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Fruit rots caused by Fusarium spp. can lead to economic yield losses on melon 

(Cucumis melo).  However, which Fusarium spp. are the most prevalent in Maryland 

and Delaware has not been documented. Several Salmonella enterica subsp. serovar 

Newport (S. Newport) outbreaks on melon have occurred over the past 25 years. 

Fusarium spp. infestation on melon have potential impact on survival and 

colonization of Salmonella. Our objectives were to identify Fusarium spp. 

infestations on melons within the Delmarva region, and evaluate their impact on 

survival and internalization of S. Newport on various melon cultivars. Fifty-six 

isolates were molecularly identified, according to Fusarium-ID online database, as 

Fusarium spp. (Fusarium fujikuroi-20, Fusarium proliferatum-18, Fusarium 

oxysporum-15, Fusarium graminearium-2, Fusarium verticilloides-1). Our findings 



  

revealed that most of the Fusarium isolates we collected were not pathogenic to 

melon fruit. We evaluated the impact of four Fusarium spp. (F. armeniacum, F. 

oxysporum, F. fujikuroi, and F. proliferatum) on S. Newport survival in five melon 

cultivars; ‘Arava’ (C. melo var. reticulatus, Galia), ‘Athena’ (var. reticulatus, 

muskmelon), ‘Dulce Nectar’ (var. inodorus, honeydew), ‘Jaune de Canaries’ (var. 

inodorus, Canary), and ‘Sivan’ (var. cantalupensis, Charentais).  Impact of F. 

proliferatum on survival and internalization of S. Newport was evaluated on 

honeydew (smooth) and cantaloupe (netted) melons. Generally, Fusarium did not 

impact the survival of S. Newport, however greater survival of S. Newport was 

observed on the netted cultivars compared to the smooth surface melons. Fusarium 

fujikuroi significantly enhanced survival of Salmonella when inoculated on riper 

‘Jaune de Canaries’ melons (above ¾ slip). However, when the experiments were 

replicated with less ripe (about ¾ slip) melon, F. fujikuroi did not significantly 

influence the growth of S. Newport. Salmonella Newport internalized in all 

treatments and the cantaloupe and honeydew melons, but variation in population 

levels were observed across the treatments.  Overall, Fusarium proliferatum did not 

impact internalization of S. Newport on either melon type. This may be attributed to 

that Fusarium species used during this study were nonpathogenic. Salmonella 

Newport recovered gradually decreased with time. Fusarium species on melon, 

influence S. Newport colonization differently. Also, melon rind type affects the 

ability of S. Newport to survive and colonize differently. 

Keywords: Melon, Cultivars, Fusarium spp., Salmonella enterica Newport, Survival, 

Internalization. 
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Chapter 1: General Introduction 

Introduction 

1.1. Rationale for this study.  

There is little information available on diversity of Fusarium spp. causing Fusarium 

fruit rot of melons in Maryland and Delaware. In addition, there is no information 

available on survival ability of Salmonella enterica subsp. enterica serovar Newport 

on various melon cultivars. A few studies have identified the origin of Salmonella 

infestation on cucurbits (Angelo et al., 2015), however, there is little information on 

interactions between plant or fruit pathogenic fungi, or fungal saprophytes, and 

human pathogenic bacteria on or in melon. A few studies have evaluated and reported 

internalization and survival of Salmonella in produce like tomatoes, but not on melon 

(Gu et al., 2011 & 2013, and Han and Micallef, 2014 & 2016). Therefore, more 

research focused on ingress of Salmonella into produce, and its survival under harsh 

environmental conditions which are different from the habitat of mammal guts, is 

needed. There is little information on how infection by Fusarium spp., can influence 

S. Newport survival and colonization of melon fruit or on colonization and survival 

ability of S. Newport on various melon cultivars. Improved understanding of pre- and 

post-harvest colonization and survival of S. Newport on produce could help in 

reducing the prevalence of food borne outbreaks. This study focused on evaluating 

and identifying prevalent Fusarium species infesting melon (Cucumis melo) in 

Maryland and Delaware. To evaluate and identify these Fusarium species, a survey 

was carried out during the 2016 and 2017 growing seasons. Isolates were 
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morphologically and phylogenetically identified. Secondly, impact of four Fusarium 

spp. (F. oxysporum, F. fujikuroi, F. armeniacum, F. proliferatum) presence on the 

melon rind on S. Newport survival was evaluated. To carry out these evaluations, 

three Fusarium spp. (F. oxysporum, F. armeniacum, F. fujikuroi) were inoculated on 

melon during the experimental repeats 1 through 3, and F. armeniacum was replaced 

with F. proliferatum during the fourth repeat of the experiment. Melon cultivars with 

varying rind topographies that were inoculated with Fusarium spp. were also 

evaluated for S. Newport survival. ‘Arava’ (C. melo var. reticulatus, Galia), ‘Athena’ 

(var. reticulatus, muskmelon), ‘Dulce Nectar’ (var. inodorus, honeydew), ‘Jaune de 

Canaries’ (var. inodorus, Canary) and ‘Sivan’ (var. cantalupensis, Charentais) were 

evaluated. The fruit of these five melon cultivars were inoculated with one of three 

Fusarium spp. and subsequently inoculated with S. Newport. The Fusarium spp. 

strains that were used were collected and isolated from melon ‘Sivan’ grown in an 

organic field at University of Maryland Lower Eastern Shore Research and Education 

Center (LESREC), and from a farmer’s field in Delaware (Table 8). These isolates 

were obtained during a small survey that was conducted in the 2015 and 2016 

growing season, where melon fruit that had symptoms of Fusarium fruit rot were 

collected. Fusarium spp. were then isolated and identified using morphological and 

molecular techniques. Eight isolates were selected and molecularly identified. PCR 

was conducted using primers that targeted translation elongation alpha factors 

(TEF1&2) and the second largest sub-unit region of RNA polymerase II (RPB2) and 

the amplified regions were sequenced. Four Fusarium spp. (F. oxysporum, F. 

fujikuroi, F. armeniacum, F. proliferatum) were identified and used during this study. 
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Internalization of S. Newport in the presence or absence of F. proliferatum in 

honeydew and cantaloupe type melons was also evaluated. To carry out this study, 

surface (rind) of smooth (honeydew) and netted (cantaloupe) melons was inoculated 

with F. proliferatum and incubated for four days, thereafter, followed by S. Newport 

inoculation. The surface, exocarp, mesocarp, and endocarp (seed cavity) were 

separately evaluated for S. Newport at 5- and 10-days post-inoculation. 

1.2. Melon consumption in the U.S.  

Consumption of melons in the US is high, due to their many nutritional and health  

benefits (USDA-ERS, 2011). The United States is one of the world's leading 

consumers  

of melons. For example, in 2011, 3.95 kg of cantaloupes and 0.68 kg of honeydew  

consumption per person was reported (USDA-ERS, 2011). The average American  

consumes about 12.2 kilograms of melons each year (USDA-ERS, 2011). Melon  

consumption has increased because of increasing health consciousness of consumers,  

improved year-round availability, creative marketing, and improved varieties (USDA 

ERS, 2011). 

1.3.  Melon Production in the US. 

The U.S. cantaloupe acreage increased from 26,851 hectares in 2012, to 30,242 

hectares in 2013. However, the production decreased from 2013 to 2015. The U.S. 

cantaloupe production area decreased from 26,851 hectares in 2012 to 20,882 

hectares in 2015. Cantaloupe production was 13.4 million cwt in 2015. During the 

above period, honeydew acreage under production increased. This was 3.5 million 
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cwt honeydew produced (Agricultural Marketing Resource Center: 

https://www.agmrc.org/). 

1.4. Melon Production in Maryland. 

Melon is an economically important crop in the USA, and Maryland is ranked among 

the top producers in the nation. Maryland ranked 8th in national muskmelon 

production in 1997 and accounted for about 1% of total U.S. production (USDA-

NASS, 1997). During 1997 and 1998, Maryland farmers planted an average of 607 

hectares and harvested an average of 567 hectares of muskmelons for the fresh 

market. The average cash value of fresh market muskmelons in Maryland for the 

same period was $2,709,000.00 (Maryland Extension Bulletin, 2003; USDA-NASS, 

1997). Although melon is an economic crop both locally and nationwide, it has 

various production challenges. Those challenges include farm labor shortages, strong 

competition in export markets, pressure in domestic markets from low-cost imports, 

competition for land and water from both urban encroachment and alternative crops, 

rising inputs, and food safety concerns (Ali and Lucier, 2011). According to USDA-

ERS (2011), melon production accounted for 72.2% of all the fruit produced in 

Maryland. 

1.5. Salmonella outbreaks linked to melon. 

Melon consumption has been associated with an increased Salmonella outbreaks 

(CDC website: https://www.cdc.gov/Salmonella). Previously, most food borne 

outbreaks associated with Salmonella were associated with food products of animal 

origin, such as beef and poultry (Natvig et al., 2002).  Human pathogens had been 

thought to live and thrive in the gut of vertebrate hosts, and to be introduced to 

https://www.agmrc.org/
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produce only through either manure application, contaminated irrigation water, or 

animal intrusions in the farm as surface contaminants. Contrary to these assumptions, 

human pathogens have been discovered to enter, adhere to, multiply, and even move 

to produce leaves and fruits from the growth medium (Islam et al., 2004, Angelo et 

al., 2015; Wang et al., 2009). Moreover, in recent years, there has been rise in 

foodborne illnesses and outbreaks that are linked to fresh produce. Most of these 

produce outbreaks have been due to Salmonella and pathogenic Escherichia coli. For 

example, there were several Salmonella outbreaks from July 3, 2015 to February 29, 

2016 that were associated with consumption of cucumber imported from Baja, 

Mexico and sold in several states in the US. According to Center for Disease and 

Prevention and Control (CDC), and Food and Drug Administration (FDA) 907 people 

infected with the outbreak strains of Salmonella Poona have been reported from 40 

states. These outbreaks resulted with six deaths from Arizona (1), California (3), 

Oklahoma (1), and Texas (1) (CDC website: https://www.cdc.gov/Salmonella). Three 

additional multistate outbreaks of S. Poona infections associated with eating 

cantaloupe imported from Mexico occurred in the spring of 2000, 2001, and 2002 

(CDC, 2002). Salmonella contamination on produce is a national problem in the U.S. 

and, occasionally linked to international outbreaks.  The CDC confirmed and reported 

cases of Salmonella linked to cantaloupes in the following years: 2008 (Salmonella 

Litchfield), 2011(Salmonella Panama), 2012 (Salmonella Newport and 

Typhimurium). Additional Salmonella outbreaks that were linked to produce like 

apples and oranges have been reported and documented (Buchanan et al., 1999 and 

US. FDA, 1999 & Barton et al., 2011). Locally, salmonellosis cases, were linked to 
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cucumbers produced in Delmarva and sold in twenty-nine other states of the US 

(Angelo et al., 2015). 

1.6. Microbial contamination of produce. 

Factors in field production, like the use of a cover crop, organic matter application, 

field, crop rotation, and type of mulch can also influence the microbial community 

and survival of bacteria in the soil (Nair and Ngoujio, 2012; Ponge et al., 2013 and 

Venter et al., 2016). Recent studies indicate that common cover crops grown prior to 

produce production, can influence survival of E. coli and Listeria in the soil (Reed-

Jones et al., 2016). Reed-Jones et al. (2016), reported that a mixture of cover crops, 

hairy-vetch plus rye, in the field influenced the E. coli and Listeria innocua 

population. 

1.7. Fusarium spp. and Cucurbits.  

Fusarium spp. have been widely studied and reported to infect and cause cucurbit  

diseases leading to yield loss in most parts of the world (Chehri et al., 2011; Wade 

and Morris, 1982; Leslie et al., 1992 &1996). The fungal genus Fusarium is one of 

the most studied fungal groups because of its importance as a plant pathogen and 

mycotoxin producer (F. solani, F. oxysporum, F. graminearum, F. moniliforme, F. 

sambucinum, F. culmorum, and F. equiseti), and a human pathogen (Seremi and 

Okhovvat, 2006). There are twelve Fusarium spp. reported to cause melon fruit rots 

in the US:   Fusarium acuminatum Ellis & Everh.; F. avenaceum (Fr.: Fr.) Sacc.; F. 

culmorum (Wm. G. Sm.) Sacc.; F. equiseti (Corda) Sacc.; F. graminearum Schwabe 

(syn. Gibberella zeae (Schwein.) Petch); F. graminum Corda; F. incarnatum (Desm.) 
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Sacc. (syn. F. semitectum Berk. & Ravenel); F. oxysporum Schltdl.: Fr. f. sp. melonis 

W. C. Snyder & H. N. Hansen; F. petroliphilum (Q. T. Chen & X. H. Fu) Geiser, 

O’Donnell, Short & N. Zhang (syns. F. solani (Mart.) Sacc. f. sp. cucurbitae W. C. 

Snyder & H. N. Hansen race 2; Nectria haematococca Berk. & Broome MP V); F. 

scirpi Lambotte & Fautrey; F. solani (Mart.) Sacc. f. sp. cucurbitae W. C. Snyder & 

H. N. Hansen race 1 (syn. Nectria haematococca Berk. & Broome MP I); F. 

verticillioides (Sacc.) Nirenberg (syn. F. moniliforme J. Sheld.); Fusarium spp.  

(Elmer, 1996; Keinath et al., 2018; Rivas-Garcia et al., 2018). Melon fruit are prone 

to cracking due to extreme fluctuations in moisture and temperature, which make 

them more susceptible to infection by Fusarium. Many Fusarium species are known 

to be either saprophytic or weak and opportunistic pathogens and can only cause 

secondary infections. Conditions such as physical injury or stress on melons due to 

cracking, drought or insect damage, may make them more susceptible (Palmer and 

Kommedahl, 1960).  Fusarium infection on fruit, apart from causing rots, may make 

them inedible because they produce mycotoxins (Plattner, 2000). Fusarium species; 

F. fujikuroi and F. oxysporum, which are known to cause melon fruit rots, also may 

produce toxic fumonisin (Bezuidenhout et al., 1988; Branham and Plattner, 1993a&b; 

Van Wyk et al., 1987). Fusarium is heterogeneous and comprises different 

morphological characteristics, plant hosts, and production of toxins like fumonisins 

and tichothecenes that affect humans and animals if ingested through feeds (Fisher et 

al., 1982). Several taxonomic systems have been proposed for Fusarium, which vary 

in total number of species from 9 to 78 (Nelson, 1991), to over 1,000 species (Taylor 

et al., 2000). These classical taxonomic systems are based on morphological 
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characters such as the size and shape of macroconidia, the presence or absence and 

the shape of microconidia and chlamydospores, and the structure of conidiophores 

(Guadet et al., 1989).   

1.8. Objectives.  

Most food safety research has focused on sources and distribution of contamination of  

fresh produce by human pathogenic bacteria, which include manure, irrigation water,  

wildlife, and contamination during produce transportation, processing, and handling 

(Barak et al., 2005, 2007, 2008, & 2011; Bowen et al., 2006; Brandl, 2008; Chisholm, 

2006; Mandrell, 2009; Beuchat, 1999 and Korir et al., 2016). However, there are 

limited studies on human pathogenic bacterial interactions with fungi. The overall 

goal of this study was to investigate and identify associated Fusarium species on 

Cucumis melo in Delmarva region, and their effects on the subsequent survival of the 

human pathogenic bacterium, Salmonella enterica Newport. Four factors were 

evaluated, 1) the diversity of Fusarium spp. of melon fruit in Maryland and 

Delaware; 2) the impact of the presence of four Fusarium spp. (F. armeniacum, F. 

fujikuroi, F. oxysporum, F. proliferatum) on Salmonella Newport survival on melon 

fruits; 3) the impact of five melon cultivars (‘Arava’, ‘Athena’, Dulce nectar, ‘Jaune’, 

‘Sivan’) on survival of S. Newport in the presence of the four different Fusarium spp. 

(F. armeniacum, F. fujikuroi, F. oxysporum, and F. proliferatum) and 4) the impact of 

F. proliferatum on internalization of S. Newport in smooth (‘honeydew’) and netted 

(cantaloupe) surface melon. 
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1.9. The goal of this project was to test four main hypotheses:  

1: Several Fusarium spp. cause Fusarium fruit rot of melon or are associated with 

melon fruit in Maryland and Delaware.  

2: Survival of Salmonella enterica Newport varies among melon cultivars.  

3: Fusarium spp. differentially affect the ability of Salmonella enterica Newport to  

establish in melon fruit. 

4: Fusarium spp. (F. proliferatum) influence the survival and internalization of  

Salmonella enterica Newport on melon fruit. The depth of colonization of S. Newport  

into the flesh of the melon is influenced by the presence of F. proliferatum and the 

melon surface type (smooth-honeydew vs netted-cantaloupe). 
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Chapter 2: Literature Review 

2.1. Salmonella outbreaks on cucurbits.  

Per capita consumption of fresh fruits and vegetables has increased in the US for the 

past few decades (CDC: https://www.cdc.gov/Salmonella/reporting-timeline.html). 

This increase has coincided with increasing reports of foodborne illnesses associated 

with fresh produce. During the past 20 years, Salmonella has been one of the most 

common pathogens responsible for foodborne outbreaks that are associated with 

produce in the US (Mukherjee et al., 2007; Lynch et al., 2009; Sivapalasingam et al., 

2004). Some salmonellosis outbreak cases have been linked to produce in Delmarva 

region. For example, Angelo et al. (2015) reported incidences of salmonellosis that 

were linked to consumption of cucumber during May through September 30, 2014. 

During this S. Newport outbreak, a total of 275 cases were reported from 29 states 

and the District of Columbia. A PFGE pattern from infected persons indicated that the 

origin of outbreak was the Delmarva region (Angelo et al., 2015). The same PFGE 

pattern report had been linked to consumption of tomatoes harvested from Virginia’s 

Eastern Shore in 2002 (333 persons), 2005 (72 persons), 2006 (115 person), 2007 (65 

persons), and 2010 (51 persons). In addition to the outbreaks on cucumber and 

tomato, many cases of salmonellosis outbreaks associated with melon have been 

reported (CDC, 1991, 2002; Munnoch et al., 2008; Bowen et al., 2006; Ries et al., 

1990, and Hanning et al., 2009). A survey conducted by Castillo et al. (2004), 

reported that Salmonella was found in 0.5% and 0.3% of melon samples evaluated in 

Texas and Colima, Mexico respectively. Identifying the sources of, and factors that 

contribute to pathogenic bacteria contamination on produce, and especially melon 
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fruit is important in developing intervention measures to manage food borne outbreak 

risks. 

2.2. Phytopathogens and Human Pathogens on Plants (HPOPs).  

Plant surfaces are naturally infested and colonized by bacteria during plant growth 

and decay. Many saprophytic and pathogenic microorganisms can grow on healthy 

plants, and even reach large population sizes (Fokkema et al., 1983; Fokkema, 1991). 

Human pathogenic bacteria have the capability to survive the harsh environmental 

conditions during fresh produce processing. For example, the life cycle of Salmonella 

Typhimurium has been reported to comprise an infection and persistence phase 

within the host, and to survive in the external environment while transitioning to a 

new host (Klerks et al., 2007).  

Emerging evidence suggests that Salmonella enterica and pathogenic Escherichia 

coli, which cause most fresh produce outbreaks, can adhere to and form biofilms on 

produce like cantaloupe (Annous et al., 2005), and parsley (Lapidot et al. 2006), 

leading to resistance to disinfection treatments (Scher et al., 2005). Escherichia coli, 

Salmonella, Campylobacter, Listeria, and Shigella have been found to form distinct 

biofilms on the surface of produce (Costerton et al., 1999; Lamas et al 2016; Trmcic, 

et al., 2018). Salmonella serotypes that form strong biofilms on produce, tend to 

attach better to the produce’s surface compared with those serotypes that produce 

weak biofilms (Patel and Sharma, 2010; Saggers et al., 2008; Yaron and Rombling, 

2014). Wild type Salmonella serotype, S. enterica Enteritidis colonizes alfalfa sprouts 

better than its mutant (Barak et al., 2007). Additionally, Salmonella enterica has been 

reported to easily attach to mangoes (Mathew et al., 2018).  Vegetables and fruits 
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support growth of a wide range of microorganisms due to high levels of nutrients, 

moisture, and the near neutral pH (Watt and Merrill, 1950). Most fresh vegetables and 

fruits have water activity (aw) values that are close to the optimum growth level of 

most microorganisms (0.97 - 0.99, Montville and Mathews, 2001; Mossel et 

al.,1995).  

Bacterial growth on plant surfaces has been reported to occur even when nutrient 

sources are absent. Plants are reported to be colonized by high numbers of bacteria, 

which can reach 105 to 107 cfu per g of leaf under favorable environmental 

conditions, such as when high relative humidity or free water are present (Hirano and 

Upper, 1989, 1993). Pathogenic bacteria can be introduced within fresh produce at 

different points during production in the field environment (Allende, 2008). 

Contamination may occur through seeds, soil, and irrigation water (Solomon, et al., 

2002). Materon et al. (2007), reported the presence of Salmonella and Listeria on 

cantaloupe rinds, which was introduced through irrigation water. They also reported 

that Salmonella and Listeria could be recovered from cantaloupe rinds after the 

disinfection process, which could have been due to re-introduction of the bacteria 

during packing. Unhygienic workers at produce processing plants can be one way of 

cross contamination. Materon et al. (2007) also detected up to a load of 2.7 log10 cfu 

cm−2 of the bacteria on hands of harvest workers across 10 fields.  

Survival and adaptation of human pathogens, like Salmonella enterica on produce 

outside their primary host may be due to the enabling role of other microbial 

communities present in the plant, and other mechanisms they employ to adopt 

(Gourabathini et al., 2008). Fungal activity on produce influences adaptation and 
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survival of human bacteria on produce. Fungi can cause damage, release nutrients, 

and change the pH thus creating a conducive environment for human bacteria to 

thrive (Riordan et al., 2000). Human pathogenic enterobacteria may therefore attach 

to and proliferate better on damaged tissue because of enzyme or nutrient leakage.  

Wounds have also been reported to act as sites of coinfection with other 

microorganisms that can alter microenvironment (Riordan et al., 2000). Plant 

pathogenic fungi that infect either leaves or fruits contribute to the proliferation of 

human enterobacteria (Riordan et al., 2000 and Simko et al., 2015). For example, 

downy mildew lesions caused by Bremia lactucae on lettuce, were reported to  

promote the growth of both E. coli O157: H7 and Salmonella enterica (Simko et al.,  

2015). Growth of E. coli O157:H7 population was reported in apples inoculated with  

Glomerella cingulata. This could be attributed to the rise in pH from 4.1 to 6.8 

(Riordan et al., 2000).  In a separate investigation, more Salmonella Thompson was 

detected in cilantro that exhibited fungal lesions compared to the uninfected control 

(Well and Butterfield, 1999). 

Bacteria and fungi can form some symbiotic relationships. For example, 

Staphylococcus aureus can adhere to Candida albicans hyphae during mixed biofilm 

growth (Peters et al., 2012). The presence of plant pathogenic infections has been 

implicated in the survival and increase of co-inhabiting human pathogens. Presence of 

soft rot plant pathogen, Erwinia carotovora on fruit was associated with Salmonella 

(Deering et al., 2012; Wells and Butterfield, 1999). Wells and Butterfield (1999), also 

reported that co-inoculation of injured tomatoes, potatoes, and onions with fungal 

pathogens (Geotrichum, Botrytis, Rhizopus), increased incidences of Salmonella. 
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Human pathogens, including Salmonella may benefit from the presence of plant 

associated bacterial and fungal organisms on produce, which provide carbon and 

energy sources through the degradation of plant cell wall polymers. Fungal lesions in 

plants may create a microenvironment that is more favorable to the survival and 

replication of human pathogens, such as Salmonella spp. and E. coli O157:H7 (US 

Food and Drug Administration).   

Salmonella enterica was also detected on cantaloupe fruits with water-soaked lesions 

of Erwinia tracheiphila, but not on uninfected fruit (Gautam et al., 2014). Salmonella  

Thompson was reported to have a lower epiphytic fitness on cilantro plants compared 

to the common plant bacteria, Pantoea agglomerans and Pseudomonas chlororaphis  

(Brandl and Mandrell, 2002). Likewise, Salmonella enterica persistence on tomato 

leaves was influenced by the presence of Xanthomonas perforans (Potnis et al., 2014) 

and survival of Salmonella strains on and in healthy, non-infected tomatoes was 

lower. Some Salmonella spp. are known to survive and persist in harsh environmental 

conditions outside their primary host, and may exist as contamination on plants, and 

then be ingested by animals. Furthermore, Salmonella Typhimurium can be 

recognized by plants, and even reported to activate the plant immune system (Meng et 

al., 2013). Salmonella Weltevreden can survive for long period of time on spinach 

leaves, it has been recovered for up to 21 days post inoculation (Arthurson et al., 

2011). 

Cantaloupe fruit is very susceptible to contamination by human pathogens (Richards 

and Beuchat, 2005a&b; Bowen et al., 2006; Gautam et al., 2012).  However, how  

contamination occurs in cantaloupe is not well documented. Fortunately, few studies  
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have demonstrated strategies and behavior of some human bacteria on other produce 

plants. Survival of Escherichia coli O157:H7 during a storage period (at 4oC) up to 

15 days, is attributed to their ability to establish in lettuce’s trichomes and stomata, 

which have been identified as a source of nutrition for the bacteria (Beuchat, 1999).  

Additionally, bacteria like E. coli, due to its surface charge and hydrophobicity, can  

strongly attach to the cantaloupe rind, making it difficult to remove during the wash  

process (Ukuku and Fett, 2002).  

2.3. Internalization of human bacteria in plants/produce.  

Produce’s physiological conditions play a role on survival of human pathogenic 

bacteria. For example, some surveys on commercial produce found that there was an 

increased likelihood of finding Salmonella in association with tissue that is damaged 

by soft rot pathogens when compared with healthy tissue (Gourabathini et al., 2008). 

Human pathogens and plant pathogens on fresh vegetables and fruits can establish a 

close relationship (Gagliardi and Karns, 2002; Natvig et al., 2002; Ingham et al., 

2005). The presence of Cladosporium cladosporiodes and Penicillium expansum in 

cantaloupe rind, increased the pH, and consequently, influenced internalization of 

Salmonella into inner tissues (Richards and Beuchat, 2005a, and Erickson, 2010). The 

pathogen S. Poona was also recovered on the wounded and inoculated rind surfaces of 

cantaloupe fruits stored at 20oC. Richards and Beuchat (2005b), additionally reported 

that the presence of C. cladosporiodes and P. expansum facilitated the migration of S. 

Poona 3-4 cm below the cantaloupe rind wound surface into underlying mesocarp 

tissues. Both Cladosporium cladosporoides, and Penicillium expansum were 

recovered from the inoculated rind and underlying tissues throughout storage at 20oC 
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for 10 days. Likewise, Potnis et al. (2015), found that the population of Salmonella 

enterica on tomato leaves pre-inoculated with plant pathogenic fungi, Xanthomonas 

species (X. Euvesicatoria, X. gardneri, X. perforans) increased after 8 days of 

inoculation. 

2.4. Fusarium species Infection.  

The genus Fusarium is one of the most studied fungal genera because of its 

importance as a plant pathogen, a mycotoxin producer (F. solani, F. oxysporum, F. 

graminearum, F. moniliforme, F. sambutinum, F. culmorum, and F. equiseti), and as 

a human pathogen (Seremi and Okhovvat, 2006). Fusarium spp. are widely reported 

to infect most economically important crop plants from around the world (Mahovic et 

al., 2004). They can exist as either saprophytes or pathogens on plants, animals, and 

humans. 

 Most Fusarium species are reported to be opportunistic pathogens on both plants and 

animals (Espinel-Ingroff et al., 2016; Tortorano et al., 2014). Fusarium oxysporum, 

Fusarium solani, and Fusarium giberrella fujikuroi complex, are the three most 

reported common species of Fusarium causing infections on plants (Tortorano et al., 

2014). They are associated with wide range of plants in their natural habitats 

(Mahovic et al., 2004; Burgess, 1981; Burgess et al., 1994, 1989, & 1992; Nelson et 

al., 1990). Several Fusarium spp. cause postharvest rotting on a wide range of 

vegetables crops. Fusarium fruit rot on melon causes both pre-harvest and post-

harvest losses. It has been reported as one of the most common causes of post-harvest 

fruit rots on vegetables; cucurbits, and tomatoes are frequently affected (Nuru et al., 

2009; Mohammad and Zitter, 2009; McGovern, 1994; Fletcher, 1994). Fruit infection 
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occurs in the field before or during harvest, symptoms may also develop in storage. 

The infection of softer tissues such as melon fruit develops quickly and is 

characterized by pink soft tissues (Ignjatov et al., 2015), lesions that extend into the 

center of the fruit, which become water-soaked, and have white, yellow or pinkish 

mycelium (Champaco et al., 1993).  

Fusarium species, which can be saprophytic or opportunistic pathogens, have also 

been isolated from soils in various climatic conditions (tropical, Mediterranean, arid; 

Backhouse and Burgess, 1995 & 2002).  

Melon fruit are susceptible to Fusarium infections from the time of fruit set through  

storage (Carter, 1979). Common Fusarium spp., for example: F. proliferatum, F.  

semitectum, F. verticillioides, and F. subglutinans have been associated with fruit rots 

of cucurbits (Izzati et al., 2011, and Kenny, 2010). Outbreaks of pumpkin fruit rot 

have been reported in the USA (Elmer, 1996; Elmer et al., 2007; Castroagudin et al., 

2009).  Fusarium spp. infection on fruits also produce mycotoxins and make fruit 

inedible (Mule et al., 1997). Mycotoxins called trichothecenes are produced by 

several Fusarium species (F. equiseti, F. graminearum, F. moniliforme, and F. 

sporotrichioides) (Mule et al., 1997& 2004). Fusarium species infection of cereal 

crops like wheat are prone to production of these mycotoxins (Adler et al., 1995). 

Fusarium fujikuroi and F. oxysporum have been reported to produce fumonisins and 

bikaverin, whereas, F. graminearum and F. pseudograminearum are known to 

produce fusavielin and zearalenone as their secondary metabolites (O’Donnell et al., 

2013). Additionally, Fusaria as opportunistic human pathogen, have been reported to 

cause Fusarium keratitis outbreaks in immunocompromised persons (Chang et al., 
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2006 & 2013). Fusaric acids are produced by most of the Fusarium spp. in infected 

food products (Brown et al., 2012). 

Melon fruit are susceptible to Fusarium infections because they are prone to cracking 

due to fluctuations in moisture and temperature in the field. Pathogenic Fusarium can 

infest these small cracks or infect at the soil-melon interface. Under the above 

conditions, infected melon fruit develops small lesions, surrounded with a green 

margin. Also, as the lesions mature, larger cracks develop along the fruit, allowing 

the Fusarium to enter. Under high humidity, white to pink fungal growth may also be 

observed near the crack or when the infected fruit is cut open (University of Kentucky 

Extension, 2010). The ability of these saprophytes and opportunistic pathogens to 

infest is made easier by the present of natural cracks and netting common in most 

melon cultivars (Fernandez-Trujillo, 2007). 

Fusarium spp. have been widely reported to cause post-harvest rots of cantaloupes 

and to be highly pathogenic (Wade and Morris, 1982). However, some Fusarium 

spp., like F. solani, which may be saprophytic on muskmelon’s roots and stems, can 

also be extremely pathogenic on fruits (Champaco et al., 1993). Fusarium solani 

infection on melon fruit may be facilitated by natural cracks or netting, physical 

injury from insects and wind-blown sand (Champaco et al., 1993). Fusarium 

proliferatum has been isolated from melon production fields in Northern-Western 

Mexico (Rivas-Garcia et al., 2018). Rivas-Garcia et al. (2018), molecularly identified 

all the Fusarium isolates collected from infected melons as F. proliferatum. Rivas-

Garcia et al. (2018), were the first to report Fusarium proliferatum infection on melon 

fruit in that region of Mexico. 
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Both Fusarium and Salmonella are endemic in the cucurbits’ production fields of the  

Eastern Shore Maryland, USA (Egel and Martyn, 2007, Angelo et al., 2015). 

Currently, there is limited information on interactions between Fusarium spp. that 

cause fruit rot in melon fruits and human pathogenic bacteria such as Salmonella 

in/on melon fruits. 
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Chapter 3: Fusarium spp. of Cucumis melo in the Mid-Atlantic Region of the 

U.S. 

Abstract 

Melons (Cucumis melo) are hosts to many fruit rots including those caused by 

Fusarium spp.  However, which Fusarium spp. cause cucurbit fruit rots in the mid-

Atlantic region of the U.S, especially in the states of Maryland and Delaware, has not 

been documented. Our objective was to identify Fusarium spp. causing fruit rot on 

melon within the region. A survey was conducted in five fields in Maryland and two 

in Delaware during the months of July and August, in 2016 and 2017. One hundred 

and forty-three (71in 2016, and 72 in 2017), putative Fusarium isolates were obtained 

from the two hundred and fifty fruits collected. To carry out pathogenicity tests, 

isolates were inoculated on healthy honeydew melon. Honeydew melon fruit were 

inoculated in five sites (3-center, stem scar, blossom end). The lesions sizes (width 

and depth, mm) formed by the isolates were measured and compared to an isolate 

Fusarium oxysporum f.sp. niveum (control which infects the roots and stems of 

watermelon but not cantaloupe plants; p≤0.05). Following the pathogenicity screen, 

selected isolates (67), exhibiting significant larger lesion sizes at least one location on 

the fruit were selected for phylogenetic identification. To carry out the phylogeny 

identification, PCR was conducted using primers that targeted the translation 

elongation alpha factors (TEF1&2) and the second largest sub-unit region of RNA 

polymerase II (RPB2). According to Fusarium-ID online database, 56 isolates could 

be molecularly identified as Fusarium spp. (F. fujikuroi-20, F. proliferatum-18, F. 

oxysporum-15, F. graminearium-2, F. verticilloides-1). Our pathogenicity tests 

indicated that most of the Fusarium isolates we collected were not pathogenic to 
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melon fruit. Therefore, we can conclude that saprophytic and opportunistic 

pathogenic Fusarium species are present in rotten melons in the field.  

Keywords: Melon, Cultivars, Fusarium fruit rots, Pathogenicity, Fusarium spp.,  

Delmarva. 

Introduction  

Fusarium species are one of the most common pathogens that cause post-harvest fruit  

rots on vegetable fruit (Saseetharan et al., 2014; Nuru et al., 2009; Fletcher, 1994). In  

fruits, Fusarium rot is characterized by its superficial white mycelium and 

sporodochia masses resulting in lesions on the surface (Fletcher, 1994 & Burgess et 

al., 1994) that often extended into the center of the fruit. Infected fruit surfaces may 

become water soaked and covered by white, yellow, or pinkish mycelium (Champaco 

et al., 1993). Fusarium rot of cucurbits was first identified in squash and described in 

detail in 1932 from South Africa. It is common in many countries around the world, 

and most cucurbits are susceptible, including melons (Doidge and Kresfelder, 1932). 

Melon fruit become infected by Fusarium especially if they are bruised or wounded, 

or in contact with the soil. Fruit rot symptoms can vary considerably depending on 

moisture levels, but most fruit rots begin small, and progress to large sunken lesions 

that may extend into the flesh (Champaco et al., 1993). 

Fusarium infections on pumpkins can lead to up to 60% yield loss (Elmer, 1996). 

Elmer (1996), identified F. Gibberella acuminatum, F. equiseti (Corda) Saccador, 

and F. graminearum species as the main cause of type 1 dry, and hard rot of 

pumpkins.   

Through other available literature, F. graminearum, F. equiseti, F. avenaceum, and F.  
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solani has been identified as common Fusarium spp. causing post-harvest rots of  

cucurbits. Even though F. solani is identified as a weak pathogen to nonpathogenic  

species on melon seedlings, it can cause extensive fruit rots (Champaco et al., 1993).  

Additionally, F. culmorum, F. fujikuroi, F. oxysporum, F. scirpi, and F. semitectum, 

are the five other common Fusarium spp. reported to cause fruit rot of melon in the 

US (Babadoost and Zitter, 2009 & Elmer, 1996). The pathogen F. solani f. sp. 

cucurbitae race 1 has been determined to cause a root, seedling, and fruit rot, whereas 

race 2 causes only fruit rot in cucurbit crops (Booth and Waterston, 1964). 

Few evaluations have been carried out on Fusarium spp. causing fruit rot on melon, 

and other cucurbit fruits in the US (Elmer, 1996; Babadoost; 2009; Carter, 1979, 

1981, and Waraitch and Nandpuri, 1975). Even though Fusarium fruit rot is one of 

the most important disease of muskmelon in Maryland (Maryland Extension Bulletin, 

2003), Fusarium spp. evaluation on cucurbits in the Delmarva region of the US is 

minimal.   

Previous researchers evaluated the Fusarium spp. causing wilt on watermelon and  

muskmelon in region (Zhou and Everts, 2003; Dutky et al., 1986), but not fruit rot.  

Therefore, to identify the Fusarium spp. present that cause fruit rot on melon, and to  

provide information to the producers in Maryland and Delaware, a survey was carried 

out in both states during summer season of 2016 and 2017. 

Materials and Methods 

3.1. Sample Collection.  

A survey of Fusarium fruit rot of melon was conducted during the months of July and  
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August 2016 and repeated in the same months during 2017, at three locations in  

Maryland and two in Delaware. The locations in Maryland were: The University of  

Maryland’s Lower Eastern Shore Research and Education Center, Salisbury 

(LESREC)- two fields, A and B, where field A was an organic production field and 

field B was farmed with conventional practices; the University of Maryland’s WYE 

Research and Education Center in Queenstown (WYEREC), and a grower’s field in 

Baltimore County. In addition, two fields were surveyed in Laurel, Delaware, in 

2016. During 2017, the locations were: LESREC-A, and B, WYEREC, University of 

Maryland Central Maryland Research and Education Center, Upper Marlboro facility 

(CMREC), and the two fields in Laurel, Delaware. Fruits were collected during the 

second half of crop harvest. Melon cultivars sampled included: LESREC-A- ‘Sivan’ 

(Charentais type); LESREC- B: ‘Arava’ (Galia type), ‘Athena’ (Cantaloupe type), 

‘Dulce nectar’ (honeydew type), ‘Jaune de Canaris’ (Canary type), ‘Sivan’ 

(Charentais type); WYEREC: ‘Edens Gem’ and ‘Athena’ (Cantaloupe type, ‘Snow 

Mass’ (honeydew type), ‘Escorial’ and ‘Sivan’(Charantais type), ‘Spanish Sun’ 

(Canary type) ; Laurel, Delaware: ‘Ariel’ (Cantaloupe type) and ‘Athena’ 

(Cantaloupe type). Diseased fruits had one or more of the following symptoms: 

sunken lesion, mycelial growth, or pink or white area on the surface excluding 

obvious sunscald (Appendix 7i). Symptomatic whole melon fruit were transported in 

coolers (4oC) to the lab for processing.   

3.2. Isolation of Fusarium spp. 

Infected fruits were stored in a walk-in cooler (4oC) until processing. To prepare 

samples for isolation, fruit were lightly brushed and washed with sterile deionized 
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water to remove dirt and any other foreign particles on the fruit rind. The washed 

melon fruits were then blotted dry with paper towels and left to air dry for 5 mins. 

Twenty 0.5 cm sections of fruit, which included the edge of the lesion area, were 

excised and surface disinfested in a 1.12% sodium hypochlorite (NaOCl) solution for 

3 mins. After 3 minutes, the sections were transferred into petri dishes containing 

sterile deionized water for an additional 3 mins, repeated once, to wash off traces of 

NaOCl. Five sections of the diseased fruit were placed on a quarter strength Potato 

Dextrose Agar (QPDA) and incubated at room temperature under constant 

fluorescence light.  The plates were examined every 2 days for mycelium growth and 

sub-cultured when growth was visible (Appendix 7.ii). Sub-cultures were incubated at 

room temperature for 7 days.   

Monoconidial cultures were obtained by rinsing spores off from the mycelium on the  

QPDA plates into a tube containing 0.1% water agar. Micro and macro spores were  

counted using a Hemocytometer (Fisher scientific) and serially diluted to 10 spores 

per ml. The spore dilution was plated unto water agar (10% Bacto Agar) for 24 hr. 

Plates were observed under a light microscope and a single germinated spore was 

identified and transferred onto slant tubes of QPDA and incubated at room 

temperature for 7 days. Thereafter, 4 mL of 15% of Glycerol solution was dispensed 

into slant tubes, slightly shaken for mycelia to release spores, and 2 ml pipetted into 

sterile cryogenic tubes and stored in the -80oC until use. 

3.3. Pathogenicity test of Fusarium isolates; inoculum preparation. 

To prepare Fusarium inoculum, isolates were removed from storage and placed in 

100 mL Potato Dextrose Broth (PDB) medium in a 250-mL Erlenmeyer flask (Fisher  



 

 

25 

 

Scientific) and incubated with constant shaking (150 RPM) at 25oC for seven days. 

After the seven days, mycelium was strained through a 4-layered sterile cheese cloth. 

The conidial number was determined using Hemocytometer under a light microscope. 

The culture was then serially diluted to obtain a spore density of 1x 106 mL-1. 

A total of one hundred and forty-three isolates, a control (Fusarium oxysporum f.sp.  

niveum: F063-2), and the water control were in pathogenicity tests. The location label 

and number of isolates used during the pathogenicity test were as follows: from 

Baltimore County (B-18), University of Maryland WYE Research and Education 

Center (WYEREC-9), University of Maryland Lower Eastern Shore Research and 

Education Center organic field (LESREC-A-14), University of Maryland Lower 

Eastern Shore Research and Education Center conventional field (LESREC-B-15), 

and farmer’s field in Laurel, Delaware (V-14), in 2016.  

In 2017, isolates tested were from the University of Maryland Central Research and 

Education Center, Upper Marlboro (CMREC-15), WYEREC (22), LESREC-A (13), 

UM-LESREC-B (13), and Farmer’s field in Laurel, Delaware (V-8). Ripe honeydew-

type melon (cultivar unknown) purchased from a local retail store in Salisbury, MD, 

were surfaced sterilized using 1.12% NaOCl. Five wounds, 7mm in diameter and 

depth were made on surface of each fruit with ethanol-flamed cork borer. Wounds 

were located at the stem scar end (one), three locations around the 

circumference/center, and one at blossom end. At each wound location, the plug of 

fruit was removed and 20 μl (1 x 106 spores mL-1) of fungal inoculum was placed in 

the exposed flesh. Plugs were replaced to cover the holes after inoculation, and a clear 

tape used to hold them in place.  A single fruit was inoculated with one isolate and 
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constituted one replicate. There were two one-fruit replicates for each isolate for the 

first test and three replicates for the second test (Appendix 7iii). Inoculated fruit were 

kept in an incubator with a 12-h light/dark cycle, and the temperature maintained at 

22oC for 10 days, at which time, the means depth and maximum width were recorded. 

Isolation was made from lesions on fruit, grown on PDA plates and examined to 

confirm that they were caused by Fusarium spp.  

Analysis was carried on lesion circumference width, depth, stem scar width, depth, 

and blossom width, depth, (Champaco, et al., 1993).  Lesion width and depth data 

were subjected to analysis of variance (ANOVA) and means separated using mix 

model (JMP; Elmer, 1996). Isolates that caused lesions greater than F-063-2 (ᾳ=0.05) 

at one or more locations on the fruit were selected for molecular identification. In 

addition, some isolates that caused larger lesions than F-063-2, but not significantly, 

so (ᾳ=0.2) were chosen to include more geographical diversity of isolates. 

3.4. Identification of Fusarium Isolates. 

Morphological Identification. During 2016 survey, to identify the isolates  

morphologically, monoconidial isolates were grown on carnation leaf agar (CLA) at 

25oC for 10 days for phenotypic identification according to Fusarium manual Leslie 

and Summerell (2006) and Siddique et al. (2010). Phenotypic characteristics were 

determined under a light microscope, the cultures were examined for shapes and sizes 

of the following features: macroconidia and microconidia, number of septa and 

shapes of the apical and basal cells of the macroconidia, conidiogenous cells, growth 

rate, and presence of chlamydospore, microconidia chains and sporodochia, and 

presence of microspores. 
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3.5. Molecular Identification of Fusarium Isolates. 

Monoconidial isolates were identified to the species level using molecular techniques.  

Briefly, mycelia of individual cultures were grown and harvested from the PDA 

plates after 7 days of incubation. Genomic DNA was extracted using the DNA 

extraction buffer (EB) (1mM KCl, 100mM Tris-HCl, and 10mM EDTA, adjusted pH 

to 8.0; 0.5 mL per sample) and Isopropanol (100%) (Chi et al., 2009). Mycelia (20-40 

mm2) and conidia were carefully scrapped off the media surface using a sterile 

inoculating loop and placed into a sterile 2 ml tube with EB and ground using micro 

pestle (Fisher scientific, Raleigh, NC) until it appeared fine. The fine mycelia sample 

was then centrifuged at 5000 rpm for 10 min, and the supernatant containing DNA 

was decanted into a 1.5-mL tube containing 0.3 mL Isopropanol, and the tubes were 

inverted 5-times followed by centrifugation at 12000 rpm for 10 min. The supernatant 

was then discarded and pellet containing DNA preserved. Tubes with pellets were 

kept opened in a sterile hood with constant airflow for one hour. The DNA was re-

suspended in 100 µl rehydration solution (Promega Corporation, Durham, NC; Chi et 

al., 2009).  The purified DNA was stored at -20oC until  

further analysis. 

3.6. PCR Amplifications. 

Fusarium species were identified based on their translation elongation factors 1α; 

Tef15′ ATGGGTAAGGAGGGACAAGAC-3′ and Tef2 

5′GGAAGTACCAGTGATCATGTT-3′ (O’Donnell et al., 1998), and RNA 

polymerase II second largest subunit (RPB2) (5′-GGGGWGAYCAGAAGAAGGC-

3′(O'Donnell et al., 2013) and on RNA polymerase II second largest subunit (RPB2-
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RP1; 5′GGNGTCATGCARATCATNGC-3′; LeBlanc et al., 2015), PCR products 

were sequenced.   

The PCR amplification was carried out in 25µl reaction volumes using 9.5µl 

deionized dH20; 12.5µl of premix Master mix PCR buffer (Go Tag, ThermoFisher 

scientific.), 1.0µl of Taq DNA polymerase, 1.0µl each of 2.5pmoles/µl primers 

translation elongating factor alpha and RPB2 (Concentration: 1/10), and 1.0 µl of the 

target DNA (Concentration: about 20 ng/µl). The PCR mixture was then amplified on 

a Eppendorf Master Cycler equipped with heated lid and subjected to an initial 

denaturing at 94oC for 1 min (1 cycle) followed by 35 cycles of 30 sec at 94oC, an 

annealing temperature at 55oC for 30 sec, extension at 72oC for 1 min, and a final 

extension at 72oC (1 cycle), and cooling at 4oC until end. 

The amplicons were separated by gel electrophoresis using 1% agarose minigels with 

a 100 bp molecular marker (Fisher Scientific). Electrophoresis was performed in a 1 x 

TBE (0.045 M Tris-borate and 1 mM ETA, pH 8.2) containing Nucleic Acid Gel 

Stain (5 µl/100 mL) at 70 V for 1 h. After one hour, the gels were visualized under 

UV-light and photographed using PhotoDoc-It ® Imaging System, Bench top UV 

Trans illuminator (Appendix 7). 

3.7. DNA Sequencing, Alignment, and Phylogenetic Analysis. 

Template DNA (50 µl) for sequencing was prepared and purified, following 

manufacturer’s instructions (QIAquick ®, QIAGEN, USA). The purified products (30 

µl) were sent to Macrogen Service Center, Rockville, Maryland for sequencing. The  

sequences of TEF or RPB2 and 2 regions of the tested isolates were obtained and 

edited to generate a consensus sequence from the forward and reverse sequence runs 
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in the amplicon. Out of sixty-seven strains sequenced, only fifty-six could be 

identified as Fusarium spp. (Tables 1& 2). Sequences of PCR fragments were aligned 

using BLASTn algorithm to the sequences of reference strains belonging to 

individual Fusarium species, deposited in the GenBank Database in both Fusarium 

ID online and NCBI online data bases. They were assigned to the reference species, 

of which both sequence coverages and nucleotide identities matched the query (Table 

1); (www.ncbi.nlm.nih.gov/) and Fusarium ID 

(http://isolate.fusariumdb.org/blast.php). 

3.8. Data Analysis. 

Isolate’s lesion sizes were evaluated using analysis of variance (ANOVA), and the 

means comparison using Fishers LSD and the LSD at p≤ 0.05. All data analysis was 

performed using JMP mixed model. 

Results and Discussion. 

4.1. Morphological analysis. 

From about two-hundred and fifty melon fruit that were suspected to be infested with  

Fusarium and collected in Maryland and Delaware during 2016 and 2017, only one 

hundred and forty-three gave reddish, purple, or pink pigmentation on PDA with 

strong indications as being Fusarium isolates in preliminary observations. Those 

isolates were selected for further identification. 

Preliminary morphological determination was that most isolates were F. solani 

(29.58%) (Appendix 1-6). However, when the isolates were molecularly identified, 

the sequencing results revealed the isolates collected in 2016 and 2017, belonged to 
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only five Fusarium spp., and none was F. solani as originally thought.  Because 

morphological determinations did not coincide with the molecular identification, only 

molecular identification was conducted in 2017.  

4.2. Macroscopic Characteristics. 

The presumptive identification for each isolate from characteristics observed on CLA 

is given in appendix 1-6. During this identification procedure, generally, the culture 

grew within two days on CLA; the mycelia were dense, white, and turned either 

purple, pink, or even some yellow pigmentation. Some isolates showed several shades 

of red to brown when observed from the bottom of the plate (Appendix 6). 

Morphological species identification is regarded to be difficult and needs a lot of 

expertise to differentiate the closely related Fusarium species (Herron et al., 2015). 

Morphological characteristics among different but closely related species of 

Fusarium cannot be easily recognized and they may look more similar than different 

(Geiser, 2004; Aoki and O’Donnell, 1999; Nireriberg and O’Donnell, 1998). 

Therefore, our findings are based only on molecular identification of the Fusarium 

spp. 

4.3. Isolation and Pathogenicity Test. 

Of the total two hundred and fifty melon samples collected, only one hundred and 

forty-three pure cultures were isolated and identified as presumptive Fusarium. 
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4.4. Molecular Identification. 

Based on Fusarium-ID online database, only 56 isolates could be molecularly 

identified as Fusarium spp. (F. fujikuroi-20, F. proliferatum-18, F. oxysporum-15, F. 

verticillioides-1, F. graminearum-2).  

During 2016, from Baltimore County, F. fujikuroi (7) and F. proliferatum (4) were  

molecularly identified (Table 1).  All the isolates collected and identified from the 

UMWYREC, during 2016 were F. fujikuroi (4), whereas during 2017, the isolates 

were identified as F. fujikuroi (1) and F. proliferatum (4; Table 2). In 2016, isolates 

collected from LESREC-B were: F. proliferatum (1), F. fujikuroi (4), and F. 

oxysporum (2; Table 3). In 2017, from the same location, isolates identified were: F. 

fujikuroi (1), F. proliferatum (1), F. verticillioides (1), and F. oxysporum (3; Table 4). 

Isolates collected from LESREC-A in 2016 were identified as F. oxysporum (1) and 

F. proliferatum (1; Table 3).  In Delaware, isolates collected in 2016, were: F. 

proliferatum (5), F. oxysporum (2), and F. graminearum (1). In 2017 isolates from 

this location, were: F. fujikuroi (2), F. oxysporum (1), F. proliferatum (1), F. 

graminearum (1; Table 5). The isolates collected from UPCMREC in 2017, were: F. 

oxysporum (3), F. fujikuroi (1), and F. proliferatum (1; Table 6). Overall, F. fujikuroi 

(20) and F. proliferatum (18) were the two most prevalent species identified and most 

F. fujikuroi (7) were collected from Baltimore in 2016 (Table 1). To the best of our 

knowledge, F. proliferatum has been rarely reported on melon fruit (Rivas-Garcia et 

al., 2018). However, it has been previously isolated and associated with produce like 

asparagus (Bargen et al., 2009).   
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In our study, Fusarium proliferatum was one of the most prevalent species found. It 

has been reported in most parts of the world as a moderately aggressive pathogen of 

multiple plant species, especially maize, and one the major mycotoxin (fumonisins) 

producer (Musser and Plattner, 1997; Stepien et al., 2011; Ross et al., 1990). The 

pathogen can also survive as an endophyte-like organism, without visible disease 

symptoms in the host (Logrieco, 1995).   

In this study, Fusarium fujikuroi was identified as a predominant species. In some  

literature, Fusarium fujikuroi complex (FFSC), is reported as one of the larger groups  

within the genus Fusarium and are found in various geographical locations of the 

world (Jurjevic et al., 2005). With emerging technology and rise in more advanced 

molecular analysis techniques used in identifying Fusarium species, there is 

likelihood of recognizing more species within the F. fujikuroi complex (O’Donnell et 

al., 2015).   

We also identified the species Fusarium oxysporum during this study, which has been  

reported and well-studied in cucurbits (Vakalounakis, D. J., 1996) and as a non 

pathogenic soil-borne fungus (Lievens et al., 2007).  

Fusarium graminearum has been widely reported to cause scab in most cereal crops,  

where it is extremely destructive, and a producer of the harmful mycotoxin 

deoxynivalenol (Jansen et al., 2005). Fusarium graminearum has been categorized as 

an epidemic disease in North America (Ward et al., 2008). Fusarium verticillioides is  

commonly associated with Fumonisins productions in cereal crops especially maize 

and maize-based products however, it has been rarely reported in cucurbits (Proctor et 

al., 2006). 
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4.5. Repeat Pathogenicity Test. 

After the phylogenetic identification, representative isolates (24), were selected for a  

confirmation pathogenicity test to determine the isolates’ pathogenicity and separate  

those that were pathogenic from saprophytes.  The isolates were inoculated on 

healthy honeydew melon, as previously described in this study (Elmer, 1996). 

Inoculation of Fusarium species on honeydew melon was effective in reproducing 

lesions of F. fujikuroi, F. proliferatum, F. oxysporum, F. graminearum, and F. 

verticillioides (Table 7). However, most of these selected isolates did not produce 

significantly different lesions compared to the F. oxysporum f. sp. niveum (control; 

Table 7). Therefore, we can conclude that, the five Fusarium spp. (F. proliferatum. F. 

oxysporum, F. fujikuroi, F. graminearum, F. verticillioides), obtained from melons, 

and identified from Maryland and Delaware region may have been saprophytes or 

opportunistic pathogens on melon (Tables 1-7). Fernandez-Trujillo et al. (2007), 

found that, the melon fruit with decay and damage in the storage, had lower 

percentage of Fusarium spp. infections. When they were found, they were located on 

fruit skin and were frequently associated with Alternaria rot. 

Conclusion. 

Most of Fusarium species isolates obtained and identified in our study were 

saprophytes, or opportunistic pathogens. Fusarium fujikuroi and F. proliferatum were 

the two most common species isolated from both the states of Maryland and 

Delaware. However, previously these species, have rarely been reported to infect 

melon fruit. They have been widely isolated and associated with cereal crops and 

asparagus (Stepien et al., 2015).  



 

 

34 

 

Fusarium fujikuroi (35.71%) and F. proliferatum (32.14%) were the two most 

common species isolated from melons in our study. Fusarium spp. collected from the 

LESREC-B and Laurel; Delaware had the most diverse population compared to other 

locations. Isolates collected from LESREC-B in 2017, comprised four species: F. 

proliferatum, F. fujikuroi, F. oxysporum, and F. verticillioides. Those collected from 

Laurel, Delaware comprised of three species (F. proliferatum, F. fujikuroi, F. 

graminearum). The knowledge about the occurrence of Fusarium pathogens on 

various cucurbit fruit especially melon fruit in Delmarva region of the US is still 

limited. 
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Chapter 4: Interactions between Salmonella enterica Newport, Fusarium spp. 

and Melon Cultivars. 

Abstract  

Melons are perishable fruit, affected by several post-harvest plant pathogens as well 

as human pathogens, posing a risk to food safety. This study evaluated the 

relationship between four Fusarium spp. of melon and the foodborne pathogen 

Salmonella enterica Newport. In four repeated trials, melon rind discs from ‘Arava’, 

‘Athena’, ‘Dulce Nectar’, ‘Jaune de Canaries’ and ‘Sivan’ fruit grown in the field 

(field 1 and 2) and in high tunnels (high tunnel 1 and 2) were inoculated separately 

with locally-isolated Fusarium isolates. These were either F. oxysporum, F. fujikuroi, 

and F. armeniacum or F. proliferatum, with no Fusarium infection serving as a 

control. Salmonella Newport was inoculated onto melon discs four days post-

Fusarium infection and recovered 24 hours later. Melon cultivar impacted the 

retrieval of S. Newport. In all four replicated experiments, one or more of the netted 

varieties ‘Arava’, ‘Athena’ and ‘Sivan’ yielded higher S. Newport counts that one or 

both smooth-rind melons ‘Jaune de Canaries’ and ‘Dulce Nectar’ (p<0.05). Fusarium 

infection did not have a significant impact on Salmonella retrieval. The average S. 

Newport count recovered was 5.0 log CFU mL-1 for both infected and uninfected 

melons.  However, in field 2 melons, S. Newport counts recovered from F. fujikuroi-

infected melons were higher than all other treatments (8.6 log CFU mL-1; p<0.001), 

due to high levels of Salmonella recovered from ‘Jaune de Canaries’ compared to 

other experiments. The minimal Fusarium influence observed could in part be 

attributed to the lack of pathogenicity of the Fusarium strains used. The food safety 
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risk of melon did not appear to be enhanced by post-harvest colonization with local 

Fusarium spp. However, melons with netted rinds appeared to favor Salmonella 

colonization compared to smooth melons. Choice of melon cultivar may be an 

important consideration in reducing Salmonella colonization risk in areas where 

Salmonella may be endemic in the environment.   

Key words: Melon food safety, Melon Cultivars, Fusarium Fruit Rot, Fusarium spp. 

Salmonella enterica Newport, Human Pathogen-Plant Pathogen Interaction, Human 

Pathogen-Plant Interactions. 

Introduction. 

5.1. Melon Consumption and Salmonella Contamination.  

The growing consumption of fresh fruit and vegetables in the U.S. over the past few  

decades have coincided with increasing reports of foodborne illnesses associated with  

fresh produce (Callejon et al., 2015). During the past 20 years in the U.S., Salmonella 

has been one of the most frequent pathogens responsible for foodborne illness 

outbreaks (CDC, 2015). Some of these outbreaks have been associated with cucurbit 

produce, and many involved melons (Angelo et al., 2015; CDC, 2015; CDC, 2012, 

CDC, 2011; CDC, 2008; CDC, 2002; Lynch et al., 2009). 

5.2. Salmonella enterica on/in Plants. 

 

Salmonella enterica can adhere to, persist and even multiply on plant leaves and fruit  

(Barak et al., 2005, 2007, 2008 & 2011; Barak and Liang, 2008; Golden et al., 1993;  

Hirano et al., 1982). Salmonella internalize in cucurbits (Golden et al., 1993). 

Vegetables and fruit support growth of a wide range of microorganisms due to 
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available nutrients and moisture, and water activity (aw; 0.97 - 0.99) values that are 

close to the optimum level of most microorganisms (Montville and Matthews, 2001). 

Also, near neutral pH in produce enhance microbe’s survival (Webster and Craig, 

1976). Additionally, sites of damaged plant tissue may exhibit enhanced bacterial 

activity due to available nutrients on produce surface (Wells and Butterfield, 1999). 

Human bacteria can form biofilms on produce to adapt to survive adverse 

environments (Annous et al., 2005). Salmonella and Listeria monocytogenes can 

survive and multiply on cucumbers (Blostein, 1993; Angelo et al., 2015), and may be 

favored by netting on melon (Blostein, 1993). Melon development characterized by 

netting formation may support attachment of human bacteria (Keren Keiserman et al., 

2004). 

Plant pathogens, which cause degradation of plant cell wall polymers, release 

nutrients which support survival and growth of human pathogens in plants. 

Salmonella are known to be less competitive and have lower survival ability on plant 

surfaces than resident microbiota and may benefit from presence of plant pathogens 

(Richards and Beuchat, 2005a & b, Riordan et al., 2000). Surveys carried out to 

evaluate commercial produce quality found out that there was an increased likelihood 

of finding Salmonella in association with tissue damaged by soft-rot pathogens, when 

compared with healthy tissue (Meng et al., 2013). Injury and wounds present on 

produce can also act as sites of co-infection between plant and human pathogens, and 

can further alter the microenvironment, such that plant pathogens can contribute to 

the proliferation of human enterobacteria (Riordan et al., 2000, Simko et al., 2015). 

Presence of downy mildew and Bremia lactucae in combination with high humidity 



 

 

38 

 

on lettuce, improved growth and survival of Escherichia coli O157: H7 and 

Salmonella enterica (Simko et al., 2015).  

Apples infected by Glomeralla cingulata had higher pH, which supported 

significantly more growth of E. coli 0157:H7 compared to uninfected control 

(Riordan et al., 2000). A study conducted on supermarket produce to evaluate the 

impact of Erwinia carotovora, which causes soft rot on plants, on Salmonella 

persistence and colonization, revealed that Salmonella incidence was more common 

when E. carotovora was present (Mez-lopez, 2013). Richards and Beuchat (2005), 

evaluated the impact of plant pathogens on wounded and intact cantaloupe rinds and 

reported that three of the pathogens, Cladosporium cladosporioides, Geotrichum 

candidum, and Penicillium expansum increased the pH and supported growth of S. 

Poona. However, Epicoccum nigrum and Alternaria alternata neither impacted the 

pH nor growth of S. Poona. 

5.3. Fusarium spp. and Melon 

Melon fruit is highly perishable in part due to melon susceptibility to post-harvest  

diseases such as Fusarium. Fusarium infection on cucurbit fruit results in mycelial  

growth that penetrates plant tissue, migrating into the center of the fruit and leading to  

water-soaked areas (Bachi et al., 2004). Melon infection may occur in the field before 

or during harvest, symptoms may develop in storage and result in both pre-harvest 

and post-harvest losses (Fernandez-Trujillo et al., 2007). Since infection often 

proceeds and manifests after purchase by consumers, melons with less severe 

infection are frequently handled and may even be consumed. Both Fusarium and 

Salmonella are indigenous in the agricultural environment of the Maryland Eastern 



 

 

39 

 

Shore, a region known for cucurbit production (Angelo et al., 2015; Everts et al., 

2012). Our current study evaluated the impact of four Fusarium spp. (F. oxysporum, 

F. fujikuroi, F. armeniacum, and F. proliferatum), infestation of various melon 

cultivars (Arava, Athena, Dulce nectar, ‘Jaune de Canaries’ and Sivan), on 

Salmonella enterica Newport colonization and survival. 

Materials and Methods 

6.1. Melon Samples Production. 

All experiments were carried out on five different cultivars of melon grown at the  

University of Maryland Lower Eastern Shore Research and Education Center 

(LESREC), Salisbury, MD facility, either in the field in summer 2016 or in a high 

tunnel in spring summer 2017; or in a high tunnel at the University of Maryland Wye 

Research and Education Center, Queenstown, MD (WYEREC) in fall 2016. Melon 

seeds were purchased from Park Seed Co. (Cokesbury, SC) and Eden Brothers 

(Arden, NC), in 2016 and 2017.  

Five melon cultivars represented different melon types: ‘Arava’ (C. melo var. 

reticulatus, Galia), ‘Athena’ (var. reticulatus, muskmelon), ‘Dulce Nectar’ (var. 

inodorus, honeydew), ‘Jaune de Canaries’ (var. inodorus, Canary) and ‘Sivan’ (var. 

cantalupensis, Charentais). Seeds were first grown in the greenhouse for approximate 

22 days at UM-LESREC, ‘hardened off’ outside the greenhouse for four days, then 

transplanted to the field or the high tunnel. While the seedlings were being ‘hardened 

off’, they were treated with Admire insecticide (ADMIRE® PRO Systemic 

Protectant, Bayer Crop Science LP, NC; 0.58mL/Liter of water at 29.6mL/A), to 
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prevent insect pest damage. Melon seedlings were transplanted in the field using a 

water wheel trans-planter, and in the high tunnel by hand. Melon seedlings were 

spaced 61 cm apart within and rows spaced 183 cm apart. To lengthen the harvest 

period, melon seedlings were planted 3 weeks apart for 2 experiments in 2016. Melon 

cultivars were grown in a completely randomized block design (CRB), arranged in 

four replicates for a total of twenty plots (3.0 m x 1.8 m), both in the field and the 

high tunnel. Melons were grown on raised bed/rows covered with 1.25-mil black 

plastic over a single line of 8-in. emitter spaced drip tape in a one-pass operation in 

the field whereas in the high tunnel, raised beds were covered with a landscape fabric 

mat and irrigated with drip lines along each bed.  

Fertigation was done using 1.1 kg/567.8 L of water of N.P.K (20.20.20). Field and 

bed management was carried out both mechanically and by hand. Melon diseases and 

pests were managed conventionally. Bravo Weather Stik® (chlorothalonil 720 SC;1.5 

lbs Active ingredient (a.i.)/acre), Quintec® (0.098 Quinoxyfen lbs a.i./acre) and 

Procure® 50WS (8 oz a.i./acre) fungicides (Syngenta, Wilmington, DE), Fontelis® 

(DuPontTM (Penthiopyrad; 16 fl oz/acre) were used for management of melon foliar 

diseases. Fruit were harvested at the ¾ slip stage and kept under refrigeration in a 

walk-in cooler (4oC) before processing.  

Survival and colonization of S. Newport on melon fruit was evaluated for the five 

melon cultivars infected separately with Fusarium spp. (F. armeniacum-F2015007, F. 

oxysporum-F2015002, F. fujikuroi-F2015003, and F. proliferatum-F2016V016A). 

Fruit infected with the three Fusarium spp., but not S. Newport were evaluated as 

controls. 
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6.2. Microbial Material Fusarium spp. 

Isolates for these experiments were obtained from a field survey that was carried out 

on muskmelon grown in an organic field at UM-LESREC, during the summer 2015 

and in Delaware at a farmer’s field during summer 2016. Melons with visible white 

or pinkish mycelia were collected, kept in a cooler and transported to the lab for 

processing. Isolations were made within 24 h of collection and a total of eight 

monoconidial Fusarium isolates were obtained. These were later molecularly 

identified based on their translocation elongation alpha factors (1&2) region and 

RNA polymerase II gene (RPB2) primers (O’Donnell et al., 2013; LeBlanc, et al., 

2015; Table 3). From the eight total Fusarium spp. isolates, four species were 

identified (F. armeniacum, F. oxysporum, F. fujikuroi, and F. proliferatum; Table 8). 

An isolate identified as F. proliferatum, isolated in 2016 from a production field in 

Laurel, Delaware, was chosen to replace F. armeniacum during the fourth experiment 

replication (Table 9). The strain of S. Newport used in this study was isolated from an 

irrigation pond in Virginia and was identical to an outbreak strain traced back to that 

same farm (Green et al., 2008). The isolate was adapted for 80 µg/ml rifampicin 

resistance. We have compared growth of this isolate under various conditions to other 

S. Newport isolates in our collection and note no differences in growth rate either in 

culture or on produce surfaces. 

6.3. Inoculation Experiments. 

The experiments were conducted as a factorial design with five cultivar treatments 

and eight inoculation treatments for a total of forty experimental units. The 

inoculation treatments were one of four Fusarium spp. with S. Newport. Controls 
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received no Fusarium inoculum (water only). Another control with no Fusarium or 

Salmonella inoculum was also conducted to ensure no background Salmonella was 

present on melons. The treatments were replicated six times in the first, third and 

fourth experiment replications, and three times in the second experiment. A biscuit 

cutter was used to cut melon rind discs (surface area=158.5 cm2). Eight melon rind 

discs cut from an individual melon were distributed uniformly to each of the eight 

treatments except when the fruit were too small, and two fruit were used to obtain the 

required number of discs. 

6.4. Salmonella Newport Inoculum Preparation.  

The S. Newport strain was revived from frozen stock by growing at 37oC in tryptic 

soy agar (TSA; Fisher Scientific, Fair Lawn, NJ) supplemented with rifampicin (50 

µg mL-1) (Sigma Aldrich, USA). Isolated S. Newport colonies were then picked and 

transferred into a 25 mL tube containing TSB with rifampicin (TSB+rif) and 

incubated with continuous shaking at 35°C for 16-18 h. S. Newport was surface 

plated on TSA+rif supplemented with rifampicin (50 µg mL-1) and incubated at 37oC 

for 24 h. Colonies from this culture were used to make a suspension of S. Newport, 

suspended in sterile 0.1% Peptone Water (PW), to an OD600 0.5 read on a 

spectrophotometer (United Products & Instruments, Inc. Model 1100Rs, Unico), 

equivalent to ~109 cfu mL-1 and diluted to ~104 cfu mL-1in 0.1% PW for melon rind 

disc inoculation. The culture was then vortexed spread plated onto TSB+rif and 

incubated overnight for confirmation of the initial number of cells present. 
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6.5. Fusarium spp. Inoculum Preparation. 

Fusarium spp. isolates were preserved in 15% glycerol (Fisher scientific) at -80oC. To 

prepare the isolates for melon inoculation, frozen isolates were streaked onto fresh 

Potato Dextrose Agar (PDA, Fisher scientific) and incubated at 25oC for 10 days. To 

produce inoculum, conidial suspensions were prepared by scrapping a piece of 

sporulating mycelium using an inoculating loop and inserting into a sterile 10 mL test 

tube containing 0.1% PDA. The suspension was vortexed to allow mycelia to release 

conidia. Conidia were harvested by filtering through four-layered cheese cloth and 

rinsed with sterilized deionized water (dDI H2O) into a sterile beaker. The conidial 

concentration (spore mL-1) was determined by using Hemocytometer (Fisher 

scientific-Hausser Scientific Partnership 1475). Concentrations were adjusted to ca. 

106 spores mL-1 by preparing serial dilutions in sterile deionized water (dDI H2O) 

containing 0.1% PDA. 

6.6. Sample Processing, Fusarium spp. and Salmonella Newport, and 

Inoculation and Enumeration of Salmonella Newport.  

Melon fruit were washed with dDI H2O and a soft brush to remove dirt and any 

foreign material on the rind surface, transferred to a plastic container with 1.12% 

Chlorine (NaOCl) for five minutes for surface sterilization. After five minutes, 

melons were transferred into another plastic container with dDI H2O and kept for 

another five minutes to rinse off traces of NaOCl. Thereafter, melon fruit were 

removed and placed on a sterile countertop, blotted dried with a paper towel, and left 

to air dry.  A total of 6-10 melon rind discs from each melon fruit were then cut using 

a sterile biscuit cutter. Rind discs were placed in a sterile tray in preparation for 
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inoculation. Discs from each fruit were equally distributed among the eight treatments 

tested during four experiment replications as follows: F. oxysporum-F2015002 for 

experiment runs 1-4, F. fujikuroi-F2015003 for experiment runs 1-4, F. armeanicum-

F2015007 for experiment runs 1-3, F. proliferatum-F2016V016A for experiment run 

4 (Table 9), and their controls, no Fusarium with S. Newport control, and no 

Fusarium, no S. Newport control, with a minimum of six discs (replicates) per 

treatment. The second experiment replication was an exception when only three 

replicates were used. Five circles (0.5 cm diameter) were drawn with a marker on  

each disc equally distributed across the rind disc surface. Melon discs were separately  

placed in labeled whirl Pak bags (Fisher Scientific) for inoculation and kept under 

BSL-2 conditions. Melon discs were inoculated with a 100 µl (20 µl in each circle), 

pre-prepared Fusarium spp. inoculum (106 spore mL-1) and water as controls 

accordingly. Samples were then incubated at 25oC under 12 h fluorescent light and 12 

h darkness for four days.  

After four days of incubation, each Fusarium inoculation site received with 104 cfu 

mL-1 S. Newport (20 µl per circle- a total of 100 µl total per disc) inoculum and was 

incubated at 25oC for an additional 24 h. After 24 h following S. Newport inoculation, 

samples were removed from the incubator and washed in 1:1 w/v 0.1% PW in the 

same bag. Samples were then shaken, hand-rubbed, and massaged for 2 mins and a 

10-ml aliquot of sample was pipetted into a 10 mL sterile test tube. Serial dilutions 

were plated onto TSA+rif and cycloheximide (50µg/ml; Sigma-Aldrich, USA). 

Inoculated plates were incubated at 37oC for 24 h and colonies were counted for cfu 

mL-1 calculations. 
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6.7. Data Analysis. 

Analysis of Variance (ANOVA) was conducted to evaluate the differences in survival 

of S. Newport in the presence of Fusarium spp.; F. oxysporum, F. fujikuroi and F.  

armeniacum or F. proliferatum on: ‘Arava’, ‘Athena’, ‘Dulce Nectar’, ‘Jaune’, and  

‘Sivan’ melon cultivars. A mixed model was constructed with response being 

bacterial counts and model effects being Fusarium treatment, cultivar and the 

interaction between Fusarium treatment and cultivar.  The numbers of CFUs counted 

were transformed to log10 cfu mL-1 prior to analysis.  An alpha level of 0.05 was used 

for determining statistical significance. Tukey-Kramer HSD was used to compare the 

mean differences within an effect when the overall effect was significant. All 

calculations were conducted using JMP Pro 11.1.1. (SAS Institute). 

Results 

7.1. Impact of Fusarium Species on Salmonella enterica Newport Survival on 

Melon Rinds. 

Generally, melon rinds infected with Fusarium spp. supported the survival of S. 

Newport. During the first (field-grown melon) and third (high tunnel-grown melon) 

experimental runs, Fusarium spp. (F. armeniacum, F. fujikuroi, and F. oxysporum), 

did not impact a significant number of S. Newport recovered compared to the water 

control (p=0.84 and p=0.47, respectively; Table 9; Fig. 1a; Fig. 1c). However, in the 

second experiment (melons grown in the field); S. Newport counts recovered from F. 

oxysporum treated melon were significantly lower (5.66 log cfu mL-1) compared to F. 

fujikuroi (8.64 log cfu mL-1; p<0.0001; Table 9). Counts from the F. armeniacum and 
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control treatments were equivalent and were also significantly different from the two 

other Fusarium treatments (p=0.01; Fig. 1b). By contrast, in the fourth experiment 

conducted on melons grown in the high tunnel, lower counts of S. Newport were 

recovered from melons infected with F. fujikuroi (3.60 log CFU mL-1) compared to 

the no Fusarium control (4.74 log CFU mL-1; p<0.05; Fig. 1d). Salmonella Newport 

was not recovered from melons infected with Fusarium or water but not S. Newport 

(data not shown). 

7.2. Impact of Melon Cultivars on Salmonella enterica Newport Survival and 

Growth on Melon. 

Melon cultivar (type) consistently impacted the survival and growth of S. Newport.  

Growth of Salmonella Newport was detected in several melon samples, and on all  

samples of ‘Athena’, Arava’ and ‘Sivan’ (i.e. retrieved counts where higher than  

inoculum). Overall, ‘Athena’ and ‘Arava’ (mean counts of 5.88 and 5.77 log cfu mL-

1, respectively) supported significantly higher counts of S. Newport and colonized 

better compared to ‘Jaune’ and ‘Dulce Nectar’ (mean counts of 4.08 and 3.91 log cfu 

mL-1, respectively; p<0.001; Table 9). The cultivar effect varied slightly among 

experiments, but this trend was consistent. ‘Arava’ supported significantly higher 

counts than ‘Dulce Nectar’ in the first experiment conducted on melons grown in the 

field (5.78 and 3.69 log cfu mL-1, respectively; p<0.01; Table 9; Fig. 1a).  In the first 

high tunnel melon-grown experiment, S. Newport counts from ‘Athena’ were 

significantly higher than from all other cultivars, with a ~3 log cfu mL-1 difference 

from ‘Jaune’ and ‘Dulce Nectar’ (p<0.001; Table 4; Fig. 1a). The second-high tunnel 

grown-melon experiment yielded similar results, with counts from ‘Arava’ (highest at 
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5.54 log cfu mL-1), ‘Sivan’ and ‘Athena’ significantly exceeding (by 1.4-2.5 logs) 

counts from ‘Jaune’ and ‘Dulce Nectar’ (lowest at 3.03 log CFU mL-1; p<0.001; 

Table 9; Fig. 1c). The second experiment carried out on melon grown in the field, and 

late summer season, gave the most varying results. Melons of the ‘Dulce Nectar’ 

cultivar grown in the field yielded counts of S. Newport comparable to ‘Arava’, 

‘Sivan’ and ‘Athena’, but ‘Jaune’ still yielded only 3.80 log cfu mL-1 and was 

significantly different from all other cultivars (p<0.001; Table 9; Fig. 1b). 

7.3. Interaction between Fusarium spp. and Salmonella Newport. 

No significant interaction was detected between the two factors being tested 

(Fusarium treatment x cultivar) in the first field experiment and the two high tunnel 

experiments. A significant interaction however was seen in the second field 

experiment (p<0.001; Table 9; Fig.1b). This was attributed to the cultivar ‘Jaune’ 

which, when infected with F. oxysporum and F. armeniacum, as well as the control, 

was significantly different than other cultivars (p<0.001), but not when infected with 

F. fujikuroi (Fig. 1b). In the latter case, S. Newport counts (7.85 log cfu mL-1) were 

equivalent to other cultivars under any treatment.  Similarly, an interaction was also 

seen with ‘Sivan’, whereby Salmonella counts from melons infected with F. 

oxysporum were significantly lower (3.92 log cfu mL-1) than other ‘Sivan’ treatments 

and other cultivars, excluding ‘Jaune’ (Fig. 1b). 

Discussion. 

Overall, Salmonella Newport cells (log CFU mL-1) recovered from the netted rind 

melon (‘Arava’, ‘Athena’ and ‘Sivan’) were significantly higher than those recovered 
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from the smooth rind melon cultivars (‘Dulce Nectar’ and ‘Jaune’). Our study 

demonstrated that S. Newport can grow in the presence of Fusarium spp. on melon 

fruit but did not provide strong evidence that presence of Fusarium spp. on melon 

affected growth of S. Newport compared to uninfected melon rind. In other studies, 

Salmonella Newport co-inoculated with a plant pathogenic bacterium, Erwinia 

tracheiphila, on cantaloupe fruit rind increased the number of S. Newport recovered 

compared to the controls (Gautan et al., 2012).  Additionally, Richards and Beuchat 

(2005) revealed that S.  Poona was recovered on the wounded and inoculated rind 

surfaces of cantaloupe fruits stored at 20oC. Richards and Beuchat (2005), further 

reported that the presence of Cladosporium cladosporioides and Penicillium 

expansum also facilitated the migration of S. Poona 3-4 cm below the cantaloupe rind 

wound surface into underlying mesocarp tissues. Both C. cladosporoides, and P. 

expansum were recovered from the inoculated rind and underlying tissues throughout 

storage at 20oC for 10 days (Richards and Beuchat, 2005a). Potnis et al. (2014) found 

that activation of effector-triggered immunity by avirulent Xanthomonas perforans 

resulted in a dramatic reduction in S. enterica populations. The S. enterica 

populations persisted at ∼10 times higher levels in leaves co-inoculated with virulent 

X. perforans than in those where S. enterica was applied alone. In contrast, S. enterica  

populations were ∼5 times smaller in leaves coinoculated with avirulent X. perforans 

than in leaves inoculated with S. enterica alone.  Co-inoculation with virulent X.  

perforans increased S. enterica aggregate formation (Potnis et al., 2014). Aruscavage 

et al. (2006) reported that Salmonella Thompson was found in fungal lesions on 
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cilantro plants, and further revealed enterobacterial pathogens may be more likely to 

be found in the presence of fungal pathogens than on non-infected produce.  

Our findings show that cultivar was a significant factor in Salmonella colonization 

efficiency. One major difference among cultivars is the topography of the rind. Netted  

rind surfaces of ‘Arava’, ‘Athena’, and ‘Sivan’ supported better growth of S. Newport  

cells compared to smooth surface rinds of both ‘Dulce Nectar’ and ‘Jaune’. This 

confirms previous research that topographical features of fruit influence the 

attachment of S. Newport (Simko et al., 2015, Wells and Butterfield, 1999). Simko et 

al. (2015), found that when a cocktail of Salmonella, Escherichia coli O157:H7 and 

Listeria monocytogenes were inoculated onto melon rind surfaces, the Salmonella 

strains exhibited the highest surface hydrophobicity. Fissures in the cantaloupe 

netting have also been reported to provide attachment sites for cells of Salmonella 

and aid in survival when fruit were in contact with aqueous sanitizers (Annous et al., 

2005 & 2004). Bacterial attachment to melon rind surfaces has been reported to be 

influenced by the cell surface charge and hydrophobicity and to some extent by the 

presence of flagella and fimbriae as well as extracellular polysaccharides (Fletcher 

and Loeb, 1979, and Fernandes et al., 2014). Moreover, E. coli, Salmonella and 

Listeria have also been reported to adhere more effectively to peach fruit than plum 

surface which is attributed to the increased surface area of the peach due to the 

presence of trichomes (Collignon and Korsten, 2010). The surface type or size of 

produce have been linked to enhance attachment of human pathogenic bacteria. For 

example, Patel and Sharma (2010) found that the affinity of Salmonella serovar 

attachment to lettuce is two to three-fold higher than to cabbage, which may help 
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explain the greater association of lettuce to foodborne outbreaks, whereas outbreaks 

associated with cabbage have been rare (Patel and Sharma, 2010).  

Topography and architecture of the surface of the plant are also important factors in  

bacterial adhesion (Patel and Sharma, 2010). In our study, topography seemed related 

to greater S. Newport recovery from netted melons (‘Arava’, ‘Athena’, ‘Sivan’) than 

from smooth surface melon (‘Dulce Nectar’, ‘Jaune’). It is likely that the netted 

surface of melon can aid microbe-surface adherence, increasing survival and may 

protect against the harsh environment on the plant tissue. 

Salmonella Newport can grow in the presence of three Fusarium spp. (F. oxysporum, 

F. fujikuroi, F. armeniacum, and F. proliferatum) on melon, and the Fusarium 

species present on melon may influence the survival and growth of S. Newport. 

Unexpectedly, Fusarium spp. did not significantly affect the growth of S. Newport 

compared to uninfected melon. However, similar results to our finding that F. 

fujikuroi supported higher number of S. Newport on riper ‘Jaune’ cultivar (full slip) 

have been previously reported on tomatoes (Marvasi et al., 2013), where significant 

differences were observed in the proliferation of Salmonella in tomatoes harvested at 

different maturity stages.  

Marvasi et al. (2013), further revealed that final cells numbers of Salmonella were, on  

average 1 log higher in ripe tomatoes compared to the unripe tomatoes under the 

same conditions. Our finding that riper Jaune melon in the presence of F. fujikuroi 

supported higher number of S. Newport compared to other cultivars and Fusarium 

species could be attributed to production of cell wall-degrading enzymes like 

pectinases (Bateman and Basham, 1976 and Cleveland and Cotty, 1991). In many 
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immature fruits, the mechanisms limiting pathogen aggression are associated with 

either preformed antimicrobial substances or with phytoalexins, enzymes, or physical 

resistance structures (Jarvis, 1994).  

When the fruit tissue discs representing cantaloupe fruit of varying ripeness were  

inoculated with P. cucurbitae, immature fruit (20 and 30 days old; Zhang et al., 1997) 

exhibited a much lower percentage of maceration compared with mature fruit (40 and 

50 days old). This suggests that the immature fruit have biochemical or physical 

factors that restrict fungal growth or production of the cell wall-degrading enzymes 

by the fungus. These inhibiting factors may contribute to the fungal dormancy during 

the early stages of fruit development and become ineffective at fruit maturity (Zhang 

et al., 1997).  

During this study, Fusarium spp. (F. oxysporum, F. fujikuroi, F. armeniacum, F.  

proliferatum) were identified and determined to be non-pathogenic on honeydew 

melon and to be less aggressive melon pathogens and could have attributed to their 

relationship with and influence on the survival of Salmonella Newport on melon.  

More studies should be conducted to evaluate adhesion factors of various plant  

pathogenic fungi causing rot on melon, and their interaction with S. Newport. Also,  

antagonistic activities of both S. Newport and Fusarium spp. against each other need 

to be evaluated.  To broaden the fungal-bacterial knowledge on produce, the behavior 

of other human pathogenic bacteria should be tested on the presence of prevalent 

Fusarium spp. of melon. Apparently, Salmonella Newport colonization on melon was 

not enhanced by post-harvest infestation with local Fusarium spp. used during this 

study. Melon cultivar type, however, influenced survival of Salmonella may be an 
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effective strategy in reducing Salmonella colonization risk in areas where Salmonella 

may be endemic in the environment and the inherent risk is deemed higher. Assessing 

risk of a growing region should be part of a farm food safety plan, and production of 

smooth rind melons such as honeydew and Canary types over netted types should be 

considered as a mitigating strategy in higher risk areas. 
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Chapter 5:  Internalization of Salmonella enterica Newport on Smooth Surface 

Melon (Honeydew- Type) and Netted Melon (Cantaloupe-Type), Alone or in the 

Presence of Fusarium proliferatum. 

Abstract 

The presence of plant pathogens on fruit can influence the survival of human 

pathogens. This study investigated the impact of Fusarium proliferatum on 

internalization and subsequent survival of the human pathogen, Salmonella enterica 

subsp. serovar Newport on two melon types; smooth (honeydew-type) and netted 

(cantaloupe- type). Melon fruit were inoculated with (1) either F. proliferatum alone 

followed by nonsimultaneous inoculation with S. Newport four days later (F0S4), or 

water followed by S. Newport four days later (H0S4), and (2) F. proliferatum plus S. 

Newport simultaneously (F0S0), or, S. Newport alone (H0S0). On days 5 and 10, 

melons were first subdivided into four transverse segments (rind/surface, exocarp, 

mesocarp, and endocarp/seed cavity) and processed separately. The experiment was 

performed in three experiment replications (n=20). Direct plate counts of Salmonella 

Newport were transformed to Log10 S. Newport per melon and analyzed using a 

mixed model with Tukey’s HSD post-hoc test (JMP). Salmonella Newport 

internalization occurred in all treatments and both melon types, but variation in 

population levels were observed. In general, internalization of Salmonella occurred in 

both melon types all the way to the seed cavity. Salmonella persisted for up to 10 

days in the internal fruit tissues of melon. The incubation period (24 hrs, 5 or 10  

days) was a major factor, Salmonella Newport gradually reduced over time post  
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inoculation. S. Newport retrieved at 24 hr. post inoculation was significantly higher 

than the ones retrieved after 5 and 10 days, regardless of inoculation treatment type. 

Also, Fusarium proliferatum did not impact internalization of S. Newport in either 

cantaloupe or honeydew type melons. However, a longer infection period of 

Fusarium proliferatum on honeydew type melon, impacted significantly higher 

counts of S. Newport compared to cantaloupe. In some experiments, it appeared that 

F. proliferatum was antagonistic to S. Newport. We could not conclude from this 

study that S. Newport survival on or in fruit was enhanced by the presence of 

Fusarium proliferatum infection. However, Salmonella did internalize and survive for 

up to 10 days in both cantaloupe and honeydew melon types.  

Keywords: Salmonella enterica subsp. serovar Newport, Fusarium Fruit Rot, 

Fusarium proliferatum, Melon, Cultivars, Cantaloupe, Honeydew, Survival, 

Internalization. 

Introduction 

8.1. Microbes in Plants.  

A wide range of microorganisms grow on fruit, which is due to high levels of 

nutrients on the fruit surface (Watt and Merrill, 1950). Human pathogens contaminate 

and become internalized in fruits, including commensal microbes, as well as 

pathogenic ones (Penteado et al., 2004). Fusarium species are one of the most 

important plant pathogenic fungal groups infecting economically important plant 

crops in the U.S. (Abu Bakar et al., 2013; Biles et al., 2000 & Champaco et al., 1993). 

Some of these Fusarium species exist and colonize plants as saprophytes, which may 
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become opportunistic pathogens (Pereyra and Dill-Macky, 2008). Human pathogenic 

bacteria like Salmonella and Escherichia coli O157:H7 have also been associated 

with plants, and reported to survive and internalize into plant tissues, including fruit 

(Deering et al., 2012; Burnett et al., 2000; Gautam et al., 2014, and JeongA et al., 

2014). 

8.2. Human Pathogenic Bacteria in the Plant Environment.  

Human pathogenic bacteria are known to survive harsh environmental conditions, 

outside their primary host, especially during produce production, handling, and 

processing (Barak et al., 2008). The life cycle of Salmonella comprises an infection 

and persistence phase within the host, and survival, and persistence for a long period 

in the external environment while transitioning to a new host (Schikora, 2012; Cucak 

et al., 2018). Salmonella enterica has low epiphytic fitness on plants and it is reported 

to have lower survival compared other common epiphytes, such as Pseudomonas 

syringae, Pseudomonas chlororaphis, and Pantoea agglomerans (Potnis et al., 2014; 

Barak and Liang, 2008). However, survival of Salmonella strains on and in healthy 

and non-infected produce demonstrates that some Salmonella spp. can survive and 

persist in harsh environmental conditions (Cooley et al., 2003; Deering et al., 2012 & 

Meng et al., 2013 & Han and Micallef, 2016).  The ability of human pathogenic 

bacteria to survive in the environment may be due in part to conducive conditions 

created by prevailing microbial communities (Wells and Batterfield, 1997; Richards 

and Beuchat, 2005b; Potnis et al., 2015). Listeria monocytogenes can internalize on 

avocado fruit (Chen et al., 2016). Tomatoes can support internalization of Salmonella 

(Barak et al., 2011; Turner et al., 2016). Furthermore, internalization of Salmonella 
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has been reported on baby spinach (Gomez-Lopez et al., 2013). Within tomato there 

is variation in ability to support survival, and tomato variety can influence 

internalization of S. Thompson (Xia et al., 2012). 

There is some evidence that damaged plant tissue can support greater survival and  

persistence of human pathogens (Aruscavage et al., 2008; Riordan et al., 2000; 

Richards and Beuchat, 2005b). Human pathogenic enterobacteria may attach and 

proliferate better on damaged tissue due nutrient leakage (Potnis et al., 2015; Wells 

and Batterfield, 1997). Wounds also may act as sites of coinfection with other 

microorganisms that can alter microenvironment, favoring growth of human bacteria 

(Richards and Beuchat, 2005a). Richards and Beuchat (2005a), revealed that 

Cladosporium cladosporioides and Penicillium expansum on cantaloupe rinds 

enhanced migration of S. Poona into mesocarp tissues. Evidently, fluid leakages from 

plant tissue resulting from produce processing, may provide enough nutrients to 

support the growth of human pathogenic bacteria (Beuchat, 1999; Riordan et al., 

2000; Aruscavage et al., 2006).  Moreover, infection of produce by plant pathogenic 

fungi can create water-soaked lesions that can create conducive microenvironment for 

human bacteria (Riordan et al., 2000). Plant pathogenic fungi that infect either leaves 

or fruit contribute to the proliferation of human enterobacteria (Riordan et al., 2000 

& Simko et al., 2015). For example, downy mildew lesions on lettuce caused by 

Bremia lactucae, was reported to promote growth of E. coli O157:H7 and Salmonella 

enterica lettuce (Simko et al., 2015). Additionally, apples with lesions caused by 

Glomerella cingulata promoted the growth of E. coli O157 and E. coli O157:H7 
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(Riordan et al., 2000). Cilantro plants with fungal lesions were associated with S. 

Thompson (Brandl and Mandrell, 2002). 

8.3. Melon Fruit and Potential Human Pathogenic Bacteria Internalization. 

Melon fruit is susceptible to contamination by human pathogens (Richards and 

Beuchat, 2005b), however, how contamination occurs in melon is not well 

documented. Muskmelon fruit usually develop on the soil surface during crop 

production, and at this period, a fruit is in contact with saprophytes, soilborne plant or 

human pathogens (Lopez-Velasco et al., 2012). Modern and powerful detection tools 

like scanning electron microscopy (SEM) has been used to show the movement and 

internalization of, and the common sites for microbial aggregation on produce 

(Deering et al., 2012). These sites can be the veins (Barak et al., 2008, 2011); and the 

cell wall junctions (Romantschuk et al., 1996). Microbial aggregation also facilitates 

production of enough polysaccharide material to protect microorganisms from 

dehydration (Romantschuk et al., 1996). 

In other produce, plant leachate has been identified as a source of nutrition for the  

bacteria (Beuchat, 1999). The presence of bacteria can also affect fungal development  

and spore production, as for the plant-pathogenic oomycete Phytophthora alni, the  

saprophytic cheese-associated fungus Penicillium roqueforti, and several fungal 

symbionts (Adams et al., 2009; Chandelier et al., 2006). The presence of plant 

pathogenic infections has been implicated in the survival and increase of co-

inhabiting human pathogens (Deering et al., 2012). Moreover, infected, and rotten 

fruits aid the survival and replication of Salmonella bacteria compared to uninfected 

healthy fruits (Wells and Butterfield, 1999). Human pathogens, including Salmonella 
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may benefit from the presence of plant associated bacterial and fungal organisms on 

produce (U.S. Food and Drug Administration, 1999). The potential internalization of 

human pathogens is a concern in food safety because these pathogens are less likely 

to be removed during the washing steps after harvest (Meneley and Stanghellini, 

1974, Watt and Merrill, 1950 and Brandl and Mandrell, 2002). 

8.4. Fusarium Fruit Rot of Melon.  

Fusarium fruit rot caused by Fusarium spp. is common in honeydew melons, 

occurring most frequently on the stem end (Bruton and Duthie, 1996). Natural 

infection of melon fruit by Fusarium spp. appears to be related to net development 

where Fusarium inoculum is incorporated into the rind (Bruton and Duthie, 1996). 

Large numbers of conidia are produced on field-culled and unharvested melons 

(Bruton and Duthie, 1996).   

We hypothesized that Fusarium infected melon rind tissue enhance Salmonella in two  

ways: first, the infected tissue can be readily colonized by Salmonella because of  

Fusarium mediated changes in microenvironment. Secondly, as the fungal infection  

progress, the fruit rind rot caused by Fusarium spp. can facilitate S. Newport 

penetration into inner melon tissues. Thirdly, this penetration may vary depending on 

rind type such as smooth versus netted melons, as Fusarium infection progresses 

differently on these melon types (Webster and Craig, 1976). 

Materials and Methods 

9.1. Bacterial Strains, Labeling, Storage and Inoculum Preparation.  

One strain of Salmonella enterica Newport isolated from a tomato fruit (Green et al.,  
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2008) was used to inoculate melon fruit. The Salmonella enterica Newport strain was  

adapted to grow at 37oC in tryptic soy agar (TSA; Fisher Scientific, NC) 

supplemented with rifampicin (50 µg mL-1). Salmonella was surface plated on TSA 

supplemented with rifampicin (50 µg mL-1) and incubated at 37oC for 24 h and held 

at 4oC until used to prepare inoculum. Suspensions of S. Newport were made in 

sterile 0.1% Peptone water and the optical density of the suspensions measured at 

OD600 spectrophotometer (United Products & Instruments, Inc. Model 1100Rs, 

Unico) and adjusted by serially diluting in Peptone Water (0.1%) to 105 colony 

forming unit per mL (cfu mL-1). 

9.2. Procedures for Growing Fusarium spp., and Preparation of Inoculum.  

Fusarium proliferatum (F2016V016A), isolated from melon fruit which were 

collected from a grower field in Delaware were used for inoculation.  To prepare 

Fusarium spp. inoculum, frozen isolates were inoculated and cultured on 100 mL 

mineral salts media (Fisher Scientific) and incubated with constant shaking (150 

RPM) at 25oC for five days. After the five days, the Fusarium spp. culture was 

strained through a 4-layered sterile cheese cloth. Conidia number were determined 

using Hemocytometer and counted under a light microscope, the concentration of 

spores was adjusted to 106 mL-1 for inoculation. 

9.3. Experimental Design. 

Two melon types (netted-cantaloupe and smooth-honeydew; cultivar unknown) were  

purchased from a local retail store in Salisbury, MD. To evaluate the impact of 

Fusarium proliferatum infection time on Salmonella enterica Newport survival and 
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internalization, each melon fruit type was divided into two groups, groups I and II 

melons. The inoculation and sampling schemes were as follows: group II melons 

were inoculated with either Fusarium proliferatum alone followed by non-

simultaneous inoculation with S. Newport four days later, or water followed by S. 

Newport four days later, and group I melons, were inoculated with Fusarium 

proliferatum plus S. Newport simultaneously, or S. Newport alone. On days 5 and 10, 

melons were subdivided into four transverse segments (rind/surface, exocarp-4mm, 

mesocarp-6mm and endocarp/seed cavity-10mm) and processed separately. 

9.4. Enumeration of Salmonella enterica Newport. 

Core samples from inoculated fruit were transverse-cut into segments of rind and 

inner fruit pieces; rind/surface- 7mm depth, exocarp-10mm depth, mesocarp-5mm 

depth, and endocarp or seed cavity were excised during sampling 2 h post inoculation 

(HPI) of Salmonella and on days 5, and 10. The four-melon rind and inner segments 

were processed separately for S. Newport cells. To process, the transverse-cut melon 

pieces were separately cut with sterile scalpel, each time changing the scalpels, and 

placed into sterile whirl-pak bags (7oz., Fisher sci.) containing Peptone water (0.1%; 

1:1 w/v; Fisher sci.) and hand massaged from the outside for 2 min followed by 1 min 

of vigorous hand shaking and homogenizing. The aliquots (10 ml) were collected in 

sterile glass tubes and serially diluted in Peptone water (0.1%) and plated onto TSA 

supplemented with rifampicin and cycloheximide (50μg mL-1) for S. Newport counts. 
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9.5. Data Analysis. 

The experiment was performed three times, each conducted independently, with a 

total of 20 fruit of either honeydew or cantaloupe type per replicate. The mean and 

standard of log base 10 transformed colony count of Salmonella were analyzed using 

analysis of variance procedures with Mixed model-JMP (SAS Institute, Cary, NC). A 

three-factor factorial model was utilized to compare melon type, Fusarium 

proliferatum vs no F. proliferatum, melon segments, and sampling time. Simple 

effects mean for sampling time given Fusarium proliferatum inoculation and melon 

type given sampling time were reported and analyzed with planned contrasts. 

Additionally, significant differences in Fusarium proliferatum infestation on the two 

different melon types as affected by sampling time (day 5 and 10), and distance from 

rind surface were determined using Tukey-Kramer tests. All statistical tests were 

considered significant at p≤0.05. 

Results 

10.1. Impact of Fusarium proliferatum Inoculated on Cantaloupe Type Melon 

on Salmonella enterica Newport Survival.  

Salmonella enterica Newport was enumerated after 24 hrs, 5, or 10 days post  

inoculation. During days 5 and 10 Salmonella Newport was lower when inoculated 

alone (H0S0), without F. proliferatum was significantly lower than S. Newport 

inoculated four days later (H0S4), but not to simultaneous or nonsimultaneous 

Fusarium proliferatum plus S. Newport (F0S0 or F0S4) (Table 10 & Figures 2a and 

2b; p<0.01, p<0.03), for day 5 and 10, respectively. In general, Fusarium did not 
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appear to have a positive impact on Salmonella survival. Salmonella Newport 

incubation time was a factor, however. Counts at 5 days post Salmonella inoculation 

(the simultaneous inoculations F0S0 and H0S0 treatments) tended to be lower than 

counts at 24 hpi Salmonella (nonsimultaneous inoculations F0S4 and H0S4). Any 

differences were generally not detected by day 10, but when they were, Salmonella 

levels were higher on nonsimultaneous inoculations (Table 10; Figures 2a and 2b). 

10.2. Impact of Fusarium proliferatum on S. Newport Survival on Honeydew 

Type Melon. 

Overall, F. proliferatum did not influence the survival of S. Newport, however as  

observed in cantaloupe melon type, at day 5, for the honeydew inoculations, S. 

Newport retrieved from melon inoculated with simultaneous F. proliferatum plus S. 

Newport (F0S0) and S. Newport alone (H0S0) were significantly lower than 

nonsimultaneous inoculations (H0S4 and F0S4; Fig 2a, p<0.03), but not at day 10 

(p<0.08; Table 10). 

10.3. Impact of Fusarium proliferatum on S. Newport Internalization on 

Cantaloupe and Honeydew Type Melon.  

Overall, there were no significant differences among the four melon segments 

(surface, exocarp, mesocarp, and endocarp) at both days 5, and 10 for either 

cantaloupe or honeydew melon types, and similar trends was observed in all the four 

Fusarium inoculation treatments (data not shown). A similar trend between the two 

melon types and across all four inoculation treatments was observed where the 
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surface supported survival of lower number of S. Newport compared to inner sites of 

the melon (mesocarp and endocarp). 

Internalization of Salmonella occurred in both melon types all the way to the seed 

cavity. Salmonella persisted for up to 10 days in the internal fruit tissues of melon. 

Incubation period (24 hrs vs Day 5 vs Day 10) was a major factor. Salmonella 

Newport gradually reduced over time post inoculation. S. Newport counts retrieved at 

day 5 was significantly higher than the ones retrieved at day 10, irrespective of 

inoculation treatment type. Also, Fusarium proliferatum did not impact 

internalization of S. Newport in both cantaloupe and honeydew type melons. 

However, longer infection period of Fusarium proliferatum on honeydew type melon 

increased counts of S. Newport compared to cantaloupe in one experimental repeat. 

Discussion 

We found that S. Newport can internalized in the presence or absence of Fusarium  

proliferatum and it occurred in both cantaloupe and honeydew types of melon. Other  

studies have reported that Salmonella spp. can internalize in plant tissues using 

natural openings (Dong et al., 2003; Gomez et al., 2013; Itoh et al., 1998; Kroupitski 

et al., 2009; Shaw et al., 2008 & 2011). Salmonella internalization was observed in all 

Fusarium treatments (H0S0, F0S0, H0S4, and F0S4). Incubation period of F. 

proliferatum on honeydew type melon impacted survival of S. Newport but not its 

internalization. Additionally, F. proliferatum enhanced S. Newport growth in some 

experimental replications, however, that trend was not consistent across all the three 

experimental replications. Salmonella persisted in all melon segments for 10 days, 
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however, their number gradually declined. The Salmonella decline was consistent in 

both melon types, also across the Fusarium treatments. 

 During some experimental replications, Fusarium proliferatum simultaneously 

inoculated with S. Newport, influenced the growth of S. Newport for 5 days but the 

same was not seen after 10 days. This phenomenon demonstrates that F. proliferatum 

infection on melon initially created a suitable microenvironment for S. Newport to 

thrive. However, the nutrients may decrease with time and F. proliferatum may have 

provided competition and decline of S. Newport at Day 10.  

The different impacts of F. proliferatum on S. Newport survival and growth observed 

among the experiment replications, may have occurred in part because we purchased 

our melon samples from a retail store, and they may have had different ripening 

levels. The ripening level or storage time of melon may have affected the ability of F. 

proliferatum to infect. Our earlier findings on Fusarium and Salmonella interactions 

on various melon cultivars were that Fusarium fujikuroi significantly impacted S. 

Newport only when inoculated on riper ‘Jaune’-canary melon type compared to other 

Fusarium species (Figure 1b). More ripe melon fruit may have weaker defense 

mechanism against plant pathogens compared to the freshly harvested melon. Also, 

more ripe melon may provide more readily available sugars on the rind for S. 

Newport survival compared to less ripe melon. Other factors that may have attributed 

to this inconsistent survival of S. Newport is due to the microbiota on melon. Our 

melon samples came from different production fields at different times and these two 

factors may had major impacts on types of microbes present on or in the melon. 
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 Even though, generally S. Newport declined over time following the inoculation, 

there were some instances when simultaneous inoculation of F. proliferatum plus S. 

Newport treatments were observed to enhance counts of S. Newport on the surface at 

day 10 compared to the ones recovered during the Day 5. Possibly, there was more 

cell wall/rind degradation after 10 days of incubation compared to 5 days, and S. 

Newport may have accessed more nutrients then. 

Bacterial reduction over time on produce was also reported by Simko et al. (2015) 

who co-inoculated downy mildew with either Escherichia coli O157 or S. 

Typhimurium on lettuce leaves. They reported that population sizes of E. coli O157 

multiplied within 24 h post-inoculation however, reduction between 24 and 48 h was 

observed. Simko et al. (2015) suggested the possibility of leaves drying up between 

24 and 48 post-inoculation altered multiplication of bacteria. Competition between 

bacteria and Fusarium has been evaluated by Dijksterhuis et al. (1999) who reported 

that soil bacterium, Paenibacillus polymaxy was antagonistic towards Fusarium 

oxysporum when grown on a liquid medium. 

Fusarium proliferatum inoculated alone or together with S. Newport caused lesions 

on melon fruit. Gautam et al. (2014) also found similar results when they inoculated 

S. enterica together with plant pathogen Erwinia tracheiphila. Bacterial 

internalization on plant tissues has been associated with artificially induced lesions 

(Burnett et al., 2000).  

Additionally, physical damage of plant tissue caused by plant pathogens can enhance  

human pathogen internalization (Wade and Beuchat, 2003). Chemotropic interaction 

has also been reported to promote Salmonella and E. coli attachment near the plant 
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stomata (Kroupistski et al., 2009). Ukuku and Fett (2002) showed that Salmonella 

had a stronger attachment to cantaloupe surface compared to E. coli and Listeria 

monocytogenes. The above study also demonstrated that both surface hydrophobicity 

and surface charge play major roles in bacterial attachment to cantaloupe surfaces. 

Conclusion 

Salmonella Newport internalization occurred in all treatments and both melon types, 

but variation in population levels were observed. Fusarium proliferatum infection 

period played a role in survival of S. Newport on honeydew melon type (smooth) but 

not on cantaloupe type melon (netted). In some experiments, it appeared that F. 

proliferatum was antagonistic to S. Newport. Therefore, we could not conclude in this 

study that S. Newport survival on or in fruit was enhanced by the presence of 

Fusarium proliferatum infestation. Future studies should focus on evaluating the 

microbiome of melon fruit before interactions of Fusarium and Salmonella. The small 

impact of F. proliferatum on S. Newport internalization could be due to its 

opportunistic pathogenicity on melon fruit (Table 6). 

Physiological changes on melon fruit can be evaluated to assess the infection 

characteristics of Fusarium at initial and in advance stages of inoculation and when  

Salmonella is introduced. Additionally, defense response/mechanisms of melon fruit  

when Salmonella is introduced to the surface should be evaluated. Experiments can 

be replicated to evaluate impact of other prevalent fungal pathogens of melon on 

Salmonella colonization. Lastly, Fusarium impact can be evaluated on other common 

human pathogenic bacteria like Escherichia coli and Listeria. 
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Chapter 6:  General Conclusion. 

 

The Fusarium survey that we carried out in Maryland and Delaware, revealed that 

five species of Fusarium are common in melon infestation in the fields surveyed. 

Fusarium fujikuroi and F. proliferatum were the two most prevalent species. 

Fusarium graminearum and F. verticillioides were the least common Fusarium 

species identified. Additionally, the diversity of Fusarium species was consistent 

during production seasons of 2016 and 2017. Most of the Fusarium spp. collected and 

isolated from the five sampling locations in Maryland and Delaware were not 

pathogenic on honeydew type melon, which indicated they may be saprophytes or 

opportunistic pathogens. Fusarium species impacted survival of Salmonella enterica 

Newport differently.  

Fusarium fujikuroi significantly supported higher number of S. Newport compared to 

F. oxysporum and F. armeniacum when inoculated on riper melon fruits. Fusarium 

fujikuroi presence significantly increased S. Newport survival on riper ‘Jaune de 

Canaris’ melon compared to when the same melon cultivar was harvested at the 

three-quarter slip. ‘Jaune de Canaris’ melon has smooth and tougher rinds compared 

to Arava, Athena, and Sivan melons. Riper ‘Jaune de Canaris’ melon may have 

provided easy access for infection by F. fujikuroi because of softened rind therefore 

creating an easier pathway for S. Newport attachment and acquisition of nutrients for 

survival.  Generally, Salmonella Newport was not impacted by infestation of 

Fusarium species. The presence of F. proliferatum on melon did not have significant 

influence on S. Newport internalization. The melon type (smooth vs netted) however, 

did not have a significant impact on S. Newport internalization to melon. Salmonella 
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Newport internalized was within 24 hrs post inoculation on both honeydew and 

cantaloupe types and could be detected all the way in the seed cavity. It was 

demonstrated in this study that S. Newport population although gradually declining, 

can persist for ten days post inoculation in all four melon segments (surface, exocarp, 

mesocarp, and endocarp).  

Choice of melon cultivar type may be an effective strategy in reducing Salmonella  

colonization risk in areas where Salmonella may be common in the production fields.  

Assessing risk of a growing region should be part of a farm food safety plan, and  

production of smooth rind melons such as honeydew and Canary types over netted 

types should be considered as a way forward in reducing contaminations in higher 

risk areas. 
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Fusarium isolates collected from melon grown at WYEREC, Maryland during the 
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scar, blossom end), for pathogenicity test. Molecular identification of the selected 

Fusarium isolates collected from melon grown at LESREC-A, Maryland during the 

growing seasons, 2016 and 2017 (p≤0.05; Mixed model, JMP).   
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scar, blossom end), for pathogenicity their test. Molecular identification of the selected 

Fusarium isolates collected from melon grown at CMREC, Maryland during 2017 

growing season (p≤0.05; Mixed model, JMP).  

Table 7. Fusarium isolates lesion sizes measured on five melon locations (3-center, stem 

scar, blossom end), for pathogenicity test. Molecular identification of the selected 

Fusarium isolates collected from melon grown in different locations in Maryland and 

Delaware during the growing seasons, 2016 and 2017 (p≤0.05; Mixed model, JMP). This 

was a second pathogenicity test of these few Fusarium isolates selected for pathogenicity 

and KOCH’s postulate confirmation. Their lesion size was compared to control (F063-2- 

Fusarium oxysporum f. sp. niveum melonis; p≤0.05; Mixed model, JMP). 
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at LESREC-A and Laurel, DE during the summer season of 2015 and 2016 respectively 
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ANOVA table of three experiment replications showing evaluation of impact of: 1) F. 

proliferatum on Survival of S. Newport on Smooth (Honeydew Type) and Netted 

(Cantaloupe type) Melon 2) Impact of F. proliferatum on S. Newport internalization on 

Honeydew and Netted Cantaloupe (p≤0.05; Mixed model, JMP).
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TABLES 

Table 1. Fusarium isolates’ lesion sizes (mm) measured at five locations on melon fruit (3-center, stem scar, blossom end). Molecular 

identification of the selected Fusarium isolates collected from Baltimore, Maryland during the 2016 growing seasons.  

 
Center lesion (mm) Stem lesion (mm) Blossom end (mm) 

 
Base Pairs TEF/RPB2-*UFID% 

match 

Isolate Cultivar Depth Width Depth Width Depth Width TEF1*Y-spp. ID RPB2*Z-spp.ID 

F2016B019 Athena 21.83ab*T 21.33a 14.50abcd 17.00abc 23.5a 17.3a F. fujikuroi F. fujikuroi 550 96.1/99.8 

F2016B018-1 Athena 22.28ab 21.06a 13.17abcd 16.50abc 20.3ab 16.5a F. proliferatum F. proliferatum 560 99.7/99 

F2016B021-2 Athena 22.67ab 19.78ab 15.17abcd 15.83abc 19.3abc 19.2a F. proliferatum - 550 99.3/- 

F2016B028 Athena 20.89ab 17.78ab 18.67ab 14.83abc 14.0abc 19.3a F. fujikuroi - 560 99.5/- 

F063-2*X NA 17.83abc 17.50abc 20a 13.50abc 14.0abc 12.5a NA NA NA NA 

F2016B006 Athena 17.61abc 16.72abc 14.33abcd 13.83abc 13.33abc 15.7a F. proliferatum - 550 99.4/- 

F2016B003-2 Athena 18.78ab 16.11abc 16.5ab 11.67bc 10.7bc 18.0a F. fujikuroi F. fujikuroi 570 99.4/99.7 

F2016B024 Athena 17.78abc 16.00abc 12.3bcd 12.17abc 15.17abc 18.0a F. fujikuroi F. fujikuroi 550 99.7/100 

F2016B021-1 Athena 20.94ab 15.22abc 13.17abcd 17.16abc 13.0abc 19.3a F. fujikuroi F. fujikuroi 530 100/99.5 

F2016B027 Athena 16.39abc 15.11abc 12.0bcd 13.83abc 15.17abc 19.83a F. proliferatum - 560 99.5/- 

F2016B013-2 Athena 15.17bc 14.72abc 12.67bcd 11.17bc 10.2bc 15.0a - - 560 - 

H2O NA 7.33c 7.17c 7.0d 7.00c 7.0c 7.0a NA NA NA NA 
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TABLES 

Table 2. Fusarium isolates’ lesion sizes measured on five melon locations (3-center, stem scar, blossom end), for pathogenicity test. 

Molecular identification of the selected Fusarium isolates collected from WYEREC, Maryland during the growing seasons, 2016 and 

2017. 

    Center 
lesion (mm) 

  Stem lesion 
(mm) 

  Blossom end 
lesion (mm) 

  TEF1*Y-spp. ID RPB2*Z-spp.ID BP TEF/RPB2-
FID% match 

Isolate Cultivar Depth Width Depth Width Depth Width 

F2016WYE003 Athena 27.0a*T 29.0a 28.5a 33.0a 34.0a 40.0a F. fujikuroi F. fujikuroi 550 99.7/99.7 

F2016WYE004 Spanish Sun 21.3b 26.2ab 25.0a 27.5b 30.0a 38.0a F. fujikuroi F. fujikuroi 550 99.8/99.7 

F063-2*X NA 20.7b 21.2b 13.0b 8.5bc 27.5a NA NA NA NA NA 

H2O NA 7.0c 7.0c 7.0b 7.0c 7.0b NA NA NA NA NA 
F2017WYE025-2 Athena 28.3a 30.2abc 50.0a 56.0a 35.0ab 52.5a F. fujikuroi F. fujikuroi 550 99.8/99.7 

F063-2*X NA 24.7abc 27.7abcde 17.5bc 16.5cde 18.5cdefg 27.0cdef NA NA NA NA 

F2017WYE012 Athena 20.3abcd 27.5abcde 17.5bc 17.5cde 36.5a 57.5a F. proliferatum F. proliferatum 550 98.9/99 

F2017WYE004 Spanish Sun 23.0abcd 27.0abcde 20.0bc 35.0a 32.5abc 35.0bcde F. proliferatum F. proliferatum 550 100/99 

F2017WYE007 Athena 19.7abcd 22.0abcde 17.0bc 12.0cde 31.5abcd 33.5cde F. proliferatum F. proliferatum 550 100/99 

F2017WYE025-1 Athena 20.3abcd 19.2bcdef
. 

18.5bc 16.0cde 36.0a 26.0cdefg F. proliferatum F. proliferatum 550 98.9/99 

H20 NA 7.0e 7.0f 7.0c 7.0e 8.0g 7.8g NA NA NA NA 
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TABLES 

Table 3. Fusarium isolates’ lesion sizes measured on five melon locations (3-center, stem scar, blossom end), for pathogenicity test. 

Molecular identification of the selected Fusarium isolates collected from LESREC-A, Maryland during the growing seasons, 2016 and 

2017. 

LESREC-A 2016 
 

Center 
lesion (mm) 

 
Stem lesion 
(mm) 

 
Blossom 
end (mm) 

 
TEF1*Y-spp. ID RPB2*Z-spp.ID BP TEF/RPB2-

FID% match 

Isolate Cultivar Depth Width Depth Width Depth Width 

H2O NA 7.0g*T 7.0d 7.0e 7.0d 7.0c 7.0c NA NA NA NA 
F2016LA022 Sivan 7.0g 7.0d 7.5e 7.5c 7.0b 7.0c F. oxysporum - 540 98.4/- 
F063-2*X NA 18.5f 14.5cd 16.0cde 13.5cd 18.0bc 18.0bc NA NA NA 

 

F2017LA001 Athena 23.7de 26.5b 12.0de 14.0cd 24.5abc 29.5ab F. oxysporum F. armeniacum 550 98.8/98.8 

F2017LA003 Arava 28.2b 29.5b 22.0bcd 16.0cd 22.5abc 24.0abc - - - - 

F2017LA008 Arava 32.5b 27.5b 7.0e 7.0d 40.0a 40.0a F. oxysporum F. oxysporum 550 100/99.5 

F2017LA010 Sivan 33.0b 32.5ab 29.0b 28.5b 24.5abc 31.5ab F. fujikuroi F. fujikuroi 550 99.2/97.9 

F2017LA011 Jaune 32.0b 26.7b 8.5e 11d 28.0ab 29.5ab - - 550 - 

F2017LA012 Sivan 28.2b 28.5b 26.0bc 23.5bc 35.0ab 23.5abc F. oxysporum F. oxysporum 550 99.3/87.9 

 

  

mailto:TERPB@-FID%25%20match
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TABLES 

Table 4. Fusarium isolates lesion sizes measured on five melon locations (3-center, stem scar, blossom end), for pathogenicity test. 

Molecular identification of the selected Fusarium isolates collected from LESREC-B, Maryland during the growing seasons, 2016 and 

2017. 

  
Center 
lesion (mm) 

 
Stem lesion 
(mm) 

 
Blossom 
end (mm) 

 
TEF1*Y-spp. ID RPB2*Z-spp.ID Base Pairs TEF/RPB2-

FID% match 

Isolate Cultivar Depth Width Depth Width Depth Width 

F2016LB017 Sivan 22.7b*T 33.0a 18.5cde 18.0abc 29.5ab 36.5ab F. fujikuroi F. fujikuroi 550 99.7/99.4 

F2016LB025 Athena 19.3bc 30.8ab 18.0cde 16.5abc 25.0abc 24.5ab F. proliferatum F. proliferatum 550 100/99 

F2016LB013 Arava 18.2bcd 12.5def 19.0cd 17.5abc 27.5ab 54.0a F. proliferatum NA 550 97.9/- 

F2016LB015 Arava 16.8bc 16.7cde 17.5cde 29.0a 20.0abc 20.0c F. oxysporum F. oxysporum 550 99.3/99.5 

F2016LB010 Sivan 7.0e 13.0def 7.5d 8.0c 23.5abc 23.5c F. fujikuroi F. fujikuroi 550 99.2/97.9 

F2017LB003 Dulce  25.8a 27.8b 30.0bc 19.5abcd 30.0bc 30.0bc F. oxysporum F. oxysporum 550 99.5/99.5 

F2017LB004 Sivan 23.8a 27.5b 34.5ab 30.5a 34.5ab 30.0bc F. oxysporum F. oxysporum 500 99.8/99.5 

F2017LB002 Sivan 18.8bc 20.0bc 53.5a 19.5abcd 53.5a 53.5a F. oxysporum F. oxysporum 550 100/99.5 

F2017LB005 Arava 18.0bcd 19.0bc 28.0bc 15.5bcd 28.0ab 27.5bc F. fujikuroi NA 550 99.6/- 

F063-2*X NA 17.8cd 15.8bcd 14.0cd 13.5bcd 14.0cd 12.5cd NA NA NA NA 

H20 NA 7.2e 7.1e 7.0d 7.0d 7.0d 7.0d NA NA NA NA 
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TABLES 

Table 5. Fusarium isolates lesion sizes measured on five melon locations (3-center, stem scar, blossom end), for pathogenicity test. 

Molecular identification of the selected Fusarium isolates collected from Laurel, Delaware during the growing seasons, 2016 and 

2017. 

   
Center lesion (mm) Stem lesion 

(mm) 
                         Blossom end (mm) TEF1*Y-spp. ID RPB2*Z-spp.ID BP TEF/RPB2-FID% match 

Isolate Cultivar Depth width depth width Depth width 
    

F2016V008 Athena 26.3ab*T 26.3ab 7.0b 7.0c 7.0b   7.0b F. proliferatum F. proliferatum 550 98.9/100 

F2016V010-2 Athena 26.5ab 25.3abc 8.5b 7.0c 53.5a    32.5ab F. oxysporum F. oxysporum 550 100/87.7 

F2016V024-B Athena 22.2abc 19.3abc
de 

11.0b 7.0c 32.5bcd 29.5ab F. proliferatum F. proliferatum 550 98.3/99 

F2016V024-A Athena 19.2bcde 16.5def 20.0ab 20.0a 34.0bcd 22.0abc F. armeniacum F. oxysporum 550 95.8/86.4 

F2016V016A Ariel 20.8bcd 16.3def 9.5b 8.0c 9.5b 15.0bc F. proliferatum F. proliferatum 540 99.67/99 

F063-2*X NA 18.7bcde 15.3defg 11.0b 7.0c 11.0b 16.5bc - - - - 

F2016V011-2 Athena 17.2cde 11.8ef 26.0a 15.0ab 26.0a 32.5ab F. oxysporum F. oxysporum 550 99.7/99 

F2016V011-2 Athena 17.2cde 11.8ef 26.0a 15.0ab 26.0a 32.5ab F. oxysporum F. oxysporum 550 99.7/99 

H2O NA 

Ariel 

7.0f 7.0g 7.0b 7.0c 7.0b 7.0c NA NA NA NA 

F2017V008-2 25.7a 21.2a 27.5a 37.0a 14.0bc 21.5bc F. proliferatum F. proliferatum 530 98.9/86 

F2017V005 Ariel 19.3ab 25.7a 19.5b 15.5bc 60.0a 67.0a F. fujikuroi F. fujikuroi 530 100/99.2 

F2017V007 Athena 11.2bc 11.2bc 25.0ab 21.0b 23.5bc 19.0bc - - 550 - 

H20 - 7.0cd 7.0cd 7.0c 7.0c 7.0c 7.0c - - - - 

F2017V006 Ariel 1.2d 1.2d 7.0c 7.0c 11.0bc 13.5bc F. fujikuroi F. graminearum 530 86.4/100 
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TABLES 

Table 6. Fusarium isolates’ lesion sizes measured on five melon locations (3-center, stem scar, blossom end), for pathogenicity test. 

Molecular identification of the selected Fusarium isolates collected from CMREC, Maryland during the growing seasons, 2016 and 

2017. 

  Center lesion (mm) Stem lesion (mm) Blossom end (mm) 

TEF1*Y-spp. ID RPB2*Z-spp.ID BP TEF/RPB2-FID% match Isolate Cultivar Depth Width depth Width depth width 

F063-2*X NA 18.67cde*T 15.33de 11.00bc 7.00c 19.50cd 16.50bc Na NA NA NA 

H2O NA 7.00f 7.00e 7.00c 7.00c 7.00d 7.00c NA NA NA NA 

CMREC001 Athena 12.00ef 16.67cde 11.00bc 11.00c 25.00bc 23.00abc NA NA NA NA 

CMREC002 Athena 25.83bc 31.83a 
26.00a 25.00abc 32.50bc 27.50ab F. proliferatum F. proliferatum 

550 98.9/99 

CMREC003 Athena 27.50ab 29.33ab 20.00abc 20.00abc 35.00b 27.00ab NA NA 550 NA 

CMREC005 Athena 19.50bcde 18.67bcde 15.00abc 15.50bc 25.00bc 26.00ab NA NA NA NA 

CMREC006 Athena 17.50de 16.00de 22.50abc 35.00a 35.00b 40.00a NA NA NA NA 

CMREC007 Athena 26.83ab 28.50abc 17.50abc 17.50abc 33.50b 25.00abc F. oxysporum F. oxysporum 550 99.8/99 

CMREC008 Athena 25.17bcd 22.83abcd 25.00ab 32.50ab 55.00a 35.00ab F. oxysporum NA 540 100/- 

CMREC009 Athena 20.83bcd 22.67abcd 
25.00ab 22.50abc 22.50bc 29.50ab 

NA NA NA NA 

CMREC10 Athena 20.67bcd 19.50bcd 20.00abc 25.00abc 27.50bc 25.00abc NA NA NA NA 

CMREC011 Athena 34.33a 30.17ab 22.50ab 30.00ab 25.00bc 32.50ab F. oxysporum F. oxysporum 550 100/99.7 

CMREC012 Athena 25.83bc 29.33ab 22.50ab 20.50abc 32.50bc 32.00ab NA NA NA NA 

Notes: Tables 1-6.  Notes: Base Pairs-Gel-Electrophoresis band sizes, LESREC-LA-University of Maryland Lower Eastern Shore Research and Education Center organic field, 

Salisbury, MD, LESREC-LB- University of Maryland Lower Eastern Shore Research and Education Center conventional field, Salisbury, MD, WYEREC-UMD -WYE Research 

and education center, CMREC- UMD- Upper Marlboro Research and Education Center. Table 1.  Notes: Base Pairs-Gel-Electrophoresis band sizes, LESREC-LA-University of 

Maryland Lower Eastern Shore Research and Education Center organic field, Salisbury, MD, LESREC-LB- University of Maryland Lower Eastern Shore Research and Education 

Center conventional field, Salisbury, MD, WYEREC-UMD -WYE Research and education center, CMREC- UMD- Upper Marlboro Research and Education Center.*XControl 

isolate (F063-2), used. *T Same letters within the same column are not statistically different (p≤0.05), according to Student’s t-test least significant differences (Mixed-model-

JMP). 

  *YTEF1-Translation Elongation Factor alphar-1, *ZRPB2- RNA polymerase II second largest subunit. *U FID%- Online Fusarium ID database percentage match. 
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TABLES 

Table 7.  Fusarium isolates’ lesion sizes measured on five melon locations (3-center, stem scar, blossom end). Molecular 

identification of the selected Fusarium isolates for the pathogenicity test, after sequencing and identification (TEF1& RPB2). These 

isolates represented isolates collected from LESREC-A, LESREC-B, and Laurel, DE. 

  Center lesion (mm) Stem lesion (mm) Blossom end lesion (mm) 

TEF1*Y-spp. ID RPB2*Z-spp.ID Isolate Cultivar depth width depth Width depth Width 

F063_2*X NA 25.50ab*T 21.82abcd 23.95abc 20.17abcd 21.22bcd 22.69bc NA NA 

F2015002 Sivan 23.56a 21.56abcd 14.67cdefg 9.00d 33.33b 32.00ab F. oxysporum F. oxysporum 

F2015003 Sivan 27.67ab 31.56ab 11.33efg 13.67abcd 35.00b 45.33a F. fujikuroi F. fujikuroi 

F2015007 Sivan 28.33a 27.78abc 18.33bcde 25.00a 35b 37.33ab F. armeniacum F. armeniacum 

LA16015 Sivan 22.56ab 18.89cde 15.67cdefg 22.67abc 35.67b 34.00ab F. proliferatum F. proliferatum 

LA17011 NA 31.00a 33.00a 29.67a 24.00ab 36.00b 44.33a - - 

LA17012 NA 27.33a 28.32abc 27.45ab 12.17abcd 57.22a 39.19ab F. oxysporum F. oxysporum 

LB17011 Na 10.33cd 8.64de 7.03g 7.84d 9.39d 8.25c F. verticilloides F. verticilloides 

V16016A Ariel 15.00bcd 11.00de 12.67defg 10.00d 31.00bc 24.33bc F. proliferatum F. proliferatum 

V16020 Athena 21.83abc 18.49bcde 19.45abcde 15.67abcd 32.22bc 26.19abc F. proliferatum F. proliferatum 

V16024 Athena 22.56ab 18.22cde 17.67bcdef 12.67bcd 34.67b 21.67bc F. oxysporum F. oxysporum 

V17005 Ariel 24.11ab 21.22bcd 21.00abcd 20.00abcd 35.00b 36.00ab F. fujikuroi F. fujikuroi 

V17007 Athena 8.78d 8.67e 8.33fg 11.33cd 14.67cd 21.33bc - - 
*XControl isolate (F063-2), used. *T Same letters within the same column are not statistically different (p≤0.05), according to Student’s t-test least significant differences (Mixed-

model-JMP). 

  *YTEF1-Translation Elongation Factor alphar-1, *ZRPB2- RNA polymerase II second largest subunit.  
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TABLES 

Table 8. Fusarium spp. isolates obtained from ‘Sivan’ F1 certified organic cantaloupe fruits during the summer season of 2015 

(Fusarium ID and NCBI sequence comparison) and Ariel. 

Species Isolate 

 

Cultivar Origin Most-related accession-NCBI Sequence similarity* (%) 

Fusarium armeniacum 

Fusarium fujikuroi 

Fusarium oxysporum 

Fusarium oxysporum 

Fusarium oxysporum 

Fusarium oxysporum 

Fusarium oxysporum 

Fusarium proliferatum 

F2015-007 

F2015-003 

F2015-001 

F2015-002 

F2015-005 

F2015-006 

F2015-008 

F2016V016A 

 

Sivan F1 

Sivan F1 

Sivan F1 

Sivan F1 

Sivan F1 

Sivan F1 

Sivan F1 

Ariel 

KJ737376.1 

LC055826.1 

BCHB01000001.1 

BCHB01000001.1 

BCHB01000001.1 

BCHB01000001.1 

BCHB01000001.1 

FJ895272.1 

99/99 

98/99 

99/100 

99/99 

99/99 

99/99 

99/98 

99.67/100 

*Sequence percentage similarity: Percentage similarity to Fusarium strains stored in either NCBI or Fusarium ID online library database. 

  

https://www.ncbi.nlm.nih.gov/nucleotide/FJ895272.1?report=genbank&log$=nuclalign&blast_rank=2&RID=UNJ7W9E3014
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TABLES 

Table 9. ANOVA table of p-values of interaction between Fusarium spp. (F. armeniacum, F. oxysporum, F. fujikuroi, F. 

proliferatum) and Salmonella enterica Newport on five different melon cultivars. 

Experiment Replication 1 Experiment Replication 2 Experiment Replication 3 Experiment Replication 4 

Source 
 

Prob > F 
 

Prob > F  Prob > F 
 

Prob > F 

Fusarium 
 

0.84 
 

<0.0001***  0.47 
 

0.028* 

Cultivar 
 

0.004** 
 

<0.0001***  <0.0001* 
 

<0.0001* 

Fusarium*Cultivar 
 

0.53 
 

<0.004**  0.53 
 

0.72 
Notes: Prob-Probability, DF-Degrees of freedom,   

 * Prob-Probability, DF-Degrees of freedom, *statistically significant (p≤0.05), ** highly statistically significant different (p≤0.001), ***Very highly significant 

different, compared to the control isolate (F-063-2) according to Tukey-Kramer-HSD least significant differences (Mixed-model-JMP).  
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TABLES 

Table 10. ANOVA table of p-values for the impact of Fusarium proliferatum on Salmonella enterica Newport inoculated on smooth 

(honeydew) and netted (cantaloupe) surface type melon. 

H0S4  H0S0  

Source 24 hrs 
 

5 days 
  

5 days 
 

10 days 
 

DF Prob*Y > F DF*Z Prob > F Source DF Prob > F DF Prob > F 

Melon 1 0.11 1 0.05*X Melon 1 0.74 1 0.30 

Site 3 0.79 3 0.94 Site 3 0.80 3 0.53 

Melon*Site 3 0.63 3 0.60 Melon*Site 3 0.39 3 0.22 

 F0S4 F0S0 
 

24 hrs 
 

5 days 
  

5 days 
 

10 days 
 

Source DF Prob > F DF Prob > F Source DF Prob > F DF Prob > F 

Melon 1 0.03 1 0.95 Melon 1 0.75 1 0.04 

Site 3 0.12 3 0.82 Site 3 0.95 3 0.28 

Melon*Site 3 0.92 3 0.76 Melon*Site 3 0.89 3 0.55 

Notes: *X Statistically significant (p≤0.05), *YProb-Probability, *ZDF-Degrees of freedom.      
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FIGURE LEGENDS 

Figure 1.a, b, c & d. Population levels of Salmonella Newport log10 CFU mL-1 

retrieved from melon rinds of five different cultivars infected with Fusarium 

oxysporum, F. fujikuroi, F. armeniacum, F. proliferatum, or uninfected (water 

control).  

Figure 1a. Box plots display the population of S. Newport log10 CFU mL-1 (Tukey-

Kramer HSD-Mixed model-JMP), differences recovered among the five melon 

cultivars (Arava, Athena, Dulce, Jaune, Sivan) during the Run 1. Box plots with the 

same letters are not significantly different (p≤0.05). 

Figure 1b. Box plots display the population of S. Newport log10 CFU mL-1 (Tukey-

Kramer HSD-Mixed model-JMP), differences recovered among the five melon 

cultivars (Arava, Athena, Dulce, Jaune, Sivan) during the Run 2. Box plots with the 

same letters are not significantly different (p≤0.05). 

Figure 1c. Box plots show median and interquartile range. Small letters denote 

significant differences among cultivars and Fusarium treatments (B) (p≤0.05) during 

the Run 3. Box plots display the population of S. Newport log10/melon rind (Tukey-

Kramer HSD-Mixed model-JMP), differences recovered among the five melon 

cultivars (Arava, Athena, Dulce, Jaune, Sivan). Box plots with the same letters are not 

significantly different. 

Figure 1d. Population levels of S. Newport log10 CFU mL-1 retrieved from melon rind 

of five different cultivars infected with F. fujikuroi, Fusarium oxysporum, F. 

armeniacum or uninfected (water control) during the Run 4. Box plots display the 

population of S. Newport log10/melon rind (Tukey-Kramer HSD-Mixed model-JMP), 

differences recovered among the five melon cultivars (Arava, Athena, Dulce, Jaune, 

Sivan). Box plots with the same letters are not significantly different (p≤0.05). 

Figure 2a. Impact of incubation time (24 hrs.) on Salmonella Newport survival on 

cantaloupe and honeydew type melon (p≤0.05), when inoculated alone or in the 

presence of Fusarium proliferatum. 

Box plots displaying population of S. Newport log10 CFU mL-1 / melon segment 

(Tukey-Kramer HSD-Mixed model-JMP), differences recovered among the four 

melon segments (Surface, Exocarp, Mesocarp, and Endocarp), after 24 hr. post 

inoculation when Fusarium proliferatum plus S. Newport were simultaneously 

inoculated, or nonsimultaneously, at 4 days later, and retrieved at Day 5 (p≤0.05). 
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FIGURE LEGENDS 

 

Figure 2b. Impact of Fusarium proliferatum and incubation time of Salmonella 

Newport (5 and 10 days), inoculated on cantaloupe type melon (p≤0.05). 

 Box plots display the population of S. Newport log10 CFU mL-1 /melon segment 

(Tukey-Kramer HSD-Mixed model-JMP), differences recovered among the four 

Salmonella Newport treatments (H0S0, F0S0, H0S4, F0S4), after 5 post inoculation 

when Salmonella Newport was inoculated alone (H0S0), Fusarium proliferatum plus 

S. Newport simultaneously (F0S0), or nonsimultaneously at day 0 or 4 days later 

(H0S4, F0S4), and retrieved at Day 5 and 10 (p≤0.05). 
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FIGURES 

Fig. 1a.  
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FIGURES 

Fig. 1b.  
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FIGURES 

 

Fig. 1c. 
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FIGURES 

Fig. 1d. 
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FIGURES 

Fig. 2a. 
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FIGURES 

Fig. 2b. 
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Appendices 

 

A1. A list of Fusarium species identified morphologically. These Fusarium species 

were isolated from melon grown in Baltimore, MD. U. S. during the growing season 

of 2016.  

A2. A list of Fusarium species identified morphologically. These Fusarium species 

were isolated from melon grown in LESREC, organic field in 2016, Salisbury, MD. 

U. S.  

A3. A list of Fusarium species identified morphologically. These Fusarium species 

were isolated from melon grown in LESREC, conventional field in 2016, Salisbury, 

MD. U. S.  

A4.  A list of Fusarium species identified morphologically. These Fusarium species 

were isolated from melon grown in Laurel, DE.  

A5. A list of Fusarium species identified morphologically. These Fusarium species 

were isolated from melon grown in WYEREC, Queen’s Anne, MD. U. S.  

A6. Overall percentage of Fusarium species isolated from the melon and 

morphologically identified in five locations during the growing season of 2016, MD 

during the production season, 2016 (n=71).  

A7. i. Melon in the field infected by presumptive Fusarium spp. ii. Fusarium strain 

cultures after 7 days of inoculation on PDA plates. iii. ‘Honeydew’ melon with 

lesions on five different locations (3-circumference, stem scar, and blossom end) after 

being inoculated with the isolate#WYE003 (F. fujikuroi) for ten days. iv. Fusarium 

strains DNA PCR products’ Gel bands observed under a UV-light.  
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APPENDIX A1. Fusarium spp. identified morphologically from the isolates obtained 

from melon grown in Baltimore, MD during 2016. 

Isolate ID                                Origin  Cultivar     Fusarium spp. 

F2016B003 Baltimore Athena F. semitectum 

F2016B006  Baltimore Athena F. nygamai 

F2016B013A Baltimore Athena F. nygamai 

F2016B016  Baltimore Athena F. scirpi 

F2016B017  Baltimore Athena F. semitectum, scirpi, solani 

F2016B018    Baltimore Athena F. equiseti 

F2016B019    Baltimore Athena F. equiseti 

F2016B021  Baltimore  Athena F. crookwellense 

F2016B024B Baltimore Athena F. oxysporum 

F2016B024A   Baltimore Athena F. sumbucinum, solani 

F2016B027B   Baltimore Athena F. polyphialidicum, F. semitectum 

F2016B028B  Baltimore Athena F. scirpi 

F2016B029B Baltimore Athena F. semitectum, scirpi 

F2016B025A  Baltimore Athena F. semitectum, F. nygamai 

F2016B025B Baltimore Athena F. solani 

F2016B029A  Baltimore Athena F. equiseti, scirpi 

F2016B030A Baltimore Athena F. longipes, F. aveneceum 

F2016B030B                                          Baltimore Athena   F. oxysporum 
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A2. Fusarium spp. identified morphologically from the isolates obtained from 

melon grown in LESREC-A, MD during 2016. 

Isolate ID Origin Cultivar Fusarium spp. 

F2016LA001 LESREC-A Sivan F. crookwellense 

F2016LA002A LESREC-A Sivan F. semitectum 

F2016LA005A LESREC-A Sivan F. semitectum 

F2016LA008A LESREC-A Sivan F. scirpi 

F2016LA009 LESREC-A Sivan F. semitectum 

F2016LA010 LESREC-A Sivan F. solani 

F2016LA011 LESREC-A Sivan F-scirpi 

F2016LA014 LESREC-A Sivan F. semitectum 

F2016LA015 LESREC-A Sivan F. solani 

F2016LA016 LESREC-A Sivan F. oxysporum 

F2016LA017 LESREC-A Sivan F. solani 

F2016LA019 LESREC-A Sivan F. culmorun 

F2016LA020 LESREC -A Sivan F. scirpi 

F2016LA021 LESREC-A Sivan F. campactum 
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A3. Fusarium spp. identified morphologically from the isolates obtained from 

melon grown in LESREC-B, MD during 2016. 

Isolate ID                                Origin  Cultivar     Fusarium spp. 

F2016LB002              LESREC-B Arava F. solani 

F2016LB002 LESREC-B Arava F. compactum, semitectum 

F2016LB003 LESREC-B Sivan F. semitectum 

F2016LB004 LESREC-B Jaune F. crookwellense, solani 

F2016LB006 LESREC-B Arava F. solani 

F2016LB007 LESREC-B Sivan F. scirpi 

F2016LB009 LESREC-B Jaune F. compactum, nygamai, solani 

F2016LB010 LESREC-B Sivan F. scirpi 

F2016LB013 LESREC-B Arava F. compactum, vericilloides 

F2016LB014 LESREC-B Arava F. solani, avenaceum 

F2016LB017 LESREC-B Sivan F. solani 

F2016LB018 LESREC-B Arava F. semitectum 

F2016LB020 LESREC-B Athena F. avenaceum 

F2016LB023 LESREC-B Athena F. solani 

F2016LB024      LESREC-B Athena F. solani 
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A4. Fusarium spp. identified morphologically from the isolates obtained from 

melon grown in Laurel, DE during 2016. 

Isolate ID Origin Cultivar Fusarium spp. 

F2016V006B Laurel, DE  Athena F. solani 

F2016V008A  Laurel, DE Athena F. scirpi 

F2016V008A         Laurel, DE Athena F. scirpi 

F2016V008B Laurel, DE Athena F. compactum, F. nygamai, F. solani 

F2016V010B            Laurel, DE Athena F. compactum 

F2016V011B Laurel, DE Athena F. compactum, F. verticilloides 

F2016V013A          Laurel, DE Ariel F. solani, F. avenaceum 

F2016V016A Laurel, DE Ariel F. solani 

F2016V022A           Laurel, DE Athena F. polyphialidicum, F. semitectum 

F2016V024A Laurel, DE Athena F. semitectum 

F2016V024B         Laurel, DE Athena F. solani 

F2016V024B2        Laurel, DE Athena F. semitectum 

F2016V027B           Laurel, DE Athena F. avenaceum 

F2016V027B2 Laurel, DE Athena F. solani 
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A5. Fusarium spp. identified morphologically from the isolates obtained from 

melon grown in WYEREC, Queen’s Anne, MD during 2016. 

Isolate ID                           Origin Cultivar Fusarium spp. 

F2016WYE001 WYEREC Sivan F. equiseti 

F2016WYE002A WYEREC Jaune F. solani 

F2016WYE003A  WYEREC Athena F. scirpi 

F2016WYE004A WYEREC Spanish Sun F. solani 

F2016WYE009A WYEREC Jaune F. solani 

F2016WYE009B WYEREC Jaune F. equiseti 

F2016WYE011A WYEREC Athena F. semitectum 

F2016WYE018B WYEREC Eden Gem F. compactum 

F2016WYE020A WYEREC Jaune F. scirpi 
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A6. Overall percentage of Fusarium spp. identified morphologically identified 

from the isolates obtained from melon grown in the five different locations in 

Maryland and Delaware during 2016. 

 Location       

Fusarium spp. A B C D E Total# % 

F. avenaceum 0 0 1 2 1 4 5.63 

F. culmorum 0 0 1 0 0 1 1.41 

F. equiseti 3 2 0 0 0 5 7.04 

F. oxysporum 0 0 2 0 0 2 2.82 

F. polyphialidicum 0 0 0 0 1 1 1.41 

F. scirpi 4 2 3 2 2 13 18.31 

F. semitectum 5 1 1 3 2 12 16.90 

F. solani 3 3 2 7 6 21 29.58 

F. compactum 0 1 4 1 2 8 11.27 

F. crookwellense 1 0 0 1 0 2 2.82 

F. nygamai 2 0 0 0 0 2 2.82 

 18 9 14 16 14 71 100.00 

Total#% 25.35 12.68 19.72 22.54 19.72 100  

Notes: A= Baltimore, MD, B= WYEREC, C= LESREC-A, D=LESREC-B, E=Laurel, DE. 
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A7. Fusarium on melon, Potato Dextrose plates, and Gel-electrophoresis. 

 

 

  

A7. i 

1a. 

A7. ii. 

A7.iii. A7. iv. 
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