0 we built 100 vectors as described above, with their respective right hand side

vectors, both of which were fed to OMP together with the tolerance ε0 being tested.

We kept track of how many iterations it took OMP to stop, and the value of

the norm of the residue ‖b −AixOMP‖2 at the end of each run. We mention that

our implementation of OMP had as stopping condition that either the residue would

be less than the tolerance ε0 given, or that n iterations of the main loop would have

been executed.

Figure 2.2 shows the summary of the results for matrix A1. It contains two

graphs, the top graph represents the average of the norm of the residue over the 100

experiments executed for a given tolerance, versus the 12 tolerances chosen. The

red line represents the identity in this case. The second graph is the same but for

the average number of iterations it took OMP to stop vs the tolerances chosen. The
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Figure 2.2: OMP behavior for a matrix A with µ(A) = 0.3713, which corresponds
to k0 = 1.
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red line in this case is the expected number of iterations k = bκA1c at stop time.

Figure 2.3 is the same as Figure 2.2, but for matrix A2.
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Figure 2.3: OMP behavior for a matrix A with µ(A) = 0.3064, which corresponds
to k0 = 2.

One can observe in both cases that there are three modal behaviors of OMP.

The rightmost points in each graph correspond to tolerances ε0 that are “too large”.

For them, OMP converges, but it does not have to do much work necessarily, since

the default initial solution x = 0 is already close to the right hand side b. The typical

behavior corresponds to points in the middle of the graph, they represent the cases

when OMP converges in exactly k iterations to the sparsest solution within machine
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precision. And, finally, the leftmost points represent when OMP fails to converge

because the tolerances ε0 are too close to machine precision, basically trampling

OMP efforts to converge due to roundoff and truncation errors.

In Figure 2.4 we exemplified each of the three modal behaviors with three

values of ε0 typical of each mode. The figure contains three graphs, the top graph

is for ε0 = 10, the middle graph is for ε0 = 10−6, and the bottom graph is for

ε0 = 10−16. Each of the graphs shows the individual results for each of the 100

experiments run for each tolerance ε0. This figure corresponds to matrix A1. In

Figure 2.5 we have the same graphs but for matrix A2.

We can conclude then that the validation protocol and results confirm that

our implementation of OMP is correct. This implementation will return a solution

x = OMP(A,b, ε0) to Ax = b, within machine precision, whenever the tolerance

ε0 ≥ 10−14, and provided ‖x‖0 ≤ κA.

2.4 OMP testing protocol and results

For the first part of our testing protocol, we set out to reproduce a portion

of an experiment described in [2]. The second part deals with studying the image

compression properties of multiple matrices A which will be described in more detail

in Chapter 3.
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Figure 2.4: The three modal behaviors, dependent on ε0, observed for the matrix A
used in Figure 2.2.
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Figure 2.5: The three modal behaviors, dependent on ε0, observed for the matrix A
used in Figure 2.3.
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2.4.1 Reproducing previous work

In a SIAM Review article by A. M. Bruckstein, D. L. Donoho, and M. Elad

[2], the following experiment is presented. We set out to reproduce the portion

corresponding to OMP.

Consider a random matrix A of size 100 × 200, with entries independently

drawn at random from a Gaussian distribution of zero mean and unit variance,

N (0, 1). It can be proven that, with probability 1, every solution for the system

Ax = b with less than 51 entries is necessarily the sparsest one possible, and, as

such, it is the solution of (P ε
0), for any ε > 0. By randomly generating such suffi-

ciently sparse vectors x (choosing the nonzero locations uniformly over the support

in a random way, and their values from N (0, 1)), we generate vectors b. This way,

we know the sparsest solution to Ax = b, and we shall be able to compare this to

the results given by OMP.

Since we set to reproduce the results that pertain to OMP in Figure 2 of page

56 of [2], we considered cardinalities in the range of 1 to 70—even though we knew

that, with probability 1, only those solutions with cardinality equal to or less than

51 were uniquely the sparsest ones possible—, and we conducted 100 repetitions and

averaged the results to obtain the probability of the algorithm finding the solution

with which we had generated the right hand side b. Comparing our results with

results obtained by published OMP implementations, e.g., like the ones available

at SparseLab [19], Figure 2.6 shows that our implementation of OMP reproduces

the published experiment, and it performs slightly better than the software found
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Figure 2.6: Reproduction of results in Section 3.3.1 of [2] for OMP. Our implemen-
tation ompQRf3 is slightly better at recovering with higher probability the sparsest
solution to Ax = b when compared to SolveOMP, an implementation publicly avail-
able at [19].
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Chapter 3

Image representation and compression

Image compression plays a central role in modern multimedia communications.

Compressed images arguably represent the dominant source of the Internet traffic

today, and multiple applications ranging from medical records, to publishing—both

in print and online media—, to military imagery, use them.

3.1 Elementary image representation concepts

For our purposes an image is a two dimensional sequence of sample values,

I[n1, n2], 0 ≤ n1 < N1, 0 ≤ n2 < N2,

having finite extents, N1 and N2, in the vertical and horizontal directions, respec-

tively. The term “pixel” is synonymous with an image sample. The first coordinate,

n1 is understood as the row index, while the second coordinate, n2, is identified

as the column index of the sample or pixel. The ordering of the pixels follows the

canonical ordering of a matrix’s rows and columns [22].

The sample value, I[n1, n2], represents the intensity (brightness) of the image

at location [n1, n2]. The sample values will usually be B-bit signed or unsigned
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integers. Thus,

I[n1, n2] ∈ {0, 1, . . . , 2B − 1} for unsigned imagery,

I[n1, n2] ∈ {−2B−1,−2B−1 + 1, . . . , 2B−1 − 1} for signed imagery.

In many cases, the B-bit sample values are best interpreted as uniformly quantized

representations of real-valued quantities, I ′[n1, n2], in the range 0 to 1 (unsigned)

or −1
2

to 1
2

(signed). Letting round(·) denote rounding to the nearest integer, the

relationship between the real-valued and integer sample values may be written as

I[n1, n2] = round(2BI ′[n1, n2]). (3.1)

This accounts for the sampling quantization error which is introduced by rounding

the physically measured brightness at location [n1, n2] on a light sensor to one of

the allowed pixel values [22, 29].

We will use this framework to represent grayscale images, where a pixel value

of 0 will represent “black”, and a value of 2B−1 “white”. The value of B is called the

depth of the image, and typical values for B are 8, 10, 12 and 16. Color images are

represented by either three values per sample, IR[n1, n2], IG[n1, n2], and IB[n1, n2]

each for the red, green, and blue channels, respectively; or by four values per pixel

IC [n1, n2], IM [n1, n2], IY [n1, n2], and IK [n1, n2], each for the cyan, magenta, yellow,

and black channels commonly used in applications for color printing, respectively.

We will restrict ourselves to grayscale images given that it is always possible to
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apply a compression system separately to each component in turn [22].

3.2 Image compression via sparsity

In this section, we give an overview of image compression via sparsity. The

basic idea is that if Ax = b, b is dense—that is, it has mostly nonzero entries—,

and x is sparse, we can achieve compression by storing wisely x instead of b.

In specific, suppose we have a signal b ∈ Rn that usually requires a description

by n numbers. However, suppose that we can solve problem (P ε
0), which we now

recall from Section 1.2, viz.,

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− b‖2 < ε,

and whose solution xε0 has k nonzeros, with k � n, then we would have obtained

an approximation b̂ = Axε0 to b using k scalars, with an approximation error of at

most ε. Thus, by increasing ε we can obtain better compression at the expense of

a larger approximation error. We will characterize this relationship between error

and compression, or equivalently, error and bit-rate per sample, later on.

The choice of matrix A is clearly central to our approach to compression.

Inspired by the JPEG and JPEG 2000 standards that use at their core the discrete

cosine transform (DCT) and a wavelet transform [25, 22], respectively, we decided

to incorporate both transforms in some capacity in our choices of matrix A.
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3.2.1 Choosing A: “One-dimensional” basis elements

Given that the signal that we are going to process comes in the form of a

vector b, an inherently one-dimensional object, a first approach is to consider the

one-dimensional DCT waveforms, and any one-dimensional wavelet basis for L2[0, 1].

For the choice of the wavelet basis we opt for the Haar wavelet plus its scaling

function, the identity on [0 1].

More specifically, we know that the one-dimensional DCT-II transform [1, 13],

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, k = 0, . . . , N − 1, (3.2)

has at its core a sampling of the function fk,N(x) = cos
(
π
(
x+ 1

2N

)
k
)

on the reg-

ularly spaced set of points S(N) =
{
si ∈ [0 1) : si = i

N
, i = 0, . . . , N − 1

}
. With

this, we can define the vector wk,N =
√

2
sgn(k) · (fk,N(s0), . . . , fk,N(sN−1))

T ∈ RN ,

which we call generically a “DCT waveform (of wave number k, and length N).” In

specific, we will use DCT waveforms with N = 64 for the one-dimensional compres-

sion approach. This is because we subdivide each image in our study database into

collections of 8 by 8 non-overlapping sub-images, which are then transformed into

vectors b ∈ R64, and subsequently compressed, as described above. See Section 3.4.

This collection of DCT waveforms is a basis for R64, and we arrange its elements

column-wise in matrix form as DCT1 = (w0,64 . . .w63,64) ∈ R64×64. Note that all

column vectors of DCT1 have the same `2 norm.

The corresponding basis of R64 based on the Haar wavelet is built in the
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following way. Consider the Haar wavelet’s mother function [10, 14],

ψ(x) =



1 if 0 ≤ x < 1/2,

−1 if 1/2 ≤ x < 1,

0 otherwise,

(3.3)

and its scaling function,

φ(x) =


1 if 0 ≤ x < 1,

0 otherwise.

(3.4)

For a natural number n ∈ N, build the set of functions

Hn = {x 7→ ψn,k(x) = 2n/2ψ(2nx− k) : 0 ≤ k < 2n},

and define H−1 = {x 7→ φ(x)}. Note that #Hn = 2n for n ≥ 0, #H−1 = 1, and

therefore #
⋃n
j=−1Hj = 1 +

∑n
j=0 2j = 2n+1. Since 64 = 26, a value of n = 5

will produce 64 functions to choose from in H(n) =
⋃n
j=−1Hj. For each function

h ∈ H(n = 5), create vector vh,64 ∈ R64 by sampling h, as before, on the set of points

S(N = 64). That is, vh,64 = (h(s0), . . . , h(s63))
T. Observe that ‖vh,64‖2 = ‖w0,64‖2

for all h ∈ H(5). We drop the N in v·,N or w·,N when clear from the context.

Note that we can order the elements of H(5) in a natural way, namely, h0 = φ,

h1 = ψ0,0, h2 = ψ1,0, h3 = ψ1,1, etc. It is easy to see that the set of vectors {vhj
}63
j=0

is a basis of R64. As with the DCT waveforms, we arrange column-wise these vectors

in matrix form as Haar1 = (vh0 . . .vh63) ∈ R64×64. Then, for the one-dimensional
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approach, we define A = [DCT1 Haar1] ∈ R64×128, the concatenation of both bases.

In Figure 3.1 we can visualize the columns of DCT1 and Haar1 in two different

ways. A first method, given a column vector u = (u1, . . . , u64)
T of either basis, is

to plot the map j 7→ uj. A second method, slightly more elaborate, is to show the

two-dimensional mapping of u to c−1
2 (u), where the invertible map c2 is defined in

Section 3.4. We choose c2 because the ordering of the entries of u induced by this

invertible map results in optimal compression performance. See Table 3.2.

(a) (b)

(c) (d)

Figure 3.1: Top row: The first six waveforms of the DCT1 (a), and the Haar1 (b)
normalized bases for R64. Bottom row: Full 2D representation using the inverse
map of c2 defined in Section 3.4 for the DCT1 (c), and Haar1 (d) bases for R64.
White corresponds to the maximum value achieved by the basis element, black to
the minimum. The intermediate shade of gray corresponds to 0.
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3.2.2 Choosing A: “Two-dimensional” basis elements

Another way to choose a basis for R64 results from taking into account the

intrinsic two-dimensional nature of an image and create basis elements that reflect

this fact. In specific, consider the two-dimesional DCT-II used in the JPEG standard

[25],

Xk1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n1 +

1

2

)
k2

]
, (3.5)

and, as before, consider the family of functions indexed by k1 and k2,

gk1,k2,N1,N2(x, y) = cos

[
π

(
x+

1

2N1

)
k1

]
cos

[
π

(
y +

1

2N2

)
k2

]
,

sampled on all points (x, y) ∈ S(N1)×S(N2), where in our case, N1 = N2 = 8, and

k1, k2 ∈ {0, . . . , 7}.

(a) (b)

Figure 3.2: Full natural 2D representation for the DCT2 (a), and Haar2 (b) bases
for R64. White corresponds to the maximum value achieved by the basis element,
black to the minimum. The intermediate shade of gray corresponds to 0.
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Note that gk1,k2,N1,N2(x, y) = fk1,N1(x)fk2,N2(y), and therefore the image of

S(8)× S(8) under gk1,k2,8,8 can be naturally identified with the outer product

wk1,8 ⊗wk2,8, k1, k2 = 0, . . . , 7, (3.6)

modulo the constants
√

2
sgn(k1)

and
√

2
sgn(k2)

, that make ‖wk1‖2 = ‖wk2‖2, respec-

tively. See Figure 3.2(a) for a graphical representation of each and all of these outer

products.

There is a total of 64 such outer products, and for each of them we can obtain

a vector w̃k1,k2,j = c−1
j (wk1,8 ⊗ wk2,8), where c−1

j is the inverse map of any of the

bijections c1, c2, or c3 that take a vector into a matrix, defined in Section 3.4. It is

easy to see that the vector columns of the matrix

DCT2,j = (w̃k1,k2,j) ∈ R64×64, k1, k2 = 0, . . . , 7, (3.7)

form a basis for R64. The ordering of the column vectors of DCT2,j follow the

lexicographical order of the sequence of ordered pairs (k1, k2) for k1, k2 = 0, . . . , 7

when k2 moves faster than k1, i.e., (0, 0), (0, 1), . . . , (0, 7), (1, 0), . . . , (7, 7).

In a similar fashion, we can build Haar2,j. In specific, consider first the set of

functions H(2), which contains 8 functions. Sampling hk ∈ H(2) on S(8), we obtain

vector vhk,8 ∈ R8. Given k1, k2 ∈ {0, . . . , 7} we then compute vector

ṽk1,k2,j = c−1
j

(
vhk1

,8 ⊗ vhk2
,8

)
∈ R64,
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with which, for all k1, k2 ∈ {0, . . . , 7}, and following the same order for the ordered

pairs (k1, k2) mentioned above, we can create

Haar2,j = (ṽk1,k2,j) ∈ R64×64, k1, k2 = 0, . . . , 7. (3.8)

For a visual representation of the outer products vhk1
,8 ⊗ vhk2

,8, see Figure 3.2(b).

Finally, we can define A = A(j) = [DCT2,j Haar2,j] ∈ R64×128, the concate-

nation of both bases.

3.2.3 Some properties of [DCT1 Haar1] and [DCT2,j Haar2,j]

From the definitions of DCT1, Haar1, DCT2,j, and Haar2,j, with j = 1, 2, or 3

(from now on, we won’t make explicitly clear that the index j runs through 1, 2,

and 3 as we will assume that this is always the case when it appears,) it is easy to

see that they are matrices whose column vectors are pairwise orthogonal and with

a common norm, i.e., ‖a‖2 = c for any column vector a of any of these matrices.

Also, it is easy to see in this case that c = 8. This means that if we were to consider

1
8
DCT1,

1
8
Haar1,

1
8
DCT2,j, and 1

8
Haar2,j, separately, they would all be orthogonal

matrices, i.e., matrices whose columns are pairwise orthonormal. We present now

some properties that are derived from these facts.

Lemma 4 (Parseval’s identity). Let U be an orthogonal basis for Rn such that

∀u ∈ U ‖u‖2 = c. Then ∀w ∈ Rn

∑
u∈U

(wTu)2 = c2‖w‖22. (3.9)
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Proof. Let w ∈ Rn. Since U is a basis for Rn, there exists a linear combination of

elements of U = {uk ∈ Rn : k = 1, . . . , n} such that

∑
k

xkuk = w, where xk ∈ R.

Let j ∈ {1, . . . , n}, then we have that

∑
k

xkuk = w =⇒
∑
k

xku
T
j uk = uT

j w,

⇔ xj‖uj‖22 = uT
j w, since U is an orthogonal basis,

⇔ xj =
uT
j w

‖uj‖22
.

Hence
∑

k

uT
k w

‖uj‖22
uk = w, but ∀j ‖uj‖2 = c by assumption. Hence

∑
k uT

kw uk = c2w.

From this equation, premultiplying by wT, we obtain that

∑
k

uT
kw uk = c2w =⇒

∑
k

uT
kw wTuk = c2wTw,

⇔
∑
k

(wTuk)
2 = c2‖w‖22.

Lemma 5 (Union of two disjoint orthogonal bases). Let U and V be two orthogonal

bases for Rn such that ∀u ∈ U,v ∈ V ‖u‖2 = ‖v‖2 = c, and U ∩ V = ∅. Let

W = U ∪ V , then W is a tight uniform frame with frame bounds A = B = 2c2.

Proof. Since ∀w ∈ W either w ∈ U or w ∈ V , we must have ‖w‖2 = c. This takes

care of uniformity, by Definition 7. See Appendix A for more basic frame definitions.
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Let b ∈ Rn, then by Parseval’s identity (Lemma 4, Equation 3.9) we have

∑
k

(bTuk)
2 = c2‖b‖22, if U = {uk ∈ Rn : k = 1, . . . , n},

and ∑
k

(bTvk)
2 = c2‖b‖22, if V = {vk ∈ Rn : k = 1, . . . , n}.

Hence

∑
w∈W

(bTw)2 =
∑
u∈U

(bTu)2 +
∑
v∈V

(bTv)2 −
∑

w∈U∩V

(bTw)2 (3.10)

= c2‖b‖22 + c2‖b‖22 − 0, since U ∩ V = ∅,

= 2c2‖b‖22.

Let A = B = 2c2. Then from Equation 3.10, A‖b‖22 =
∑

k(b
Tvk)

2 = B‖b‖22. This

establishes the required frame condition for a tight frame [4, 7].

From the proof of Lemma 5, we obtain the following result.

Lemma 6 (Upper bound). Let U and V be as in Lemma 5, except that U ∩ V 6= ∅.

Then the following inequality holds,

∀b ∈ Rn
∑

w∈U∪V

(bTw)2 ≤ 2c2‖b‖22,

and the inequality is tight whenever U ∩ V 6= U, V .

33



Proof. From Equation 3.10 we have that, for ∀b ∈ Rn,

∑
w∈U∪V

(bTw)2 =
∑
u∈U

(bTu)2 +
∑
v∈V

(bTv)2 −
∑

w∈U∩V

(bTw)2,

≤
∑
u∈U

(bTu)2 +
∑
v∈V

(bTv)2, since
∑

w∈U∩V 6=∅

(bTw)2 ≥ 0,

= c2‖b‖22 + c2‖b‖22, by Lemma 4

= 2c2‖b‖22.

Finally, assume that U ∩ V 6= U, V , or equivalently U ∩ V ( U, V . This implies

that span{U ∩ V } ( Rn, therefore there is a nonzero vector b̃ ∈ Rn such that

b̃ ⊥ span{U ∩ V }. This implies that

∑
w∈U∩V 6=∅

(b̃Tw)2 = 0,

and therefore
∑

w∈U∪V (b̃Tw)2 = 2c2‖b̃‖.

We have a similar result for the lower bound in the general case.

Lemma 7 (Lower bound). Let U and V be as in Lemma 5, except that U ∩ V 6= ∅.

Then the following inequality holds,

∀b ∈ Rn c2‖b‖22 ≤ ‖b‖22

2c2 − max
‖b̃‖2=1

b̃∈Rn

∑
w∈U∩V

(b̃Tw)2

 ≤ ∑
w∈U∪V

(bTw)2.

Moreover, the second inequality is tight.
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Proof. Let 0 6= b ∈ Rn, then

∑
w∈U∩V

(bTw)2 = ‖b‖22
∑

w∈U∩V

(
b

‖b‖2

T

w

)2

,

≤ ‖b‖22 max
‖b̃‖2=1

b̃∈Rn

∑
w∈U∩V

(
b̃

‖b̃‖2

T

w

)2

, (3.11)

≤ ‖b‖22 max
‖b̃‖2=1

b̃∈Rn

∑
w∈U

(
b̃

‖b̃‖2

T

w

)2

,

= ‖b‖22c2, by Lemma 4.

If b = 0 then
∑

w∈U∩V (bTw)2 ≤ ‖b‖22c2 trivially since both sides of the inequality

are 0. Therefore Inequality 3.11 holds for all b ∈ Rn, and we have

−c2‖b‖22 ≤ −‖b‖22 max
‖b̃‖2=1

b̃∈Rn

∑
w∈U∩V

(
b̃

‖b̃‖2

T

w

)2

≤ −
∑

w∈U∩V

(bTw)2 (3.12)

Combining Equation 3.10 and the Inequalities 3.12 we have that, for ∀b ∈ Rn,

∑
u∈U

(bTu)2 +
∑
v∈V

(bTv)2 −
∑

w∈U∩V

(bTw)2 =
∑

w∈U∪V

(bTw)2,

⇒ 2c2‖b‖22 −
∑

w∈U∩V

(bTw)2 =
∑

w∈U∪V

(bTw)2, by Lemma 4,

⇒ c2‖b‖22 ≤ ‖b‖22

2c2 − max
‖b̃‖2=1

b̃∈Rn

∑
w∈U∩V

(b̃Tw)2

 ≤ ∑
w∈U∪V

(bTw)2.

Let b∗ = arg maxb

∑
w∈U∩V

(
b
‖b‖

T
w
)2

, then Inequality 3.11 becomes an equality

and by Equation 3.10 the claim of tightness follows.
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Combining Lemmas 5, 6, and 7 we obtain the following result,

Theorem 8. Let U and V be orthogonal bases for Rn such that ∀u ∈ U ‖u‖2 = c,

and ∀v ∈ V ‖v‖2 = c. Then W = U ∪ V is a uniform frame with frame bounds

A = 2c2 − max
‖b‖2=1
b∈Rn

∑
w∈U∩V

(bTw)2, and B =


2c2 if U ∩ V 6= U, V

c2 otherwise

.

Moreover, if U ∩ V = ∅ then W is a tight frame with frame bounds A = B = 2c2.

Proof. The only thing left to prove is that B = c2 whenever U ∩ V = U or

U ∩ V = V . In either case we have that U = V , and the claim follows from

Parseval’s identity (Lemma 4, Equation 3.9.) Note that in this case, A = c2 since

max‖b‖2=1

∑
w∈U∩V (bTw)2 = c2, for the same reason.

In subsequent sections, we will conduct a detailed study of the compression

properties of both [DCT1 Haar1] and [DCT2,j Haar2,j], for j = 1, 2, 3, as well as

matrices derived from them.

3.3 Image database

To carry out our experiments and test image compression via sparsity, as

well as the properties of the matrices described in Section 3.2 for that purpose, we

selected 5 natural images, 4 of them from the University of Southern California’s

Signal & Image Processing Institute (USC-SIPI) image database [24]. This database

has been widely used for image processing benchmarking. The images are described
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in Table 3.1 and shown in Figure 3.3. All images are 512 by 512, 8-bit grayscale

images, which means they are composed of 5122 = 262,144 pixels that can take

integer values from 0 (black) to 255 (white).

USC-SIPI file Name Size Notes

n/a Barbara 512x512 pixels, 8-bit
boat.512 Boat 512x512 pixels, 8-bit
elaine.512 Elaine 512x512 pixels, 8-bit
4.2.07 Peppers 512x512 pixels, 24-bit

color image
Converted to 8-bit
grayscale image.

5.2.10 Stream 512x512 pixels, 8-bit

Table 3.1: List of images used. Image Peppers was converted to a grayscale image
from the 24-bit color original using Photoshop CS3. Image Barbara is not in the
USC-SIPI database but we included since it is widely used by the image processing
community.

3.4 Methodology

Following the approach to image processing at the core of the JPEG image

compression standard [25], we subdivide each image in our database in 8 by 8 non-

overlapping squares that will be treated individually. Since we need to generate

a right hand side vector b to implement our compression scheme via sparsity, cf.

Section 3.2, a sub-image Y ∈ R8×8 of size 8 by 8 pixels needs be linearized into a

vector y ∈ R64 to play the role of b. There are many ways to do this, but we tested

only three possible approaches. The first one consisted of concatenating one after

the other the columns of Y to form y, we shall call this method c1, which can be

thought of as a bijection c1 : R8×8 → R64 that maps Y 7→ y the way just described

above. See Figure 3.4(a).
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(a) Barbara (b) Boat

(c) Elaine (d) Peppers

(e) Stream

Figure 3.3: Images used for our compression algorithms based on sparse image
representation.
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C1
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1
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3

4

(a)

C2

1 2 3 4

1

2

3

4

(b)

Figure 3.4: Two possible ways to vectorize a matrix. (a) Concatenate from top to
bottom one after the other, from left to right, the columns of the matrix; or (b) first
flip every other column, and then concatenate the columns as before. This is what
functions c1 and c2 do, respectively.

Yet another method would be to reverse the ordering of the entries of every

even column of Y and then concatenate the columns of the resulting matrix. That

is, from Y first obtain the matrix Y′, where Y ′i,2j = Y8+1−i,2j, and Y ′·,· and Y·,· are the

entries of Y′ and Y, respectively. Then concatenate one after the other the columns

of Y′ to form y′. Call this method c2, also a bijection c2 : R8×8 → R64 that maps

Y 7→ y′ the way just described. See Figure 3.4(b).

Finally, a third method, c3 : R8×8 → R64, would traverse an 8 by 8 sub-image

Y in a zigzag pattern from left to right, top to bottom, along the diagonal that goes

from its top left to its bottom right corners and map it to a vector y′′ ∈ R64, in a

similar way as the zigzag mapping shown in Figure 3.5, which depicts this mapping

but for a 4 by 4 image that is mapped into a vector in R16.

These are the three methods we consider to vectorize a matrix Y representing

an 8 by 8 sub-image from any of the images in our test database. Whether we

generate a signal vector b ∈ R64 by either setting b = c1(Y), b = c2(Y), or
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C3

1
2
5
9
.
.
.
12
15
16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.5: How to vectorize a matrix following a zigzag pattern. A 4 by 4 matrix
is shown with its 16 elements enumerated from left to right, top to bottom. The
path of arrows shows the new induced order after traversing the matrix in a zigzag
pattern to obtain a vector.

b = c3(Y), we still need to designate a matrix A ∈ R64×128 as well to complete the

setup. This is where we use [DCT1 Haar1] and [DCT2,j Haar2,j], with j = 1, 2, 3.

That is, we will consider A equal to any of these matrices, defined in Sections 3.2.1

and 3.2.2, respectively.

Once we have chosen a way to vectorize a sub-image, say ci—with i either 1,

2, or 3—and a matrix A, we proceed in the following way. Given a tolerance ε0 > 0,

and an image I that has been partitioned in 8 by 8 non-overlapping sub-images,

say {Yl}—where l = 1, . . . , (512/8)2 for the images in our database—we obtain

the approximation to yl = ci(Yl) derived from the OMP algorithm, i.e., from the

sparse xl = OMP(A,yl, ε0), we compute ỹl = Axl, where A = [DCT1 Haar1], or

A = [DCT2,j Haar2,j], for j equal to 1, 2, or 3. Using ỹl we can then reconstruct a

sub-image by setting Ỹl = c−1
i (ỹl).

Finally, we can rebuild and approximate the original image I by pasting to-

gether, in the right order and position, the set of sub-images {Ỹl}, and form that

way Ĩ, the approximate image reconstruction of I. This new image Ĩ is necessarily
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an approximation, and not the original image I, because in the process we have

introduced an error by setting the tolerance ε0 > 0, and not ε0 = 0. Recall that

‖ỹ − y‖2 < ε0, and therefore we will likely have Ĩ 6= I. Since ‖xl‖0 ≤ ‖yl‖0, and

more likely ‖xl‖0 � ‖yl‖0, storing wisely the set {xl}Ml=1, where M is the number

of sub-images partitioning I, will provide a compressed representation of image I.

How to efficiently create a compressed representation of image I using {xl}Ml=1,

and the effects of the choice of tolerance ε0, map ci : R8×8 → R64, and matrix A on

such representation will all be addressed in subsequent sections.

3.5 Effects on image reconstruction from choice of map ci

Given an image I in our database, we can follow and apply to it the method-

ology described in Section 3.4, and obtain at the end of this process a recon-

structed image Ĩ from it. In this section we explore the effects of the choice of

map ci : R8×8 → R64 on the characteristics of image Ĩ for the different choices of

matrix A that we have selected to study.

We summarize the empirical observations obtained from the experiments de-

scribed below, and suggest a possible explanation for them without further proof.

3.5.1 Results for A = [DCT1 Haar1]

We conducted the following experiments. We set A = [DCT1 Haar1], and

chose a tolerance of ε = 32. Then, for each image I in our database—and each

index i = 1, 2, 3—we chose map ci : R8×8 → R64 for the step in the methodology
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mentioned before that converts a sub-image Yl, from a partition in 8 by 8 sub-

images of I, into a vector yl = ci(Yl). The collection of vectors {yl}l∈L is used

to eventually build image Ĩi, which depends on the choice of map ci this way. See

Section 3.4.

The characteristics that we used to measure the impact of the choice of map ci

are the normalized bit-rate, and the peak signal-to-noise ratio (PSNR). See Defini-

tions 3 and 4, respectively. A smaller value for the normalized bit-rate is better than

a bigger one given that this implies less bits are necessary to represent the image. A

larger value for the PSNR is better than a smaller one as this means the fidelity of

the representation is higher. Table 3.2 summarizes the results of the experiments.

From these, we can conclude that for matrix A = [DCT1 Haar1], the choice of c2

over c1 or c3 produces better results. This could be because, if Y = (Yi,j)i,j=1,...,8 is

a natural image, on average |Y8,j − Y8,j+1| < |Y8,j − Y1,j+1| for j = 1, . . . , 7, which

makes yc2 = c2(Y) change more slowly than yc1 = c1(Y). By analogy to the be-

havior of the DFT, this must translate into needing less column vectors from A to

describe, within a certain error ε, the signal yc2 compared to the number of columns

needed to approximate signal yc1 to the same error tolerance.

What could explain the superiority of the ordering induced by c1 over c3? For

this, we introduce the concept of total variation for a vector v.

Definition 2 (Total Variation). Let v ∈ Rn. The total variation of v = (v1, . . . , vn)T

is the quantity,

V (v) =
n−1∑
i=1

|vi+1 − vi|. (3.13)
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Image/Function PSNR (dB) Normalized bit-rate (bpp)

Barbara
c1: 36.8996 0.1833
c2: 36.9952 0.1863
c3: 36.8470 0.2338

Boat
c1: 36.5791 0.1812
c2: 36.6020 0.1608
c3: 36.5615 0.2205

Elaine
c1: 36.5003 0.1763
c2: 36.5155 0.1682
c3: 36.4877 0.1885

Peppers
c1: 36.7936 0.1193
c2: 36.8674 0.1024
c3: 36.7648 0.1372

Stream
c1: 36.4423 0.3161
c2: 36.4686 0.3050
c3: 36.4400 0.3504

Table 3.2: Performance results for A = [DCT1 Haar1] for each c1, c2, and c3. For
each image in our test database, we linearized each 8 by 8 sub-image using either c1,
c2, or c3. In all cases, the PSNR value was larger using c2; and in all cases, except for
image Barbara—although minimally—, the normalized bit-rate was smaller. Both
of these measures make c2 a better choice over c1 or c3. The values correspond to
runs of OMP with an `2 termination criteria, and a tolerance ε = 32.

Image
Averages Maximums

c1 c2 c3 c1 c2 c3

Barbara 684.9177 624.9761 850.5647 3793 3894 4681
Boat 559.6167 471.2769 625.9233 2991 2102 4005
Elaine 552.3401 487.6824 479.7908 2564 1570 2082
Peppers 423.7781 356.2764 405.8694 2707 1940 2430
Stream 978.5122 844.6191 971.4321 3563 2826 2869

Table 3.3: Total variation averages Vavg(I, ci) and maximums Vmax(I, ci)
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For an image I in our database, create from it the partition of non-overlapping

8 by 8 sub-images {Yl}l∈L. Since our images are 512 by 512 pixels, we will have

64× 64 = 4096 sub-images Yl. That is, #L = 4096. Set i = 1, 2, or 3, and for each

and everyone of those sub-images Yl compute the total variation V (ci(Yl)). Then

plot in a 64 by 64 image the results to visualize the aggregate of all these values.

(a) (b) (c)

Figure 3.6: Total variation for image Barbara for the vectorization function (a) c1,
(b) c2, and (c) c3. Blue represents low values, red high values.

(a) (b) (c)

Figure 3.7: Total variation for image Boat for the vectorization function (a) c1, (b)
c2, and (c) c3. Blue represents low values, red high values.

The images obtained this way are shown in Figures 3.6 through 3.10. Also,
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(a) (b) (c)

Figure 3.8: Total variation for image Elaine for the vectorization function (a) c1,
(b) c2, and (c) c3. Blue represents low values, red high values.

(a) (b) (c)

Figure 3.9: Total variation for image Peppers for the vectorization function (a) c1,
(b) c2, and (c) c3. Blue represents low values, red high values.

(a) (b) (c)

Figure 3.10: Total variation for image Stream for the vectorization function (a) c1,
(b) c2, and (c) c3. Blue represents low values, red high values.
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Table 3.3 contains the maximum value,

Vmax(I, ci) = max
l∈L

V (ci(Yl)), (3.14)

and the average value,

Vavg(I, ci) =
1

#L

#L∑
l=1

V (ci(Yl)), (3.15)

for each image I in our database, and each and all of the vectorization functions

ci : R8×8 → R64 that we considered. We observe that usually, but not always, that

the smallest value of Vavg predicts the largest PSNR, and the smallest value of Vmax

predicts the smallest normalized bit-rate. However, as observed, this is not always

the case. If we had only considered c1 and c3 for linearizing functions, the prediction

would have failed both for the PSNR and normalized bit-rate measures for image

Elaine, for example. This could be because the inherent properties of the matrix

chosen to perform the compression, A = [DCT1 Haar1] in this case, may have an

impact as well. This is showcased in the following section, where we will see that the

total variation of the different vectors resulting from different choices of linearizing

functions ci seems to have less of an impact in the PSNR and normalized bit-ratio

characteristics of the reconstructed image when A = [DCT2,3 Haar2,3].
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3.5.2 Results for A = [DCT2,j Haar2,j]

Proceeding in a similar fashion as in Section 3.5.1, we set A = [DCT2,j Haar2,j]

for each j = 1, 2, and 3, and for each such instance of A, we perform the following

experiment.

Assume that A = [DCT2,j Haar2,j], and set the vectorization function to

match the same ordering that was used to create A. This means we pick the

vectorization function to be cj. We compute yl = cj(Yl), where—as before—sub-

image Yl comes from the partition {Yl}l∈L of an image I in our image database.

Then, continuing with the compression methodology described in Section 3.4, we

obtain xl = OMP(A,yl, ε0), setting ε0 = 32 for this experiment. Finally, from the

set of vectors {xl}l∈L we obtain ỹl = Axl, and use {ỹl}l∈L to eventually obtain

the reconstructed image Ĩ of our original image I. Again, as in Section 3.5.1,

we asses the effects of the choice of linearizing function ci by the values of PSNR

and normalized bit-rate resulting from this representation of I by Ĩ. We show the

summary of the results of this experiment for all matrices A considered above, and

all images in our database, in Table 3.4.

We point out that choosing ci, with i 6= j, when A = [DCT2,j Haar2,j] results

in worse values of both PSNR and normalized bit-rate than when i = j, as described

above. We report only the results where i = j.

Remarkably, any choice of A = [DCT2,j Haar2,j] with a matching vectorization

function cj performs better than when A = [DCT1 Haar1] for the normalized bit-rate

metric, and almost better for the PSNR metric except for image Stream by 0.0008
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of a dB. Also, on average, the vectorization order imposed by c3 is slightly better

than those by either c1 or c2, although the difference is practically imperceptible to

the human eye. The normalized bit-rate figures all coincide.

Image/Function PSNR (dB) Normalized bit-rate (bpp) Matrix

Barbara
c1 : 37.0442 0.1634 [DCT2,1 Haar2,1]
c2 : 37.0443 0.1634 [DCT2,2 Haar2,2]
c3 : 37.0443 0.1634 [DCT2,3 Haar2,3]

Boat
c1 : 36.6122 0.1541 [DCT2,1 Haar2,1]
c2 : 36.6120 0.1541 [DCT2,2 Haar2,2]
c3 : 36.6120 0.1541 [DCT2,3 Haar2,3]

Elaine
c1 : 36.5219 0.1609 [DCT2,1 Haar2,1]
c2 : 36.5219 0.1609 [DCT2,2 Haar2,2]
c3 : 36.5220 0.1609 [DCT2,3 Haar2,3]

Peppers
c1 : 36.8780 0.0955 [DCT2,1 Haar2,1]
c2 : 36.8780 0.0955 [DCT2,2 Haar2,2]
c3 : 36.8780 0.0955 [DCT2,3 Haar2,3]

Stream
c1 : 36.4678 0.2957 [DCT2,1 Haar2,1]
c2 : 36.4676 0.2957 [DCT2,2 Haar2,2]
c3 : 36.4677 0.2957 [DCT2,3 Haar2,3]

Table 3.4: Performance results for A = [DCT2,1 Haar2,1], A = [DCT2,2 Haar2,2],
and A = [DCT2,3 Haar2,3] with corresponding vectorization functions c1, c2, and
c3, respectively. In all cases, the PSNR and normalized bit-rate values were almost
identical, with minor differences. Matrix A = [DCT2,3 Haar2,3] performs slightly
better on average. Mismatching function ci with matrix A = [DCT2,j Haar2,j] when
i 6= j, results in degraded performance. The values correspond to runs of OMP with
an `2 termination criteria, and a tolerance ε = 32.
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3.6 Normalized bit-rate vs tolerance

Following the methodology described in Section 3.4, suppose that we have an

image I from our database and let {Yl}l∈L be a partition of I in #L sub-images of

size 8 by 8. Let yl = ci(Yl) for some i = 1, 2, or 3, where ci : R8×8 → R64 is one of

the three maps defined in Section 3.4. See Figures 3.4 and 3.5. Using OMP, with

a full-rank matrix A ∈ R64×128, and a tolerance ε0 > 0, obtain xl = OMP(A,yl, ε0),

and compute the approximation to yl given by ỹl = Axl.

We know that ‖ỹl − yl‖2 < ε0, and we can count how many nonzero entries

there are in xl, namely ‖xl‖0. With this, we can define the normalized bit-rate.

Definition 3 (Normalized Bit-Rate). Given the context above, the normalized bit-

rate measured in bits per pixel (bpp) for image I—given compression matrix A, and

tolerance ε0—is the number

nbr(I,A, ε0) =

∑
l ‖xl‖0
N1N2

, (3.16)

where image I is of size N1 by N2 pixels (N1 = N2 = 512 in our case).

This is how to interpret this definition. Suppose that it takes a binary digit

or “bit” (0 or 1, for example) to represent a nonzero coordinate in vector xl, and

that we—for the moment—ignore how to keep track of the index l, then we will

need ‖xl‖0 bits to store or transmit xl. Then, the total number of bits to represent

image I is
∑

l ‖xl‖0. The average number of bits per pixel (bpp) is then obtained

by dividing this quantity by N1N2. This is the normalized bit-rate.
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Compare Definition 3 with more traditional forms of compression measures.

From [22], the purpose of image compression is to represent the image I of size N1 by

N2 and depth B with a string of bits, called the compressed “bit-stream”, denoted

c. The objective is to keep the length of c, say length(c), as small as possible. In the

absence of any compression, we require N1N2B bits to represent the image sample

values. The compression ratio is then defined as

cr(I, c) =
N1N2B

length(c)
, (3.17)

and the compressed bit-rate, expressed in bpp, as

br(I, c) =
length(c)

N1N2

. (3.18)

The compression ratio is a dimensionless quantity that tells how many times we

have managed to reduce in size the original representation of the image, while the

compressed bit-rate has bpp units and tells how many bits are used on average per

sample by the compressed bit-stream c to represent the original image I.

We note that from Equations 3.16 and 3.18 we must have that nbr(I,A, ε0) ≤

br(I, c) if the bit-stream c is derived from the sparse representation induced by A

and ε0. The reason for this is two-fold. Firstly, it is unlikely that the coordinates

in each of the resulting xl vectors will be realistically represented by only one bit,

and secondly, because c would have to somehow include a coding for the indices l

for each xl, necessarily increasing the bit count some more. These particular issues,
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i.e., the number of bits to represent the entries of vectors xl, and the coding of

the indices l for each of those vectors into a final compressed bit-stream c, will be

addressed in Section 4.

Notwithstanding the above remarks, there is still value in using the normalized

bit-stream measure to quantify and plot normalized bit-rate vs tolerance graphs to

gauge the compression properties of various compression matrices.

Given the results in Table 3.4, we look into the compression properties of matri-

ces A = [DCT1 Haar1], and Ã = [DCT2,3 Haar2,3]. We compare these properties for

both matrices relative to each other, and to the compression properties of B and C,

which are formed from the DCT1 or the Haar1 submatrices of matrix A, respectively.

We plot for all images in our database their respective normalized bit-rate vs tol-

erance graphs. We took ε0 ∈ T = {2k}11
k=0 ∪ {3, 5, 6, 7, 24, 40, 48, 56, 80, 96, 112} and

for each image I in our image database we obtained the corresponding normalized

bit-rates nbr(I,A, ε0), nbr(I,B, ε0), and nbr(I,C, ε0) to obtain the plots in Figure

3.11. In Figure 3.12 we compare A = [DCT1 Haar1] with Ã = [DCT2,3 Haar2,3]. We

observe that up to a tolerance εI , dependent on image I, matrix Ã performs better

for tolerance values ε ≥ εI . That is, the value of the normalized bit-rate is smaller

when performing compression utilizing matrix Ã. For values of ε ≤ εI compression

with matrix A results in better normalized bit-rate values. We shall see in Section

3.7 that for values of ε = 32, and smaller, the quality of the image reconstruction is

very good. We note from Figure 3.12 that, for all images in our database, εI < 32.

This means that, for most practical cases, the use of [DCT2,3 Haar2,3] results in

slightly smaller normalized bit-rate values than when using [DCT1 Haar1].
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(a) Barbara (b) Boat

(c) Elaine (d) Peppers

(e) Stream

Figure 3.11: Normalized bit-rate vs tolerance: “One-dimensional” basis elements.
We can observe that for all images the best normalized bit-rate for a given tolerance
is obtained for matrix A = [DCT1 Haar1] which combines both the DCT1 and Haar1

bases for R64.
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(a) Barbara (b) Boat

(c) Elaine (d) Peppers

(e) Stream

Figure 3.12: Normalized bit-rate vs tolerance. We show results to compare the
performance of A = [DCT1 Haar1] and Ã = [DCT2,3 Haar2,3].
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From the results shown in Figure 3.11, we can see that the DCT1 basis elements

perform better compression for any given tolerance than when using the Haar1 basis

elements, except for image Stream: when the tolerance ε is approximately less than

3, the Haar1 basis elements actually result in a smaller normalized bit-rate value.

Moreover, and more importantly, combining both the DCT1 and Haar1 bases results

in better compression than if either basis is used alone. The same is true for DCT2,3

and Haar2,3. This is very encouraging. However, what can be said of the quality

of the reconstructed images? For what range of the tolerances tested is the image

quality acceptable? What does an “acceptable” image quality mean? To answer

these and related questions, we need to address the issues of image reconstruction

and error estimation.

3.7 Image reconstruction and error estimation

For the work in this and further sections, unless otherwise noted, we will work

with A = [DCT1 Haar1] and the vectorization function c2.

Given a 512 × 512 image I in our database, we can proceed to compress

it using the methodology described in Section 3.4. If I is broken down in 8 × 8

non-overlapping sub-images {Yl}l=1,...,4096, we can obtain for each of them a cor-

responding reconstructed sub image Ỹl = c−1
2 (ỹl), and from those reconstruct an

approximation Ĩ to I. Here, ỹl = Axl, xl = OMP(A,yl, ε0), and yl = c2(Yl), as

before. The compression would come from storing wisely {xl}. We can summarize

this procedure with the following notation: Ĩ = rec(I,A, ε0).
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How do we assess the quality of Ĩ when compared to the original image I?

We introduce two error estimators—three in actuality, two of them being related.

Traditionally, the signal processing community has relied on the peak signal-

to-noise ratio, or PSNR [22, 30].

Definition 4 (PSNR). The Peak Signal-to-Noise Ratio between two images Ĩ and

I is the quantity, measured in dB,

PSNR(Ĩ, I) = 20 log10

 maxI√
mse(Ĩ, I)

 ,

where maxI is the maximum possible value for any given pixel in I, maxI = 2B − 1

typically; and mse(Ĩ, I) = 1
N1N2

∑
i,j

(
Ĩ[i, j] − I[i, j]

)2
is the mean square error

between both images. Here N1 and N2 represent the dimensions of I, and I[i, j]

represents the value of the pixel at coordinates [i, j] in image I—similarly for Ĩ[i, j].

In our case N1 = N2 = 512, and maxI = 255.

PSNR has the advantage that it is easy to compute and has widespread use, but

it has been criticized for poorly correlating with perceived image quality [26, 27].

However, in recent years extensive work on other error estimators that take into

account the human visual system have arisen. In particular, we present and define

the structural similarity and mean structural similarity indices [26].

Definition 5 (SSIM). Let Ĩ and I be two images that have been decomposed in

L×L non-overlapping sub images {Ỹl} and {Yl}, respectively. Then the Structural

Similarity index for two corresponding sub-image vectorizations, say ỹl = c2(Ỹl)
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and yl = c2(Yl), is defined as follows

SSIM(ỹl,yl) =
(2µỹl

µyl
+ C1)(2σỹlyl

+ C2)

(µ2
ỹl

+ µ2
yl

+ C1)(σ2
ỹl

+ σ2
yl

+ C2)
,

where µyl
and σyl

represent the mean and standard deviation of yl, respectively; and

similarly for ỹl. The term σỹlyl
is the correlation between ỹl and yl. The values C1

and C2 are two small constants.

For our purposes, we used the default values of L = 11, C1 = 0.01, and

C2 = 0.03 used in [26] when assessing the SSIM of an image in our database and its

reconstruction. We used a value of L = 4 when we modified OMP to use internally

the SSIM as a stopping criteria. More on this later.

From the above definition, we can see that the SSIM index is a localized quality

measure that can be represented on a plane that maps its values. It can take values

from 0 to 1 and when it takes the value of 1 the two images are identical. In practice,

we usually require a single overall quality of measure for the entire image. In that

case we use the mean SSIM index to evaluate the overall image quality.

Definition 6 (MSSIM). Let Ĩ and I be two images, where the former is the ap-

proximation and the later is the original. Then the Mean Structural Similarity index

is

MSSIM(Ĩ, I) =
1

M

M∑
l=1

SSIM(ỹl,yl),

where ỹl and yl are the image contents at the l-th local sub-image, and M is the

number of local sub-images in the image.
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Finally, we take a look at the relationship between the size of the sub-image

and the tolerance, and how this affects the quality of the approximation. We analyze

the idealized error distribution in which all pixels of the approximation are c units

apart from the original. Consider an L×L sub image that has been linearized to a

vector y of length L2. Assume that the OMP approximation within ε has distributed

the error evenly, that is, if x = OMP(A,y, ε) and ỹ = Ax, then

‖Ax− y‖2 < ε⇔ ‖ỹ − y‖22 < ε2,

⇔
L2∑
j=1

(
ỹ(j)− y(j)

)2
< ε2,

⇔ L2c2 < ε2,

⇔ c <
ε

L
. (3.19)

That is, if we want to be within c units from each pixel, we have to choose a tolerance

ε such that c = ε/L.

We note that the least-squares approximation at the core of OMP approx-

imates the idealized error distribution. This can be seen in Figure 3.13 where

the black dashed line represents this idealized error approximation. For tolerances

ε > 40, we can see that the PSNR for all images considered is above this idealized

error distribution. This can be explained by noting that, for example, for ε = 2048,

we would have from Equation 3.19 that c = 2048/8 = 256, but the maximum pixel

value is only 255. Therefore, unless the original image I is just a white patch,

the initial value of the OMP approximation being an all black image, there are
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matching pixels in the original and the approximation image Ĩ = rec(I,A, 2048)

that are less than 256 units apart. This would necessarily, by Definition 4, im-

ply PSNR(Ĩ, I) > 0, a value above the value of the PSNR for the idealized error

distribution when ε = 2048, which is a small negative value.

Figure 3.13: Peak Signal-to-Noise Ratio vs tolerance. We observe three typical
behaviors for all images. For large values of the tolerance, about ε > 40, the PSNR
of all images is above the PSNR value for the idealized error distribution marked
by the black dashed line. This behavior is also observed for very small values of
the tolerance, about ε < 3. Then for values between these two extreme behaviors,
all images conform very closely to the idealized error distribution, a fact that is
expected from the least-squares approximation at the core of the OMP algorithm.

On the other hand, for really small tolerances, about ε < 3, we observe that

the PSNR value for all images jumps again above the PSNR for the idealized error

model. This is a happy case when roundoff error actually helps. What happens is

that for such small tolerances, the roundoff to the closest integer for all entries in

ỹl = Axl when we form the sub image approximation Ỹl = c−1
2 (ỹl), coincides with
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the true value of the pixels in the original sub image Yl. Again, by Definition 4,

this increases the value of PSNR(Ĩ, I) compared to the case where roundoff would

not have taken place.

3.8 PSNR and MSSIM comparison

Now that we have some tools to asses the quality of a reconstruction, how do

they compare?

Figure 3.14: Normalized bit-rate vs MSSIM, PSNR

In Figure 3.14 we have plotted the normalized bit-rate versus both error indices

MSSIM and PSNR. The first thing that we observe is that the sensitivity for PSNR

varies more dramatically than the sensitivity for MSSIM over the range of tolerances

chosen.

From Figure 3.15 we can observe that for the range of 20 to 40 dB in PSNR,

the MSSIM index ranges from about 0.33 to 0.98. Since a value of 1 in MSSIM

corresponds to two identical images, we can focus on values of PSNR no greater

than 40 dB in our analysis. Also in Figure 3.15 we corroborate the criticism that

59



Figure 3.15: Peak Signal-to-Noise Ratio vs Mean Structural Similarity

has been addressed to PSNR as a measure of image quality. For example, for image

Stream at 20 dB we have an MSSIM value of 0.33, whereas for image Peppers we

have an MSSIM value of 0.51. A similar wide range between 0.69 (Elaine) and 0.86

(Stream) for MSSIM is observed for 30 dB in PSNR. It is not until 40 dB that

we have a much smaller range of MSSIM values, 0.95 (Peppers) to 0.98 (Stream).

Therefore, if SSIM and MSSIM capture more accurately the human visual system’s

perception of image quality, then the PSNR index is shown to be not so good at it

until after values larger than or equal to 35 dB.

We therefore drop from the rest of our analysis the PSNR index, other than

for an occasional reference point or comparison, and focus on the SSIM and MSSIM

indices. We retake the questions at the end of Section 3.6 and answer them with

Figure 3.16. From it, if we were to consider desirable values of MSSIM to be above
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or equal to 0.9, we would see that this would correspond to a tolerance ε of less

than 32 for the Peppers and of 48 for Stream, all other tolerances for the rest of the

images falling in between these two values.

Figure 3.16: Normalized bit-rate and corresponding MSSIM vs tolerance. In this
graph we have plotted together the best normalized bit-rate obtained by combining
the DCT and Haar bases, and the corresponding value of the MSSIM index for a
given tolerance. The normalized bit-rate graphs are on the bottom left, and the
MSSIM index values are above these. This figure combines results for all images.

This means that if we wanted all images to have an MSSIM index of 0.9 or

better, we would have to pick a tolerance no larger than ε = 32. This tolerance

corresponds, according to Equation 3.19, to a distance of no more than 32/8 = 4

units per pixel between the reconstructed image and the original, on average. Under

these circumstances we would achieve a normalized bit-rate of 0.102 to 0.305 bits

per pixel. But how good would images with MSSIM greater than or equal to 0.9

actually look? Moreover, what if we could modify OMP as to guarantee a certain
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minimum MSSIM quality level? It turns out that this modification is possible.

Consider the following change in the termination condition for the OMP algo-

rithm from ‖Ax − b‖2 < ε0 to ‖Ax − b‖MSSIM ≡ MSSIM(c−1
2 (Ax), c−1

2 (b)) > δ0,

where δ0 is a desired minimum MSSIM index value to achieve in each individual sub

image of the reconstruction of I. When we make this change, and recompute the

normalized bit-rate vs MSSIM graphs, we obtain the plots shown in Figure 3.17. In

this figure, we observe that changing the termination condition for OMP leads to

an improvement in the normalized bit-rate without sacrificing image quality. Or, to

see this from the opposite perspective, given a normalized bit-rate, we can achieve

a better image quality index MSSIM when we use the new stopping criteria. As

we shall see in the pictures below, this change redistributes the work that OMP

performs more evenly across the image.

Finally, to address the question of how good the images actually look, we let

the images speak for themselves, and let you—the reader—be the judge. See Figures

3.18 through 3.25. All figures consist of two images, the reconstruction from the

original, to the left, and the SSIM index map to the right. The SSIM map represents

the localized quality of the image reconstruction. Lighter values are values closer

to 1 (“white” = 1), whereas darker values are values closer to 0 (“black” = 0). For

each image we obtained a reconstruction for ε0 = 32 for the `2 stopping criteria,

and a reconstruction with value of δ0 close to the MSSIM from the former for the

MSSIM stopping criteria, for comparison purposes.
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(a) Barbara (b) Boat

(c) Elaine (d) Peppers

(e) Stream

Figure 3.17: Normalized bit-rate vs MSSIM. Comparison of different termination
criteria for OMP.
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(a) Barbara (b) SSIM

Figure 3.18: Barbara: ε0 = 32, PSNR = 36.9952 dB, MSSIM = 0.9444, normalized
bit-rate = 0.1863 bpp, termination criteria: ‖ · ‖2.

(a) Barbara (b) SSIM

Figure 3.19: Barbara: δ0 = 0.94, PSNR = 32.1482 dB, MSSIM = 0.9462, normalized
bit-rate = 0.1539 bpp, termination criteria: ‖ · ‖MSSIM .

64



(a) Boat (b) SSIM

Figure 3.20: Boat: ε0 = 32, PSNR = 36.6020 dB, MSSIM = 0.9210, normalized
bit-rate = 0.1608 bpp, termination criteria: ‖ · ‖2.

(a) Boat (b) SSIM

Figure 3.21: Boat: δ0 = 0.92, PSNR = 34.1405 dB, MSSIM = 0.9351, normalized
bit-rate = 0.1595 bpp, termination criteria: ‖ · ‖MSSIM .
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(a) Elaine (b) SSIM

Figure 3.22: Elaine: ε0 = 32, PSNR = 36.5155 dB, MSSIM = 0.9096, normalized
bit-rate = 0.1682 bpp, termination criteria: ‖ · ‖2.

(a) Elaine (b) SSIM

Figure 3.23: Elaine: δ0 = 0.90, PSNR = 35.6288 dB, MSSIM = 0.9168, normalized
bit-rate = 0.1686 bpp, termination criteria: ‖ · ‖MSSIM .
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(a) Peppers (b) SSIM

Figure 3.24: Peppers: ε0 = 32, PSNR = 36.8674 dB, MSSIM = 0.8983, normalized
bit-rate = 0.1024 bpp, termination criteria: ‖ · ‖2.

(a) Peppers (b) SSIM

Figure 3.25: Peppers: δ0 = 0.89, PSNR = 35.4309 dB, MSSIM = 0.9080, normalized
bit-rate = 0.1011 bpp, termination criteria: ‖ · ‖MSSIM .

67



(a) Stream (b) SSIM

Figure 3.26: Stream: ε0 = 32, PSNR = 36.4686 dB, MSSIM = 0.9622, normalized
bit-rate = 0.3050 bpp, termination criteria: ‖ · ‖2.

(a) Stream (b) SSIM

Figure 3.27: Stream: δ0 = 0.95, PSNR = 34.1398 dB, MSSIM = 0.9634, normalized
bit-rate = 0.2853 bpp, termination criteria: ‖ · ‖MSSIM .
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3.9 Other matrices

We have devoted a lot of attention to specific matrices A to solve problem

(P ε
0), see Equation 1.2, which we reproduce below for convenience,

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− b‖2 < ε.

Namely, we have studied [DCT1 Haar1], and [DCT2,j Haar2,j], for j = 1, 2, 3, defined

in Sections 3.2.1 and 3.2.2, respectively. But there are many other matrices we could

potentially use, an infinite number in fact. We briefly present here some results

for other matrices that could be of interest but for which further study would be

desirable.

3.9.1 “Rotations” of the basis elements of DCT2,3

Consider the matrix DCT2,3 defined in Section 3.2.2, and recall that its columns

are obtained from the outer products of DCT waveforms, see Section 3.2.1, and

Equations 3.6 and 3.7. We recall that the two-dimensional DCT-II transform plays

a fundamental role in the definition of the column vectors of matrix DCT2,3, in

specific see Equation 3.5, which we reproduce below for convenience,

Xk1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n1 +

1

2

)
k2

]
.

As pointed out in Section 3.2.2, at the core of this transform we find the family
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of functions indexed by k1 and k2,

gk1,k2,N1,N2(x, y) = cos

[
π

(
x+

1

2N1

)
k1

]
cos

[
π

(
y +

1

2N2

)
k2

]
,

sampled on all points (x, y) ∈ S(N1)×S(N2), where in our case, N1 = N2 = 8, and

k1, k2 ∈ {0, . . . , 7}. Recall that S(N) =
{
si ∈ [0 1) : si = i

N
, i = 0, . . . , N − 1

}
.

Now observe that given that we are fundamentally sampling the function

gk1,k2,N1,N2 : R2 → R that takes a vector v = (x, y)T ∈ R2 and maps it to

gk1,k2,N1,N2(x, y) ∈ R, we could transform v first by applying to it a rotation in

the R2 plane, and then apply to the transformed vector the function gk1,k2,N1,N2 . Let

ρ(θ) be the counter-clockwise rotation by angle θ in the R2 plane, and identify it

with its matrix representation, i.e.,

ρ(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

Then, we have the following construction for a new matrix A. Let θn,N = π
2
n
N

,

with n = 0, . . . , N − 1, be N equidistant points in
[
0, π

2

)
. For each ordered pair

(k1, k2) ∈ {0, . . . , 7} × {0, . . . , 7}, and setting vector vi,j =
(
i
8
, j

8

)T ∈ S(8) × S(8),

we can form the matrix,

Wk1,k2(θn,N) =


gk1,k2,8,8

(
ρ(θn,N)v0,0

)
. . . gk1,k2,8,8

(
ρ(θn,N)v0,7

)
...

...

gk1,k2,8,8
(
ρ(θn,N)v7,0

)
. . . gk1,k2,8,8

(
ρ(θn,N)v7,7

)

 ∈ R8×8.
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Using this matrix, form the column vector,

wk1,k2,j(θn,N) = cj
(
Wk1,k2(θn,N)

)
,

where the vectorization functions cj were defined in Section 3.4, see Figures 3.4 and

3.5.

Choosing j = 3, we can compare wk1,k2,3(θn,N) with w̃k1,k2,3 in Equation 3.7.

Basically, when n = 0, we have wk1,k2,3(θ0,N) = wk1,k2,3(0) = w̃k1,k2,3. We recall

that {w̃k1,k2,3 : k1, k2 = 0, . . . , 7} form the columns of the DCT2,3 submatrix in

A = [DCT2,3 Haar2,3], hence the name for this section.

Now, finally, traversing k1 and k2 in lexicographical order for the sequence

of ordered pairs (k1, k2) with k1, k2 = 0, . . . , 7 and k2 moving faster than k1, i.e.,

(0, 0), (0, 1), . . . , (0, 7), (1, 0), . . . , (7, 7), we can form a new matrix,

DCT2,3(n,N) =
(
w0,0,3(θn,N) . . .w7,7,3(θn,N)

)
.

Suppose that we choose N = 6, and that we concatenate the six matrices

{DCT2,3(n, 6)}5n=0, to form the matrix below,

A = [DCT2,3(0, 6) . . .DCT2,3(5, 6)]. (3.20)

This is a matrix that uses “rotations”—as introduced above—of some of the

column vectors of [DCT2,3 Haar2,3] that could be used in problem (P ε
0), for example.

We have run experiments for comparison purposes for a tolerance ε = 32 using
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Full natural 2D representation for (a) DCT2,3(0, 6), (b) DCT2,3(1, 6),
(c) DCT2,3(2, 6), (d) DCT2,3(3, 6), (e) DCT2,3(4, 6), and (f) DCT2,3(5, 6), bases for
R64. White corresponds to the maximum value achieved by the basis element, black
to the minimum. The intermediate shade of gray corresponds to 0.
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A as defined in Equation 3.20. The results are shown in Table 3.5. For a visual

representation of the basis elements of A, see Figure 3.28.

Image PSNR (dB) Normalized bit-rate (bpp) MSSIM

Barbara 37.1180 0.1325 0.9464
Boat 36.6579 0.1321 0.9234
Elaine 36.5671 0.1359 0.9118
Peppers 36.9145 0.0859 0.9001
Stream 36.5089 0.2482 0.9636

Table 3.5: Performance results for A = [DCT2,3(0, 6) . . .DCT2,3(5, 6)]. In all cases
both the PSNR and normalized bit-rate values were better than the values obtained
for A = [DCT2,3 Haar2,3], i.e., larger and smaller, respectively. See Table 3.4 for
comparison. The values correspond to runs of OMP with an `2 termination criteria,
and a tolerance ε = 32.
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Chapter 4

Quantization and coding

In 1948 Claude E. Shannon published a seminal paper in two parts in The Bell

Systems Technical Journal named “A mathematical theory of communication” [16].

This work marked the dawn of both information theory and coding theory [8, 9]. In

it, Shannon defined precisely what “information” meant mathematically. He drew

from work done by his colleagues at Bell Labs, Harry Nyquist and Ralph Hartley,

and he certainly was aware of the work on the topic by Norbert Wiener, with whom

he had taken a class at MIT.

Hartley wrote the following equation to quantify “information” in a discrete

setting,

H = n log s,

where H is the amount of information, n is the number of symbols transmitted, and

s is the size of a given alphabet from which the symbols are drawn [5].

Shannon pushed this notion by identifying the amount of information with en-

tropy, as Norbert Wiener commented on a five paragraph review in Physics Today,

September 1950, of the book that Shannon and Weaver published together in 1949.

The book, “The mathematical theory of communication” [17], contained in a single

tome the two-part original paper by Shannon and an expanded and slightly more

technical essay that Warren Weaver, the director of natural sciences for the Rock-
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efeller Foundation, had written earlier for Scientific American in 1949 [28] about

Shannon’s work.

More specifically, in the case of a discrete information source, Shannon repre-

sented this as a Markov process, and asked if we could “define a quantity which will

measure, in some sense, how much information is ‘produced’ by such a process, or

better, at what rate information is produced?”

He equated this quantity to entropy,

H = −
n∑
i=1

pi log2 pi, (4.1)

where in Equation 4.1 we have supposed that we have a set of n possible events whose

probabilities of occurrence are p1, p2, . . . , pn. To develop some intuition about this

definition, we review and compare the material in [8] with Shannon’s work [16].

Assume that we are given a random variable X on the finite set {1, 2, . . . , n} with

probability distribution p. The elements X(1) = x1, X(2) = x2, . . . , X(n) = xn are

distinct and p(x1), p(x2), . . . , p(xn) are nonnegative real numbers with

p(x1) + p(x2) + . . .+ p(xn) = 1.

We are using pi = p(xi) as a shorthand for prob(X = xi). Now think of the following.

The smaller the probability p(xi), the more uncertain we are that an observation of

X will result in xi. Thus we can regard 1/p(xi) as a measure of the uncertainty of

xi. The smaller the probability, the larger the uncertainty.
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Shannon thought of uncertainty as information (contrary to common intu-

ition.) This is because if an event has probability 1, there is no information gained

in asking the outcome of such an event given that the answer will always be the

same. Moreover, he also thought the following three properties as desirable for a

function that could quantify information:

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H should be a monotonic increasing

function of n. With equally likely events there is more choice, or uncertainty,

when there are more possible events.

3. If a choice can be broken down into two successive choices, the original H

should be the weighted sum of the individual values of H.

Shannon proved that the only H satisfying these three assumptions is of the form

H = −K
n∑
i=1

pi log pi.

Hence, if we define the uncertainty of xi to be

log2

1

p(xi)
= − log2 p(xi),

measured in bits, the entropy of the random variable X is defined to be the expected

value

H(X) =
n∑
i=1

p(xi) log2

1

p(xi)
= −

n∑
i=1

p(xi) log2 p(xi),
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of the uncertainty for the random variable X, i.e., the entropy of X will measure

the information gained from observing X. This reasoning establishes Equation 4.1.

Moreover, given a communication channel—like a pair of twisted copper for

telephony—Shannon identified a number called the capacity of the channel and

proved, in a nonconstructive way, that arbitrarily reliable communication is possible

at any rate below the channel capacity. For example, he defined the capacity C of

the discrete noiseless channel as

C = lim
T→∞

logN(T )

T
,

where N(T ) is the number of allowed signals of duration T .

The link between entropy and channel capacity was stated by Shannon in the

following theorem.

Theorem 9 (Shannon, Fundamental Theorem for a Noiseless Channel [16]). Let a

source have entropy H (bits per symbol) and a channel have a capacity C (bits per

second). Then it is possible to encode the output of the source in such a way as to

transmit at the average rate C
H
− ε symbols per second over the channel where ε is

arbitrarily small. It is not possible to transmit at an average rate greater than C
H

.

However, in reality, all communication channels exhibit some noise. That is,

one cannot expect a communication channel to transmit with 100% fidelity the

source message. Shannon included this fact in his schematic diagram for a general

communication system, which we reproduce below.

Notwithstanding the limitation imposed by noise in the channel, Shannon
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Figure 4.1: Schematic diagram of a communication system, from [16].

also proved that we can be as sure as we want (but not absolutely sure!) of the

information in a received message while transmitting at any rate below channel

capacity. The conclusions of Shannon’s theorem are not without some trade-off. In

order to communicate reliably at a rate close to channel capacity, we must increase

the complexity of our communication scheme [8, 10]. To a large extent, coding

theory has been the quest for these good codes.

“Quantization”, the extraordinary invited paper on the occasion of the 50th

anniversary of “A mathematical theory of communication” surveying this quest

from an engineering perspective by Robert Gray and David Neuhoff [6], describes

the history of the theory and practice of quantization up until 1998. In this paper

the term quantization encompasses transform coding as one of several approaches

to exploit redundancy in the source signal. The topic of redundancy in messages

was of great interest to Shannon and he studied it in [16] as well. In transform

encoding, the source samples are collected into a vector of, say, dimension n that

is multiplied by an orthogonal matrix (an orthogonal transform) and the resulting

transform coefficients are scalar quantized.

A scalar quantizer can be defined as consisting of a set of intervals or cells
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S = {Si ⊂ R : i ∈ I} that form a partition of the real line, where the index set I is

ordinarily a collection of consecutive integers beginning with 0 or 1, together with a

set of reproduction values or points or levels C = {yi ∈ R : i ∈ I} so that the overall

quantizer q is defined by q(x) = yi for x ∈ Si, which can be expressed concisely as

q(x) =
∑
i∈I

yi1Si
(x), (4.2)

where the indicator function 1S(x) is 1 if x ∈ S and 0 otherwise [6].

More generally, a vast class of memoryless quantizers can be described as

follows. A quantizer of dimension k, a positive integer, takes as input a vector

x = (x1, . . . , xk)
T ∈ A ⊂ Rk. Memoryless refers to a quantizer which operates

independently on successive vectors. The set A is called the alphabet and it is

often called the support of the source distribution. If k = 1 the quantizer is scalar,

otherwise it is vector. The quantizer consists then of three components—a lossy

encoder α : A → I, where the index set I is an arbitrary countable set, usually

taken as a collection of consecutive integers, a reproduction decoder β : I → Â,

where Â ⊂ Rk is the reproduction alphabet, and a lossless encoder γ : I → J , an

invertible mapping (with probability 1) into a collection J of variable-lenght binary

vectors that satisfies the prefix condition, that is, no vector in J can be the prefix

of any other vector in the collection [6].

Alternatively, a lossy encoder is specified by a partition S = {Si ⊂ R : i ∈ I}

of A; a reproduction decoder is specified by a codebook C = {β(i) ∈ Â : i ∈ I}

of points, codevectors, or reproduction codewords, also known as the reproduction
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codebook; and the lossless encoder γ can be described by its binary codebook J =

{γ(i) : i ∈ I} containing binary or channel codewords. The quantizer rule is the

function q(x) = β(α(x)) or, equivalently, q(x) = β(i) whenever x ∈ Si [6].

This type of quantizers are known as “vanilla” vector quantizers or block-

source codes. In the literature the term code is used as a generic substitute for

quantizer.

The instantaneous rate of a quantizer applied to a particular input is the

normalized length r(x) = 1
k
l(γ(α(x))) of the channel codeword, the number of bits

per source symbol that must be sent to describe the reproduction. If all binary

codewords have the same length, we talk of a fixed-length or fixed-rate quantizer.

To measure the quality of the reproduction, we assume the existence of a

nonnegative distortion measure d(x, x̂) which assigns a distortion or cost to the

reproduction of input x by x̂. Ideally, one would like a distortion measure that is

easy to compute, useful in analysis, and perceptually meaningful in the sense that

small (large) distortion means good (poor) perceived quality. No single distortion

measure accomplishes all three goals [6]. However, d(x, x̂) = ‖x − x̂‖22 satisfies the

first two.

We also assume that d(x, x̂) = 0 if and only if x = x̂. In this light we say that

a code is lossless if d(x, β(α(x))) = 0 for all inputs x, lossy otherwise.

Finally, the overall performance of a quantizer applied to a source is charac-

80



terized by the normalized rate

R(α, γ) = E[r(X)] =
1

k
E[l(γ(α(X)))]

=
1

k

∑
i

l(γ(i))

∫
Si

f(x) dx, (4.3)

and the normalized average distortion

D(α, β) =
1

k
E[d(X, β(α(X)))]

=
1

k

∑
i

∫
Si

d(x,yi)f(x) dx. (4.4)

Every quantizer (α, γ, β) is thus described by a rate-distortion pair (R(α, γ), D(α, β)).

The goal of compression system design is to optimize the rate-distortion trade-off

[6].

In light of the results by Shannon, compression system design will also have to

take into account the characteristics of the communication channel in managing the

rate-distortion trade-off. Also, from the definitions above, it is clear that knowledge

of the probability density function of the source messages is very important.

4.1 Image quantization and coding

Under the perspective from the previous introduction, we return to the topic

of image quantization and coding. The image standards JPEG and JPEG 2000 are

framed in the transform coding paradigm, and contain two more steps besides their

respective discrete cosine transform (DCT) and the Cohen-Daubechies-Feauveau
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5/3 (lossless) and 9/7 (lossy) biorthogonal wavelet transforms at the core of their

compression engines. Both have a quantization and an coding step, as described in

the literature, with their respective “inverses”, to complete their definitions [3, 22,

25]. Note how the use of the words “quantization” and “coding” refer to α and γ

from the previous introduction, respectively.

The general schematic for transform coding, under which both JPEG and

JPEG 2000 techniques—as well as our approach—fall under, is described in the

schematic drawing shown in Figure 4.2.

T Q E

T' Q' E'

b

b'

Storage/
Transmission

Figure 4.2: Schematic diagram of a general transform coding system.

The transform T is meant to exploit the redundancy in the source signal b

and decorrelate it. It has an inverse T−1, or at the very least a left inverse T ′ such

that T ′Tb = b. In our approach we have A = T ′, and T is defined via OMP

by Tb = OMP(A,b, ε0). In this case, we have ‖T ′Tb − b‖2 < ε. Therefore, our

compression scheme is lossy. Q is a non-invertible scalar quantizer that will be

applied to the coefficients of vector Tb, and Q′ is its reproduction function. Finally,

we have an invertible lossless encoder E, γ in the introduction, with E ′ = E−1.

The function composition QT is equivalent to the lossy encoder α, and the function

composition T ′Q′ corresponds to the reproduction decoder β from the introduction
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above.

In order to describe the overall performance of our quantizer (QT,E, T ′Q′),

we would need to characterize the rate-distortion pair (R(QT,E), D(QT, T ′Q′)).

For the scope of the present work, we have studied the error sensitivity for

Ax = y, in terms of A ∈ Rn×m and x ∈ Rm. Assume that the columns aj of

A = (aj) all have the same norm ‖aj‖2 = c. Let x̃ = x + ε, where ε = (ε1, . . . , εm)T.

What can we say of the distance between ỹ = Ax̃ and y = Ax?

‖ỹ − y‖2 = ‖Ax̃−Ax‖2 = ‖A(x + ε)−Ax‖2

= ‖Aε‖2

=
∥∥∥ m∑
j=1

ajεj

∥∥∥
2

=
∥∥∥∑
εj 6=0

ajεj

∥∥∥
2

≤
∑
εj 6=0

‖ajεj‖2 =
∑
εj 6=0

‖aj‖2|εj|

=
∑
εj 6=0

c|εj| , ‖aj‖2 = c ∀j

≤
∑
εj 6=0

c‖ε‖∞ , ‖ε‖∞ = max
j
|εj|

= c‖ε‖∞‖ε‖0 , ‖ε‖0 = #{j : |εj| > 0}. (4.5)

Hence, the error ‖ỹ − y‖2 is bound by c‖ε‖∞‖ε‖0. Moreover, the value of ‖ε‖0

is linked to the sparsity of x, because in our case the error ε comes from scalar

quantizing the entries of x. That is, if—for example—x̃ = round(x), where x̃ is the

vector whose entries are exactly those of x but rounded to the closest integer, then
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necessarily

‖ε‖0 = ‖x̃− x‖0 ≤ ‖x‖0 (4.6)

Hence, in the case where a scalar quantization scheme satisfies (4.6), Equation 4.5

gives

‖ỹ − y‖2 ≤ c‖ε‖∞‖x‖0, (4.7)

with A = (aj), ỹ = Ax̃, y = Ax, and c = ‖aj‖2 for all j. Observe that, in

particular, when x̃ = round(x), we have ‖ε‖∞ = 1/2.

From Equation 4.7 we see that the error in the reconstruction due to scalar

quantization is linked to the size of c, ‖ε‖∞, and the sparsity of x. We are tempted

to make c as small as possible, or modify the quantization scheme to make ‖ε‖∞

smaller to reduce the reconstruction error due to scalar quantization.

The problem is that the magnitude of c is linked to the norm of x, which

affects the number of bits we would need to represent x. To see the link between c

and the norm of x, consider the following example. We will come back to the issue

of the representation of x shortly.

Assume that ‖aj‖2 = c for all j, where A = (aj), and aj are the columns of A.

Suppose that Ax = y and x = (x1, 0, . . . , 0)T, i.e. y = x1a1. Keeping y fixed, as a

given right hand side, what happens to ‖x‖2 = |x1| as we modify c? Let a > 0 and

consider Aa = (aaj). Then Aax = x1(aa1) = a(x1a1) = ay, hence Aa(a
−1x) = y.

It is easy to see by linearity from this example that the general case, where

Ax = y and x = (x1, . . . , xm)T, also implies Aa(a
−1x) = y. The norm of the

columns of Aa is ‖aaj‖2 = a‖aj‖2 = ac, a > 0. Making ac small implies making

84



the parameter a small, since c is fixed by the choice of A, and therefore making

‖a−1x‖2 = a−1‖x‖2 big.

Hence, if a vector x0 solves Ax = y, then the norm of a−1x0, which solves

Aax = y, will increase as a → 0. It is easy to see that if x0 is the sparsest vector

that solves Ax = y, then a−1x0 is the sparsest vector that solves Aax = y, and

‖x0‖0 = ‖ax0‖0.

From the above discussion we conclude that the norm of a−1x0 has an inversely

proportional relationship with the size of ac. Therefore, if we are to use a finite

predetermined number of bits to represent a−1x0, the solution of Aax = y, we need

to choose a carefully.

Generalizing Equation 4.7 to the class of matrices Aa, a > 0, the error bound

due to the scalar quantization of the entries of x becomes

‖ỹ − y‖2 ≤ ac‖ε‖∞‖x‖0, (4.8)

where A = A1 = (aj), ‖aj‖2 = c for all j, ỹ = Aax̃, y = Aax, and x̃ = x + ε with

‖ε‖0 ≤ ‖x‖0.

From the results of Section 3.2.3 we can see that the magnitude of the co-

ordinates of x are bound by a multiple of ‖y‖2. This also has an impact on how

many bits would be needed to represent x. Therefore the choice of a has to take

into consideration the maximum value that the value of ‖y‖2 will impose on the

magnitude of the coordinates of x.

Finally, let us recall that our image compression approach comes from the
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OMP solution x0 to problem (P ε0
0 ) for a given matrix A = (aj) whose column vectors

satisfy ‖aj‖2 = c, a vector b, and a tolerance ε0 > 0 (such that ‖Ax0 − b‖2 < ε0.)

Then, choosing a > 0, and following the description of T at the beginning of this

section, if we set x0 = Tb = OMP(aA,b, ε0) for a given signal b and a tolerance

ε0 > 0, aA = T ′, Q a scalar quantizer that satisfies Inequality 4.6, and Q′ its

corresponding reproduction function, the triangle inequality and Inequality 4.8 give

d(β(α(b)),b) = ‖T ′Q′QTb− b‖2

= ‖T ′Q′QTb− T ′Tb + T ′Tb− b‖2

= ‖aAx̃0 − aAx0 + aAx0 − b‖2

≤ ‖aAx̃0 − aAx0‖2 + ‖aAx0 − b‖2

= ac‖δ‖∞‖x0‖0 + ε0,

where δ = x̃0 − x0. This inequality would give us a footing in the computation of

the normalized average distortion D(α, β), see Equation 4.4.

From the definition of D(α, β), it is clear that we need to know something

about the probability density function of the input sources, i.e., the statistics of

the 8 × 8 linearized sub images into which each image is partitioned, if we are to

compute D. As a surrogate of such knowledge, we can observe the distribution of

the coefficients for each of the vectors resulting from the analysis of the images in our

database, and their corresponding histograms. This is what Figures 4.5 through 4.9

show. For each image I in our database, we used matrix A = [DCT2,3 Haar2,3] with
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a tolerance of ε = 32 to compute its statistics. On the x-axis of each subfigure we

have matched column ai at position i to integer i for each of the columns of A = (ai).

Hence, positions 1 to 64 correspond to the DCT waveforms, and positions 65 to 128

to the Haar waveforms. A subfigure labeled (a) corresponds to the histogram for

the frequency each column vector of A is chosen. For example, since there are 4096

sub images of size 8× 8 in a 512× 512 image, column vector a1 will be chosen 4096

times since it corresponds to the constant vector, which computes the mean or DC

component for each sub image. Subfigure (b) corresponds to a partial representation

of the distribution of the coefficients that multiply each and every column vector

whenever such vector is chosen in the representation/approximation of an input b.

For example, suppose that column a74 was multiplied by a coefficient a74 = 3.2310

to obtain the representation of some input b = a74a74 + r within a tolerance of

ε = 32; then we would have plotted point (74, 3.2310) in subfigure (b). We have

not plotted the coefficients for a1 since they correspond to the DC components of

the sub images of I, which vary between 0 and 255. We note that all images in our

database have a similar structure.

For comparison purposes, we obtained the histogram and the distribution of

coefficients for a randomly generated image with a uniform distribution on [0 255],

see Figure 4.10. The first thing we note is that unlike for the natural images in our

database, all column vectors—except a1 and a65, which correspond to the constant

vectors (one for the DCT and one for the Haar waveforms)—are chosen about the

same number of times regardless of their position; and the distribution of the values

of the coefficients is uniform as well. It is also clear that this is the image that
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requires the most nonzero coefficients to be reconstructed within the tolerance ε = 32

chosen. This is consistent with the definition of information by Shannon: the more

the uncertainty in a source, the more there is information in it.

Regarding the computation of the rate R(α, γ) for our image quantizer, we

would have to choose a lossless encoder γ, which we have not done here.

On the other hand, we have plotted the distortion as measured by the MSSIM

index and the PSNR versus the idealized normalized bit-rate, defined in Section

3.6. This bit-rate is unattainable in practice, as observed in that section, but this

gives us nonetheless an idea of an upper bound in the rate-distortion trade-off, and

lets us compare how much room we have to select a lossless encoder γ to complete

the implementation of a quantizer using our sparse image representation approach.

Figure 4.3 shows the MSSIM and PSNR versus normalized bit-rate trade-off. Figure

4.4(a) shows the PSNR versus normalized bit-rate trade-off for image Lena, which

we computed to compare with Figure 4.4(b) which shows results for that image

for three published fully implemented quantizers. We observe that there is enough

room to pick an encoder γ that could compete with these implementations.
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(a)

(b)

Figure 4.3: (a) MSSIM vs Normalized bit-rate, (b) PSNR vs Normalized bit-rate.
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(a)

(b)

Figure 4.4: PSNR vs bit-rate: (a) Normalized bit-rate results for A = [DCT1 Haar1]
prior to any γ coding, and (b) bit-rate coding performances published in [14] for
image Lena: Said and Pearlman’s SPIHT algorithm [15], Embeded Coding and the
Wavelet-Difference-Reduction compression algorithm (“new algorithm”) [23], and
Shapiro’s EZW algorithm [18].
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(a)

(b)

Figure 4.5: Histograms for image Barbara. A = [DCT2,3 Haar2,3], tolerance ε = 32.
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(a)

(b)

Figure 4.6: Histograms for image Boat. A = [DCT2,3 Haar2,3], tolerance ε = 32
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(a)

(b)

Figure 4.7: Histograms for image Elaine. A = [DCT2,3 Haar2,3], tolerance ε = 32
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(a)

(b)

Figure 4.8: Histograms for image Peppers. A = [DCT2,3 Haar2,3], tolerance ε = 32
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(a)

(b)

Figure 4.9: Histograms for image Stream. A = [DCT2,3 Haar2,3], tolerance ε = 32
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(a)

(b)

Figure 4.10: Histograms for uniform random input. A = [DCT2,3 Haar2,3], tolerance
ε = 32
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Chapter 5

New directions

From the discussion in Chapter 4, it is clear that to complete an implemen-

tation of a quantizer based in the sparse image representation we would have to

choose a lossless encoder γ that would allow us to match or beat the results shown

in Figure 4.4(b). Such an encoder would have to be able to take advantage of the

sparsity of the solution x0 to problem

(P ε
0) : min

x
‖x‖0 subject to ‖Ax− b‖2 < ε,

for a given right hand side b and tolerance ε > 0. A combination of techniques such

as Huffman encoding and run-legth encoding come to mind, see for example [10] for

details. Said and Pearlman’s SPIHT algorithm [15], and Shapiro’s EZW algorithm

[18] would be sources of inspiration as well.

As noted in Chapter 4, knowledge of natural image statistics is essential to

the computation of rate R and distortion D quantities. This knowledge can also

be used to optimize the design of the scalar quantizer in the setting of transform

encoding by allocating more cells where most of the coordinates xi of solution vector

x0 = (x1, . . . , xm)T for (P ε
0) would fall, as illustrated by Figures 4.5 through 4.9

Moreover, as pointed out in Section 3.9 at the end of Chapter 3, a study of

other matrices A other than the matrices studied in this work would be desirable. A
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promising approach would be to study the properties of Gabor systems, for example.

Finally, given that the NP-completeness of the solution to problem (P ε
0) in

the general case [12] does not preclude a priori the existence of fast and efficient

algorithms for the computation of sparse solutions to a restricted class of matrices

A, it would be most desirable to discover such algorithms and identify the class of

matrices for which they would exist, if at all.
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Appendix A

Basic frame definitions

Definition 7 (Frame). A frame for a Hilbert space H is a sequence of vectors

{xi} ⊂ H for which there exists constants 0 < A ≤ B < ∞ such that, for every

x ∈ H,

A‖x‖2 ≤
∑
i

|〈x, xi〉|2 ≤ B‖x‖2. (A.1)

The constants A and B are known respectively as lower and upper frame

bounds. We will often presume without stating it that A is the greatest lower frame

bound and B is the least upper frame bound. A frame is called a tight frame if the

optimal upper and lower frame bounds are equal; A = B. A frame is a Parseval

frame if A = B = 1. A uniform frame is a frame in which all the vectors have equal

norm [7]. Equation A.1 is usually called the frame condition.
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