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The random nature of ion implantation and diffusion processes as well as 

inevitable tolerances in fabrication result in random fluctuations of doping 

concentrations and oxide thickness in semiconductor devices. These fluctuations are 

especially pronounced in ultrasmall (nanoscale) semiconductor devices when the 

spatial scale of doping and oxide thickness variations become comparable with the 

geometric dimensions of devices. In the disseration, the effects of these fluctuations 

on device characteristics are analyzed by using a new technique for the analysis of 

random doping and oxide thickness induced fluctuations. This technique is universal 

in nature in the sense that it is applicable to any transport model (drift-diffusion, 

semiclassical transport, quantum transport etc.) and it can be naturally extended to 

take into account random fluctuations of the oxide (trapped) charges and channel 

length. 



The technique is based on linearization of the transport equations with 

respect to the fluctuating quantities. It is computationally much (a few orders of 

magnitude) more efficient than the traditional Monte-Carlo approach and it yields 

information on the sensitivity of fluctuations of parameters of interest (e.g. threshold 

voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping 

and oxide thickness fluctuations. For this reason, it can be very instrumental in the 

design of fluctuation-resistant structures of semiconductor devices.  

Quantum mechanical effects are taken into account by using the density-

gradient model as well as through self-consistent Poisson-Schrödinger 

computations. Special attention is paid to the presenting of the technique in a form 

that is suitable for implementation on commercial device simulators. The numerical 

implementation of the technique is discussed in detail and numerous computational 

results are presented and compared with those previously published in literature. 
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Chapter 1  

 

Introduction 

The continuous demand for high operating frequencies and low power consumption 

makes the semiconductor industry move towards smaller and smaller device 

dimensions [1], [2]. However, the reduction of the minimum feature size of 

semiconductor devices is accompanied by numerous technological problems that need 

to be overcome for further progress in the areas of Very-Large-Scale-Integration 

(VLSI) and Ultra-Large-Scale-Integration (ULSI) circuits [3]-[8]. Such a problem that 

has become increasingly important in the last years is related to the random doping 

and geometric dimensions induced fluctuations in ultrasmall semiconductor devices. 

The goal of this dissertation is to present a new and fast method for the analysis of 

these fluctuations. The numerical techniques developed throughout the dissertation 

can be easily implemented on commercial device simulators and be used for the 

design of fluctuation-resistant structures of semiconductor devices. 
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1.1 Statement and importance of the problem 

It has been observed that the parameters of ultrasmall semiconductor devices 

(threshold voltages, gain factors, cut-off frequencies, etc.) fluctuate appreciably from 

one device to another. These fluctuations are due to the fact that it is very difficult, if 

not impossible, to fabricate devices that have the same atomic configuration. In ideal 

devices, the doping concentration should be controlled with maximum precision, the 

junctions and semiconductor/oxide interfaces should be perfectly defined, and the 

interface and fixed oxide charges should be negligible or very well localized and 

measured. However, none of these problems can be completely solved during the 

fabrication process: 

a) Due to the stochastic nature of ion implantation and diffusion processes, the 

doping locations and concentrations cannot be exactly controlled and, 

consequently, the doping profiles of the devices are not identical. For example, 

in a uniformly doped MOSFET with channel length and width of 50 nm and 

dopant concentration of 1018 cm-3, the average number of dopant atoms in the 

depletion region is approximately N = 100. The actual number fluctuates from 

device to device, with standard deviation 10N Nσ = = , which represents a 

significant fraction of the average number N [see Figure 1.1 (a)]. The 

fluctuations of the total number of dopant atoms translate into fluctuations of 

device parameters (threshold voltage, terminal characteristics, etc.) that affect 

have a negative effect on the reliability and yield of VLSI and ULSI circuits 

[9]-[19]. 
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b) The geometrical lengths of semiconductor devices (channel length, oxide 

thickness, device width, etc.) also fluctuate due to the inaccuracy of 

lithography techniques and oxide growing processes [Figure 1.1 (b)]. The 

surfaces of the semiconductor-oxide interfaces are not perfectly flat and they 

are characterized by an intrinsic roughness with an autocorrelation length that 

depends on the fabrication process [20]-[32]. Even for very carefully grown 

oxide layers, the roughness of the oxide surface is approximately 0.2 nm, 

which represents a significant fraction of the average oxide thickness that can 

be as low as 2 nm in modern MOSFET device. 

c) The gate polysilicon line edge roughness (LER) is caused by tolerances in the 

lithography and etching processes and is considered to place significant limits 

on further scaling of the devices [33]-[41]. The edge roughness is typically on 

the order of 5 nm almost independently of the type of lithography used in 

production and represents an important fraction of the gate length in ultrasmall 

devices. LER (also known as gate patterning) affects most device parameters 

such as threshold voltage and terminal currents. 

d) The fixed and interface charges are very difficult to control during the 

fabrication processes and seem to be strongly correlated with the aspect and 

irregularities of the oxide-semiconductor interface. Individual interface defects 

near the silicon/oxide interface can cause trapping of carrier charges and local 

modulation of mobility and channel conductance, which result in fluctuations 

of the gate and drain currents [42]-[56]. These fluctuations are usually called 
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SiO2 tox = 3 nm 

Lc=10 nm

Conduction Channel 
 

(b) 

 

Figure 1.1: Due to the stochastic nature of diffusion and implantation processes the 

doping concentration is a random variable (a). The roughness of the oxide surfaces 

and the irregularities of the interfaces can be characterized by roughness ∆  and 

correlation length cL . 

 

L~50 nm 
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random telegraph signals (RTS) and have a great impact on the stability of analog 

and digital circuits. 

In addition to the aforementioned effects, one should take into consideration the oxide 

permittivity fluctuations, as well as the dislocations and irregularities of the 

semiconductor lattice. All these fluctuations and defects affect the threshold voltages 

and the frequency characteristics of devices. 

Random fluctuations in semiconductor devices are especially pronounced in small 

devices, where the spatial scales of these fluctuations are comparable with the 

characteristic dimensions of the devices. For example, in the case of large metal-

oxide-semiconductor field-effects transistor (MOSFET) devices (i.e. with channel 

length larger than 1 µm), random doping fluctuations are averaged out by the large 

volume of the semiconductor device and their effects can be neglected in most 

applications. However, for small devices (i.e. with channel length of the order of 

hundreds or tens of nanometers), the position and concentration of dopant atoms 

strongly influence the values of intrinsic parameters of the MOSFET. Similarly, 

random oxide roughness induced fluctuations are not important for devices with thick 

oxide layers (in which the oxide thickness is at least one order of magnitude larger 

than the oxide roughness), but can affect the functionality of the devices with thin 

oxide layers. 

The fluctuations of threshold voltages and terminal characteristics can be critical 

for the proper functioning of analog circuits [57]-[60]. For example, in differential 

low-noise amplifiers, a mismatch of 1% of the characteristics of input transistors can 

make the amplifiers nonoperational. In digital circuits, the fluctuations of threshold 
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voltages should be as small as possible in order to improve the static noise margins 

(SNM) of logic circuits. Large fluctuations of threshold voltages would lead to the 

deterioration of the SNM for static random-access memory (SRAM) and read-only 

memory (ROM) cells and would strongly decrease the reliability of complimentary 

metal-oxide semiconductor (CMOS) gates [61]-[64]. Given the importance of random 

doping and random geometrical dimensions induced effects, an accurate analysis of 

fluctuations in ultrasmall semiconductor devices is very important for further progress 

in the area of semiconductor device technology. 

1.2 Current state of research 

There are few methods for the analysis of fluctuations in semiconductor devices. Most 

of these methods are based on the statistical (Monte-Carlo) technique and their basic 

idea and limitations are presented in the following subsections. 

1.2.1 The Monte-Carlo methods 

The existing techniques for the analysis of fluctuations in ultrasmall semiconductor 

devices [65]-[71] are based on generating numerous random realizations (samples) 

and solving the transport equations for each such realization. In this way, statistics of 

physical parameters of interest are accumulated and then used for the evaluation of 

variances of those parameters. These techniques (known as the Monte-Carlo 

techniques) are purely statistical in nature and, therefore, computationally very 

expensive and subject to statistical errors. To illustrate this fact, consider the 



 7

computation of the standard deviation of some parameter A of the device. For 

example, this parameter can be the threshold voltage or the subthreshold current of a 

MOSFET device, the current, the gain factor, or the cut-off frequency of a BJT device. 

If we compute the values of parameter A for each individual device and denote them 

by Ai, the average value of A can be calculated by using the formula: 

 1

N

i
i

A
A

N
==
∑

, (1.1) 

where N is the total number of devices simulated. The standard deviation of parameter 

A can be estimated by using: 

 
( )2

1

1

N

i
i

A

A A

N
σ =

−
=

−

∑
 (1.2) 

The accuracy in the computation of the standard deviation depends on the total 

number of realizations N. It can be shown that the values Ai are distributed 

approximately according to a Gaussian distribution function and the relative error in 

the computation of Aσ  by using formula (1.2) is 1 2N . Table 1.1 presents the 

dependence of the relative error in the estimation of Aσ  with formula (1.2) on the total 

number of samples simulated. We can see that the total number of samples N  

increases considerably if high accuracy in the computation of Aσ  is required. Usually, 

N = 200 devices are simulated and the values of the standard deviations are reported 

with a relative error of 5%.  

Another parameter of interest that characterizes the distribution of Ai is the 

“shift” of parameter A , which is defined as: 
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 0A A A∆ = − . (1.3) 

In the last equation, 0A  is the value of A computed by assuming that the doping 

concentration and geometric lengths are constant and equal to their average values. It 

is worthwhile noticing that the origin of the shift A∆  is the nonlinearity of the 

transport equations and it can have either positive or negative values. 

The Monte-Carlo methods have been applied extensively to the computation of 

standard deviations and shifts of parameters in semiconductor devices. Most of the 

work done in the past has focused on the computation of the standard deviation of 

threshold voltage [10], [13], [30], [32], [65]-[71] and capacitances [72] in MOSFET 

devices. 

 

Number of devices 

simulated (N) 

Relative error in the 

estimation of Aσ  

50 10% 

200 5% 

500 3.2% 

1000 2.2% 

5000 1% 

Table 1.1: Relative errors in the determination of Aσ  as a function of the total number 

of devices simulated. The calculations are done by using formula (1.2). 
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1.2.2 Limitations of the Monte-Carlo methods 

The Monte-Carlo methods have certain disadvantages and limitations that reduce 

considerably the area of applicability of these techniques: 

a) These methods are computationally very expensive since the same device-level 

simulations have to be performed many times. The total computation time for 

the Monte-Carlo methods increases linearly with the total number of devices 

simulated and can be very long if high accuracy of final results is required. For 

instance, if the time for the computation of frequency characteristics of a 3–

dimensional (3-D) MOSFET is about one hour, it follows that the total time for 

simulating 200 devices is of the order of weeks. This time is impractically long 

for normal applications. For this reason, the Monte-Carlo methods have mostly 

been used for the calculation of fluctuations of threshold voltages and not too 

much effort has been paid to the analysis of fluctuations of more complex 

parameters, such as small-signal parameters and cut-off frequencies. 

b) The Monte-Carlo methods are subject to statistical errors. As we can see from 

Table 1.1, these errors are relatively large if a small number of devices are 

simulated. Errors can be reduced solely by increasing the total number of 

devices simulated, which results in even longer computation times. 

c) The computation of shift A∆  is subject to large numerical errors because it is 

obtained by extracting a quantity from another close quantity that cannot be 

computed accurately [see equation (1.3)]. Hence, the values of the threshold 

voltage shifts published in literature do not agree even as order of magnitude. 
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d) The process of generating different devices for the Monte-Carlo methods is 

rather complicated. For example, in the case of random oxide roughness 

induced fluctuations in MOSFET devices, the mechanism for generating the 

semiconductor/oxide interfaces involves the inverse Fourier transform of the 

power spectrum of the autocorrelation function (ACF) of oxide thickness 

fluctuations. This approach is appropriate for sufficiently “smooth” ACFs (like 

the Gaussian ACF), but unsuitable for more realistic ACFs (like the 

exponential ACF), because of the high frequency content in the power 

spectrum. 

e) The doping distributions of randomly generated devices are usually highly 

irregular in space and very fine meshes are needed to resolve the fast spatial 

doping fluctuations. This fact further increases the computation time for each 

individual device. 

The aforementioned drawbacks can be overcome by increasing the total computation 

time for simulations. Since the Monte-Carlo methods are computationally very 

expensive, they have been implemented mostly on multiprocessor systems by using 

parallel programming techniques. 

 In this dissertation, an entirely different approach to the evaluation of variances 

of intrinsic device parameters is developed [73]-[80]. This approach, henceforth 

referred as the linearization approach, is based on linearization of the transport 

equations and completely circumvents the calculations for numerous devices. It 

requires only the knowledge of variances of fluctuating doping concentrations and, in 

this sense, it is a “second-moment characterization” technique. As a result, this 
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technique is computationally much more efficient than the Monte-Carlo methods. In 

addition, it yields the information on sensitivity of the variances of the physical 

quantities of interest to doping locations. For these reasons, the linearization technique 

can be instrumental in the design of fluctuation-resistant structures of semiconductor 

devices. 

1.3 Outline 

This dissertation is organized as follows. Chapter 2 presents the basic idea of the new 

technique for the analysis of fluctuations in semiconductor devices. Special attention 

is paid to the computation of standard deviations of threshold voltages in ultrasmall 

MOSFET devices induced by random doping and random oxide roughness 

fluctuations. Numerous numerical results are presented and compared with results 

obtained by other authors with the Monte-Carlo methods. 

The linearization technique presented in Chapter 2 is adjusted in Chapter 3 to 

the computation of the standard deviation of I-V characteristics and transconductance. 

In the last part of this chapter, the algebra of superposition coefficients is developed 

and used to compute the fluctuations of subthreshold voltage characteristics (gate-

voltage swing) of MOSFET devices.  

Chapter 4 extends the techniques presented in the previous chapter to the 

analysis of fluctuations of frequency characteristics of semiconductor devices. The 

first part of the chapter focuses on the analysis of fluctuations of admittance matrix 

parameters (y-parameters). The algebra of superposition coefficients is then used for 
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the computation of variances of other small signal parameters such as h, z, g-

parameters, current and voltage gains, maximum available and unilateral gains, and 

cut-off frequencies. 

Chapter 5 presents a detailed analysis of the quantum mechanical induced 

effects on the fluctuations in semiconductor devices. Two different approaches are 

used for the computation of standard deviations of different parameters. In the first 

part of the chapter, standard deviations are computed by using the first-order 

perturbation technique of the Schrödinger equation. In the second part, standard 

deviations are determined with the Density-Gradient model that is carefully calibrated 

against self-consistent Poisson-Schrödinger calculations. Numerous numerical results 

are presented and compared with classical computations. 

Finally, conclusions and further work are presented in Chapter 6. 
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Chapter 2  

 

Analysis of fluctuations of threshold voltages 

In this chapter we present the linearization technique for the analysis of fluctuations in 

semiconductor devices. The first part of the chapter presents the fundamentals of the 

method for the calculation of the standard deviation of threshold voltage TV  in 

MOSFET devices. Two definitions of threshold voltage are considered in this 

analysis: the “current” definition (Sections 2.1 and 2.2) and the “complete inversion” 

definition of threshold voltage (Section 2.3). The shift of threshold voltage is 

discussed in Section 2.4. Finally, different methods for the suppression of fluctuations 

of threshold voltage in MOSFET devices are presented in Section 2.5. 

2.1 Linearization technique for the analysis of fluctuations in semiconductor devices 

In this section we present the basic idea of the method for the computation of the 

fluctuations induced by random doping and oxide thickness fluctuations in MOSFET 

devices. We focus mainly on the computation of fluctuations of threshold voltage, but 
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the same basic idea can be applied to the computation of other fluctuating parameters 

in semiconductor devices, such as currents, small-signal parameters, and cut-off 

frequencies. Special consideration is given to presenting the method in matrix form, 

which makes it suitable for numerical implementation on standard semiconductor 

device simulators. Throughout this section we adopt the “current definition” of the 

threshold voltage [81], whereby TV  is defined as the gate potential for which the drain 

to source current is 810TI W L−= , where W  and L  are the channel width and length, 

respectively. 

2.1.1 General considerations 

In general, threshold voltage can be written as a function of doping 

concentration D  and oxide thickness t : 

 ( ),T TV V= D t . (2.1) 

In equation (2.1), we have considered that the doping concentration is a function of 

position. Hence, if the region of the semiconductor device is spatially discretized into 

N cells, the doping concentration must be specified as an N-dimensional column 

vector D: 

 

1

2

...

N

D
D

D

 
 
 
 
 
  

D = . (2.2) 
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Similar observations apply to the oxide thickness t, which can be written as a column 

vector whose components are the local values of the oxide thickness at different 

locations on the semiconductor-oxide interface (see Figure 2.1): 

 

1

2

...

OXN

t
t

t

 
 
 
 
 
  

t = . (2.3) 

However, the dimension of vector t [which is denoted by OXN  in equation (2.3)] is 

usually much smaller than the dimension of the doping vector, because the oxide 

region usually contains less discretization points than the semiconductor region. 

 

 

SiO2ti 

i i+10 x

tj

j

 

Figure 2.1: Cross-section through the oxide layer. 

 

The doping concentration and the oxide thickness are random quantities and 

can be written as the sum of their respective average values ( 0D  and 0t ) and 

fluctuations ( D  and t ): 

 0D = D + D  (2.4) 
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and  

 0t = t + t , (2.5) 

where by definition, the expected values of D  and t  are equal to zero. The basic idea 

for the computation of threshold voltage fluctuations is to linearize equation (2.1) with 

respect to the fluctuating quantities. In the first-order approximation, the fluctuations 

of threshold voltage can be written as follows:  

 ji

T T

tDT T
T V i V j

i j

V VV D tγ γ∂ ∂
= + +
∂ ∂ ∑ ∑D t =
D t

, (2.6) 

where i

T

D T
V

i

V
D

γ ∂
=
∂

 and j

T

t T
V

j

V
t

γ ∂
=
∂

 are the so-called doping and oxide thickness 

superposition coefficients. These coefficients show how sensitive the threshold 

voltage is to the fluctuations of doping concentration and oxide thickness at specific 

locations in the device. It is customary to assume that the doping densities at different 

locations are independent random variables. This allows us to derive the following 

expression for the variance of the threshold voltage: 

 ( ) ( )
22 2

,
,ji i

T T i T T

tD t
V V D V V

i i j
ACF i jσ γ σ γ γ= +∑ ∑ , (2.7) 

where 2
iDσ  represents the variance of iD  and ( ),ACF i j  is the autocorrelation 

function of the oxide thickness, which is defined as follows: 

 ( ) ( ) ( ), i i j i i jACF i j t t t t t t= − ⋅ − = ⋅ , (2.8) 
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where t  stands for the average oxide thickness. This function can be measured 

directly by using atomic force microscopy experiments [21]-[24]. In most cases, 

( ),ACF i j  is approximated by an exponential or Gaussian distribution function. 

As we proceed to determine 2
iDσ , let us remark that the total number iN  of 

dopant atoms in the ith discretization cell of volume iV∆  is a random variable with 

Poisson distribution; the rationale behind this assumption will be provided later on in 

this section. In the case of Poisson distributions, the expected value and the variance 

coincide. Hence, we have: 

 2
0 0iN i i iN D Vσ = = ∆ , (2.9) 

where, 0iD  is the average doping concentration in volume iV∆ . By using this fact, we 

derive: 

 
2

2 2 01
i i

i
D N

i i

D
V V

σ σ
 

= = ∆ ∆ 
. (2.10) 

By using equations (2.7) and (2.10), the variance of the threshold voltage can now be 

computed as follows: 

 ( ) ( )
22 0

,
,ji i

T T T T

tD ti
V V V V

i i ji

D ACF i j
V

σ γ γ γ= +
∆∑ ∑ . (2.11) 

Thus, the problem of computing threshold voltage variance is reduced to the 

computation of superposition coefficients. It is important to note that the effects of 

random doping fluctuations can be separated in formula (2.11) from the effects of 

random oxide thickness fluctuations. If we denote the variance of TV  induced by 
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random doping fluctuations by [ ]2
TV DFσ and the variance of TV  induced by random 

oxide thickness fluctuations by [ ]2
TV OTFσ , we can write: 

 [ ] [ ]2 2 2
T T TV V VDF OTFσ σ σ= + . (2.12) 

The first term is related to the fluctuations of the doping concentration, while the 

second term is related to the fluctuations of the oxide thickness. The two terms are 

uncorrelated in the first-order approximation. This fact was also observed by Asenov 

et al. [41] by performing a large number of simulations for devices with different 

oxide thickness and doping distributions. 

 It should be noted that the superposition coefficients are mesh dependent. 

Therefore, it is convenient to introduce the doping ( i

T

D
VS ) and oxide thickness ( i

T

t
VS ) 

“sensitivity coefficients,” which are defined as: 

 
2

i

Ti

T

D
VD

V
i

S
V

γ 
=   ∆ 

 (2.13) 

and 

 
2

i

Ti

T

t
Vt

V
i

S
S

γ 
=   ∆  , (2.14) 

respectively. In formula (2.14), iS∆  is the transversal area of the  ith discretization cell 

on the oxide/semiconductor interface. Equation (2.11) now reads as follows: 

 ( ) ( )
22

0
,

,ji i

T T T T

tD t
V V i i V V i j

i i j

S D V S S S S ACF i jσ = ∆ + ∆ ∆∑ ∑ . (2.15) 

 The Poisson distribution of the number of dopant atoms j,iN  in volume j,iV∆  

can be justified by using the following reasoning. Let j,in  be the total number of sites 
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available for occupation by dopant atoms in volume j,iV∆  and let p  be the probability 

of occupation of each of these sites. It is assumed that the doping process is such that 

this probability is the same for all sites. It follows that j,iN  is a random variable with 

binomial distribution. If the occupation probability p  is relatively small, while the 

total number j,in  of available sites is very large and the product , 1i jpn , the 

binomial distribution can be approximated quite accurately by the Poisson distribution. 

In the case of very small volumes j,iV∆ , when the assumption of very large j,in  does 

not hold, the binomial distribution for j,iN  should be used instead of the Poisson 

distribution. According to the binomial distribution, we have: 

 ( ) ( )pVDpN j,ij,ij,iN j,i
−∆=−= 11 002σ , (2.16) 

where the occupation probability p  can be deduced from the expression pnN j,ij,i =0 . 

As a result, factor ( )p−1  will appear in (2.9)-(2.11). However, j,in  is usually much 

larger than 0
j,iN  and, consequently, p  is rather small. Therefore, (2.16) reduces to 

formula (2.9). 

 Finally, it should be noted that equations similar to (2.1)-(2.16) can be written 

for most of the other fluctuating parameters of semiconductor devices. If by A  we 

denote some generic parameter of the device (e.g. saturation current, cut-off 

frequency, transconductance, etc), then the fluctuations of this parameter can be 

written as linear functions of the doping and oxide thickness fluctuations: 

 ji tD
A i A j

i j

A AA D tγ γ∂ ∂
= + +
∂ ∂ ∑ ∑D t =
D t

, (2.17) 
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where iD
Aγ  and it

Aγ  are the doping and oxide thickness superposition coefficients of A . 

The variance of parameter A  can be computed by using the more general equation: 

 ( ) ( )
22 0

,

,ji i tD ti
A A A A

i i ji

D ACF i j
V

σ γ γ γ= +
∆∑ ∑ . (2.18) 

2.1.2 Computation of superposition coefficients 

As stated in the previous section, 
TVσ  can be computed directly if we know the values 

of the superposition coefficients. Hence, next we introduce the method for the 

computation of threshold voltage superposition coefficients. In order to make it 

suitable for numerical implementation on standard semiconductor device simulators, 

this method is presented in compact matrix form. 

For the sake of brevity, the discretized transport equations are written in vector 

form [82]: 

 ( ), , , 0GV =F X D t , (2.19) 

where F  is a nonlinear vector function of the unknown “state” vector X , vectors D  

and t, as well as gate voltage GV . If the transport model is the drift-diffusion model, 

the state vector can be written as follows: 

 
 
 =  
  

X n
p

ϕ
, (2.20) 

where ϕ  is the vector of mesh-point values of the electric potential, while n  and p  

are the vectors of mesh-point values of the electron and hole densities, respectively. If 
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the transport model is the Density-Gradient (DG) model, the expression for the state 

vector is: 

 

 
 
 
 =
 
 
 
 

n

p

n
X p

ϕ

ψ
ψ

, (2.21) 

where ϕ , n , and p  have the same meaning as before and ψ n  and ψ p  are the quasi-

Fermi potentials. Finally, if the Poisson-Schrödinger equations are used to describe the 

statistics in the semiconductor device, the state vector has the form: 

 

1

1

...

...

...

l

l

E

E

 
 
 
 
 
 
 =
 
 
 
 
 
 
  

ϕ

Ψ

Ψ
...

X , (2.22) 

where 1E ,… lE ,… are the energy eigenvalues and 1Ψ ,… lΨ ,… are the energy 

eigenvectors of the Hamiltonian operator. 

If X  denotes the fluctuations of the state variable and GV  the fluctuations of 

the gate potential, in the first-order approximation we can write: 

 ˆ ˆ ˆ 0
GV GV+ =X D tF X + F D F t + F , (2.23) 

where ˆ
XF , ˆ

DF , ˆ
tF , and 

GVF  are the derivatives of F  with respect to X, D, t, and GV , 

respectively. All derivatives are computed at the given dc bias point and by assuming 
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constant (non-fluctuating) values of the doping concentration and oxide thickness. The 

drain current can also be written as a function of the state vector and doping 

concentration: 

 ( )I I= X . (2.24) 

At threshold voltage the drain current is constant and we have: 

 0 = tI I X= X , (2.25) 

where tI X  is the transpose of the gradient of I with respect to X. Equations (2.23) and 

(2.25) are coupled equations with unknowns X  and T GV V= . In order to decouple 

them, we multiply equation (2.23) from the left by ˆ -1ID XF  and use the constraint (2.25). 

After a few rearrangements we obtain the following equation for the fluctuations of 

threshold voltage: 

 
ˆˆ

G G

tt

T t t
V V

V ⋅⋅
= − ⋅ ⋅

⋅ ⋅
tD g Fg F D - t

g F g F
, (2.26) 

where gt is the transpose of column vector g, which is the solution of the following 

linear system of equations: 

 ˆ t IX XF g = , (2.27) 

where ˆ t
XF  denotes the transpose of matrix ˆ

XF . By comparing equations (2.6) and 

(2.26) it can be inferred that the superposition coefficients of the threshold voltage are 

given by the equations: 

 
( )ˆ

i

T

G

t

D i
V t

V

γ
⋅

= −
⋅

Dg F

g F
 (2.28) 
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and 

 
( )ˆ

j

T

G

t

t j
V t

V

γ
⋅

= −
⋅

tg F

g F
. (2.29) 

The most expensive computational task related to the calculation of these coefficients 

is to solve linear system (2.27). For 2-D simulations this system can be solved 

numerically by using the classical Gauss-Seidel method [83], [84]. However, for 3-D 

simulations the computation time and memory requirements would increase 

considerably if the Gauss-Seidel method is used, so other procedures are needed to 

solve (2.27). In our simulations, we took advantage of the diagonal dominance of 

matrix ˆ
XF  and we solved it efficiently by using the Successive Over-Relaxation 

(SOR) method.  

As far as the numerical implementation of the method is concerned, it is 

important to note that most of the matrices and vectors in (2.26) and (2.27)  are sparse 

and their elements can be computed easily. For example, most of the components of 

vector 
GVF  in (2.26) are equal to zero because F has only few equations which are 

related to GV  (usually these equations result from the discretization of the boundary 

conditions in the transport equations). The same observation can be made about the 

elements of matrix ˆ
tF , since the oxide discretization region contains a small number 

of mesh-points compared with the semiconductor discretization region. Matrix ˆ
DF  can 

also be computed easily because, at room temperature, the doping enters linearly in the 

Poisson equations. 
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2.2 Analysis of fluctuations of the threshold voltage by using the “current” 

definition 

The technique presented in the previous section was numerically implemented 

and used to compute the fluctuations of TV  devices induced by the random doping and 

random oxide roughness in MOSFET. In this section we report the numerical results 

obtained by using this technique and compare them with results previously published 

in literature [66], [68]. These two papers have been selected for comparison because 

they report the results of the most extensive numerical simulations performed by using 

purely statistical approaches. Throughout the simulations, the classical drift-diffusion 

model is used; the transport equations are discretized by using the finite difference 

scheme. 

In the first-order approximation, the threshold voltage fluctuations induced by 

doping fluctuations are independent of those induced by random oxide thickness, so 

they can be analyzed separately. These cases are presented in the following two 

subsections. 

2.2.1 Random dopant-induced fluctuations 

In the case of random-dopant induced fluctuations, the standard deviation of the 

threshold voltage can be written as [see equation (2.11)]: 

 [ ] ( )2 0i

T T

D i
V V

i i

DDF
V

σ γ=
∆∑ . (2.30) 
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This formula can be further simplified in the case of two-dimensional simulations, 

which are appropriate for wide devices. In this case, the volume of the ith 

discretization cell can be written as: 

 i iV W S∆ = ∆ , (2.31) 

where W  and iS∆  are the width and the cross-sectional area of the ith mesh cell, 

respectively. Formulas (2.30) and (2.31) imply that: 

 [ ] ( )2 01
i

T T

D i
V V

i i

DDF
W S

σ γ=
∆∑ . (2.32) 

Note that the standard deviation of the threshold voltage is inversely proportional to 

the square root of the device width. Previously, this result was extracted after 

extensive numerical computations of three dimensional problems. It is remarkable that 

we obtain this result analytically by using a two dimensional model of MOSFET.  

 First, we report the results of the threshold voltage variances computed for a 

MOSFET device with channel length 50=L  nm, channel width 50=W  nm, and 

oxide thickness 3=t nm. These results are compared to those presented in [66] for two 

average doping values 17
0 106.8 ⋅=D cm-3 and 17

0 1034 ⋅= .D cm-3. Our computations 

produce the values 
TVσ =32 mV and 

TVσ =22 mV, while the computations presented in 

[66] produce the values 
TVσ  = 29 mV and 

TVσ  = 23 mV, respectively. 

The results for the standard deviations of threshold voltage obtained for the 50 

nm channel length MOSFET device (MOS A) are presented in Figure 2.2(a) and 

compared with those obtained by Asenov et al. [68] for various oxide thicknesses. In 

Ref. [68], 
TVσ  is computed by simulating N = 200 MOSFET devices, which implies 
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statistical errors of about 1 2 5%N = . The vertical bars in Figure 2.2(a) correspond 

to the absolute value of these errors and they show the range in which 
TVσ  lies with a 

probability of 68%. There is very good agreement between our results and those 

obtained by using the statistical method in the case of classical computations. 

Figure 2.2(b) presents the standard deviation of threshold voltage as a function 

of the doping concentration in the channel for two MOSFET devices: MOS A and 

MOS B (see the Appendix). In the case of the retrograde doping profile (MOS B), the 

doping concentrations indicated along the horizontal axis correspond to the doping 

concentration at a distance of 20 nm from the oxide, while the concentration at the 

surface is 10 times smaller than this value. It is remarkable that the variance of 

threshold voltage for the 30 nm channel device (MOS B) is smaller than the threshold 

voltage variance for the 50 nm channel device (MOS A) due to the improved doping 

configuration. The retrograde doping profile not only suppresses the short-channel 

effects, but also behaves like an epitaxial layer of smaller concentration that causes 

TVσ  to decrease. More details about MOSFET structures that considerably reduce the 

fluctuations of threshold voltage will be provided in the last section of this chapter. 
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Figure 2.2 Standard deviation of threshold voltage as a function of oxide thickness (a) 

and average doping concentration in the channel (b). 



 28

 

(a) 

 

 

(b) 

Figure 2.3: Doping sensitivity coefficients of threeshold voltage for the 50 nm channel 

length (MOS A) and 25 nm channel length MOSFET devices (MOS C). 
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One of the major advantages of the linearization method is that it provides 

information on the sensitivity of the variance of the threshold voltage to different 

locations of the doping fluctuations. Figure 2.3 presents the values of the sensitivity 

coefficients for the 50 nm (MOS A) and 25 nm (MOS C) channel length MOSFET 

devices. We observe that the most sensitive region to the fluctuations of threshold 

voltage is the immediate proximity of the semiconductor/oxide interface. Therefore, in 

order to reduce these fluctuations, the doping concentration in the region close to the 

semiconductor/oxide interface should be controlled with maximum precision.  

2.2.2 Random oxide roughness induced fluctuations 

Over the past years, threshold voltage fluctuations induced by random oxide thickness 

variations have not received the same attention as random doping induced 

fluctuations. However, our simulation experiments show that the two effects are 

equally important. In this section, the doping concentration is considered constant 

(non-fluctuating) and only the fluctuations of TV  induced by random oxide thickness 

are analyzed. 

In the case of random-dopant induced fluctuations, the standard deviation of 

the threshold voltage can be written as [see equation (2.11)]: 

 [ ] ( )
,

,ji

T T T

tt
V V V

i j

OTF ACF i jσ γ γ= ∑ . (2.33) 

The oxide surface was initially characterized by a Gaussian autocorrelation function: 

 ( )
2

22 c

r
LACF r e

−

= ∆ . (2.34) 
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where ∆  is the roughness of the surface, cL  is the correlation length of the 

fluctuations, and r  is the spatial distance measured at the surface of the oxide. 

However, more recent measurements made with the help of atomic force microscopy 

(AFM) show that the ACF of the oxide thickness fluctuations is better described by an 

exponential distribution function [22]: 

 ( ) 2 c

r
LACF r e

−

= ∆ . (2.35) 

Roughness can be accurately measured experimentally and the reported values range 

between 0.15 nm and 0.5 nm for SiO2 surfaces. Since the standard deviation of TV  

increases linearly with ∆  [see equations (2.33)-(2.35)], we assume that roughness has 

a constant value of ∆ = 0.15 nm; for any other ∆ , the standard deviation of TV  can be 

easily computed by using appropriate scaling. The correlation length depends mostly 

on the fabrication process and it is more difficult to measure experimentally. The 

values of cL  measured by using AFM vary from 10 nm to 25 nm and the simulations 

presented in this section take this uncertainty into account by presenting results for the 

whole range of variation of cL . 

Figures 2.4 (a) and (b) present the computed standard deviation of TV  as a 

function of the channel length for two groups of devices. In the first group [Figure 

2.4(a)], devices are scaled down by using the constant field scaling rule [81], 

according to which the device dimensions and the doping are scaled proportionally, by 

the same factor. In the second group [Figure 2.4(a)], devices are scaled down by using 

the constant voltage scaling rule according to which, if dimensions are decreased by a 
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factor k, the doping concentration is increased by k2. We observe that the values of the 

standard deviation of TV  are smaller in the case of constant field scaling because of 

lower doping concentration in the channel. The same effect was observed by 

Nishinohara et al. [65] for random doping induced fluctuations of TV .  

In the case of long channel MOSFET devices, threshold voltage increases 

linearly with the oxide thickness. For correlation lengths that are large in comparison 

with the device dimensions, the standard deviation of the threshold voltage can be 

easily found by using the “inversion” definition of TV : 

 [ ] 4 ln
T c

a
V Si aL

Ox i

NOTF kTN
n

σ ε
ε=∞

 ∆
=  

 
, (2.36) 

where aN  is the average doping concentration in the channel. The standard deviation 

of TV  computed by using (2.36) is represented in Figures 2.4 (a) and (b) by a dash 

line. Numerical simulations correctly predict the theoretical value of 
TVσ  for long 

channel devices, which proves that the linearization method presented in the previous 

section calculates the variance of TV  for long devices accurately. 

For small MOSFET devices we compare our results with those published in 

Ref. [32]. For a 30 nm channel length device with abrupt junctions, 185 10aN = ×  cm-3, 

1.05oxt =  nm, jx = 7 nm, and by assuming constant electron and hole mobilities, as 

well as long correlation lengths of the oxide thickness fluctuations, our computations 

give the value 
TVσ =41.5 mV. This value is in perfect agreement with those reported 
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in Ref. [32], which was obtained by using the Monte-Carlo technique: (41 2)
TVσ = ±  

mV. 

We also investigate the dependence of the fluctuations of threshold voltage on 

the doping concentration in the channel, oxide thickness, and channel length. The 

results of these simulations are presented in Figures 2.5 (a), (b), and (c), respectively, 

for MOS C (see the Appendix). The dependence of 
TVσ  on the doping concentration 

and oxide thickness can be easily interpreted qualitatively by using equation (2.36). 

Notice that 
TVσ  increases approximately like aN  and it is independent of the oxide 

thickness. Similar results were obtained by Asenov et al. [32] for a 30 nm channel 

length MOSFET device by using the Monte-Carlo technique. The (in)dependence of 

TVσ  on the oxide thickness can be proved analytically as follows. If we disregard the 

depletion effects of the polysilicon region and consider the electric field in the oxide to 

be uniform, t  enters linearly in the transport equations (2.19) through the boundary 

conditions at the semiconductor-oxide interface [82]: 

 Si
G it

Ox Ox

tt V Q
n

ε ϕϕ
ε ε

∂
+ = +

∂
, (2.37) 

where 
n
ϕ∂
∂

 is the normal derivative of the potential at the boundary and itQ  is the 

interface (trapped) charge density. Since equation (2.37) is linear in t, the derivative 

tF  does not depend on t, so the fluctuations of TV  [see equation (2.26)] and 
TVσ  are 

independent of the oxide thickness.  
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Figure 2.6 presents the dependence of 
TVσ  on the correlation length of oxide 

thickness fluctuations by using the exponential (2.35) and the Gaussian (2.34) 

autocorrelation functions. The standard deviation of TV  computed by using the 

exponential ACF is smaller than the one computed by using the Gaussian ACF for 

short correlation lengths, but larger for long correlation lengths. This implies that 

discrepancies in the modeling of oxide surface may appear if the correlation function 

is not properly chosen. However, for simulation purposes, one can choose either ACF 

if the correlation length and the roughness are carefully adjusted. 

Finally, we present the analysis of threshold voltage sensitivity to local 

fluctuations of the oxide thickness at different points on the semiconductor-oxide 

interface. This analysis is especially important in the design of fluctuations-resistant 

structures. Figure 2.7 presents the (mesh independent) sensitivity coefficients as a 

function of the (x, y) position on the interface. These sensitivity coefficients are 

defined as ( )2
j

T

t
V jSγ ∆ , where jS∆  is the area of the discretization cell j on the surface 

of the oxide. It can be observed that the threshold voltage is rather sensitive to the 

fluctuations of oxide thickness in the middle region of the oxide layer, but quite 

insensitive to the edge fluctuations of the oxide thickness. This effect can have 

positive implications for the fabrication process of the oxide because the ulterior 

etching and deposition of polysilicon usually deteriorates the edges of the oxide layer. 
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Figure 2.4: Standard deviation of threshold voltage as a function of the channel length. 

Constant field scaling rule (a) and constant potential scaling rule (b) are considered in 

these simulations. Dash lines correspond to computations given by equation (2.36). 
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Figure 2.5: Standard deviation of threshold voltage as a function of the average doping 

concentration in channel (a), oxide thickness (b), and channel length (c), respectively. 
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Figure 2.6: Standard deviation of the threshold voltage as a function of the correlation 

length of oxide roughness fluctuations (classical computations). 
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Figure 2.7: Oxide thickness sensitivity coefficients for threeshold voltage (30x40 nm 

MOSFET device). 

2.3 Analysis of fluctuations of threshold voltage by using the “complete inversion” 

definition 

In the first two sections of this chapter, the “current definition” of threshold 

voltage was adopted for the calculation of the variance of TV . This approach involved 

the linearization of the transport equations (e.g. the Poisson equation and current 

continuity equations in the case of the drift-diffusion model) around the average 

values of the state variables. A much simpler way to compute the fluctuations of 

threshold voltage in semiconductor devices is to use the complete inversion definition 

of TV . This approach is computationally much more efficient, since it requires only the 

linearization of the Poisson equation. It can be regarded as a particular case of the 



 38

general method presented in the previous section but, due to its particular relevance, 

this section will be entirely devoted to it. 

To clearly emphasize the main idea of the method, we focus on the two-

dimensional model of MOSFET and adopt the “theoretical” (“textbook”) definition of 

the threshold voltage as the gate voltage at which the onset of complete inversion 

occurs [81]. 

The inversion phenomena can be studied by using the following nonlinear 

Poisson equation for electric potential ϕ : 

 2 th thV Vi

s s

qn qDe e
ϕ ϕ

ϕ
ε ε

− 
∇ = − −  

 
, (2.38) 

Here, in  is the intrinsic electron density, thV is the thermal voltage equal to 
q

kT , and 

D  is the doping, while other symbols in (2.38) have their usual meaning. 

Equation (2.38) is the nonlinear Poisson equation because the densities of 

mobile electrons and holes are potential dependent and equal to thV
in e

ϕ

 and thV
in e

ϕ
−

, 

respectively. It is worth stressing that the nonlinear Poisson equation (2.38) is valid at 

equilibrium (or close to equilibrium) conditions for both the drift-diffusion and the 

semiclassical transport models. In this sense, the threshold voltage variance 

calculations based on the nonlinear Poisson equation are insensitive to the specific 

choice of the transport model.  

In the pure inversion regime of MOSFET devices, the solution of the nonlinear 

Poisson equation is subject to the following boundary conditions [82] (see Figure 2.8): 
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1. zero Dirichlet boundary conditions on ohmic contacts kC : 

 0=kϕ , (2.39) 

2. zero Neumann boundary conditions on the artificial boundaries kC : 

 0=
∂
∂
ν
ϕ , (2.40) 

3. mixed (impedance) type boundary on oxide-semiconductor interface 0C : 

 s
G it

d d

t V Qε ϕ λϕ
ε ν ε

∂
+ = +

∂
, (2.41) 

where t  is the oxide thickness, dε  is the oxide permittivity, GV  is the applied gate 

voltage, and itQ  is the interface (trapped) or oxide charge density. 
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Figure 2.8: MOSFET device. 

 

The electric potential distribution within the device is determined by solving 

the boundary value problem described by the system of equations (2.38)-(2.41). For 
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the given device geometry, this distribution depends on doping D  and applied gate 

voltage GV . As mentioned in the Introduction, in the p-region (substrate) doping D  

fluctuates from point to point and from one device to another. For this reason, doping 

can be treated as a random field. We represent this random field in the form [73]: 

 0D D D= + ,  0D =  (2.42) 

where symbol ” ” stands for the expected (mean) value. 

If doping fluctuations are realized on very fine spatial scales (in comparison 

with device dimensions), then averaging (homogenization) phenomenon occurs and 

the potential distribution is by and large insensitive to doping fluctuations. However, if 

doping fluctuations occur on spatial scales more or less comparable with device 

dimensions, they may cause noticeable fluctuations ϕ  of the electric potential, as well 

as a pronounced “shift” shϕ  in the average value of ϕ . These effects can be 

mathematically expressed as follows [73]: 

 0 shϕ ϕ ϕ ϕ= + + ,   0ϕ = . (2.43) 

Here, 0ϕ  is the electric potential in the case when the effect of doping fluctuations is 

negligible. This potential satisfies the following nonlinear Poisson equation: 

 
s

VV

s

i qDeeqn
TT

εε
ϕ

ϕϕ

0
0

2
00

−













−=∇

−

. (2.44) 

Normally, shϕ  and ϕ  are relatively small; it does not make sense to manufacture 

devices with large fluctuations. Therefore, the perturbation (“small signal analysis”) 

technique can be employed to derive the following equation for shϕ ϕ+  from (2.38): 
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 ( ) ( )2 02 coshi
sh sh

s T T s

qn qD
V V

ϕϕ ϕ ϕ ϕ
ε ε

 
∇ + = + − 

 
. (2.45) 

By taking the average of both sides of equation (2.45) and using the fact that 0ϕ =  

and 0D = , we obtain: 

 sh
TTs

i
sh VV

qn ϕϕ
ε

ϕ 







=∇ 02 cosh2 . (2.46) 

Next, we subtract equation (2.46) from equation (2.45), to arrive at the following 

equation for potential fluctuations ϕ : 

 2 02 coshi

s T T s

qn qD
V V

ϕϕ ϕ
ε ε

 
∇ − = − 

 
. (2.47) 

It is clear that ϕ  satisfies the following boundary conditions: 

 0
kC

ϕ = ,   0
kC

ϕ
ν
∂

=
∂

,    
0

s
G

d C

t Vε ϕϕ
ε ν

 ∂
+ = ∂ 

, (2.48) 

where GV~  stands for the gate voltage fluctuations. These fluctuations are introduced in 

order to compensate for the doping fluctuations and to maintain the “same” inversion 

conditions. In deriving boundary condition (2.48) from boundary condition (2.41), the 

fluctuations of oxide thickness t  and trapped charges itQ  were neglected. These 

fluctuations will be taken into account later on. 

It is convenient to express the solution of boundary value problem (2.47)-

(2.48) in terms of the Green function, which is defined as the solution of the following 

boundary value problem [73]: 
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 ( )MQG
VV

qnG
TTs

i −−=







−∇ δϕ
ε

02 cosh2 , (2.49) 

 0=
kCG ,      0=

∂
∂

kC

G
ν

, (2.50) 

 
0

0s

d C

GG t ε
ε ν

 ∂
+ = ∂ 

, (2.51) 

where ( )MQ −δ  is the Dirac delta function. 

By using the above definition of the Green function, the following integral 

representation for the solution of the boundary value problem (2.47)-(2.48) can be 

derived: 

 ( ) ( ) ( ) ( ), M G
s

qQ G Q M d M d Q Vϕ γ
ε Ω

= Ω +∫ , (2.52) 

where 

 ( ) ( )
0

,d
M

s C

Q G Q M d
t

εγ
ε

= Γ∫ . (2.53) 

Threshold voltage TV  of MOSFET devices can be defined as the gate voltage G TV V=  

at which a minimum mobile electron density on the oxide interface is equal to the 

mobile hole density in the bulk p-region at zero bias voltages, i.e. before the inversion. 

For the sake of brevity, this definition will henceforth be referred to as the “inversion” 

definition of threshold voltage. The minimum electron density is usually achieved at 

the middle point Q  of the semiconductor-oxide interface. It can be easily shown that 

the required electron density is attained when the electric potential ( )Qϕ  takes the 

following value: 
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 ( ) 0ln
i

DkTQ
q n

ϕ = . (2.54) 

Thus, threshold voltage is the gate voltage T GV V=  for which condition (2.54) is 

satisfied. 

We now define fluctuations TV  of the threshold voltage as the fluctuations of 

the gate voltage that compensate for the doping fluctuations and keep the value of the 

electric potential at middle point Q  constant and equal to the value specified by 

formula (2.54). In other words, if we substitute TV  for GV  in equation (2.52), then at 

the middle point, ( ) 0Qϕ = . This leads to the following expression: 

 
( ) ( ) ( ),T M

s

qV G Q M d M d
Qε γ Ω

= − Ω∫ . (2.55) 

By squaring formula (2.55) and performing statistical averaging on both sides, we 

derive the following expression for the variance 2
TVσ of the threshold voltage: 

 
( ) ( ) ( ) ( )

2

2 , , ,
TV D P M

s

q G Q M G Q P K M P d d
Q

σ
ε γ Ω Ω

 
= Ω Ω  
 

∫ ∫ , (2.56) 

where ( )P,MKD  is the autocovariance function of random field D . For the sake of 

further discussions, it is convenient to write the last formula in the discretized form: 

 0 0 0 0, ,2 2 ,
, , , , ,

, ,
T

i j i j i j
V i j m n m n i j m n

i j m n

G G K S Sσ α= ∆ ∆∑∑ , (2.57) 

where: ( )Qq sγεα = , index pair ( )00 j,i  corresponds to point Q, index pairs ( )j,i  are 

used for the numeration of other mesh points, while other notations have their usual 

meaning. 
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It is customary to assume that doping densities at different locations are 

independent random variables. This implies that: 

 2
j,iD

j,i
n,m

j,i
n,mK σδ= , (2.58) 

where j,i
n,mδ  is the Kronecker delta and 2

j,iDσ  is the variance of j,iD . 

By substituting formula (2.58) into equation (2.57), we arrive at: 

 ( )0 0

,

2,2 2 2
, ,

,
T i j

i j
V i j i j D

i j
G Sσ α σ= ∆∑ . (2.59) 

By using equation (2.10), (2.59) can be written as: 

 2 0
, ,

,
TV i j i j

i j
Dσ λ=∑ , (2.60) 

where ,i jλ  are the doping superposition coefficients of the threshold voltage and: 

 ( )0 0
2 ,,

, ,
i ji j

i j i j

S
G

W
λ α

∆
= , (2.61) 

where W  is the width of the device. 

Thus, the problem of evaluating the variance of the threshold voltage is 

reduced to the calculation of j,iλ . This can be accomplished in two steps. First, we 

solve the nonlinear Poisson equation (2.44) with boundary conditions (2.39)-(2.41) to 

find GV  and the distribution of 0ϕ  for which the condition (2.54) is satisfied. Then we 

use this distribution of 0ϕ  to solve a discretized version of boundary value problem 

(2.49)-(2.51) and to find mesh point values of the Green function and coefficients j,iλ . 

The numerical solution of the nonlinear Poisson equation (as well as of the discretized 

boundary value problem (2.49)-(2.51)) can be determined by using the globally 

convergent techniques presented in [85]. 
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 In describing the fundamentals of the method, we neglected fluctuations of 

oxide thickness and trapped charges. These fluctuations can be taken into account by 

modifying boundary condition (2.48) as follows: 

 
0

0
0 0

0
s it s

G it
d s s dC

t Qt V Q tε ε ϕϕϕ
ε ν ε ε ε ν

   ∂∂
+ = + + −   ∂ ∂   

. (2.62) 

Here, 0t  and 0
itQ  are the expected values of oxide thickness and interface (trapped) 

charges, t  and itQ~  are their fluctuations, while 0ϕ  has the same meaning as before. 

 This modification of the interface boundary condition leads to the following 

modification of formula (2.52): 

 ( ) ( ) ( ), M
s

qQ G Q M d M dϕ
ε Ω

= Ω∫  

 ( ) ( ) ( ) ( )
0

0 ,G it M
s C

Q V Q G Q M Q M dγ β
ε
∆

+ + ∆ + Γ∫ , (2.63) 

where  

 ( ) ( ) ( ) ( )
0

0
0

0

, itd s
M

s s dC

Q M
Q G Q M M d

t
ε ε ϕβ
ε ε ε ν

 ∂
= − Γ ∂ 

∫ . (2.64) 

By repeating the line of reasoning that led to the derivation of formula (2.60), 

we arrive at the following expression: 

 ( )0 0

22
2,2 0 2 ' 20

, , , ,
, ,

T it

i j
V i j i j ox i j i j Q

i j i js

tD G lβσ λ σ σ
γ ε γ

  
= + + ∆  

   
∑ ∑ . (2.65) 

Here, ∑
j,i

'  is the sum over the mesh points that belong to 0C , while 2
oxσ  and 2

itQσ  are 

the variances of oxide thickness and interface charges, respectively. Formula (2.65) 
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can be used to compute the standard deviation of the threshold voltage if the 

superposition coefficients ,i jλ , β , γ , and 0 0,
,
i j
i jG  are known. 

 We will close this section with the presentation of a few sample simulation 

results obtained for the 50×50 nm MOSFET device (MOS A described in the 

Appendix). We will focus primarily on the dependence of the threshold voltage 

variance on channel width, oxide thickness and substrate doping. Figure 2.9(a) 

presents the dependence of 
thVσ  on channel width. Note that 

TVσ  is inversely 

proportional to W ; the same result was obtained analytically in Section II by using a 

two dimensional model for MOSFET.  

 Figure 2.9(b) presents the dependence of 
TVσ  on oxide thickness t . We 

observe that 
TVσ  is directly proportional to t . This result was also observed by Asenov 

et al. [88] by performing a large number of simulation experiments and by using the 

Monte-Carlo technique to find 
TVσ . Figure 2.9 (c) presents the dependence of 

TVσ  on 

the substrate doping 0D . We approximated the computed relation ( )
TV Dσ  by the 

power low 
T

n
V aDσ ≈  by using the 2χ  criterion. We found that within the doping 

range presented in Figure 2.9 and within the error margin of 0150.± , the exponent n  

is equal to 0.406, which is consistent with the results from Ref. [88]. However, it must 

be noted that the value of n  is strongly dependent on the range of doping variations, 

and we found that it may vary from 0.25 for low doping concentrations (as analytically 

predicted in Refs. [13] and [16]) to 0.42 for high doping concentrations. 
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Figure 2.9: Dependence of standard deviation of threshold voltage on width (a), oxide 

thickness (b), and average doping concentration in the channel (c). Threshold voltage 

is defined through the "inversion" of minority carriers. 
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2.4 Shift of threshold voltage 

The expected value of the threshold voltage TV  is different from the threshold 

voltage 0
TV  computed by considering constant (non-fluctuating) doping concentration 

and device dimensions. The difference 0
T T TV V V∆ = −  is usually referred to as the 

threshold voltage shift [see equation (1.3)]. This shift is very important because 

threshold voltage is one of the most important characteristics of MOSFET devices and 

the accuracy of the value we obtain for it is crucial for circuit design. 

 There is some controversy over the issue of the threshold voltage shift. While 

the published results of the calculations of the threshold voltage variance for similar 

devices are in fairly good agreement, the published computational results on the 

threshold voltage shift differ appreciably. It also appears that there is no consensus in 

literature with respect to the origin of the threshold voltage shift, or with respect to the 

possible lowering of (or increase in) the threshold voltage due to doping fluctuations. 

 It is important to stress that the threshold voltage shift is not directly 

measurable and that it can only be computed numerically. Usually, this shift is found 

by computing threshold voltage value 0
TV  by ignoring dopant fluctuations, then 

computing the mean value of threshold voltage TV  by averaging numerous 

calculations performed for various doping realizations, and, finally, by subtracting 

these two values. Since the threshold voltage shift is small in comparison with the 

threshold voltage itself, the subtraction of two approximately computed quantities is 

prone to numerical errors. This may account for the discrepancy in the computational 
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results of the threshold voltage shift published in literature. Later on in this section, we 

will present a technique that leads to the direct calculation of the threshold voltage and 

completely avoids the aforementioned subtraction. 

 Next, it must be emphasized that the origin of the threshold voltage shift is the 

nonlinearity of the transport equations. Since the threshold voltage shift is a nonlinear 

effect, it cannot be accounted for by using the linearized “shift” equation (2.46). 

Indeed, this equation is homogeneous and this inevitably leads to the zero value for the 

threshold voltage shift. Thus, it can be concluded that the threshold voltage shift 

calculations in the framework of the perturbation (“small signal analysis”) technique 

are inherently more complicated than the threshold voltage variance calculations. In 

other words, “shift” calculations require second-order perturbation analysis. 

 It is shown below that the lowering of the threshold voltage is most likely to 

occur as a result of doping fluctuations. To demonstrate this, we assume that electric 

potential ϕ  at each point of the device is a normally distributed Gaussian random 

variable with the probability density: 

 ( )
( )

221
2

e ϕ

ϕ ϕ

σ

ϕ

ρ ϕ
πσ

−
−

= , (2.66) 

where ϕ  stands for the expected value of ϕ , while 2
ϕσ  is the variance of ϕ . This 

assumption has been demonstrated in literature through extensive numerical 

simulations [66]. 

 By taking the average on both sides of the nonlinear Poisson equation (2.38) 

and by using the Gaussian probability density given by equation (2.66) to evaluate the 
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averages of the exponential terms of equation (2.38), we arrive at the following 

Poisson equation for ϕ : 

 
s

VVV

s

i qDeeeqn
TTT

εε
ϕ

ϕϕσϕ

022

2

−









−=∇

−

. (2.67) 

By comparing equations (2.38) and (2.67), it can be concluded that equation (2.67) can 

be construed as the nonlinear Poisson equation for a semiconductor with effective 

intrinsic electron density equal to: 

 
2

2 TV
i in n e

ϕσ

= . (2.68) 

In other words, it can be asserted that doping fluctuations result in the increase of the 

effective intrinsic density. Indeed, according to (2.68), we find: 

 i in n> . (2.69) 

It can be easily proven that the above assertion is also valid in the case when random 

variable ϕ  has any distribution density ( )ρ ϕ ϕ− with even symmetry with respect 

to ϕ . In this case, the averaged nonlinear Poisson equation (2.38) can be written as 

follows: 

 2 0T Ti V V

s s

q n qDe e
ϕ ϕ

ϕ
ε ε

− 
 ∇ = − −
 
 

, (2.70) 

where 

 ( )
0

2 coshi i
T

zn n z dz
V

ρ
∞  

=  
 

∫ . (2.71) 

It is clear from formula (2.71) that inequality (2.69) holds. 
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 The increase in the effective intrinsic density given by formula (2.71) is most 

likely to lead to the lowering of the threshold voltage. This lowering is the likely effect 

of random doping fluctuations. 

 From formula (2.43) we find: 

 shϕϕϕ += 0 . (2.72) 

By substituting formula (2.72) into equation (2.67) and then subtracting equation 

(2.44), we arrive at the following nonlinear equation for shϕ : 

 







−=







 +
−∇

Ts

i

T

shV

s

i
sh V

qn
V

eqn
T 0022 sinh2sinh2
2

ϕ
ε

ϕϕ
ε

ϕ
ϕσ

. (2.73) 

 Another equation for shϕ  can be derived from equation (2.38) by using the 

second-order perturbation technique. In this derivation, formula (2.43) is substituted 

into equation (2.38) and the three terms of the Taylor expansion are used in the right-

hand side of this equation. By employing the same reasoning as in the previous 

section, we obtain the following equation for shϕ : 
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22
002

2
sinhcosh2

T

sh

TT

sh

Ts

i
sh VVVV

qn ϕσϕϕϕϕ
ε

ϕ . (2.74) 

It can be shown that equations (2.73) and (2.74) are equivalent up to the terms of 

third-order of smallness with respect to ϕσ  and shϕ . 

 Equation (2.74) [or (2.73)] must be considered with the following boundary 

conditions: 

 0=
kCshϕ ,    0=

∂
∂

kC

sh

ν
ϕ , (2.75) 
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0

shs sh
sh G

d C

t Vε ϕϕ
ε ν

 ∂
+ = ∂ 

. (2.76) 

 The threshold voltage shift sh
TV  is defined as the value of sh

GV  at which shϕ  at 

the middle point Q equals zero. This condition together with formulas (2.74)-(2.76) 

define the approach to threshold voltage shift calculations. The distinct feature of this 

approach is that the threshold voltage shift is computed directly, and no subtraction of 

TV  and 0TV  is required. The most computationally expensive part of this approach is 

the calculation of 2
ϕσ  at all mesh points. We perform these calculations by using the 

algorithm that was developed in the previous section for 2
Tσ  calculations. The 

numerical solution of equation (2.74) can be somewhat simplified by neglecting the 

term with 2
shϕ . This term is usually small in comparison with the first (linear) term in 

the right-hand side of (2.74). If necessary the term with 2
shϕ  can be accounted for 

through iterations. 

 Our discussion of threshold voltage shift calculations is based on the nonlinear 

Poisson equation (2.38). These calculations are relevant to the definition of the 

threshold voltage as the gate voltage at which the onset of complete inversion occurs. 

However, the main idea of the above discussion can be carried out within the 

framework of the “current” definition of the threshold voltage adopted in the first 

section of this chapter. This can be done by using the second-order perturbation 

technique for discretized transport equation (2.19) and by computing the threshold 

voltage shift from the condition that 0=sh
SDI . This analysis is conceptually 

straightforward and mimics the reasoning presented in this section. 
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2.5 Suppression of random doping fluctuations of threshold voltage 

A relatively easy way to reduce the fluctuations of threshold voltage without a 

major change in the MOSFET architecture is the appropriate tailoring of the channel 

doping profile. One can see from equation (2.30) that, in order to decrease the standard 

deviation of TV , the absolute values of superposition coefficients 
T

i
Vγ and the average 

doping concentrations 0iD  should be decreased. However, as we will show in the 

following, the superposition coefficients are more or less independent of the 

characteristics of the MOSFET devices and the only way to reduce 2
TVσ  is to decrease 

the values of the doping concentration in the conduction channel. A common method 

to decrease these values – and thus, to enhance the dopant fluctuation immunity – is to 

introduce a thin, low-doped epitaxial layer immediately below the interface [87], [88] 

(see Figure 2.10). 

Figure 2.11 presents the results of the calculation of 
TVσ  as a function of 

thickness epid  of the epitaxial layer for a MOSFET device with 50=L  nm, 50W =  

nm, 3t =  nm, 15
0 10=epiD  cm-3 and 18

0 105 ⋅=bulkD  cm-3. We observe that the 

fluctuations of the threshold voltage are substantially reduced by the presence of the 

epitaxial layer. Figure 2.11 also presents the results obtained in Ref. [88] by using the 

Monte-Carlo techniques. It is clear that our results are in a reasonably good agreement 

with those published in Ref. [88]. 

As argued before, one of the major advantages of the linearization method is 

that it provides information on the sensitivity of the variance of threshold voltage to 
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different locations of the doping fluctuations (for example, see Figure 2.3). It is 

interesting that the sensitivity coefficients of the threshold voltage are quite insensitive 

to the presence of the epitaxial layer. Figure 2.12 presents the sensitivity coefficients 

of the threshold voltage for two values of the thickness of the epitaxial layer. One can 

observe that the sensitivity coefficients are “weakly” dependent on the actual value of 

the bulk doping concentration. This fact suggests that the computed sensitivity 

coefficients can be immediately used to estimate the appropriate thickness of the 

epitaxial layer. In this respect, the linearization technique yields information that can 

be instrumental in the design of random dopant fluctuation-resistant structures. 

 Finally, it should be noted that the retrograde MOSFET simulated in Figure 

2.2(b) can be regarded as a fluctuation resistant structure, because the low dopant 

concentration next to the oxide/semiconductor interface behaves like an epitaxial 

layer. For this reason, the displayed values of the standard deviation of the threshold 

voltage have smaller values for the retrograde MOSFET than for the abrupt junction 

MOSFET with no epitaxial layer, even though the overall geometrical dimensions are 

smaller. 
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Figure 2.10: MOSFET device with epitaxial layer (a) and corresponding doping 

profile (b). 
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Figure 2.11: Dependence of standard deviation of threshold voltage on thickness of 

epitaxial layer. 
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(a) 

 

 

(b) 

Figure 2.12: Spatial distribution of doping sensitivity coefficients of VT for (a) 

epid = 10 nm and (b) epid = 20 nm. Distribution of sensitivity coefficients is practically 

insensitive to thickness of epitaxial layer (see Figure 2.3 for the case epid = 0 nm, i.e. 

no epitaxial layer). 
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Chapter 3  

 

Analysis of fluctuations of terminal characteristics 

This chapter is devoted to the analysis of fluctuations of terminal characteristics in 

semiconductor devices. The first two sections of the chapter deal with the analysis of 

I-V characteristics and transconductance in semiconductor devices, respectively. The 

algebra of superposition coefficients is then introduced and applied to the computation 

of fluctuations of subthreshold voltage characteristics. Special consideration is given 

to the analysis of the standard deviation of subthreshold currents and gate-voltage 

swings in ultrasmall MOSFET devices. 

3.1 Fluctuations of I-V characteristics 

The study of the fluctuations of I-V characteristics is extremely important for both 

digital and analog applications. In this section, the linearization method that was 

introduced for the computation of fluctuations in semiconductor devices in the 

previous chapter is applied to the computation of variances of terminal currents. 
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 Let us denote the current through terminal α  of the semiconductor device by 

Iα . In order to compute the superposition coefficients of Iα  it is convenient to write 

terminal currents as explicit functions of state vector X and doping concentration D: 

 ( )I Iαα = X,D . (3.1) 

The fluctuations of terminal currents can be found by linearizing (3.1) with respect to 

the fluctuating quantities: 

 ( ) ( )t t
I I Iα α
α X D= X + D , (3.2) 

where IαX  and IαD  are the derivatives of Iα  with respect to the state variable and 

doping concentration, while superscript t denotes the transpose of the given vector. 

Since the gate potential is constant, we can write 0GV =  and solve equations (2.23) and 

(3.2) for the fluctuations of the terminal current: 

 ( ) ( )ˆ ˆtt tI Iαα α α
 = − ⋅ − ⋅ − ⋅ ⋅  D D tg F D g F t , (3.3) 

where t
αg  is the transpose of column vector αg  and can be found by solving the 

following linear system of equations: 

 ˆ t IαX XF g = , (3.4) 

where ˆ t
XF  denotes the transpose of matrix ˆ

XF . By comparing (2.18) and (3.3), it can 

be inferred that the superposition coefficients of the terminal current are given by the 

following formulas: 

 ( ) ( )ˆi
tD t

I ii
I

α

α
αγ = − ⋅ +D Dg F  (3.5) 

and 
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 ( )ˆit t
I iα αγ = − ⋅ tg F . (3.6) 

The standard deviation of terminal currents can be calculated by using the formulas 

[see equation (2.18)]: 

 ( ) ( )
22 0

,
,ji i tD ti

I I I I
i i ji

D ACF i j
Vα α α α

σ γ γ γ= +
∆∑ ∑ . (3.7) 

The most expensive computational effort in the calculation of these coefficients is to 

solve the linear system (3.4). For 2-D simulations we solve this system by using the 

classical Gauss-Seidel method, while for 3-D simulations we solve it by using the 

Successive Over-Relaxation (SOR) technique. 

 Figures 3.2 (a) and (b) summarize our calculations of the variance of saturation 

currents performed for MOS C (see the Appendix for technical specifications). Figure 

3.2(a) exhibits the saturation currents along with the standard deviation of these 

currents presented by “error bars” computed for various bias conditions. Figure 3.2(b) 

gives the mesh-independent “sensitivity” coefficients of the drain current. In these 

calculations we use the model of mobility described in Refs. [89] and [90]. 
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Figure 3.1:  Drain current and standard deviation of drain current. Simulations made 

for MOS C (see the Appendix for technical specifications). 

 

 

Figure 3.2:  Distribution of sensitivity coefficients of drain current for MOS C 

( 1.2DSV V=  and 0.8GSV V= ). 
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3.2 Fluctuations of transconductance 

This section presents the basic idea of the method for the calculation of the variance of 

transconductance in MOSFET devices. It should be noted that similar techniques can 

also be applied to the computation of variances of other small-signal parameters (e.g. 

z-parameters, hybrid parameters, etc.) 

Transconductance is defined as follows: 

 
0D

D
m

G v

ig
v

=

= , (3.8) 

where Di  represents the small-signal terminal current through the drain, and Gv  and 

Dv  are the small-signal potentials on the gate and drain, respectively. In order to 

find mg , transport equation (2.19) is linearized around the dc bias values ( )0 0, GVX . If 

we denote by Gx  the infinitesimal change in the state variable induced by Gv , we can 

write: 

 ˆ 0
GG V Gv+ =XF x F , (3.9) 

where the notations have their usual meaning. Current Di  is a linear function of Gx , 

which can be found by linearizing the expression for drain current ( )DI X  with 

respect to state variable X . This linearization eventually leads to the following 

expression for transconductance: 

 1 D
m G

G

g I
v

= ⋅X x . (3.10) 

In the rest of this section we focus on the computation of the standard 

deviation of transconductance. To simplify our discussion, let us assume that the 
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effects of the oxide thickness fluctuations are negligible and take into consideration 

only the random doping fluctuations. As mentioned previously, doping D  should be 

treated as a random field: 

 0= +D D D , 0=D , (3.11) 

where D  denotes the expected value of D  and 0D  is the average value of the 

doping. When the fluctuations of the doping occur on very fine spatial scales in 

comparison with device dimension, the state variables are insensitive to doping 

fluctuations due to homogenization phenomena. However, for very small devices, 

doping fluctuations occur on spatial scales comparable with device dimensions and 

usually induce shifts and fluctuations in the state variable X. It is useful to separate the 

shifts and fluctuations of the dc bias variables from the shifts and fluctuations of the ac 

components: 

 sh sh
0 0 0 G G G= + + +X X X + X x x + x , (3.12) 

where 00 G= =X x . By substituting equations (3.11) and (3.12) into transport 

equation (2.19), as well as by taking into account that 0G G GV V v= + , we obtain: 

 ( )0 0, , 0sh sh
0 0 0 G G G G GV v+ + + + =F X + X + X x + x x D D . (3.13) 

To find the variance of transconductance, equation (3.12) is linearized with 

respect to Gx  and to fluctuations 0X  and Gx . This linearization is justified by the fact 

that the variances of nonlinear functions of random variables (unlike their “shifted” 

values) can be determined from linearized equations. Careful linearization of equation 
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(3.12) reveals that sh
0X  and sh

Gx  are equal to zero within the framework of the first-

order approximation (linearization), while 0X  and Gx  satisfy the following equations: 

 0

0

ˆ ˆ ,
ˆ ˆ 0.G

-


+ =

X D

X

F X = F D

F x BX
 (3.14) 

In the last equation, B̂  is a matrix defined by: 

 
3

1

ˆ ˆ
i

N

,X G ,i
i

x
=

=∑ XB F , (3.15) 

where 
ˆˆ

i,X
iX

∂
=
∂

X
X

FF , while iX  and ,G ix  denote the ith component of vectors X  and 

Gx , respectively. Matrix B̂  is computed at dc bias point ( )0, GV0 0X , D . In the 

derivation of equation (3.15) it has been taken into account that the doping enters the 

Poisson equation as a linear term, so the second derivative of the transport equations 

with respect to the doping disappears. The summation in equation (3.15) is over all N 

mesh points and for each state variable (i.e. the electric potential, the electron and hole 

concentrations). 

The fluctuations of transconductance are caused by fluctuations Gx , and can 

be evaluated by using an equation similar to (3.10): 

 0
1 1, ,D D

m G G
G G

g I I
v v

= +X XXx X x , (3.16) 

where DIXX  is the Hessian matrix of the drain current. 
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It is apparent from equations (3.14) and (3.16) that 0X  and Gx  are linear with respect 

to D , while mg  is linear with respect to 0X  and Gx . Consequently, fluctuations of the 

transconductance can be represented as linear functions of doping fluctuations: 

 
1

m

N
i

m g i
i

g Dγ
=

=∑ , (3.17) 

where the sum is taken over all mesh-points. The variance of mg  can now be 

computed by using a formula similar to (2.18): 

 ( )22 0

1
m m

N
i i

g g
i i

D
V

σ γ
=

=
∆∑ . (3.18) 

The numerical implementation of the computation of variances of transconductance 

consists of two parts: 

(1) computation of superposition coefficients 
m

i
gγ , and 

(2) computation of variance of mg  by using equation (3.18).  

Note that, according to (3.17), a specific coefficient 
m

i
gγ  is equal to the value of 

mg  when 1iD =  and 0jD = , j i≠ . This suggests that each element 
m

i
gγ  can be found 

from equation (3.17) after solving the linearized equations (3.14) with respect to Gx . 

To find all superposition coefficients, this approach requires solving the two systems 

(3.14) of 3N equations each, for N different right hand sides, which is computationally 

very expensive. It turns out that there exists a mathematical trick that substantially 

simplifies these computations and reduces them to solving two linear systems of 

equations for only one right hand side. In order to explain this trick, consider the 

formal solution of equation (3.14): 
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( )

( )
0

ˆ ˆ ,

ˆ ˆ ˆ ˆ .

-1

-1 -1
G

= -

=






X D

X X D

X F F D

x F BF F D
. (3.19) 

By substituting these formulas into (3.16) and by considering 1Gv = , we find: 

 ( )0
ˆ ˆ ˆ ˆ ˆ ˆ, , ,D D D -1 -1 D -1

m G G Gg I I I I= + = −X XX X X X D XX X Dx X x ,F BF F D F F D x  

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ,
-1 -1 -1 tt t t D t D

GI I= −X X X D X XX DF B F ,F D F x F D , (3.20) 

where superscript “t” denotes the transpose of a matrix. By introducing the notation 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ-1 -1 -1 tt t t D t D
GI I= −X X X X XXf F B F F x , (3.21) 

equation (3.20) can be written as follows: 

 ˆ
mg = Df,F D , (3.22) 

while the derivatives of the drain current can be computed by using: 

 ( ) ( )1ˆ ˆ ˆD t t t D
GI + I

−

X X X XX= F B F f x . (3.23) 

By introducing the vector 

 ( ) ( )1ˆ ˆt t D
G+ I

−
= X XXg B F f x , (3.24) 

equation (3.23) can be split as follows: 

 
ˆ ,
ˆ ˆ

t D

t t D
G

I

- I .





X X

X XX

F g =

F f = B g x
 (3.25) 

The first equation in (3.25) must be solved for g  and the second equation for f . 

Then, the values of mg  can be computed from equation (3.22) for as many vectors D  
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as needed. It is obvious that by solving equations (3.25) and by using formula (3.22), 

numerous solutions of system (3.14) can be avoided. 

The algorithm for the calculation of transconductance variance can be 

summarized as follows: 

(1) First, transport equation (2.19) is solved to find the dc bias conditions 

throughout the device. 

(2) Second, equation (3.9) is solved and formula (3.10) is used to find the value of 

transconductance. 

(3) Then, matrix B̂  is constructed by using formula (3.15) and equations (3.25) 

are solved for g  and f . 

(4) Next, formula (3.22) is used to find the values of the superposition 

coefficients: 

 ( )ˆ
m

ii
gγ = Df,F δ , (3.26) 

where ( )iδ  is a vector that has the ith component equal to 1, while all other 

components are equal to zero. 

(5) Finally, the variance of transconductance is found from equation (3.18). 

In our simulations, the transport equations have been discretized by using the 

finite-difference method. The Sharfetter-Gummel finite difference scheme has been 

applied to the discretization of current-continuity equations. Gummel’s block iteration 

method has been used in order to decouple the Poisson and drift-diffusion equations. 

The decoupled nonlinear Poisson and current continuity equations have been solved 

by using the iterative techniques discussed in [85] and [86]. These iterative techniques 
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are globally convergent and can be implemented with modest computer memory 

requirements. The numerical solution of equations (3.9) has been performed by using 

the standard LU factorization techniques and the Gauss-Seidel type iterative 

techniques that exploit the “diagonal dominance” of the matrix equation structure. 

Similar numerical techniques have been used to find the solution of coupled equations 

(3.25). Our calculations revealed that the LU decomposition techniques are more 

efficient for 2-D problems, while the iterative techniques are significantly faster in 3-D 

simulations. 

Finally, it should be noted that equations similar to (3.14)-(3.26) can be written for 

the computation of the standard deviation of transconductance induced by random 

oxide thickness fluctuations. The only modification to equations (3.14)-(3.26) is that 

the doping concentration vector D should be replaced with the oxide thickness vector 

t. 

3.3 Algebra of superposition coefficients 

In this section we discuss a powerful technique that will allow us to compute the 

superposition coefficients of many device parameters very efficiently. Let us consider 

some parameter C of the device that can be written as a function of two other 

parameters A and B: 

 ( ),C f A B= . (3.27) 

We assume that parameters A and B fluctuate from one device to another due to 

random doping oxide thickness fluctuations. Such an example will be analyzed in the 
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next section, where the gate-voltage swing of a MOSFET device is written as a 

function of the drain current and transconductance by using the formula ln10D

m

IS
g

= . 

Now, let us show that if we know the superposition coefficients of parameters A and 

B, we can compute the superposition coefficients of C by using simple transformation 

relations. 

 All parameters ( A , B , and C ) can be expressed (in the first-order 

approximation) as the sum of their average values and some fluctuating terms, which 

are induced by the random doping concentration and oxide roughness: 

 0
1 1

ox
i i

NN
D t
A i A i

i i
A A D tγ γ

= =

= + +∑ ∑ , (3.28) 

 0
1 1

ox
i i

NN
D t
B i B i

i i
B B D tγ γ

= =

= + +∑ ∑ , (3.29) 

and 

 0
1 1

ox
i i

NN
D t
C i C i

i i
C C D tγ γ

= =

= + +∑ ∑ . (3.30) 

By introducing equations (3.28)-(3.30) in (3.27), we obtain: 

0 0 0
1 1 1 1 1 1

,
ox ox ox

i i i i i

N N NN N N
D t D t ti
C i C i A i A i B i B i

i i i i i i
C D t f A D t B D tγ γ γ γ γ γ

= = = = = =

 
+ + = + + + + 

 
∑ ∑ ∑ ∑ ∑ ∑  

( ) ( ) ( )0 0 0 0 0 0
1 1 1 1

, , ,
ox ox

i i

N NN N
t ti i

A i A i B i B i
i i i i

f ff A B A B D t A B D t
A B

γ γ γ γ
= = = =

   ∂ ∂
+ + + +   ∂ ∂   

∑ ∑ ∑ ∑ ,(3.31) 

where we have taken into account that parameter fluctuations are assumed to be small. 

Since ( )0 0 0,C f A B= , equation (3.31) leads to: 
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1 1

ox
i i

NN
D t
C i C i

i i
D tγ γ

= =

+ =∑ ∑  

 ( ) ( )0 0 0 0
1 1 1 1

, ,
ox ox

i i

N NN N
t ti i

A i A i B i B i
i i i i

f fA B D t A B D t
A B

γ γ γ γ
= = = =

   ∂ ∂
= + + +   ∂ ∂   

∑ ∑ ∑ ∑ . (3.32) 

Equation (3.32) is valid for any doping and oxide thickness configurations. This 

implies: 

 ( ) ( )0 0 0 0, ,i i iD D D
C A B

f fA B A B
A B

γ γ γ∂ ∂
= +
∂ ∂

 (3.33) 

and 

 ( ) ( )0 0 0 0, ,i i it t t
C A B

f fA B A B
A B

γ γ γ∂ ∂
= +
∂ ∂

. (3.34) 

Equations (3.33) and (3.34) can be used to compute the superposition coefficients of 

parameter C  if we know the superposition coefficients of A  and B . It is clear that 

these equations can be easily extended to the case when parameter C  depends on 

more than two variables (e.g. ( )1 2, ,...C f A A= ). In this case, the sums in (3.33) and 

(3.34) should be taken over all variables 1A , 2A ,… . 

 In the end of this section, let us consider two examples which will later be used 

for the computation of the gain voltage swing and frequency characteristics. 

(1) Consider parameter C  that can be written as AC
B

= . Direct application of 

formula (3.33) leads to: 

 0

0 0 0

i i
i

D D
D A B
C

A
B A B

γ γγ
 

= − 
 

. (3.35) 
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(2) Consider now parameter C Q A jB= = + , where 1j = − . By using the 

same technique we can find that: 

 
( )*

00 0
2 2

00 0

Re ii i
i

DD D
QD A B

C

QA B
QA B

γγ γγ +
= =

+
, (3.36) 

where iD
Qγ  are the superposition coefficients of Q A jB= + . 

In formulas (3.35) and (3.36), iD
Cγ  are the doping superposition coefficients of 

parameter C . Similar formulas can be written for the oxide thickness superposition 

coefficients. As a first application of the algebra of superposition coefficients, we 

consider in the following section the computation of fluctuations of subthreshold 

voltage characteristics. 

3.4 Fluctuations of subthreshold voltage characteristics 

The subthreshold regime of MOSFET devices is usually characterized by the 

subthreshold current SUBI  and the gate-voltage swing ( S -factor). Due to the 

exponential dependence of the subthreshold current on the surface potential [91], [92], 

the subthreshold region is particularly sensitive to doping profile fluctuations, and 

both SUBI  and the S -factor are strongly dependent on the fluctuations of the doping in 

the channel. Therefore, special attention must be paid to the characterization of 

fluctuations in the subthreshold voltage region. This section presents the method for 

the calculation of the variance of subthreshold currents and gate-voltage swing. 
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Figure 3.3: Subthreshold current for MOS C (see the Appendix for technical 

specifications). Drain-to-source voltage is DSV  = 0.5 V. 

 

The gate-voltage swing is defined by the formula: 

 
( )10log

G

D

dVS
d I

=  (3.37) 

and can be interpreted as the change of gate potential required to decrease the drain 

current by one decade (see Figure 3.3). Equation (3.37) can be written in a more 

convenient form, as a function of the subthreshold current ( SUBI ) and 

transconductance ( mg ): 

 ln10SUB

m

IS
g

= . (3.38) 

Note that the superposition coefficients of the subthreshold current (
SUB

i
Iγ ) and 

transconductance (
m

i
gγ ) can be identified with the methods presented in sections 3.1 
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and 3.2. Therefore, the algebra of superposition coefficients [see equation (3.35)] can 

be readily applied to calculate the superposition coefficients of the gate-voltage swing 

by using the following equation: 

 0

0 0 0

ln10SUB m

i i
I gi SUB

S
m SUB m

I
g I g

γ γ
γ

 
= −  

 
. (3.39) 

Equations (3.39) and (2.18) have been applied to the computation of the standard 

deviation of the gate-voltage swing for MOSFET devices. 

The sensitivity coefficients of the subthreshold current are represented in 

Figure 3.4(a) for MOS C (see the Appendix for technical specifications). In these 

simulations, the source and the base were grounded, while DV = 0.1 V and GV =0 V. 

One can easily see that the fluctuations of the doping at different locations inside the 

semiconductor device contribute differently to the fluctuations of subthreshold current. 

The most sensitive region (the region that by and large contributes to the fluctuations 

of SUBI ) is located in the conduction channel and in the close proximity of the oxide-

semiconductor interface. In order to suppress the fluctuations of the subthreshold 

current in MOSFET devices, we need to control the doping concentration in the 

conduction channel as much as possible. 

Figure 3.4(b) presents the values of the sensitivity coefficients of the gate-

voltage swing for the same MOSFET device as in Figure 3.4(a). In contrast with the 

sensitivity coefficients of SUBI , in this case, the most sensitive regions are located at 

the drain and source junctions, and in the vicinity of the dioxide interface. 
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The standard deviation of the gate-voltage swing is heavily dependent on the 

bias conditions. This fact is apparent from Figure 3.5, where the values of the gate-

voltage swing are presented by continuous lines, while their standard deviations are 

shown by vertical bars. Note from this figure that there are significant fluctuations of 

the gate-voltage swing for relatively large (close to threshold voltage) values of the 

gate voltage. The standard deviations of these fluctuations decrease for low values of 

the gate and the drain-to-source voltage. 

We have also investigated the dependence of the fluctuations of the 

subthreshold voltage swing on the average doping concentration and oxide thickness. 

Figure 3.6(a) presents the dependence of S  on the doping concentration aN . We can 

see that for large values of the doping concentration, the fluctuations of the gate-

voltage swing are approximately constant. For small values of the average doping 

concentration, the gate voltage becomes comparable to the value of the threshold 

voltage and, consequently, the average value and the standard deviation of the gate-

voltage swing increase. 

Figure 3.6(b) presents the dependence of the gate-voltage swing on the 

thickness of the oxide layer. We can see that S  and Sσ  increase almost linearly with 

the oxide thickness. Similar linear dependences on the oxide thickness have also been 

observed for the standard deviations of the threshold voltage and saturation current, as 

well as for certain small-signal parameters.  
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(a) 

 

 

(b) 

Figure 3.4: Sensitivity coefficients of subthreshold current (a) and gate-voltage swing 

(b) for MOS C ( GV  = 0 V and DSV  = 1.2 V). 
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Figure 3.5: Gate-voltage swing of MOS C as function of gate voltage for different 

values of drain-to-source voltage: DV =0.1 V, 0.5 V, 1 V, and 1.5 V. Vertical bars 

indicate standard deviations. 
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Figure 3.6: Gate-voltage swing as function of average doping concentration in channel 

(a) and oxide thickness (b) for MOS C. Vertical bars indicate standard deviations of 

gate-voltage swing. 
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Chapter 4  

 

Analysis of fluctuations of frequency characteristics 

This chapter is devoted to the analysis of fluctuations of frequency characteristics in 

semiconductor devices. The main emphasis is placed on the analysis of small-signal 

parameters (Sections 4.1 and 4.2), gain factors (Section 4.3), and cut-off frequencies 

(Section 4.4). However, techniques similar to the ones presented in this chapter can be 

applied to the analysis of fluctuations of other frequency characteristics of 

semiconductor devices. 

4.1 Fluctuations of admittance parameters (y-parameters) 

In this section we introduce the technique for the calculation of variances of 

admittance matrix elements (i.e. variances of y-parameters). This technique closely 

mimics the method for the analysis of fluctuations of transconductance that was 

presented in Section 3.2. 
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The admittance matrix elements for an N-terminal device are defined as 

follows [93]: 

 
0,v

i
y

v
γ

β
βα

α γ β= ≠

= , , , 1,.., Nα β γ = , (4.1) 

where iβ  and vα  represent the small-signal phasor terminal current and potential at 

terminals β and α , respectively. In the case of MOSFET, instead of subscripts ,α β , 

and γ , subscript G will be used for gate, D for drain, S for source, and B for body. 

We find the variances of y-parameters in three steps: 

(1) First, we solve the transport equations and find the dc bias point. 

(2) Then, we solve the linearized transport equations and find the values of y-

parameters. 

(3) Finally, we find the superposition coefficients and the variances of y-

parameters. 

Each of these steps is discussed below. 

 

A. Finding dc bias point 

The first step in the evaluation of variances of y-parameters is to solve the transport 

equations and to find the dc bias point of the device. To this end, consider the spatially 

discretized transport equations [82] in the form: 

 ( ) ( ), , , ,... 0d V V
dt α β+ =J X F X D , (4.2) 

where F is a nonlinear vector function of the unknown “state” vector X , doping 

vector D , and terminal potentials, while J is a vector function which depends on X  
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only. If the transport model is the drift-diffusion model, then state vector X  consists 

of three vectors ϕ , n , and p , whose components are the mesh-point values of the 

electric potential, electron and hole densities, respectively. In equation (4.2), we have 

separated the explicit time-dependent part of the transport equations (which in the case 

of the drift-diffusion model comes from the terms n t∂ ∂  and p t∂ ∂  in the current 

transport equations) from the time-independent part F . In the computations of dc bias 

conditions, equations (4.2) are reduced to: 

 ( )0 0, , , ,... 0V Vα β =0 0F X D . (4.3) 

Given some doping distribution 0D  and the bias voltages 0 0, ,...V Vα β , equation (4.3) 

can be solved to find the state vector 0X . 

 

B. Finding the values of y-parameters 

The second step is to find the values of the admittance matrix elements (y-parameters). 

It is customary to assume that a sinusoidal voltage of infinitesimal amplitude vα  is 

applied to the α -terminal, while all other terminals are kept at constant dc potentials: 

 0
j tV V v e ω

α α α= + . (4.4) 

This will induce ac perturbations in the state variables: 

 0
j te ω

α= +X X x , (4.5) 

The governing equations for the ac component of the state variables αx  can be 

found by linearizing equation (4.2) around the dc bias values 0X  and 0Vα  [94]: 

 ( )ˆ ˆ 0Vj v
αα αω + + =X XJ F x F , (4.6) 
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In this equation, ˆ
XJ  and ˆ

XF  are the Jacobian matrices of J  and F  computed with 

respect to variable X  (and evaluated at the dc bias point), while V Vα
α

∂
=
∂

FF . In 

general, ˆ
XJ  and ˆ

XF  are 3 3N N×  sparse matrices, where N is the number of mesh 

points. 

The current through the β − terminal is given by some function ( )I β X . In the 

first-order approximation, the ac component of the current is: 

 
0 0

*i I Iβ β
β α α∇ ⋅ = ∇

X X
= x , x *,I β

α= X x , (4.7) 

where  stands for the inner product, 
0

I Iβ β= ∇X X
, and *

αx  is the complex conjugate 

of αx . The admittance matrix elements can now be written as: 

 *1y I
v

β
βα α

α

= X , x . (4.8) 

This equation can be used to calculate the values of admittance matrix elements. 

 

C. Finding the variances of y-parameters 

To simplify the discussion, let us assume that the effects of the oxide thickness 

fluctuations are negligible and let us take into consideration only the random doping 

fluctuations: 

 0= +D D D , 0=D , (4.9) 

where D  denotes the expected value of D , and 0D  is the average value of the 

doping. The random doping fluctuations will induce fluctuations 0X  and αx  in the dc 
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and ac components of the state variables, respectively. We use a procedure similar to 

the one used for the derivation of system (3.14), to shown that: 

 0

0

ˆ ˆ ,
ˆ ˆ 0,α




+ =

X DF X = -F D

Ax BX
 (4.10) 

where the following matrix notations have been adopted: 

 ˆ ˆ ˆjω= +X XA J F , (4.11) 

 ( )
3

1

ˆ ˆ ˆ
i i

N

,X ,X ,i
i

j xαω
=

= +∑ X XB J F . (4.12) 

Here: 
ˆˆ

i,X
iX

∂
=
∂

X
X

JJ , 
ˆˆ

i,X
iX

∂
=
∂

X
X

FF , while iX  and ,ixα  denote the ith component of 

vectors X  and αx , respectively. Both matrices Â  and B̂  are computed at the dc bias 

point ( )0,Vα0 0X , D . 

Once system (4.10) is solved for αx , we can find the fluctuations of 

admittance matrix elements by using the formula * *
0

1 1 ,
G G

y I I
v v

β β
βα α α= +X XX, x X x , 

where I β
XX  is the Hessian matrix of the current through terminal β . The last equation 

is linear with respect to 0X  and αx  while, according to equations (4.10), 0X  and αx  

are linear with respect to D . This means that yβα  can also be evaluated as a linear 

combination of the fluctuations of doping at different mesh-points: 

 
1

N
i

i
i

y Dβα βαγ
=

=∑ , (4.13) 
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where i
βαγ  are  the superposition coefficients of yβα . Assuming that iD  are 

independent Poisson random variables and by using the relation between the variance 

and the expected value of the Poisson random variable [95] (see Section 3.2), the 

variance of yβα  can be evaluated as: 

 ( ) ( )2 22 2 0
0

1 1 1
i

N N N
i i ii

D iy
i i ii

D S N
Vβα

βα βα βασ γ σ γ
= = =

= = = ∆
∆∑ ∑ ∑ , (4.14) 

where 0iD  is the average value of the doping at mesh point i, 0iN∆  is the expected 

number of doping ions in volume iV∆ , and iSβα  are the “sensitivity” coefficients, 

which are defined as: 

 
2i

i

i

S
V
βα

βα

γ 
=   ∆ 

. (4.15) 

The problem of the computation of variances of y-parameters is reduced to the 

computation of superposition coefficients. It is apparent from formula (4.13) that the 

coefficient i
βαγ  is equal to the value of yβα  when 1iD =  and 0jD = , j i≠ . Thus, in 

order to find all N superposition coefficients, we have to solve the linear systems 

(4.10) N times, for different right hand sides D . However, we observe that the same 

mathematical trick that was used for the computation of the superposition coefficients 

of transconductance (see Section 3.2) can be applied for the computation the of 

superposition coefficients of βαγ . By using the same line of reasoning as in Section 

3.2, we can write: 

 ( )( )*ˆ, ii
βαγ = Df F δ , (4.16) 
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where, by definition, ( )iδ  is a vector whose ith component is one while all other 

components are equal to zero and f is the solution of the following system of linear 

equations: 

 
ˆ

ˆ ˆ

t

t t

I ,

- I .

β

β
α





X

X XX

A g =

F f = B g x
 (4.17) 

The first equation in (4.17) must be solved for g  and the second equation for f . 

Then, the values of the superposition coefficients can be computed by using formula 

(4.16). 

The algorithm for the calculation of admittance matrix variances can be 

summarized as follows: 

(1) First, the nonlinear equations (4.3) are solved to find the dc bias conditions 

throughout the device. 

(2) Second, equations (4.6) are solved and formulas (4.8) are used to find the 

values of the admittance matrix elements. 

(3) Then, matrices Â  and B̂  are constructed by using formulas (4.11) and (4.12), 

respectively, and equations (4.17) are solved for g  and f . 

(4) Then, formula (4.16) is used to find the values of the superposition 

coefficients. 

(5) Finally, the variances of the admittance elements are found from equation 

(4.14). 

This algorithm has been implemented and applied to the computation of the 

admittance matrix variance for MOSFET devices. It is worth noting that the most 

computationally expensive steps in the algorithm are (1) and (2), which take about 



 86

90% of the total computation time. Steps (3), (4), and (5) take about 10% of the total 

computation time. 

Figure 4.1 presents the sensitivity coefficients of y-parameters for the 25 nm 

channel length MOSFET device described in the Appendix (MOS C). The channel 

extends between 30 nm and 55 nm, while the drain and the source regions correspond 

to x > 55 nm and x < 30 nm, respectively. The bias point in these simulations is given 

by 0S BV V= = V, GV =  0.8 V, and DV =  1.2 V, while the operating frequency is 10 

GHz. One can easily see that the fluctuations of the doping at different locations inside 

the semiconductor device contribute differently to the fluctuations of y-parameters. In 

most cases, the most sensitive regions are located in the conduction channel and in the 

direct proximity of the oxide-semiconductor interface. For example, the main cause of 

the fluctuations of ( )Im GGy  (gate capacitance) and ( )Re DDy  are the fluctuations of 

the doping concentration in the middle of the conduction channel. In the case of other 

admittance matrix parameters, there are two distinct regions that contribute to the 

fluctuations of these elements: the first one is located in the middle of the conduction 

channel and the other one is localized close to the drain-channel junction.  
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Figure 4.1: Contour plot representation of sensitivity coefficients for y-parameters 

(MOS C). 
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4.2 Fluctuations of other small-signal parameters 

 The algebra of superposition coefficients presented in Section 3.3 allows for 

the direct computation of variances of other small-signal parameters, once the 

superposition coefficients of y-parameters are found. Consider, for example, the 

computation of variances of impedance parameters (z-parameters) that are related to y-

parameters as follows: 

 
y

z ββ
αα = ∆

, 
y

z αβ
αβ = − ∆

, α β≠ , (4.18) 

where y y y yαα ββ αβ βα∆ = − . By using equations (3.33) and (3.34) we find that the 

superposition coefficients of the impedance parameters are: 

 
i i
yi

z z
y

αα

αα αα
ββ

γ γγ ∆
 

= −  ∆ 
, 

i i
yi

z z
y

αβ

αβ αβ
αβ

γ γγ ∆
 

= − +  ∆ 
 (4.19) 

where α β≠  and i i i i i
y y y yy y y y
ββ αα βα αβαα ββ αβ βαγ γ γ γ γ∆ = + − − . The variances of 

impedance parameters can be computed using formula (2.11). By using the same line 

of reasoning, we can compute the variances of other small-signal parameters, such as 

h-, g-, s- and ABCD- parameters. For a detailed definition of these parameters we 

recommend Ref. [93]. 

In the following, we present a few simulation results related to the fluctuations 

of h (hybrid) and z (impedance) parameters of MOSFET devices. The sensitivity 

coefficients of the h-parameters and z-parameters are represented by contour plots in 

Figure 4.2 and Figure 4.3, respectively. The bias dc point and operating frequency 

were chosen the same as in the simulations presented in Figure 4.1. It is obvious that 
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the fluctuations of the doping at different locations inside the semiconductor device 

contribute differently to the fluctuations of small-signal parameters. In most cases, the 

fluctuations of the doping in the channel region and the source and drain junctions 

give the main contribution to the fluctuations of the h and z parameters. 
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Figure 4.2: Contour plot representation of sensitivity coefficients for h-parameters 

(MOS C). 
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Figure 4.3: Contour plot representation of sensitivity coefficients for z-parameters 

(MOS C). 
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4.3 Fluctuations of gain factors 

Gain factors (current and voltage gain, stability factor, unilateral gain, maximum 

stable, maximum available and maximum efficiency gains) can also be written as 

functions of admittance parameters. This section presents results related to the 

fluctuations of gain factors. Some of these results will be used in the next Section for 

the analysis of fluctuations of cut-off frequencies. 

The current and voltage gain can be written as function of the admittance 

matrix parameters: 

 DG
I

GG

yA
y

=  and DG
V

DD

yA
y

= , (4.20) 

respectively. The sensitivity coefficients of IA  and VA  can be derived from formulas 

(3.35) and (3.36): 

 Re DG GG

I

i i
y yi DG

A
GG DG GG

y
y y y

γ γ
γ

 
= −  

 
 and Re DG GG

I

i i
y yi DG

A
GG DG GG

y
y y y

γ γ
γ

 
= −  

 
. (4.21) 

The variances of IA  and VA can be computed by using (2.11): 

 ( ) ( )
22 0

,
,ji i

I I I I

tD ti
A A A A

i i ji

D ACF i j
V

σ γ γ γ= +
∆∑ ∑ , (4.22) 

and 

 ( ) ( )
22 0

,

,ji i

V V V V

tD ti
A A A A

i i ji

D ACF i j
V

σ γ γ γ= +
∆∑ ∑ , (4.23) 

respectively. 
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Similarly, we can find the superposition coefficients and standard deviations of 

other gain factors. For completeness purposes, we list the gain factors whose random 

fluctuations were investigated in our research: 

• Maximum unilateral gain:  

 
( )

2
21 12

11 22 12 214 Re Re Re Re
y y

U
y y y y

−
=

−
. (4.24) 

• Maximum stable gain: 

 21

12

yMSG
y

= . (4.25) 

• Stability factor: 

 ( )11 22 12 21

21 12

2Re Re Rey y y y
k

y y
−

= . (4.26) 

• Maximum available gain: 

 21
2

12

1
1

yMAG
y k k

=
+ −

. (4.27) 

• Maximum efficiency gain: 

 
( ) ( ) ( )

2 2
21 12

11 22 12 21 12 124Re 2Re 2Re
y y

MEG
y y y y y y

−
=

− −
. (4.28) 

4.4 Fluctuations of cut-off frequencies 

The random doping induced fluctuations of cut-off frequencies (transit frequency Tf , 

unit voltage gain frequency 0f , and maximum oscillation frequency maxf ) can also be 

computed by using the algebra of superposition coefficients presented in Section 3.3. 
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Consider, for example, the fluctuations of transit frequency Tf  (unit current gain 

frequency), which is defined as the frequency for which the current gain of a 

semiconductor device is equal to one. Obviously, the current gain IA  is a function of 

both operating frequency and doping concentration: 

 ( ),I IA A f= D . (4.29) 

At cut-off frequency, we can write: 

 ( ), 1I TA f =D . (4.30) 

In the first-order approximation, equation (4.30) implies that the fluctuations of transit 

frequency Tf  can be expressed as a linear combination of the fluctuations of doping 

D : 

 
1

0
I I

N
i

A T A i
i

f Dε γ
=

+ =∑ , (4.31) 

where 
I

i
Aγ  are the superposition coefficients of the current amplification and 

IAε  is a 

“frequency sensitivity” coefficient. For simplicity, we focus again only on the 

computations of fluctuations of Tf  induced by random doping fluctuations and we 

neglect oxide thickness fluctuations. From (4.31) we find: 

 
1

I

I

iN
A

T i
i A

f D
γ
ε=

= −∑ , (4.32) 

which implies that I

T

I

i
Ai

f
A

γ
γ

ε
= − . The problem of determining the superposition 

coefficients of transit frequency is thus reduced to the computation of 
IAε . In order to 

find it, we observe that 
IAε  can be interpreted as the variation of current amplification 
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IA  caused by a change in the operating frequency of f∆ = 1 Hz, assuming the 

condition that the doping is constant (not fluctuating) over the semiconductor device. 

Therefore, consider the angular frequency variation ω∆ ; by introducing the notation 

α∆x  for the variation of the state variable due to the frequency variation ω∆ , we find 

from equation (4.2): 

 ( )ˆ ˆ ˆj jα αω ω+ ∆ − ∆X X XJ F x = J x . (4.33) 

It is apparent that any variation in the operating frequency induces variations in the 

values of y-parameters. One can show from equation (4.8) that the variation in the 

value of yβα  due to ω∆  is given (in the first-order approximation) by: 

 * *1 , ,
G

y I I
v

β β
βα α ω α ω ∆ = ∆ + ∆ X X,x x , (4.34) 

where we have introduced the notation II
β

β
ω ω

∂
=
∂

X
X, . 

It is convenient to introduce the following coefficient: 

 y

y
fβα

βαε
∆

=
∆

, (4.35) 

which can be interpreted as the sensitivity of yβα  to frequency. The “frequency 

sensitivity” coefficient
IAε  can then be written as a function of yβα

ε  by using an 

equation similar to (4.21): 

 Re ReDG GG DG GG

I

y y y yDGI
A

GG DG GG DG GG

yA
f y y y y y

ε ε ε ε
ε

   ∆
= = − = −      ∆    

, (4.36) 

where it was taken into account that, at transit frequency, 1DG
I

GG

yA
y

= = . 
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Now, the algorithm of the computation of the variance of transit frequency can 

be summarized as follows: 

(1) First, we compute the superposition coefficients of y-parameters with the 

method presented in Section 4.1 and 
IAγ  by using formula (4.21). 

(2) Then, we use equations (4.33)-(4.35) to compute the “frequency sensitivity” 

coefficients of y-parameters ( yβα
ε ) and equation (4.36) to determine the 

“frequency sensitivity” coefficient of IA , 
IAε . 

(3) Finally, we compute the variance of transit frequency Tf  by using equations 

(4.32) and (2.18). 

The same approach can be applied to the computation of the variance of voltage gain 

cut-off frequency 0f . In this case, we should replace IA  in equations (4.29)-(4.36) 

with the voltage amplification DG
V

DD

yA
y

=  and GGy  in equation (4.36) with DDy . In the 

case of maxf  (maximum oscillation frequency), which is defined as the frequency for 

which the unilateral gain  

 ( ) ( ) ( ) ( ) ( )

2

4 Re Re Im Im
DG GD

T
GG DD DG GD

y y
U f

y y y y
−

=
−  

, (4.37) 

is equal to one, equation (4.36) has a more intricate form, which can be deduced by 

using the algebra of superposition coefficients. 

 

 In Figures 4.4 (a) and (b) we have represented the sensitivity coefficients of 

transient frequency ( Tf ) and unit voltage gain frequency ( 0f ), respectively, for the 
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MOSFET device and bias conditions used in the previous section. One can see that the 

sensitivity coefficients of Tf  and 0f  are similarly distributed over the semiconductor 

device. The small differences in the values of their magnitudes originate from the fact 

that Tf  is slightly smaller than 0f  for the given doping concentration and dc bias 

voltages.  

We have also investigated the dependence of the fluctuations of cut-off 

frequencies on the average doping concentration in the channel and oxide thickness of 

the device. Figure 4.5 presents the dependence of Tf , 0f , and maxf  on the doping 

concentration. The roll-off of the cut-off frequencies at high values of the average 

doping concentration is due to the fact that the threshold voltage of the device 

becomes comparable to the gate voltage GV =0.95 V for large concentrations of the 

doping, and, consequently, the operating point of the device changes from the 

saturation region to the subthreshold region. For low values of the average doping 

concentration in the channel, the transient frequency and the maximum oscillation 

frequency decrease, because the voltage gain and the unilateral gain of the device 

decrease. It is important to note that the relative values of standard deviations of 0f  

and maxf  increase for low and high values of the average doping concentration. In 

practical applications, we should choose the optimum value of the doping 

concentration that will insure a minimum relative fluctuation of the cut-off 

frequencies. Figure 4.6 presents the dependence of cut-off frequencies on the oxide 

thickness. We can see that the standard deviations of the cut-off frequencies remain 

approximately constant for a large range of variation of the oxide thickness. This is 
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different from the case of threshold voltage [41], [73], where both the threshold 

voltage and the standard deviation of threshold voltage increase linearly with the 

thickness of the oxide layer. 

It has been proposed in Section 2.5 to control the vertical doping profiles next 

to the silicon-oxide interface and to use an epitaxial layer of smaller doping 

concentration in order to suppress the fluctuations of threshold voltage [87], [88]. 

Hence, we tried to see to what extent the same technique can be applied to suppress 

the fluctuations of cut-off frequencies. In Figure 4.7 we present the dependence of the 

standard deviation of cut-off frequencies on the thickness of the epitaxial layer 0y  (see 

Figure A in the Appendix). We can see that frequency characteristics are more 

sensitive to doping fluctuations than threshold voltages and that it is more difficult to 

design doping fluctuation resistant structures for frequency characteristics. 
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(a) 

 

(b) 

Figure 4.4: Sensitivity coefficients of transient frequency Tf  (a) and unit voltage gain 

frequency 0f  (b) computed for MOS C. 
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Figure 4.5: Transition frequency ( Tf ), unit voltage gain cut-off frequency ( 0f ), and 

maximum oscillation frequency ( maxf ) as function of average doping in the channel 

for MOS C. Vertical bars indicate standard deviations. 
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Figure 4.6: Transition frequency ( Tf ), unit voltage gain cut-off frequency ( 0f ), and 

maximum oscillation frequency ( maxf ) of MOS C as function of oxide thickness. 

Vertical bars indicate standard deviations. 
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Figure 4.7: Transition frequency, unit voltage gain frequency, and maximum 

oscillation frequency of MOS C as function of thickness of the epitaxial layer. Vertical 

bars indicate standard deviations. 
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Chapter 5  

 

Quantum mechanical induced effects on fluctuations in semiconductor devices 

In this chapter we analyze the influence of quantum mechanical effects on the 

fluctuations of parameters of semiconductor devices. In the first part of the chapter, 

quantum mechanical effects are taken into consideration in the framework of the 

Density-Gradient model, while, in the second part, they are analyzed in the context of 

the perturbed Schrödinger-Poisson equations. We focus mostly on the analysis of 

fluctuations of threshold voltage of ultrasmall MOSFET devices. 

5.1 Analysis of fluctuations in the framework of the Density-Gradient model 

 The Density-Gradient (DG) model has been extensively used in the literature for the 

analysis of quantum mechanical induced effects in semiconductor devices [96]-[104]. 

In the framework of the DG model, the classical drift-diffusion equations are modified 

in order to account for the quantum mechanical corrections to the electron and hole 

transport: 
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( )

2
n

n n n n

b n
n D n n

n
µ ϕ µ

∇⋅ ∇
= − ∇ + ∇ − ∇J , (5.1) 

 
( )

2
p

p p p p

b p
p D p p

p
µ ϕ µ

∇⋅ ∇
= − ∇ − ∇ + ∇J . (5.2) 

In these equations, ϕ  is the electric potential, n , nµ , nD  and p , pµ , pD  are the 

concentration, mobility, and diffusivity of the electrons and holes, respectively. The 

quantum mechanical effects are “controlled” by the parameters: 

 
2

*4n
n n

ћb
r qm

= , (5.3) 

 
2

*4p
p p

ћb
r qm

= , (5.4) 

where *
nm  and *

pm  denote the effective masses of the electrons and holes, while nr  and 

pr  are dimensionless parameters that account for the statistics of electrons and holes in 

semiconductor devices. The values of nr  and pr  vary asymptotically from 1, when 

only the lowest energy subband is occupied (e.g. at low temperature), to 3 when other 

subbands become populated as well (e.g. at high temperature). In order to model the 

carrier transport in semiconductor devices, equations (5.1)-(5.2) are coupled with the 

Poisson and current continuity equations. By restricting the analysis to the steady state 

case, the electron and hole transport in semiconductor devices can be described by the 

following system of nonlinear, second order partial differential equations: 

 ( ) ( ) 0D Aq p n N Nε ϕ + −∇ ⋅ ∇ + − + − = , (5.5) 
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( )
2

0
n

n n

b n
T

n
ϕ φ

∇⋅ ∇
+ − −Φ = , (5.6) 

 
( )

( )
2

0
p

n p

b p
T

p
ϕ φ

∇⋅ ∇
− + +Φ = , (5.7) 

 ( ) 0n nnµ φ∇ ⋅ ∇ = , (5.8) 

 ( ) 0p ppµ φ∇ ⋅ ∇ = , (5.9) 

where nφ  and pφ  are the electron and hole quasi-Fermi potentials, respectively, while 

( )n TΦ  and ( )p TΦ  are functions that depend on the nature of electron and hole 

statistics used. For example, for Boltzmann statistics ( ) lnn
i

kT nT
q n

Φ =  and 

( ) ln i
p

nkTT
q p

Φ = , where T is the absolute temperature. This system of equations is 

subject to appropriate boundary conditions and must be solved self-consistently. More 

details about boundary conditions for equations (5.5)-(5.9) can be found in [102]. 

5.1.1 Calibration of the Density-Gradient model 

Calibration (parameter identification) is one of the most important tasks in the 

modeling of semiconductor devices. In the case of the DG model, parameters nr  and 

pr  are unknown and should be regarded as empirical quantities that have to be 

determined by matching experimental data to microscopic calculations [102]. The 

same observation is valid for the electron and hole effective masses. Due to the low-

order approximations involved in the derivation of equations (5.1) and (5.2), it is 
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unrealistic to use the experimental values of *
nm  and *

pm . Instead, these two 

parameters should also be treated as fitting parameters. Since *
nm  and nr , as well as 

*
pm  and pr  appear in (5.3) and (5.4) as products, the identification method can be 

simplified by letting only one of these two parameters vary, while keeping the other 

one fixed. It is usually assumed that 3n pr r= = , so the calibration problem is reduced 

to the determination of the electron and hole effective masses. 

It should be noted that there is no unanimous agreement on the values of *
nm  

and *
pm . In most of the existing methods, *

nm  and *
pm  are found by fitting the results 

obtained from the DG model to the results obtained by solving the Poisson and 

Schrödinger equations for long channel MOS devices. For example, by fitting the DG 

model to the C-V curves found through simulations of 1-D MOS diodes self-

consistently, Wettstein et al. [103] found *
00.278nm m= . This value is in reasonably 

good agreement with the value obtained by Connelly et al. [104], *
00.258nm m= , but it 

is slightly different from the value obtained by Asenov et al. [71] *
00.175nm m= . The 

common feature of these identification methods is that they calibrate nb  and/or pb  

against results obtained by solving the 1-D Schrödinger equation in the direction 

perpendicular to the oxide layer (the z-direction) of MOSFET devices. In this way, it 

is tacitly assumed that the motion of electrons and holes is quantized only in the 

direction perpendicular to the oxide and it is described by classical statistics in the 

other two directions. While this approach is appropriate for long devices, more 

accurate methods must be developed for situations when quantum effects are 
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important in the other two directions. For example, in the case of short channel 

MOSFET devices, the electric potential can vary significantly in the along-channel 

direction (the x-direction) and one would expect the electron motion in this direction 

to be quantized as well. A more rigorous approach to the problem is to solve the 2-D 

Schrödinger equation in the xz plane and to calibrate the DG model against these 

results. An identification method for nb  that is based on this observation is presented 

below. Parameter nb  is found by fitting the results obtained with the DG model to the 

results obtained by solving the 2-D Schrödinger equation. In subsequent computations, 

the (100) surface orientation is assumed for silicon because it is typical for most 

fabricated MOS devices. 

For (100) silicon, the total electron concentration is composed of electron 

concentrations in six elliptical subbands that correspond to two valleys with 

* *
, ,x i y i tm m m= = , *

,z i lm m=  ( i =1,2), two valleys with * *
, ,x i z i tm m m= = , *

,y i lm m=  ( i =3, 

4), and two valleys with * *
, ,y i z i tm m m= = , *

,x i lm m=  ( i =5, 6). In the above formulas, 

*
,x im , *

,y im , and *
,z im  denote the principal effective masses of the constant-energy 

ellipsoid in subband i , associated with the motion parallel to the x, y, and z-direction, 

respectively, and 00.19tm m=  and 00.916lm m=  are the transverse and longitudinal 

effective masses of electrons. As previously argued, the electron motion is quantized 

in the x and z directions and it is described by classical statistics in the y-direction. In 

the effective mass approximation, the electron energy can be described by the time-

independent Schrödinger equation: 
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 ( ) ( ) ( )
2 2 2

, , ,* 2 * 2
, ,

1 1 , , ,
2 c i j i j i j

x i z i

ћ x z x z E x z
m x m z

ϕ
  ∂ ∂
− + + Ψ = Ψ   ∂ ∂   

, (5.10) 

where ( ),c x zϕ  is the confining potential in the xz plane measured with respect to the 

conduction band, while ( ), ,j i x zΨ  are the envelope wave functions associated with the 

j  eigenvalue ,j iE  in subband i ( i =1,..,6). Once the eigenvalue problem (5.10) is 

solved, the electron concentration can be found by summing over all energy states: 

 ( ) ( ) ( ) ( )
6 2

, , ,
1

, ,i j i j i j
i j

n x z x z f E D E dE
=

= Ψ∑∑ ∫ , (5.11) 

where ( ),i jf E  is the Fermi distribution function and ( )
*

,
,

,

21 y i
i j

i j

m
D E

h E E
=

−
 is the 1-D 

density of the states corresponding to electrons in subband i  and energy level j . After 

performing the integration in (5.11), we obtain the following equation for the total 

electron concentration [105]: 

 ( ) ( )
*6 2, ,

1 2 ,
1

2 2
, ,z i F i j

i j
i j

m kT E E
n x z F x z

h kT−
=

− 
= Ψ 

 
∑ ∑ , (5.12) 

where FE  is the chemical potential which at room temperature is approximately equal 

to the Fermi energy and: 

 ( )
1 2

1 2
0 1 t x

tF x dt
e

∞ −

− −=
+∫ , (5.13) 

is the Fermi integral of order 1 2− . 

In order to find parameter nb , arbitrary (100) silicon systems were simulated 

by using the 2-D DG model and the 2-D Schrödinger equation. To avoid solving the 
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Poisson equation many times, we assumed that the potential in equations (5.6) and 

(5.10) is given a priori and we compared the electron concentration distributions 

obtained by using these two equations. Parameter nb  was found by using the best fit 

between the two electron concentration functions. 

A special case in which the energy eigenstates can be found analytically is the 

2-D rectangular quantum box with infinite walls. In this case,  

 ( ) 0 ,    if   0 ,  and  0 ,
,

,    otherwise,
x zV x L z L

x zϕ
< < < <

= ∞
, (5.14) 

 
2 22

, , * 2 * 2
, ,8x z

x z
i j j

x i x z i z

j jhE
m L m L
 

= + 
  

, (5.15) 

 ( ), ,
2, sin sin

x z

x z
i j j

x zx z

j x j zx z
L LL L
π π   

Ψ =    
  

, (5.16) 

and the electron concentration ( ),n x z  can be computed directly by using equation 

(5.12). In Figure 5.1 we use continuous lines to represent cross-sections through the 

middle plane (x = 6 nm) of the electron concentration obtained by using this approach, 

for different values of 0V . These values of 0V  correspond to the Fermi levels in bulk 

silicon with doping concentrations of 1016 cm-3, 1017 cm-3, and 1018 cm-3, respectively. 

The quantum box is rectangular with dimensions 12 12× nm. Alternatively, ( ),n x z  

can be computed within the framework of the DG model by solving equation (5.6); 

cross-sections through the electron concentrations are represented in Figure 5.1 with 

dot lines. The best fit between the Schrödinger and the DG computations was found 

for ( )*
00.17 0.01nm m= ± , where 0m  is the free electron mass. The agreement between 
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the electron concentrations obtained by using the two approaches is remarkably good 

and proves that the DG model can be successfully used for the modeling of electron 

and hole concentration in silicon. 

It is instructive to note that, in general, the x  and z  directions in the 

Schrödinger equation are not equivalent (e.g. in anisotropic systems) due to the 

different effective mass values in the expression of the Hamiltonian [see equation 

(5.10)]. These systems can be modeled in the framework of the DG model by using 

different values for the fitting parameters nb  and pb  along the two directions. This 

requires calibrating the electron and hole effective masses in both directions, which is 

a more complicated task. Fortunately, in the case of Si, the x , y , and z  directions are 

equivalent because of the symmetry of the six valleys in the conduction band, and we 

can consider equal effective masses in these directions (denote them by *
nm ). Figure 

5.2 presents the computed values of *
nm  for different dimensions xL  and yL  of the 

quantum region. The continuous line shows the results obtained by keeping yL  at 15 

nm (which is approximately the length of the conduction channel in ultrasmall 

MOSFET devices) and varying xL  from 3 nm to 15 nm. The dash line shows the 

values of the electron effective mass in the case when xL  and yL  are equal and vary 

between 3 and 15 nm. We can observe that, for dimensions of the quantum box larger 

than 8 nm, the electron effective mass is almost constant and approximately equal to 

00.17 m . For smaller dimensions of the quantum box, *
nm  should be recalibrated. For 

example, if one dimension of the quantum box decreases to 3 nm while the other one 
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is larger than 8 nm, *
00.24nm m . In numerical simulations one should use the value 

of the electron effective mass which corresponds to the approximate size of the 

quantum region. 

We also computed *
nm  for other potential functions and obtained very good 

agreement between the predictions of the DG model and of the 2-D Schrödinger 

equation. In these simulations, the Schrödinger equation was discretized by using the 

finite difference scheme and the eigenvalues and eigenfunctions of the energy were 

computed by using the LAPACK package [106]. In most cases, grids of 70 70×  points 

were used, resulting in computation times of about five hours on a Pentium 4 (2 GHz) 

processor. These computation times should naturally be compared with the 

computation times required to find the electron concentration by using the DG model 

and which, in our simulations, vary from a few seconds to one minute on the same 

processor. Figure 5.3(a) illustrates the electron concentration computed by using the 

Schrödinger equation with the following electric potential: 

 ( ) 0 1 2
5 5exp exp ,   if  and ,

,
,    otherwise,

x z
x z

x zV V V x L z L
x z L Lϕ

    
+ − < <    =    

∞

, (5.17) 

where 0V , 1V , and 2V  are given parameters. In the simulation presented in Figure 3(a) 

we used: 0V = 348 mV, 1V = 0.12 mV, and 2V = 1.2 mV, while the dimensions of the 

quantum region were 4 15×  nm. This potential was chosen for two reasons: 

(a) it closely fits potential distributions in MOSFET channel regions;  
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(b) it varies significantly in the box region and, in this way, it may reveal the 

ability of the DG model to describe electron concentrations for a broad class of 

potentials.  

The electron concentration computed by using the DG model is shown in Figure 

5.3(b). Figure 5.4 presents cross-sections of electron concentration through the middle 

plane z = 7.5 nm computed by using the 2-D Schrödinger equation and the DG model, 

for different values of the width of the quantum region (3, 5, 10 and 15 nm). The good 

agreement between the Schrödinger and the DG calculations suggests once more that 

electron concentration can be accurately described by the DG model, provided that 

one performs proper calibration of the electron effective mass. 
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Figure 5.1: Electron concentration cross-sections through the middle plane of a 12x12 

nm rectangular quantum box.  The best agreement between the 2-D Schrödinger 

equation (continuous line) and the 2-D DG model (dash line) is obtained for 

*
00.17nm m= . 
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Figure 5.2: Electron effective mass that gives the best agreement between the electron 

concentrations computed by using the 2-D DG model and the Schrödinger equation 

for a rectangular quantum box. The dimensions of the box are indicated on the 

abscissa. 
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(a) 

 

 

(b) 

Figure 5.3: Electron concentration computed by using the 2-D Schrödinger equation 

(a) and the 2-D DG model (b). 
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Figure 5.4: Electron concentration cross-sections through the middle plane z = 7.5 nm 

by using potential (5.17). The four curves correspond to different widths of the 

quantum region: (a) xL = 3 nm, (b) xL = 5 nm, (c) xL = 10 nm, and (d) xL  = 15 nm. 
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5.1.2 Random doping induced fluctuations 

The linearization technique presented in Chapter 2 has been implemented and used to 

analyze the influence of quantum effects on the fluctuations of threshold voltages in 

MOSFET devices. The geometrical characteristics of these devices are presented on 

pages 157-159. 2D and 3D DG models have been assumed throughout the simulations, 

with the value of effective electron mass *
00.21nm m= . For n-channel devices, the hole 

current is very small, hence the total current is not very sensitive to the values of the 

elective hole mass. In our simulations, we assumed that *
00.49pm m=  (see Ref. [103]). 

The results for the standard deviation of threshold voltage obtained for the 50 

nm channel length MOSFET device are presented in Figure 5.5 and compared with 

those obtained by Asenov et al. [71] for various oxide thicknesses. Both classical and 

quantum results are plotted in Figure 5.5 for easy comparison. The vertical bars in this 

figure correspond to the absolute value of the statistical errors and they show the range 

in which 
TVσ  lies with a probability of 68%. There is very good agreement between 

our results and those obtained by using statistical method in the case of classical 

computations. In the case of quantum computations, our values are somewhat smaller 

than those reported in Ref. [71] because of the different electron masses used in 

simulations. The effective electron mass used in Ref. [71] * 0.18nm =  is smaller than 

the one used in our simulations; consequently, the values of 
TVσ  reported therein are 

approximately 15% larger. 
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Figure 5.6 presents the standard deviation of threshold voltage as a function of 

the doping concentration in the channel for two MOSFET devices: MOS A and MOS 

B (see the Appendix for technical specifications). We can see that the variance of 

threshold voltage for the 30 nm channel device (MOS B) is smaller than the threshold 

voltage variance of the 50 nm channel device (MOS A) due to the improved doping 

configuration. The retrograde doping profile not only suppresses the short-channel 

effects, but also behaves like an epitaxial layer of smaller concentration that causes 

TVσ  to decrease [81]. 

Figure 5.7 presents the sensitivity coefficients of threshold voltage of MOS C 

computed by using the Density-Gradient model as functions of the location in the 

semiconductor device. Note that, in the framework of classical computations (see 

Figure 2.3), threshold voltage is most sensitive to the fluctuations of the doping 

concentration in the region adjacent to the oxide/semiconductor interface. The 

quantum effects result in a slight shift (approximately 1.3 nm) of the distribution of 

sensitivity coefficients away from the interface. This distance is approximately equal 

to the distance from the interface to the peak of electron concentration in the 

conduction channel, which suggests that the shift of the sensitivity coefficients is due 

to electron confinement effects. 
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Figure 5.5: Dependence of the standard deviation of threshold voltage of MOS B on 

oxide thickness. In the case of quantum computations, our values are somewhat 

smaller than those reported in Ref. [71] because of different electron masses used in 

simulations. 
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Figure 5.6: Dependence of the standard deviation of threshold voltage on the average 

doping concentration in the channel. 
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Figure 5.7: Sensitivity coefficients of threshold voltage obtained by using the Density-

Gradient model for MOS C. The metallurgical channel length extends from 30 nm to 

55 nm in the “along channel” direction. The corresponding classical computations are 

presented in Figure 2.3. 
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5.1.3 Random oxide roughness induced fluctuations 

Following the analysis presented in Section 2.2.2, we start by presenting the standard 

deviation of threshold voltage as a function of the characteristic size of MOSFET 

devices. Two groups of devices are considered for this purpose. In the first group 

[Figure 5.8(a)], devices are scaled down by using the constant field scaling rule 

according to which the device dimensions and doping are scaled proportionally, by the 

same factor. In the second group [Figure 5.8(a)], devices are scaled down by using the 

constant voltage scaling rule according to which, if dimensions are decreased by a 

factor k, the doping concentration is increased by k2. In both cases, 
TVσ  is represented 

as a function of the metallurgical channel length of the device. One can observe that 

the effects of quantization are negligible for large devices, but become increasingly 

important for small device dimensions. 

Next, we compare our results for the standard deviation of threshold voltage 

with those published in [32]. For a 30 nm channel length device with abrupt junctions, 

185 10aN = ×  cm-3, 1.05oxt =  nm, jx = 7 nm, and by assuming constant electron and 

hole mobilities and large correlation lengths of oxide thickness fluctuations, our 

computations give 
TVσ =48 mV in the case of quantum simulations. This value is very 

close to the value reported in [32] (49 2.5)
TVσ = ±  mV, which was obtained by using 

the Monte-Carlo technique. 

We also investigated the dependence of the fluctuations of threshold voltage on 

the doping concentration in the channel, oxide thickness, and channel length. The 



 122

results of these simulations are presented in Figures 5.9 (a), (b), and (c), respectively. 

As in the case of classical computations (see Section 2.2.2), 
TVσ  increases 

approximately like aN  and is independent of the oxide thickness.  

Figure 5.10 presents the dependence of 
TVσ  on the correlation length of oxide 

thickness fluctuations. These results are computed by using the exponential and the 

Gaussian autocorrelation functions for the oxide roughness fluctuations. We observe 

that the quantum mechanical effects result in a relative increase of 
TVσ  by 

approximately 15% and that this increase does not depend too much on the shape of 

the autocorrelation function of oxide roughness. 

Finally, we present the analysis of threshold voltage sensitivity to local 

fluctuations of the oxide thickness at different points on the semiconductor-oxide 

interface. Figure 5.11 presents the superposition coefficients as a function of the (x, y) 

position on the interface, computed by using the DG method. By comparing these 

sensitivity coefficients with those obtained by using classical computations (see Figure 

2.7), we observe that the effects of quantization are to slightly confine the sensitivity 

coefficients to the middle of the oxide/semiconductor interface. 
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Figure 5.8: Dependence 
TVσ  on the channel length by using constant filed (a) and 

constant potential (b) scaling rules. Dash lines correspond to computations given by 

equation (2.36). 
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Figure 5.9: Standard deviation of threshold voltage as a function of the average doping 

concentration in the channel (a), oxide thickness (b), and metallurgical channel length 

(c). The effective channel length is larger by approximately 5 nm than the 

metallurgical channel length, which is indicated on the abscissa on Figure 5.9. Doping 

is assumed to be constant (i.e. non-fluctuating) and only oxide thickness induced 

fluctuations are considered (MOS B). 
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Figure 5.10: Threshold voltage standard deviation for MOS B as a function of 

correlation length. 

 

Figure 5.11: Sensitivity coefficients of threshold voltage of MOS B as a function of 

the position on the semiconductor-oxide interface. These computations are made by 

using the Density-Gradient model. The results of classical computations are presented 

in Figure 2.7. 
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5.2 Analysis of fluctuations in semiconductor devices by using the Schrödinger 

equation 

The Density-Gradient model described in the previous section has some limitations, 

which make it unsuitable for the modeling of certain quantum phenomena in 

ultrasmall semiconductor devices. First, the DG model is an approximate model and, 

even though it provides useful quantitative information about the semiconductor 

device, it fails to produce reliable quantitative results. Second, this model needs to be 

recalibrated every time we change the bias conditions of the characteristics of the 

device. Indeed, as we can see from Figure 5.2, the values of the electron effective 

mass *
nm  depend on the relative dimensions of the quantum region, i.e. on the 

dimensions of the depletion region in the case of MOSFET devices. Since the 

dimensions of the quantum region are usually functions of the applied voltages, the 

doping concentration, and the geometric structure of the device, *
nm  changes and 

should be recomputed whenever the bias conditions or the structure of the device are 

modified. 

To avoid the limitations of the DG model, more accurate techniques should be 

developed for the description of quantum mechanical induced fluctuations in 

semiconductor devices. In this section we develop a new method for the analysis of 

fluctuations in semiconductor devices based on exact self-consistent Poisson-

Schrödinger computations. Although it is more computationally expensive, this 

method completely avoids the limitations of the DG model. 
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5.2.1 One-dimensional analysis 

In this section, we present the basic idea of the linearization method for the 

computation of threshold voltage fluctuations in 1D MOS capacitors. The carrier 

concentration in n-type silicon inversion layers is described by the Poisson and 

Schrödinger equations [107]-[120]: 

 ( ) ( ) ( ) aq p n Nε ϕ ϕ ϕ∇ ∇ = − − +   , (5.18) 

 ( ), , , ,*

1
2

2

i n c i n i l i n
i

ћ E q E
m

ϕ
 

− ∇ ∇Ψ + ∆ − Ψ = Ψ 
 

, (5.19) 

where q  is the absolute value of the electron charge, ϕ  is the electrostatic potential, 

,i nψ  are the envelope wave functions associated with the n  eigenvalue ,i nE  in 

subband i, *
im  is the effective electron mass tensor, cE∆  is the conduction band off-

set, aN  is the ionized donor concentration, and n  and p  are the electron and hole 

concentrations, respectively. For the sake of simplicity, in the Poisson equation (5.18) 

we assume again that all donor atoms are ionized and their concentration aN  is 

independent of the value of electrostatic potential. The electron concentration ( )n ϕ  is 

found by summing over all energy eigenstates and subbands [107]: 

 ( ) ( ) ( ), 2
2 1 ,

F i n
D D i n

i n B

E E
n A F

k T
ϕ

ϕ ϕ−

− 
= Ψ 

 
∑∑ , (5.20) 

where Bk  is the Boltzmann constant, T  is the temperature, D  is the dimensionality of 

the electron gas (and in our analysis can take the values 1 or 2), and FE  is the Fermi 
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level. In equation (5.20), 2 1DF −  is the Fermi integral of order 2 1D −  and coefficients 

DA  are given by 

 
*

1

2 i Bm k T
A

ћπ
=    and   

*

2
i B

2

m k TA
ћπ

= . (5.21) 

There has been considerable effort to solve equations (5.18)-(5.20) self-

consistently. The most common approach is to solve these equations by using the 

iterative algorithm described in Refs. [121] and [122] (S-P algorithm). However, this 

algorithm does not necessarily converge and different stabilization techniques have 

been developed to improve convergence. Another approach to solve equations (5.18)-

(5.20) is by using the Newton iteration method [123]-[125]. While it is much faster 

than the usual S-P algorithms, this method has been implemented by using 

approximate Jacobian matrices, which can preclude the second order convergence rate 

of the Newton iteration [123]. In this work we use the exact Jacobian matrix which we 

calculate through first-order perturbation theory in quantum mechanics by using a 

method similar to the one presented in Ref. [125]. The Jacobian matrix is then used for 

the computation of fluctuations of threshold voltages in 1D and quasi-1D MOS 

systems. 

5.2.1.1 Computation of the Jacobian of Poisson equation 

In order to compute the Jacobian matrix of the Poisson equation, consider 

equation (5.18) in discretized form [82]: 

 ( ), 0=  F nϕ ϕ , (5.22) 
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where ϕ  and n  are vectors that denote the mesh-point values of electric potential and 

electron concentration. The Jacobian matrix of system (5.22) is given by: 

 ˆ d d
d d

∂ ∂
= +
∂ ∂

F F F nJ =
nϕ ϕ ϕ

. (5.23) 

In this equation, the partial derivatives ∂
∂
F
ϕ

 and ∂
∂
F
n

 can be easily computed because 

ϕ  and n  appear explicitly in the expression of the discretized Poisson equation (5.18). 

However, the computation of d
d

n
ϕ

 is not so straight-forward and needs to be explained 

in more detail. 

Consider a small perturbation δϕ  of the electrostatic potential in the 

Schrödinger equation (5.19). This perturbation changes the values of the eigenvalues 

and eigenfunctions of the Hamiltonian, which, in turn, will induce a perturbation nδ  

in the values of electron concentrations [see equation (5.20)]. By using the first-order 

perturbation theory, the shifts in the values of the energy eigenvalues and 

eigenfunctions can be expressed as: 

 , , ,| |i n i n i nE qδ δϕ= − Ψ Ψ , (5.24) 

and 

 , , ,
,

, ,

| |i l i n i l
i n

l n i l i n

q
E E
δϕ

δ
≠

Ψ Ψ Ψ
Ψ = −

−∑ . (5.25) 

Be linearizing equation (5.20) with respect to the fluctuating quantities and using 

equations (5.24) and (5.25), we obtain: 

  , 2
2 1 , , ,| |F i n

D D i l i n i n
i nB B

E Eqn A F
k T k T

δ δϕ−

− 
′= Ψ Ψ Ψ 

 
∑∑  
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 , , , ,,
2 1

, , ,

| |
2 i n i l i n i lF i n

D D
i n l l n B i n i l

E E
q A F

k T E E
δϕ

−
≠

Ψ Ψ Ψ Ψ− 
−   − 
∑∑∑ , (5.26) 

where 2 1DF −′  is the derivative of the Fermi integral. It should be noted that equations 

(5.24)-(5.26) were obtained by assuming that the energy levels are nondegenerate and 

does not take into account accidental degeneracies that are possible in 2D bound 

systems. In the case of 1D bound systems, the energy levels are always nondegenerate 

and these equations can be used safely for the calculation of nδ . If we express the 

scalar products in (5.26) in integral form, we obtain: 

 

 ( ) ( ) ( ) ( ) ( ), 2
, , 2 1 , ,

, ,

F i n
D i n i l D i n n l

i n l B BQR
l n

E Eqn d A F
k T k T

δ δϕ δ−

≠

 − 
′ ′ ′ ′ ′= Ψ Ψ Ψ  

 
∑∫r r r r r r  

 
( ) ( ), , ,

2 1
, ,

2 F i n i n i l
D

B i n i l

E E
qF

k T E E−

− Ψ Ψ 
+   −   

r r
, (5.27) 

where , 0n lδ =  if n l≠  and , 1n nδ = . The integral in equation (5.27) is taken over the 

quantum region QR, which is a line for quantum-well problems (1D) and a surface for 

quantum-wires (2D). The discretization of the kernel in integral (5.27) is the Fréchet 

derivative of n  with respect to ϕ . Hence, the elements of matrix d
d

n
ϕ

 can be written 

as follows: 

  ( )2,
, , 2 1 , ,

,,

F i n
D i n i l D i n n l

i n l l n B B

E Ed qA F
d k T k T

β β α

α β

δ−
≠

 −   ′= Ψ Ψ Ψ   
   

∑∑∑n
ϕ

 

 , , ,
2 1

, ,

2 F i n i n i l
D

B i n i l

E E
qF

k T E E

α α

−

− Ψ Ψ 
+   −   

, (5.28) 
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where αΨ  and βΨ  denote the values of the wave functions at mesh-points α  and β . 

In the numerical implementation of matrix d
d

n
ϕ

, it should be considered that 

the summation over indices n  and l  in (5.28) is usually taken over the first several 

energy eigenvalues, which decreases the total computational cost significantly. The 

most computationally expensive part is the evaluation of 2 1DF −′  and 2 1DF − . In our 

simulations, we have computed the derivatives of the Fermi integrals by using the 

formulas: 

 ( ) ( )1/ 2
3/ 2

1
2

dF x
F x

dx
−

−= − , (5.29) 

 ( )
( )

0 1
1 exp

dF x
dx x

=
+ −

, (5.30) 

while the Fermi integrals were computed by using the approximate polynomial 

formulas presented in [126]-[129]. 

5.2.1.2 Analysis of fluctuations of threshold voltage 

Let us now focus on computing the threshold voltage fluctuations induced by 

random doping and random oxide thickness variations in 1D MOS systems (e.g. MOS 

capacitor). In the framework of 1D classical computations, threshold voltage is usually 

defined as the potential on the gate at which the electron concentration at the surface is 

equal to the hole concentration before inversion. In the framework of quantum 

computations we adopt the “total inversion charge definition,” according to which 

threshold voltage is defined as the gate voltage at which the net inversion sheet charge 

invQ  is equal to the value obtained from classical computations. 
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The basic idea of the method for the computation of fluctuations in 

semiconductor devices is linearization of the state and transport equations with respect 

to the fluctuating quantities. For the purpose of our analysis it is convenient to re-write 

discretized equation (5.22) as: 

 ( ), , , 0GV ,t =  F n Dϕ ϕ , (5.31) 

where GV  is the gate voltage, D is a vector whose components are the mesh point 

values of the doping concentration, and t  is the oxide thickness. Note that GV  and t  

enter linearly in the boundary conditions at the semiconductor/oxide interface, which 

simplifies the analytical form of equation (5.31) considerably. By linearizing (5.31) 

around the average values of ϕ , n , GV , D , and t , we obtain: 

 ˆ ˆ 0
GV G tV t =DJ + F D + F + Fϕ , (5.32) 

where Ĵ  is defined in equation (5.23), ˆ
DF , 

GVF , and tF  are the derivatives of F  with 

respect to D , t , and GV , respectively, and “~” denotes the fluctuating parts of the 

given parameters. The net inversion charge can be written as the sum of the 

discretization volumes multiplied by the electron concentration at each mesh point. If 

we denote this sum by a linear operator ( )invQ n  on n  and we take into consideration 

that the net inversion charge is constant at threshold voltage, we can write: 

 0 inv inv dQ Q
d

= n n
nn = ϕ
ϕ

, (5.33) 

where invQn  is a row vector whose elements are the derivatives of invQ  with respect to 

n , i.e. the volumes of the mesh cells at each discretization point. Equations (5.32) and 
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(5.33) represent a system of coupled equations with unknowns ϕ  and T GV V= . In 

order to decouple them, we multiply equation (5.32) from the left by ˆinv -1dQ
dn

n J
ϕ

 and 

then use equation (5.33) to prove that: 

 ˆ ˆ ˆ ˆ 0
G

inv -1 inv -1 inv -1
V G t

d d dQ Q V Q t
d d d

=n D n n
n n nJ F D + J F + J F
ϕ ϕ ϕ

. (5.34) 

By introducing the notation 

 ˆinv -1dQ
d

= n
ng J
ϕ

, (5.35) 

we arrive at the following formula for the fluctuations of threshold voltage: 

 
ˆ

G G

tt
t

T t t
V V

V t⋅⋅
= − ⋅ −

⋅ ⋅
D g Fg F D

g F g F
. (5.36) 

In this equation, gt is the transpose of column vector g, which can be found by solving 

the following linear system of equations: 

 ˆ
t

inv dQ
d

 
 
 

t
n

nJ g =
ϕ

, (5.37) 

where superscript “t” denotes the transpose of the given matrix or vector. 

The superposition coefficients of threshold voltage can be identified from 

equation (5.34): 

 
( )ˆ

i

T

G

t

D i
V t

V

γ
⋅

= −
⋅

Dg F

g F
, (5.38) 

and 

 
T

G

t
t t
V t

V

γ ⋅
= −

⋅
g F
g F

. (5.39) 
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These coefficients can be used to compute the standard deviation of threshold voltage 

due to random doping fluctuations in MOS structures. If we assume again that the 

fluctuations of the doping concentration at different locations are independent Poisson 

variables and if we take into account that for Poisson random variables variance is 

equal to the expected value, we can use equation (2.7) and write: 

 ( ) ( )2 22 20i

T T T

D ti
V V V ox

i i

D
V

σ γ γ σ= +
∆∑ , (5.40) 

where 0iD  are the average values of the doping at locations i , iV∆  are the volumes of 

the discretization mesh-cells, and 2
oxσ  is the variance of oxide thickness fluctuations. 

In the derivation of formula (5.40), it has been assumed that oxide thickness varies 

evenly at all points on the oxide/semiconductor interface. Hence, this formula can be 

used to compute the standard deviation of threshold voltage in the case where the 

correlation length of oxide thickness fluctuations is much larger than the length of the 

conduction channel.  

Next, the algorithm for the computation of the standard deviation of threshold 

voltage for 1D MOS systems can be summarized as follows: 

1) Solve the coupled Poisson and “effective mass” Schrödinger equations for the 

average values of the doping and oxide thickness, by using the exact Jacobian 

matrix defined by formulas (5.23) and (5.28) and the Newton iteration 

technique; 

2) Solve the linear system of equations (5.37) to find vector g ; 
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3) Find the superposition coefficients of threshold voltage by using formulas 

(5.38) for random doping fluctuations and (5.39) for random oxide thickness 

fluctuations; 

4) Compute the standard deviation of threshold voltage by using formula (5.40). 

 

Gate

x 

 

Figure 5.12: 1D MOSFET device. The Schrödinger and Poisson equations were 

discretized in N  = 200 points by using the finite discretization skim and the threshold 

voltage was computed by using the “total inversion charge definition.” 

5.2.1.3 Computational results 

The techniques presented in the previous section were numerically 

implemented and used for the computation of fluctuations of threshold voltages in 

MOS capacitors. In all simulations, the eigenvalues and eigenfunctions of the 

Schrödinger equation were computed by using the LAPACK package [106]. In the 

case of 1D MOS capacitors, the Schrödinger and Poisson equations have been 
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discretized by using N  = 200 mesh points and standard finite difference schemes and 

the threshold voltages were computed by using the “total inversion charge definition”. 

First, we compare the results obtained by using the linearization technique with 

the results computed by using the Monte-Carlo method. Two MOS capacitors were 

considered for this purpose. The first one has a simplified architecture with constant 

average doping concentration aN  = 1018 cm-3 and oxide thickness of t  = 4 nm. The 

second device has a slightly optimized structure with retrograde doping profile: the 

channel doping concentration decreases from 1018 cm-3 at 20 nm (and deeper) to 1016 

cm-3 at the surface, according to a truncated Gaussian distribution function. The 

average oxide thickness of this device is 5 nm. Since the variance [ ]2
TV DFσ  of the 

threshold voltage induced by the random doping fluctuations decreases linearly with 

respect to the area of the semiconductor/oxide interface L W× , where L and W  are 

the length and the width of the MOS capacitor [see formula (5.40)], the values of the 

[ ]
TV DFσ  presented in this section are multiplied by LW . Also, since the variance 

[ ]2
TV OTFσ  of the threshold voltage induced by random oxide thickness fluctuations 

increases linearly with respect to the variance of oxide thickness, the values of 

[ ]
TV OTFσ  are divided by oxσ . 

Table 1 presents the standard deviations of threshold voltages obtained by 

using the Monte-Carlo method and our linearization technique for the first MOS 

capacitor. Statistics for 100, 200, 500, and 1000 of different doping and oxide 

realizations are accumulated in order to compute 
TVσ  by using the Monte-Carlo 

method. It is remarkable that the linearization method predicts fairly accurately the 
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standard deviation of the threshold voltage induced by random oxide thickness 

fluctuations and it gives a very good estimate of the standard deviation of the 

threshold voltage induced by random doping fluctuations. This can be explained by 

the fact that TV  depends linearly on the oxide thickness and it displays slightly 

nonlinear behaviour with respect to the doping concentration in the channel. For this 

reason, the linearization technique gives somewhat more precise results in the case of 

oxide thickness fluctuations than in the case of random doping fluctuations. 

Table 2 presents the standard deviations of threshold voltages for the second 

device (retrograde doping). Even though this device has a larger oxide thickness and 

one expects the standard deviation of the threshold voltage induced by random doping 

fluctuations to be larger than for the first device, the fluctuations of threshold voltage 

are smaller because of the improved doping configuration. The results presented in 

these tables show that the linearization technique can be successfully used to compute 

the fluctuations of threshold voltages in 1D MOS devices.  

We have also investigated the dependence of the fluctuations of threshold 

voltage on the doping concentration and oxide thickness for the MOS capacitor with 

constant average doping concentration in the channel. Figures 5.3 (a) and (b) present 

the computed standard deviations of threshold voltage for the case of random doping 

fluctuations, while Figures 5.14 (a) and (b) present Tσ  in the case of random oxide 

thickness fluctuations. The results presented in these figures are obtained by using the 

linearization technique described in the previous section. It is interesting to observe 

that the standard deviation of threshold voltage can be estimated analytically in the 
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framework of classical calculations, by using the charge-sheet and depletion 

approximations. 

A. For random doping induced fluctuations it can be shown that [81]: 

 [ ]
3T

ox a d
V

ox

qt N WDF
LW

σ
ε

= , (5.41) 

where 4 Si B
d

a

W
qN
ε φ

=  is the width of the depletion region. 

B. For the analysis of random oxide thickness fluctuations, it is convenient to 

consider the equation of the threshold voltage for long channel devices: 

 
4

2 Si a B
T fb B ox

ox

qN
V V t

ε φ
φ

ε
= + + , (5.42) 

where 22 ln a
B

i

NkT
q n

φ =  is the band bending potential and all other symbols 

have their usual meaning. Assuming that oxt  in (5.42) is a random variable 

with standard deviation oxσ , the standard deviation of threshold voltage 

can be computed by using: 

 [ ] 4
T

Si a B
V ox

ox

qN
OTF

ε φ
σ σ

ε
= . (5.43) 

The values of the 
TVσ  obtained by using equations (5.41) and (5.43) are represented in 

Figures 5.13 (a) and (b) and Figures 5.14 (a) and (b) with square symbols. A very 

good agreement between analytical predictions and classical simulations is observed, 

which again suggests that the linearization approach gives reliable results. It is 

important to observe that [ ]
TV OTFσ  is independent of oxide thickness; our 
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computations show that both quantum and classical results can be approximated by a 

power low [ ] 0.5~
TV aOTF Nσ  [in (5.43), the effect of Bφ  on aN  can be neglected since 

it enters through a logarithmic term]. 

 

 

 Doping fluctuations Oxide thickness fluctuations 

 

N 
TV LWσ ×   

(mV×µm) 

Classical  

TV LWσ ×  

(mV×µm) 

Quantum 

TV oxσ σ   

(mV/nm) 

Classical  

TV oxσ σ   

(mV/nm) 

Quantum 

100 2.01 2.23 108 119 

200 1.98 2.21 106 110 

500 1.90 2.16 105 115 

1000 1.92 2.14 106 114 

Linearization  

technique 

1.95 2.37 105 111 

 

 

 

Table 5.1: Standard deviations of threshold voltage for a MOS capacitor with constant 

average doping by using the Monte-Carlo and the linearization techniques ( aN  = 1018 

cm-3 and t  = 4 nm). 
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 Doping fluctuations Oxide thickness fluctuations

 

N 
TV LWσ ×   

(mV×µm) 

Classical  

TV LWσ ×  

(mV×µm) 

Quantum 

TV oxσ σ   

(mV/nm) 

Classical  

TV oxσ σ   

(mV/nm) 

Quantum 

100 1.39 1.59 168 171 

200 1.43 1.64 166 168 

500 1.42 1.62 164 161 

1000 1.39 1.60 161 165 

Linearization  

technique 

1.41 1.75 159 166 

 

 

 

Table 5.2: Standard deviations of threshold voltage for a MOS capacitor with 

retrograde doping profile by using the Monte-Carlo and the linearization techniques 

( aN  = 1018 cm-3 at y  = 20 nm from the oxide, aN  = 1016 cm-3 at the interface, and t  

= 5 nm). 
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(b) 

Figure 5.13: Standard deviation of threshold voltage as a function of average doping 

concentration (a) and oxide thickness (b) for a MOS capacitor ( aN  = 1018 cm-3 and t  

= 4 nm). Only random doping induced fluctuations are considered in these 

simulations. 
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(b) 

Figure 5.14: Standard deviation of threshold voltage as a function of average doping 

concentration (a) and oxide thickness (b) for a MOS capacitor ( aN  = 1018 cm-3 and t  

= 4 nm). Only random oxide roughness induced fluctuations are considered in these 

simulations. 
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5.2.2 Quasi one-dimensional analysis 

The model discussed in the previous section accurately describes the inversion 

regime in 1D-MOS structures (e.g. in MOS capacitors), but it does not capture short 

channel effects that exist in ultrasmall devices. In order to describe the inversion 

regime in short channel devices, one should solve both the Schrödinger and the 

Poisson equations in two or three dimensions. Although a few attempts to solve these 

equations for the multidimensional case have been made recently [127], [130]-[132], 

the computational cost is prohibitively high and approximate methods are preferred. 

Such a method, which can be applied to systems in which the electric potential does 

not vary significantly over a de Broglie wavelength in two directions, but can vary 

relatively fast in the third direction, is the quasi-1D method [133]. This method has the 

advantage that it avoids solving the Schrödinger equation in a multidimensional space, 

while capturing the main quantization effects that exist in short channel devices. The 

quasi-1D method has previously been applied to the computation of electron 

concentrations in MOS capacitors and to the computation of I-V characteristics of 

MOSFET devices. In this section, we further develop this method to the computation 

of random doping and random oxide thickness induced fluctuations in MOSFET 

devices. 

Consider the computation of fluctuations of threshold voltages in MOSFET 

devices. Threshold voltage is defined as the gate voltage at which the drain-to-source 

current is equal to 910 W
L

−  for an applied potential on the drain of 10-3 V (“current 

definition”), where W  and L  are the width and the channel length of the device, 
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respectively. The relatively low value of the applied potential allows us to assume that 

the Fermi level in the semiconductor is approximately constant and equals its values at 

the metal contacts. This assumption simplifies the solution of the transport equations 

significantly. For example, if we use the drift-diffusion model to describe the carrier 

transport, the Poisson and Schrödinger equations decouple from the current continuity 

equations, which substantially decreases the total computational cost of computing the 

threshold voltage. In our simulations, the current continuity and Poisson equations are 

solved on a rectangular mesh by using the 2D finite discretization technique. The 

electron concentration is found by considering the grid lines normal to the 

semiconductor/oxide interface and by solving a set of 1D Schrödinger equations along 

these lines (see Figure 5.15). In consequence, the Jacobian matrix is semi-sparse, 

because electron concentration depends on the values of the electric potential only on 

the same grid line, but it does not depend on the values of the electric potential on 

other grid lines. This fact can be used to choose a linear solver, which is optimized for 

low memory overhead in semi-sparse matrix calculations. 

To present the main idea of the computation of threshold voltage fluctuations, 

it is convenient to consider the transport equations in discretized form: 

 ( ), , , , , 0n p GV ,  = F n D tϕ ϕ ψ ψ , (5.44) 

where F  is an operator that consists of 3N  equations corresponding to the discretized 

Poisson and electron and hole current continuity equations, and N  is the total number 

of mesh points. In equation (5.44), nψ  and pψ  are vectors whose components are 

equal to the mesh point values of the electron and hole quasi Fermi potentials, while t  
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is a vector that consists of the mesh point values of the oxide thickness. By linearizing 

equation (5.44), we obtain: 

 ˆ ˆ ˆ ˆ ˆ 0
n p Gn p V GVϕ + + =D tJ F F + F D + F + F tψ ψψ ψ , (5.45) 

where Ĵ  is defined by formula (5.23), while 
n

Fψ  and 
p

Fψ  are the derivatives of F  

with respect to nψ  and pψ , respectively.  

The drain-to-source current can be written as a function of the electric 

potential, electron concentration and quasi Fermi potentials. Denoting this function by 

a linear operator ( ),n pI ,n,ϕ ψ ψ  and taking into consideration the fact that the drain-

to-source current is constant at threshold voltage, we can write: 

 0
n pn p

dI I I I
d

ϕ 
= + + + 
 

n
n

ϕ ψ ψψ ψ
ϕ

, (5.46) 

where Iϕ , 
n

Iψ , and 
p

Iψ  are the derivatives of I  with respect to ϕ , nψ , and pψ , 

respectively. By using a mathematical reasoning similar to the one we used to obtain 

equation (5.34), we deduce the following equation for the fluctuations of threshold 

voltage: 

 
ˆˆ

G G

tt
t

T t t
V V

V ⋅⋅
= − ⋅ − ⋅

⋅ ⋅
D g Fg F D t

g F g F
, (5.47) 

where g is the solution of the following linear system of equations: 

 ˆ ˆ ˆ
n p n

p

t t t

dI I
d

I

I

 + 
 

   ⋅   
 
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n
n

J ,F ,F g =

ϕ

ψ ψ ψ

ψ

ϕ
. (5.48) 



 147

The standard deviation of threshold voltage can be computed with formula (2.7). 

Next, we analyze the fluctuations of threshold voltage in short channel 

MOSFET devices by using the quasi 1D method presented above. The device we 

simulated corresponds to the device labeled MOS C, which is described in the 

Appendix. The Poisson and current continuity equations were discretized on 

rectangular grids of 70x70 mesh points and threshold voltages were computed by 

using the “current definition” presented in the previous section. The Schrödinger 

equation was discretized on a set of 1D grid lines only in the region close to the 

semiconductor/oxide interface, where the quantum effects are significant [134]. 

Outside this region, the electron concentration was calculated by using classical 

statistics. 

Figures 5.16 (a) and (b) present the sensitivity coefficients as functions of the 

location in the semiconductor device computed by using the Poisson-Schrödinger 

approach. The values of these sensitivity coefficients are very close to the ones 

computed by using the Density-Gradient model (see Figure 5.11), which suggests that 

the calibration of the DG model presented in Section 5.1.1 is accurate. We observe 

again that the effect of quantization is to slightly shift the distribution of sensitivity 

coefficients away from the interface.  

Figures 5.17 (a) and (b) present the standard deviation of the threshold voltage 

induced by random doping fluctuations as a function of the average doping 

concentration and oxide thickness. There is a trade-off between the doping 

concentration and the thickness of the oxide layer in the design of fluctuations 

resistant structures. In order to decrease the fluctuations of threshold voltages, one 
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should decrease the oxide thickness [see Figure 5.17(b)]. However, the standard 

scaling rules require increasing the doping concentration in the channel, which leads to 

an increase of the fluctuations of threshold voltages [see Figure 5.17(a)]. In practical 

applications, one should use the optimum values of aN  and oxt  to minimize the 

fluctuations of threshold voltages. 

Figures 5.18 (a) and (b) present the standard deviation of the threshold voltage 

induced by random oxide thickness fluctuations as a function of the doping 

concentration and oxide thickness. In these simulations, the autocorrelation function of 

oxide thickness fluctuations was considered to be exponential [see equation (2.35)], 

with autocorrelation length cL  = 10 nm and roughness ∆  = 0.15 nm. Our 

computations show that [ ]
TV OTFσ  can be approximated by a power low 

[ ] 0.38~
TV aOTF Nσ  for both classical and quantum computations. The exponent 0.38 is 

slightly smaller than in the case of the 1D MOS capacitor and this accounts for the 

short channel effects in the device.  
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Figure 5.15: 2-D MOSFET device. The electron concentration inside the quantum 

region was computed by using a set of 1D Schrödinger equations. Outside the 

quantum region the electron concentration was calculated by using classical statistics. 
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Figure 5.16: Sensitivity coefficients of threshold voltage for MOS C (see the 

Appendix for technical specifications) computed by using quasi-1D Poisson-

Schrödinger computations. The metallurgical channel length extends from 30 nm to 55 

nm in the “along channel” direction. Sensitivity coefficients have very close values to 

those computed by using the Density-Gradient model (see Figure 5.11). 
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Figure 5.17: Threshold voltage standard deviation of MOS C as a function of average 

doping concentration (a) and oxide thickness (b). Only random doping induced 

fluctuations are considered in these simulations. 
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Figure 5.18: Threshold voltage standard deviation of MOS C as a function of average 

doping concentration (a) and oxide thickness (b). Only random oxide roughness 

induced fluctuations are considered in these simulations. 
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Chapter 6  

 

Conclusions 

Intrinsic parameter fluctuations have a negative impact on the reliability and yield of 

VLSI and ULSI circuits. Due to the aggressive reduction of the characteristic 

dimensions and to inaccuracies in the fabrication process, the parameters of ultrasmall 

semiconductor devices fluctuate significantly from one device to another. These 

fluctuations affect the functionality of the overall circuit and can make the final 

electronic product non-operational. 

In this dissertation we performed a comprehensive analysis of fluctuations in 

semiconductor devices and a robust numerical technique for the characterization of 

random doping and random oxide roughness induced fluctuations and for the design of 

fluctuation-resistant structures. This technique is based on linearization of the 

transport equations with respect to the fluctuating quantities and completely 

circumvents extensive computations for numerous device realizations required by the 

traditional Monte-Carlo methods. For this reason, the proposed method is 

computationally much (i.e. a few orders of magnitude) more efficient than the Monte-
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Carlo methods. For example, if the computational cost for calculating some parameter 

(e.g. threshold voltage, cut-off frequency, etc.) is about 20 minutes in a 3D simulation, 

the total computation time to accumulate statistics for a few hundred devices and to 

extract the standard deviation of that parameter by using the Monte-Carlo method is of 

the order of days. This computation time should be naturally compared to the total 

computation time required to compute the standard deviation by using the linearization 

method, which is approximately 2 minutes. 

It has been demonstrated that the linearization technique provides information 

on the sensitivity of the parameters of interest (threshold voltage, small-signal 

parameters, cut-off frequencies, etc.) to the fluctuations of oxide thickness and doping 

concentration at different locations. Hence, this technique is instrumental in the design 

of doping and oxide thickness fluctuation-resistant structures. For example, it has been 

shown that most device parameters are particularly sensitive to the random doping 

fluctuations in the region located next to the oxide/semiconductor interface. Random 

doping fluctuations in this region induce large variations of threshold voltage and 

current characteristics, which can be reduced by using a low doping concentration 

layer (i.e. an epitaxial layer) in the conduction channel. By improving the doping 

profile in MOSFET devices, we can also reduce the fluctuations of small-signal 

parameters and cut-off frequencies. Similarly, in the case of oxide thickness 

fluctuations, threshold voltage is rather sensitive to the variations of thickness in the 

middle region of the oxide layer, but quite insensitive to edge variations of the oxide 

thickness. This effect can have positive implications for the fabrication process of the 

oxide layer, because etching and deposition of polysilicon usually deteriorates the 
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edges of the oxide, but do not affect too much the thickness of the middle part of the 

oxide layer. 

The linearization technique has been applied to the analysis of fluctuations of 

threshold voltage, subthreshold, current, and frequency characteristics, as well as to 

the study of quantum induced effects on fluctuations in semiconductor devices. 

However, many areas of application have been left for future consideration and in-

depth analysis. Following is a list of issues that need to be addressed in the near future: 

(a) The linearization method has only been applied to the analysis of fluctuations in 

nMOSFETs and MOS capacitors. In the future we plan to apply this technique to 

other semiconductor devices, such as bipolar junction transistors (BJT), fin field-

effect transistors (FinFET), silicon-on-insulator (SOI) devices, and high electron-

mobility transistors (HEMT). 

(b) Our analysis has so far concentrated on the fluctuations of admittance matrix 

elements and of h and z-parameters, gain factors, and cut-off frequencies. In the 

future this analysis should be extended to fluctuations of other small-signal 

parameters with more immediate practical use, such as drain resistance, source 

and gate capacitances. 

(c) The present dissertation includes studies of mechanical induced effects on the 

fluctuations of threshold voltage. Future work should also address the influence 

of quantum effects on the current and frequency characteristics of semiconductor 

devices. 

(d) The linearization method should be extended to the analysis of fluctuations 

induced by gate-polysilicon line edge roughness (LER). Such an analysis would 
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be the natural continuation of our study of random doping and oxide thickness 

induced fluctuations. 

(e) It has been demonstrated that the linearization technique can be accurately 

applied to the analysis of fluctuations in semiconductor devices with 

characteristic dimensions larger than 20 nm (the channel length of the smallest 

MOSFET presented in the thesis was 25 nm, while the largest was about 1 µm). 

Future work should investigate to what extent the same linearization technique 

can be applied to smaller semiconductor devices (with channel length under 10 

nm). Due to the very small device dimensions, we expect the linearization 

technique to fail to provide exact quantitative results and second order terms to 

be considered in the series expansion of transport equations. 

The linearization technique is a powerful tool for the study of fluctuations in 

semiconductor devices. We hope that future developments and improvements will 

greatly extend its area of applicability and will make it an indispensable tool in both 

device and circuit design.  
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APPENDIX 

 Unless otherwise stated, the following n-channel MOSFET devices are 

analyzed in the thesis: 

 

MOS A: This device has a very simplified structure that is similar to the one 

presented in Ref. [68]. The source and drain junctions are abrupt and the 

doping concentration in the channel and at the polysilicon gate is constant. 

The channel length and width are 50 nm, the oxide thickness is 3t =  nm, 

the doping concentration in the channel is 185 10aN = × cm-3, the doping 

concentrations of the source and drain junctions are 2010dN = cm-3, while 

the electron and hole mobilities are assumed to be constant. 

 

MOS B: This device has a more realistic structure that is similar to the retrograde 

model presented in Ref. [135]. The channel doping concentration decreases 

from 185 10aN = ×  cm-3 at 0y =20 nm (and deeper), to 1610 5 10aN = ×  

cm-3 at the surface according to a truncated Gaussian distribution function 

(see Figure A). The source and drain profiles have a Gaussian distribution 

with a n-type peak surface concentration of 2010  cm-3 and vertical struggles 
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of about 8.2 nm that correspond to a junction depth of about 20 nm. The 

lateral source and drain struggles (in the directions parallel to the 

conduction channel) are about 1.34 nm and the source and drain extensions 

under the gate are 4.4 nm. The metallurgical channel length is 30 nm and 

this corresponds to an effective channel length of about 34 nm (the 

effective channel length is defined [135] by the points where the source-

drain doping concentrations fall to 2x1019 cm-3). The thickness of the oxide 

is 2 nm and the width of the device is 40 nm. In the reported simulations, 

one of the above parameters is usually varied, while the other ones are held 

constant. The electron and hole mobilities are described by the model 

presented in Ref. [89] and [90]. 

 

MOS C: The third device has a structure similar to MOS B but has slightly smaller 

dimensions. The channel doping concentration decreases from 

185 10aN = ×  cm-3 at 0y =15 nm (and deeper) to 16100 5 10aN = ×  cm-3 at 

the surface, according to a truncated Gaussian distribution function (see 

Figure A). The source and drain profiles have a Gaussian distribution with 

a n-type peak surface concentration of 2010  cm-3 and vertical struggles of 

about 2.5 nm that correspond to junction depths of about 7 nm. The lateral 

source and drain struggles (in the directions parallel to the conduction 

channel) are about 1.05 nm and the source and drain extensions under the 

gate are 3.2 nm. The metallurgical channel length is 25 nm and this 

corresponds to an effective channel length of about 29.9 nm (the effective 
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channel length is defined [135] by the points where the source-drain doping 

concentrations fall to 2x1019 cm-3). The thickness of the oxide is 2 nm and 

the width of the device is 50 nm. In the reported simulations, one of the 

above parameters is usually varied, while the other ones are held constant. 

The electron and hole mobilities are described by the model presented in 

Ref. [89] and [90]. 

 

Usually one of the characteristic dimensions of MOSFET devices is varied, while the 

others are kept constant. 
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Figure A: Doping profiles for MOS A, MOS B, and MOS C. 
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