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”Attributes” are referred to abstractions that humans use to group entities

and phenomena that have a common characteristic. In machine learning (ML), at-

tributes are fundamental because they bridge the semantic gap between humans and

ML systems. Thus, researchers have been using this concept to transform compli-

cated ML systems into interactive ones. However, training the attribute detectors

which are central to attribute-based ML systems can still be challenging. It might

be infeasible to gather attribute labels for rare combinations to cover all the corner

cases, which can result in weak detectors. Also, it is not clear how to fill in the

semantic gap with attribute detectors themselves. Finally, it is not obvious how to

interpret the detectors’ outputs in the presence of adversarial noise.

First, we investigate the effectiveness of attributes for bridging the semantic

gap in complicated ML systems. We turn a system that does continuous authenti-

cation of human faces on mobile phones into an interactive attribute-based one. We



employ deep multi-task learning in conjunction with multi-view classification using

facial parts to tackle this problem. We show how the proposed system decompo-

sition enables efficient deployment of deep networks for authentication on mobile

phones with limited resources.

Next, we seek to improve the attribute detectors by using conditional image

synthesis. We take a generative modeling approach for manipulating the semantics

of a given image to provide novel examples. Previous works condition the generation

process on binary attribute existence values. We take this type of approaches one

step further by modeling each attribute as a distributed representation in a vector

space. These representations allow us to not only toggle the presence of attributes

but to transfer an attribute style from one image to the other. Furthermore, we show

diverse image generation from the same set of conditions, which was not possible

using existing methods with a single dimension per attribute.

We then investigate filling in the semantic gap between humans and attribute

classifiers by proposing a new way to explain the pre-trained attribute detectors.

We use adversarial training in conjunction with an encoder-decoder model to learn

the behavior of binary attribute classifiers. We show that after our proposed model

is trained, one can see which areas of the image contribute to the presence/absence

of the target attribute, and also how to change image pixels in those areas so that

the attribute classifier decision changes in a consistent way with human perception.

Finally, we focus on protecting the attribute models from un-interpretable

behaviors provoked by adversarial perturbations. These behaviors create an inex-

plainable semantic gap since they are visually unnoticeable. We propose a method



based on generative adversarial networks to alleviate this issue. We learn the train-

ing data distribution that is used to train the core classifier and use it to detect

and denoise test samples. We show that the method is effective for defending facial

attribute detectors.
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Chapter 1: Introduction

The notion of the “semantic gap” between humans and machine learning (ML)

algorithms/systems has become increasingly important. When the gap exists, there

is a lack of interpretation for how an ML algorithm or system behaves. This dis-

connect can arise in different levels of the ML system, which often results in un-

predictable behaviors, invalid confidence measures, and unnecessarily complicated

machine learning models. Besides the semantic gaps that naturally happens, there

can be induced semantic gaps which can make the ML systems insecure and show

unexplainable behaviors.

In this dissertation, we focus on the concept of “attributes” for bridging the

semantic gap. Given a set of entities, an attribute is a common characteristic of the

items which divides the set into different non-overlapping partitions (usually two,

one partition that has the attribute and the other does not). For example, if the

entities are face images “gender” is an attribute that divides the set into images

of “male” and “female” faces. More formally, an attribute detector f is defined as

f : X → [0, 1] where X ∈ RW×H×C is the input image and 1 corresponds to the

presence of the attribute and 0 to the absence.

Using multiple attributes to identify entities has been a popular approach for
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decomposing complicated ML tasks into simpler ones. This approach can either

mimic the complex behavior or narrow down the search space significantly leading

to a more robust and efficient system. For example in a face recognition system

[Kumar et al., 2009] or for object recognition [Farhadi et al., 2009], a collectively

large set of attributes has been shown to be enough to get an accurate identity

preserving representation for faces and objects. This idea can be specially interesting

for converting demanding algorithms into amenable ones for devices with limited

resources. In this dissertation, we look at the problem of continuous authentication

on mobile phones.

Training robust attribute detectors is therefore central to attribute-based ML

systems. In this dissertation, we employ deep convolutional neural networks (CNNs)

for the attribute classifiers since they have proven to work well for this task [Levi and

Hassner, 2015], as well as many other computer vision tasks. However, deploying

CNNs on mobile phones is challenging because of the limited resources [Sarkar et al.,

2016]. We address this challenge by introducing deep CNNs for attribute-based

continuous authentication which are run efficiently on mobile phones.

To be more efficient and also make use of inter-attribute dependencies, usually

a single CNN is trained for predicting all of the attributes together. At training

phase of such models, for each training data x ∈ Xtrain we will have a target vector

y = [y0 ... yn−1] where each dimension determines the presences of one of the n

attributes. As n increases the label space expands exponentially, and therefore

more training data is needed to cover the whole label space. Thus, there are usually

attributes that are not present in most of the images. For example, there might not
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be enough face images with the attribute ”mustache” present. We take a generative

modeling approach to address this issue by learning to capture the attributes in

vectorized representations and transferring them to images that do not have those

attributes.

After converting an ML system into an attribute-based one and training good

attribute detectors, there still exists one semantic gap: what does a deep black

box attribute detector do to make a prediction. Understanding the behavior of

deep models can be critically important for certain applications, such as ML-based

evidence in legal courts, education, or even model debugging. To understand the

behavior, we should make sure to have an algorithm that is guaranteed to have

interpretable outcomes. Earlier works have defined the explanations as a sensitivity

map of the model output with respect to the given input image [Zhou et al., 2016,

Selvaraju et al., 2016a]. However, there are no guarantees that these masks are

interpretable by humans, and also it is not known how the pixel values should change

in those areas so that the outcome of the binary attribute classifier is toggled. In

this dissertation, we propose a new way of exploring this issue which results in

interpretable masks and also provides pixel-wise values that make the classifier to

cross the decision boundary.

Besides explaining the behavior of deep attribute models, it is essential to

prevent the detectors from induced uninterpretable outcomes. Adversarial agents

enforce these behaviors by adding small perturbations to the input pixels. These

perturbations are usually unnoticeable; thus, from the user perspective, it seems

that the network gives two different outputs for the same image. In the literature,
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these adversarial perturbations are defended by strong prior assumptions on the

type of attacks [Goodfellow et al., 2014b]. However, in a realistic scenario, we have

no prior information about the type of attacks that can happen on a given ML

system. We propose a method based on generative adversarial networks to solve the

problem with no assumptions on the attacks.

1.1 Attributes for continuous authentication

Continuous authentication, is as opposed to one-time initial authentication

of the users using passwords or biometrics and protects the mobile device even if

the initial authentication is bypassed. This system can be designed without us-

ing any machine learning algorithms, for instance by asking the password every

minute. However, it is more desirable if the continuous authentication method is

non-intrusive, meaning that it does not interrupt the usage of the device. ML-

based solutions have been pursued to alleviate this issue [McCool et al., 2012]. Such

systems produce a similarity score between the current and enrolled user repre-

sentations. These representations are inferred from sensory inputs such as camera

images. The calculated representations are usually of the form of a vector that is

not interpretable on their own.

We are the first to propose using attributes to for mobile continuous authen-

tication and demonstrate its multiple benefits [Samangouei et al., 2015,Samangouei

et al., 2017b,Samangouei et al., 2017a]. From the semantic gap perspective, different

types of interaction are possible with our proposed system. One can enroll the users
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by entering the attributes manually. This is desirable because enrolling the user

using conventional methods boils down to saving an inferred representation which

may not be robust enough. Another type of interaction can be an understandable

explanation of why the user is locked out: “Attribute A” does not match the at-

tribute of the enrolled user. Besides user experience advantages, this has technical

benefits too: the system can first check attributes which are the easier task, and

then invest resources in running a complicated model.

We train binary attribute classifiers which provide compact visual descriptions

of faces. The learned classifiers are applied to the image of the current user of a

mobile device to extract the attributes and then authentication is done by simply

comparing the calculated attributes with the enrolled attributes of the original user.

Extensive experiments on two publicly available unconstrained mobile face video

datasets show that our method is able to capture meaningful attributes of faces

and performs better than the previously proposed authentication method. We also

provide a feasible variant of our method for efficient continuous authentication on

an actual mobile device by doing extensive platform evaluations of memory usage,

power consumption, and authentication speed.

1.1.1 Bringing CNNs to mobile phones

We also use the fact that attributes decompose complicated systems into sim-

pler ones to bring deep convolutional neural networks (CNNs) to mobile phones

[Samangouei and Chellappa, 2016]. Besides the excellent performance of CNNs in
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various inference tasks, the ones that are used for face verification in the wild are too

computationally expensive to be deployed on mobile phones for continuous authenti-

cation. We follow our initial approach for performing attribute-based authentication

and bring deep efficient CNNs to devices. The proposed CNNs implement multi-

tasking and multi-view approaches. The multi-tasking approach is needed to predict

multiple attributes from the same backbone network. multi-view approach enables

the processing of different components of the face, such as the eyes or mouth.

Our multi-task, part-based CNN architecture for attribute detection performs

better than previously proposed methods in terms of accuracy for attribute pre-

diction. As a byproduct of the proposed architecture, we are able to explore the

embedding space of the attributes extracted from different facial parts, such as the

mouth and eyes, to discover news attributes. Furthermore, through extensive exper-

imentation, we show that the attribute features extracted by our method outperform

our initial presented attribute-based method and a baseline method for the task of

active authentication. Lastly, we demonstrate the effectiveness of the proposed ar-

chitecture in terms of speed and power consumption by deploying it on an actual

mobile device.

1.2 Conditional image syndissertation from attribute representations

As the number of training examples increases for training attribute detectors,

there is a higher chance of missing or having a low number of examples for a set of

attribute combinations. To address this issue, we try to disentangle the attribute
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information from invariant information using generative models. As a result, we

can transfer the attribute from one image to the other or change the existence

of multiple attributes at the same time. Our method falls under the umbrella of

conditional image syndissertation. Aside from this application, such methods can

be used for semantic image manipulation control the existence of specific attributes

in the image.

Early works on conditional image generation have represented an attribute

with a single dimension [Lample et al., 2017, Choi et al., 2017] and allotted a rep-

resentation for non-attribute characteristics of the image. These methods consists

an encoder f(X) → z for mapping the images into latent codes z and a generator

g(z, y)→ X̂ that gets z and attribute labels y and generates the image X̂. Transfer-

ring attributes of image X1 to X2 is therefore trivial and happens by generating the

image g(z2, y1). Although these methods can toggle the presence of attributes, they

have no sense of the style of attributes. Style of an attribute can be thought of as

the attribute of the attribute. For example in the case of face images, the attribute

“smiling” happens either with either of these styles: mouth open or closed. This

happens because the encoder is encouraged to output a representation z that has

no information about the attributes. This results in a generator that couples the

“style” of the attributes to the z vector. Thus, when toggling the “smiling” dimen-

sion from “off” to “on” for some input image, the generator has no way of knowing

which type of smile to put on the face.

We introduce a new method for conditional image generation based on at-

tribute manipulation. As mentioned before, recently introduced algorithms explic-
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itly encode images as a combination of an embedding vector and a series of discrete

binary attributes which encode whether a visual attribute is present or not in a

given image. By encoding a query image and flipping these binary attributes, visual

elements can be toggled, e.g., turned on or off. Unfortunately, such an approach

is limited to representing the presence, or lack thereof, of a particular, categorical

attribute and cannot be used to sample from a variety of attribute realizations. For

example, this approach might be used to specify whether or not a person is wearing

a hat, but cannot be used to sample from a variety of hats. To address this limita-

tion, we introduce a model for attribute-based image manipulation that represents

visual attributes in a continuous embedding space. This approach allows for two

new types of attribute-based manipulations: Diverse Swaps and Borrows. Diverse

Swaps allows us to turn on and off visual attributes by sampling and producing di-

verse results. A Borrow allows us to encode a particular realization of an attribute

from a reference image and inject it into a query image. We demonstrate the efficacy

of our method on a challenging dataset.

1.3 Explaining attribute detectors

Attribute detectors can be studied themselves in terms of the semantic gap.

The semantic gap can be investigated from multiple views. In this dissertation we

are interested in looking at this problem from another viewpoint: given a black box

function fθ (an attribute detector for example), “what” does it do with respect to

a given input? If we can understand what a classifier is doing, we know how we
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should change the input image to change the decision of the classifier. Therefore,

answering the question boils to understanding what pixel values we should change,

and how we should change those values to change the output of fθ. Therefore one

expects an “explanation” algorithm to produce a saliency map and also a pixel value

map that together crosses the decision boundary of the black box classifier fθ. One

other component of “explanation” is the context that we want to explain fθ in. In

this dissertation, we focus on explanations that are meant for humans.

Previous methods have focused on the gradient of the classification loss func-

tion fθ with respect to the input [Simonyan and Zisserman, 2014]. Such solutions

have some limitations. First of all, the gradient values depend on the loss function

which is not a part of fθ and may not necessarily be the same loss function that fθ is

trained with. The second fundamental problem comes from the fact that gradients

are first-order approximation of highly nonlinear functions. Therefore, as we get

further away from the input image X the gradient directions become less accurate

in changing the loss value. Besides conceptual problems, there are also technical

issues such as the gradient vanishing phenomena that occur when fθ is a deep archi-

tecture. Because of these issues, the saliency maps that come out of these methods

are not visually comprehensible by humans. Although there have been attempts to

make the produced saliency map more visually plausible [Fong and Vedaldi, 2017],

existing works provide no means of changing the pixel values so that the decision of

fθ is changed.

We introduce a new method for interpreting computer vision models: visually

perceptible, decision-boundary crossing transformations [Samangouei et al., 2018b].
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Our goal is to answer a simple question: why did a model classify an image as being

of class A instead of class B? Existing approaches to model interpretation, including

saliency and explanation-by-nearest neighbor, fail to explicitly illustrate examples

of transformations required for a specific input to alter a model’s prediction. On

the other hand, algorithms for creating decision-boundary crossing transformations

(e.g., adversarial examples) produce differences that are visually imperceptible and

do not enable insightful explanation. To address this we introduce ExplainGAN,

a generative model that produces visually perceptible decision-boundary crossing

transformations. These transformations provide high-level conceptual insights which

illustrate how a model makes decisions. We validate our model using both traditional

quantitative interpretation metrics and introduce a new validation scheme for such

an approach.

1.4 Protecting against induced semantic gap

The goal of adversarial attacks is to change the input image in a way that de-

cision of the target classifier changes. These types of attacks are carried on usually

by solving an optimization problem with respect to the input image and an adver-

sarial loss function. The existing defense methods [Goodfellow et al., 2014b, Meng

and Chen, 2017] assume prior information about the type of attack that is going to

happen and thus is limited to the type of attack they are exploring.

We propose Defense-GAN [Samangouei et al., 2018a], a new framework lever-

aging the expressive capability of generative models to protect deep neural networks
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against such attacks. Defense-GAN is trained to model the distribution of unper-

turbed images. At inference time, it finds a close output to a given image which does

not contain the adversarial changes. This output is then fed to the classifier. Our

proposed method can be used with any classification model and does not modify the

classifier structure or training procedure. It can also be used as a defense against

any attack as it does not assume knowledge of the process for generating the ad-

versarial examples. We empirically show that Defense-GAN is consistently effective

against different attack methods and improves on existing defense strategies.

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 talks discusses

attribute-based continuous authentication and a deep model for authenticating on

mobile phones. In Chapter 3 we propose the conditional model for manipulating

semantic attributes. Chapter 4 introduces our method for explaining black box

attribute detectors. Chapter 5 presents our method for protecting the attribute

classifiers against adversarial attacks. Finally, Chapter 6 concludes the dissertation

and discuss future research directions.
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Chapter 2: Attribute-based continuous active authentication

2.1 Introduction

Attributes are semantic entities that are easier to learn than individual classes,

however, a collection of them intuitively and in practice [Kumar et al., 2009], is ben-

eficial for discriminating the object classes. We exploit this fact to design efficient

methods for attribute detection. To test the efficiency, we focus on continuous au-

thentication on mobile devices which have constraints on computation and power

resources. Mobile devices, such as cell phones, tablets, and smart watches have

become integral components of people’s lives. The users often store valuable infor-

mation such as bank account details or credentials to access their sensitive accounts

on their mobile phones. Typical devices integrate no automatic mechanism to au-

thenticate the users. According to the survey in [Inc, 2013], nearly half of the users

do not have any form of authentication for their phones. Besides this, if the ini-

tial password-based authentication is compromised, the personal information of the

users is exposed since there are no active authentication methods incorporated in

the mobile phone.

In the first part of this chapter, we focus on demonstrating that attribute fea-

tures are practical for active authentication on mobile devices as a part of DARPA’s
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active authentication program. We are the first ones to propose using attributes

as an intuitive, effective, and efficient way for authentication users on smartphones.

We train support vector machines (SVMs) classifiers on conventional features such

as Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005] and Local Bi-

nary Pattern (LBP) [Ahonen et al., 2006] features on different face parts and fuse

their score for final attribute response. We show the feasibility of this approach by

implementing it on a smartphone and testing the speed and battery consumption

of different parts.

In the second part, with the emergence of a large-scale face attribute dataset

CelebA [Liu et al., 2015], we train convolutional neural networks for attribute de-

tection. An exclusive CNN per attribute is impractical to use on mobile devices

since they consume a lot of resources. In the second part of this section, we bring

CNN’s to cell phones by exploiting the fact that each attribute can correspond to

specific regions of the face. We use lightweight deep networks for each predefined

area of the face that are obtained by cropping around facial landmarks. Instead of

learning a single model per attribute, we use multi-task training to share the base

networks for each face region and their assigned attributes. Since an attribute can

be assigned to multiple regions of the face, we get the final prediction by fusing the

features from different parts. We also deploy these networks on a cell phone and

show their response time, and power consumption is reasonable when they are using

the phone’s CPU to compute the attribute features.

The rest of this chapter is organized as follows. In section 2.2 we go over

some relevant works to this chapter. We talk about attribute-based authentication
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in Section 2.3. In Section 2.4 we describe how to train efficient deep architectures

for attribute detection.

2.2 Related work

In computer vision, almost in all problems, the very first step is to extract

features from a given visual signal. The first use of attributes as higher order

features was introduced in Content Based Image Retrieval where they are presented

as a solution to decrease the semantic gap [Liu et al., 2007,Datta et al., 2005,Obeid

et al., 2001]. Attributes were also referred to as a kind of “intermediate features”.

This term initially appeared in [Obeid et al., 2001] referred to the features that are

“low-level” semantic features but “high level” image features.

Later applications of attributes were in object recognition domain and human

identification. Ferrari et al. [Ferrari and Zisserman, 2007] learned visual attributes

for objects such as “dotted” or “striped”. In [Farhadi et al., 2009] Farhadi et al. use

L1-regularized logistic regression to learn object attributes such as “has wheels” or

“metallic” from images of PASCAL VOC 2008 [Everingham et al., 2008] and then

use them to describe objects in the image. In [Lampert et al., 2014] Lampert et

al. learn object attributes via kernel Support Vector Machines (SVMs) [Cortes and

Vapnik, 1995] in two learning paradigms, Direct and Indirect Attribute Prediction

and then use those to perform object recognition. They demonstrate good results on

their Animal with Attributes dataset. There are several other areas where attribute

features have been shown to be useful: zero-shot learning [Liu et al., 2014], scene
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classification [Patterson and Hays, 2012], and action recognition [Liu et al., 2011].

Human attributes or “soft biometrics” such as age and gender suggested in

[Jain et al., 2004], have been successfully used for identity recognition/verification in

many applications. In [Jain et al., 2004], Jain et al. combine height, race and gender

information with fingerprint to improve the recognition accuracy on an in-house

dataset. Face image retrieval solely based on attributes was investigated in [Kumar

et al., 2008] by Kumar et al. For face verification, Kumar et al. in [Kumar et al.,

2009] extracted attribute feature vectors. Zhang et al. [Zhang et al., 2014a] used

attributes to improve face clustering and overcome variations of faces like pose and

illumination. Klare et al. [Klare et al., 2014] defined 46 facial attributes to perform

suspect identification task. In [Layne et al., 2012] Layn et al. showed that attributes

such as “jeans”, “headphones”,“sunglasses” etc. can help re-identifying people seen

on different cameras of a distributed camera network. Vaquero et al. [Vaquero et al.,

2009] developed a method for searching with attributes in surveillance environments

using Viola-Jones attribute detectors.

Detecting the presence of each attribute has been focus of many researchers.

These algorithms can be roughly divided into two groups, those which learn a specific

model per attribute and those which present a general framework to learn all the

target attributes together at once. Our focus in this chapter is on the second group of

attributes. Bourdev et al. [Bourdev et al., 2011] define poselets-based on Histogram

of Oriented Gradients (HOGs) [Dalal and Triggs, 2005] features and train SVMs

on them. Zhang et al. [Zhang et al., 2014b] train a Convolutional Neural Network

(CNN) on parts extracted from full body person images to detect attributes, they

15



achieved good results on Berkley Attributes of People dataset and Attributes25k

[Bourdev et al., 2011] dataset. Berg et al. [Berg and Belhumeur, 2013] learned

one SVM per class pairs and part pairs to take into account the class relationship

and part relationship and then create a feature vector out of all the SVMs. Then

these features were used to learn classifiers for each attribute. Kumar et al. [Kumar

et al., 2008] trained their local SVMs and let Adaboost to optimize for best ones

for ten attributes and show the performance on FaceTracer [Kumar et al., 2008]

dataset. In [Kumar et al., 2009] Kumar et al. concatenated different low-level

features extracted from face components and incrementally learn SVMs for each

attribute and test them on PubFig [Kumar et al., 2009]. We present two approaches,

one consists of model selection between different SVMs, and another simpler one

which gives efficient linear SVMs for platform implementation.

The early research to find alternatives for password-based authentication were

focused on extracting unique characteristics from users’ keystrokes. In [Spillane,

1975], Spillane et al. suggested to use timing between key presses and the pressure

patterns of keystrokes to identify users. Then in [Monrose et al., 2002] Monrose

et al. created a method using pseudorandom polynomials to generate a secure

sequence based on keystroke time interval of users to increase password security.

In [Klosterman and Ganger, 2000], Klosterman et al. introduce the first continuous

face verification system implemented in Linux. They also present a comprehensive

set of differences between biometric and password-based authentication systems.

The next biometric based continuous authentication system design was introduced

by Carrillo [Carrillo, 2003] to secure aircraft cockpit against unverified access. Then
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followed many studies on continuous authentication mostly for desktop computers

like [Altinok and Turk, 2003,Sim et al., 2007,Niinuma and Jain, 2010,Niinuma et al.,

2010,Janakiraman et al., 2005].

With exponential growth in the use of mobile devices, active authentication

on them has become the focus of many researchers. Various biometrics have been

proposed to continuously authenticate the users. In [Frank et al., 2013] Frank et al.

proposed a set of 30 behavioral touch features and then use a k-nearest neighbor

classifier and Gaussian kernel SVM for horizontal and vertical strokes of the user

to perform authentication. [Feng et al., 2012], [Zhang et al., 2015b] also use touch-

screen gestures for this purpose. Gait as well as device movement patterns measured

by the smartphone accelerometer were used in [Derawi et al., 2010], [Primo et al.,

2014] for continuous authentication. Stylometry, GPS location, web browsing be-

havior, and application usage patterns were used in [Fridman et al., 2015] for active

authentication.

Face-based continuous user authentication has also been under study by re-

searchers. In [Hadid et al., 2007] Hadid et al. use Haar-like features and Adaboost

of [Viola et al., 2005] by Viola et al. is employed for part detection and, Local

Binary Pattern (LBP) [Ahonen et al., 2006] followed by nearest neighbor threshold-

ing for identification. In [Fathy et al., 2015], Fathy et al. extracted two intensity

features for images, one from the whole face and one from face components. Then

they compare four still image algorithms and five convex hull image set comparison

methods for the AA01 dataset and compared the recognition rates of the algorithms.

Lastly, [Gunther et al., 2013] Gunther et al. provides an overview of methods that
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depend on low-level features for this task such as [Zhao et al., 1998], [Cox and

Pinto, 2011], [Zhang et al., 2005], [Wiskott et al., 1997] and their results on the

MOBIO [McCool et al., 2012] dataset.

Multi-modal methods have always been of interest when it comes to biometrics.

Fusion of speech and face was proposed in [McCool et al., 2012] by McCool et al,

they extract LBP features and use nearest neighbor thresholding for faces. [Crouse

et al., 2015] proposed to fuse face images with the inertial measurement unit data to

continuously authenticate the users. A low-rank representation-based method was

proposed in [Zhang et al., 2015a] for fusing touch gestures with faces for continuous

authentication. Finally, a domain adaptation method was proposed in [Zhang et al.,

2015c] for dealing with data mismatch problem in continuous authentication.

Face-based continuous user authentication has also been proposed in [Hadid

et al., 2007], [Fathy et al., 2015], [McCool et al., 2012], [Samangouei et al., 2015].

Fusion of speech and face was proposed in [McCool et al., 2012] while [Crouse et al.,

2015] proposed to fuse face images with the inertial measurement unit data to contin-

uously authenticate the users. Finally, a domain adaptation method was proposed

in [Zhang et al., 2015c] for dealing with data mismatch problem in continuous au-

thentication. Fusing touch gestures with faces for continuous authentication using

a low-rank representation-based method was proposed in [Zhang et al., 2015a].

State of the art methods for face recognition employ Deep Convolutional Neu-

ral Networks (DCNN) [Taigman et al., 2014], [Parkhi et al., 2015], [Schroff et al.,

2015], [Sun et al., 2014a]. Since deep networks are very scalable, they achieve good
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Figure 2.1: Overview of our attribute-based authentication method.

results by having large number of parameters learned using large datasets. The

harder the problem, the more number of parameters and data are required. As a

result of their size, their architectures are not efficient for to be deployed on a mobile

phone. It has been shown in [Sarkar et al., 2016] that DCNN with an architecture

similar to AlexNet [Krizhevsky et al., 2012] can drain the battery very fast.

2.3 Attribute-based Active Authentication on Mobile Devices

In this section, we present the details of the proposed attribute-based au-

thentication system. In particular, we describe the training data used to learn the

attribute classifiers, how different classifiers are trained for each attribute and how

verification is performed using the attributes.
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Figure 2.2: Training phase pipeline for each attribute classifier. Landmarks are
first detected on a given face. Different facial components are then extracted from
these landmarks. Then for each part, features are extracted with different cell sizes
and the dimensionality of features is reduced using principle component analysis.
Classifiers are then learned on these low-dimensional features. Finally, top five Cls
are selected as our attribute classifier.

2.3.1 Methodology

Training Data PubFig dataset [Kumar et al., 2009] is one of the few publicly

available datasets that provides facial attributes along with face images. We use this

dataset to train our attribute classifiers. PubFig dataset consists of unconstrained

faces collected from the Internet by using a person’s name as the search query on a

variety of image search engines, such as Google Images and flickr. However, there

are several challenges have to be overcome before this dataset can be effectively

utilized for our application. Since the release of this dataset in 2009, many links to

the images in this dataset are broken. Hence, not all the images listed in this dataset

are available for downloading. As a result, we use a subset of this dataset where we

could establish proper links to the images. Furthermore, the true attribute labels

of the images are not provided, instead the output of their attribute classifiers are
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provided. As a result, we used a proper threshold to get the labels for each attribute

of the available images to ensure that the classifier is certain enough about the

label given to the image. Finally, rather than using all the 73 binary attributes in

the PubFig dataset, we selected a more meaningful subset of 44 attributes in our

implementation.

FaceTracer [Kumar et al., 2008] is another publicly available dataset that has

face images with 18 attributes. This dataset is smaller than the PubFig dataset and

again a several hyperlinks to the images in this dataset are broken. Also, only a

subset of attribute labels has been provided.

2.3.2 Attributes Classifiers

Each attribute classifier Cli ∈ {Cl1, ..., ClN} is trained by an automatic pro-

cedure of model selection for each attribute Ai ∈ {A1, ..., AN}, where N is the total

number of attributes. Automatic selection is necessary since each attribute needs a

different model. Our models are indexed as follows:

1 Facial parts: For each attribute, a set of different facial components can be

more discriminative. The face components considered for training are: eyes,

nose, mouth, hair, eyes&nose, mouth&nose, eyes&nose&mouth, eyes&eyebrows,

and the full face. In total, nine different face components are considered.

2 Features: For different attributes, different types of features may be needed.

For example, for the attribute “blond hair”, features related to color can be

more discriminative than features related to texture. The following features
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are considered in this work: LBP [Ahonen et al., 2006], ColorLBP, HoG [Dalal

and Triggs, 2005], and ColorHoG. ColorLBP and ColorHOG are obtained by

concatenating the HoG/LBP feature of each RGB channel. In total, four types

of features are extracted using the VLFeat toolbox [Vedaldi and Fulkerson,

2008].

3 Locality of features: In order to capture the local information, we consider

different cell sizes for the HOG and LBP features. In total, six different cell

sizes, 6, 8, 12, 16, 24, 32, are used.

The implementation of the algorithm for this section is done in Matlab [MAT-

LAB, 2014]. We use a state-of-the-art publicly available fiducial point detection

method [Asthana et al., 2013] to extract the different facial components. Further-

more, the detected landmarks are also used to align the faces to a canonical coordi-

nate system. After extracting each set of features, the Principal component analysis

(PCA) is used with 99% of the energy to project each feature onto a low-dimensional

subspace. An SVM with the RBF kernel is then learned on these features. This

process is run exhaustively to train all possible models. For each attribute classifier,

80% of the available data is used for training the SVMs and 20% of the data is used

for model selection. The face images in the test set do not overlap with those in the

training set. The total number of negative and positive classes are the same for both

training and testing. Finally, among all 216 SVMs, five with the best accuracies are

selected.
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For a given test face image F , a feature vector [fa1 ...faN ] is calculated by

fak =

∑5
i=1w

i
kCl

i
k(F )∑5

i=1w
i
k

, (2.1)

where Clik(F ) → {0, 1} is the output of the ith accurate classifier for the kth at-

tribute Ak on face image F , and wi is the accuracy of Clik. The entire training

pipeline of our method is shown in Figure 2.2.

2.3.3 Verification

We consider the continuous authentication problem as a verification problem

in which given two pairs of videos or images, we determine whether they correspond

to the same person or not. The well-known receiver operating characteristic (ROC)

curve, which describes the relations between false acceptance rates (FARs) and

true acceptance rates (TARs), is used to evaluate the performance of verification

algorithms. As the TAR increases, so does the FAR. Therefore, one would expect

an ideal verification framework to have TARs all equal to 1 for any FARs. The ROC

curves can be computed given a similarity matrix.

We use the proposed framework to extract the attribute vector from each

image in a given video. We then simply average them to obtain a single attribute

vector that represents the entire video. Then, the (i, j) entry of the similarity matrix

Sattrs is calculated as

si,j =
1

‖ei − tj‖2

, (2.2)
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where ei is the ith attribute vector representing the gallery (or enrollment) video,

and tj is the jth attribute vector representing the probe video. We evaluate the

performance of the proposed attribute-based authentication method on two publicly

available mobile video datasets - MOBIO [McCool et al., 2012] and AA01 [Fathy

et al., 2015]. In addition to the ROC curves, the Equal Error Rate (EER) is used to

measure the performance of different methods. The EER is the error rate at which

the probability of false acceptance rate is equal to the probability of false rejection

rate. The lower the EER value, the higher the accuracy of the authentication system.

We use an LBP-based method as a baseline for comparison. In this method,

each detected face is represented by the histogram of LBP features. The same

aligned faces that are used for attribute feature extraction are also used to extract

the LBP features. Similar to the attribute features, the LBP features from each

image in a video are extracted and averaged to represent a single video. The LBP

features are extracted using the VLfeat toolbox. The similarity matrix, SLBP , is then

built by comparing two feature vectors. This LBP-based method has been used for

mobile face authentication in [McCool et al., 2012] and [Hadid et al., 2007]. A third

fusion score matrix, Sfusion = S̃LBP + S̃attrs, is calculated by z-score normalization

s̃i,j =
si,j − S̄
σ(S)

, (2.3)

where S̄ and σ(S) are the mean and the standard deviation of the entries in similarity

matrix S, respectively.
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Figure 2.3: Illustration of our attribute classifiers on sample face images from the
AA01 (first two images) and the MOBIO (last image) datasets.

2.3.4 Attribute Classifiers

In Tables 2.1 and 2.2 the accuracies of the attribute classifiers trained using

our method on PubFig and FaceTracer datasets are given. As can be seen from

these tables, most of the accuracies are high. Also the accuracies for AA01 [Fathy

et al., 2015] are provided in Table 2.3. The attributes for this dataset is labeled by

four volunteers. It consists of 50 subjects and for each of 44 binary attributes; if 3

out of 4 people agreed on the presence of the attribute then it is set to one else zero.

Furthermore, in Figure 2.3 we show some sample outputs of our attribute

classifiers. Results of the classifiers are scaled to be between -0.5 to 0.5. For the

first face, eyeglasses, chubby, round jaw, Asian, male, no beard, sideburns, bangs
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Attribute Accuracy Attribute Accuracy

Blond Hair 0.9089 Child 0.9538
Partially Visible Forehead 0.8645 Narrow Eyes 0.7777
Round Face 0.9156 Big Nose 0.8039
Indian 0.9714 Male 0.9451
Gray Hair 0.9091 Pointy Nose 0.816
Bags Under Eyes 0.8986 Asian 0.9225
Obstructed Forehead 0.8913 White 0.6992
Shiny Skin 0.9532 Youth 0.7299
No Eyewear 0.8875 Brown Hair 0.6725
Middle Aged 0.929 Bald 0.7909
Senior 0.8867 Wavy Hair 0.9357
Eyeglasses 0.9397 Straight Hair 0.7408
Sunglasses 0.9701 Bangs 0.9397
Mustache 0.8606 Arched Eyebrows 0.6462
Chubby 0.8815 Strong Lines 0.9308
Receding Hairline 0.8164 Pale Skin 0.793
Round Jaw 0.9357 Flushed Face 0.7819
Big Lips 0.7578 Double Chin 0.9727
No Beard 0.7766 Black Hair 0.8029
Goatee 0.9775 Curly Hair 0.8746
Black 0.7818 Bushy Eyebrows 0.836
Sideburns 0.8756 Oval Face 0.82

Table 2.1: Accuracies of the 44 attribute classifiers proposed in this work on the
PubFig dataset [Kumar et al., 2009].

classifiers give high scores. This clearly matches with the image shown on the

left. For the second face, it is interesting to see that the Male classifier produces a

negative score since the image corresponds to a female subject. Finally, for the last

face, “mustache”, “goatee”, “chubby” and “bags under eyes” produce high positive

scores which clearly match with the image shown on the left.

26



Attribute Accuracy Attribute Accuracy

Asian 0.8786 middle aged 0.7321
eyeglasses 0.7214 black 0.808
sunglasses 0.89 female 0.88
smiling false 0.8 senior 0.7933
no eyewear 0.7481 hair color blond 0.7875
child 0.8276 white 0.763
mustache 0.815 youth 0.692

Table 2.2: Accuracies of the attribute classifiers proposed in this work on available
attributes on the FaceTracer dataset [Kumar et al., 2008].

Attribute Indoor Lights off Outdoor Attribute Indoor Lights off Outdoor

Asian 0.64 0.62 0.54 Bags Under Eyes 0.96 0.96 0.96
Bald 0.98 0.98 0.98 Bangs 0.88 0.88 0.88
Big Lips 0.80 0.80 0.80 Big Nose 0.90 0.90 0.92
Black 0.98 0.98 0.98 Black Hair 0.62 0.62 0.72
Blond Hair 0.96 0.96 0.96 Brown Hair 0.96 0.96 0.96
Bushy Eyebrows 0.94 0.94 0.94 Child 0.74 0.76 0.78
Chubby 0.74 0.74 0.76 Curly Hair 0.96 0.96 0.96
Double Chin 0.92 0.94 0.94 Eyeglasses 0.60 0.58 0.58
Flushed Face 0.98 0.98 0.98 Goatee 0.96 0.96 0.96
Gray Hair 0.96 0.96 0.96 Indian 0.86 0.86 0.86
Male 0.82 0.82 0.84 Middle Aged 0.96 0.96 0.96
Mustache 0.86 0.86 0.86 Narrow Eyes 0.64 0.68 0.62
No Beard 0.58 0.56 0.58 No Eyewear 0.74 0.74 0.74
Obstructed Forehead 0.84 0.84 0.88 Oval Face 0.78 0.78 0.78
Pale Skin 0.98 0.98 0.98 Partially Visible Forehead 0.70 0.70 0.70
Pointy Nose 0.98 0.98 0.98 Receding Hairline 0.86 0.86 0.90
Round Face 0.96 0.96 0.96 Round Jaw 0.76 0.74 0.76
Senior 0.98 0.98 0.98 Shiny Skin 0.98 0.98 0.98
Sideburns 0.98 0.98 0.98 Straight Hair 0.72 0.72 0.74
Strong Nose-Mouth Lines 0.82 0.82 0.82 Sunglasses 0.98 0.98 0.98
Wavy Hair 0.96 0.96 0.96 White 0.90 0.90 0.90

Table 2.3: Accuracy of the attribute classifiers for CNNAA [Fathy et al., 2015]
dataset.
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2.3.5 MOBIO Dataset

The MOBIO dataset [McCool et al., 2012] consists of video data taken from

152 subjects. The dataset was collected in six different sites from five different

countries. In total twelve sessions were captured for each subject - six sessions

for phase 1 and six sessions for phase 2. The database was recorded using two

mobile devices: a NOKIA N93i mobile phone and a standard 2008 MacBook laptop

computer. The laptop was only used to capture videos of part of the first session.

So the first session consists of data captured with both the laptop and the mobile

phone. Figure 2.4 shows some frames from the MOBIO dataset.

Figure 2.4: Sample images from the MOBIO dataset. One can clearly see the
different illumination conditions in this dataset.

In the MOBIO protocol, for each person, the data from one session is used for

enrollment and the data from the remaining sessions are used for testing. In the

first set of experiments with the MOBIO dataset, we do not consider the data from

the laptop session. The first mobile session is considered as the enrollment session

and the data from the next 11 sessions are considered for testing. The ROC curves
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Site LBP Attributes Fusion

but 0.29 0.28 0.25

idiap 0.18 0.20 0.14

lia 0.31 0.24 0.25

uman 0.20 0.25 0.18

unis 0.24 0.28 0.24

uoulu 0.27 0.24 0.23

All together 0.22 0.23 0.19

Table 2.4: The EER values for different methods on the MOBIO dataset.

corresponding to this experiment are shown in Figure 2.5 for the entire dataset.

As can be seen from this figure, our attribute-based method performs comparably

to the LBP-based methods. However, the best performance is achieved when the

similarity matrices corresponding to the LBP and attribute features are fused. The

EER values corresponding to this experiment are compared in Table 2.4.
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Figure 2.5: Performance evaluation on the MOBIO dataset.
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2.3.6 Cross-device Experiments

Images captured by different cameras have different characteristics. Since the

MOBIO dataset has videos that were captured using different sensors, we conduct

cross-session experiments in which the data from the laptop session are considered

as the enrollment data and the data from the cell phone are used as the test videos.

This experiment essentially allows us to study the robustness of different algorithms

with respect to different image quality. Figure 2.6 and Table 2.5 show the ROC

curves and the EER values corresponding to this experiment. As can be seen from

this results, attributes are more robust to camera sensor change than LBP features.

In this experiment, fusion does not necessarily improve the performance over the

attributes since LBP features perform poorly.
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Figure 2.6: Cross device robustness. Laptop session videos are used for enrollment
and the data from the remaining sessions are used for testing.
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Enrollment LBP Attributes Fusion

Laptop 0.33 0.27 0.27

Table 2.5: The EER values corresponding to the cross-device experiment on the
MOBIO dataset.

2.3.7 AA01 Dataset

The AA01 dataset consists of 750 videos from 50 different individuals collected

in three different sessions corresponding to three different illumination conditions.

The UMDAA-01 dataset was collected using an app on an iPhone 5s. Each user

performed five tasks in three sessions. The different tasks were enrollment task,

document task, picture task, popup task and scrolling task. Figure 2.7 shows some

sample images from the UMDAA-01 dataset where one can clearly see the different

illumination conditions present in this dataset.

(a) (b) (c)

Figure 2.7: Sample images from the AA01 dataset. (a), (b) and (c) show some
sample images from session 1, 2 and 3, respectively.

In the first set of experiments using this dataset, we use the data corresponding

to the enrollment task as gallery and the data from the remaining tasks for testing.

Figure 2.8 and Table 2.6 show the ROC curves and the EER values, respectively
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Enrollment LBP Attributes Fusion

Indoor light 0.13 0.14 0.10

Low light 0.31 0.18 0.20

Natural light 0.19 0.16 0.14

CNNAA all 0.34 0.30 0.30

Table 2.6: The EER values of different methods for the AA01 dataset.

corresponding to this experiment. As can be seen from these results, our attribute-

based method performs much better than the LBP-based authentication system.

Fusion of the LBP and the attribute similarity matrices results in performance

comparable to our method as the LBP features do not perform well on this dataset.
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Figure 2.8: Performance evaluation for the AA01 dataset.

Furthermore, we conducted several session-specific experiments on this dataset.

We used the enrollment data as gallery and the data from other tasks from the same

session as probe. The ROC curves corresponding to these experiments are shown

in Figures 2.9(a)-(c). It can be seen from these figures that our attribute-based

method works better than the LBP-based method, and fusion improves the result
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as expected. The reason that attributes work better here is that the sessions are all

taken in the same day so the change in attributes are less severe than in the MOBIO

dataset.
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Figure 2.9: Session-specific performance evaluations for the AA01 dataset. (a)
Gallery and probe data from session 1. (b) Gallery and probe data from session
2. (c) Gallery and probe data from session 3. (a) Gallery data from session 1 and
probe data from sessions 2 and 3. (e) Gallery data from session 2 and probe data
from sessions 1 and 3. (f) Gallery data from session 3 and probe data from sessions
2 and 1.

Finally, similar to the cross-device experiments on the MOBIO dataset, we

conducted cross-session experiments on the AA01 dataset. We used the data from

the enrollment task from one session as gallery and the data from the other sessions

as probe. This experiment shows the robustness of our attribute-based method to

different illumination conditions. From Figures 2.9(d)-(f), we see that even when

the illumination conditions are different, our attribute-based method is more robust

than the LBP feature-based method. From Figures 2.9(d)-(f) and Table 2.7 we see

that in all cases, attributes performed better than LBP and the fusion of both gives
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Gallery→Probe LBP Attributes Fusion

1→ 2, 3 0.36 0.33 0.32

2→ 1, 3 0.35 0.31 0.30

3→ 1, 2 0.38 0.33 0.31

Table 2.7: The EER values corresponding to the cross-session experiments for the
AA01 dataset. 1 is the office light session, 2 is the low light session, 3 is the natural
light session.

the best results.

2.3.8 Platform implementation and evaluations

One set of the challenges of continuous mobile authentication is the compu-

tational complexity and memory usage of the algorithm. The limited computation

capacity of a mobile phone is shared among many processes. So if the algorithm

takes most of the CPU time, other processes will slow down. Also, computations

consume energy. The more complex they are, the sooner the battery of the phone

needs to be recharged. In addition, the memory capacity of the phones are limited.

Algorithms with high memory usage, will force other running processes to go in the

swap memory of the phone. This costly I/O operations results in both slow down

and high power consumption.

As a consequence, algorithms with high complexity are run on a server and

the mobile device is used just as a client that takes pictures, sends them to the

server and waits for the response as suggested in [Takacs et al., 2008]. This solution

has two drawbacks for continuous authentication. The phone will get locked if the
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mobile device gets disconnected from the server. Furthermore, the system will be

less secure since the communication between mobile and server can be interfered.

This can result in either locking the device of the victim, or even worse unlocking

it by creating a fake server which responds in a way that keeps the phone unlocked.

Also, depending on the enrollment policy, we may need to re-enroll the user multiple

times to account for changes in appearance or environment after the first enrollment

to create a better template. It will also take time to re-enroll the user on the server

again. This will be an unproductive experience for the user. In this section, we show

that our approach allows enrollment and authentication of the user on the device.

Our implementation is tested on a Google Nexus 5 with 2GB of RAM and

a quad core 2.2GHz CPU. The implementation is done on the Android operating

system using the well-known OpenCV [Bradski, 2000] library. Since the authenti-

cation should be done continuously, efficiency-accuracy trade-off will become very

important. To explore this trade-off, we looked at three measures: memory, running

time, and power consumption. Fully changing all the parameters and performing

evaluations is out of the scope of the research, but we will present one pathway to

platform implementation which highlights the decisions that impact the efficiency-

accuracy trade-off.
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Learning method PCA+RBFSVM RBFSVM Linear SVM

Average memory usage 80MB 54MB 1MB

Table 2.8: Average memory usage per attribute classifier for full face

2.3.9 Memory

Memory usage or spacial complexity has always been a challenge while imple-

menting computer vision algorithms. We changed the last two steps of our learning

method to evaluate the memory usage of different models. The average test time

memory requirement of each learning approach for attribute classifiers can be found

in Table 2.8. The memory usage is calculated by first loading all the attribute clas-

sifiers and looking at the increase in memory usage and dividing that change by the

number of classifiers. We use LBP features of intensity image and RGB channels

in this experiment on 128× 168 face images, with dimensionality of 76800 per face

crop. In PCA, we keep 90% of energy. As can be seen from Table 2.8, since we have

44 classifiers at least, using PCA for dimensionality reduction or RBF kernel will

need more than 2GB of memory in total. So we focus on linear SVMs for attributes.

2.3.10 Final attribute classifiers for platform

By looking at the memory usage per classifier given in Table 2.8, we have no

choice but to simplify our classifier learning framework. For training the classifiers,

we use the LFW [Huang et al., 2007] dataset. It has more subjects, hence containing

more variations for each attribute. Also, the output of classifiers from [Kumar et al.,
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2009] is available for the LFW dataset, so to train our classifiers, the same framework

as in Section 2.3.1 is followed with some changes. Since we can not afford 5 PCA-

RBFSVM per attribute, our goal is to train the least number of classifiers possible

which gives us the desired accuracy.

We simplify our training procedure to learn one single linear SVM for each at-

tribute while trying to consider challenges of learning attribute classifiers addressed

in Section 2.3.1. We reran the experiments for the AA01 dataset from Section 2.3.7

with the linear classifiers learned with our simplified learning procedure. The re-

sulting ROC curves can be seen in Figure 2.10 and the corresponding EER values

in 2.9. The differences with classifiers of Section 2.3.1 and Figure 2.2 are:

• Feature extraction: In the approach discussed in Section 2.3.1, we extracted

different types of features to capture the dependence of each attribute on color

and scale. In the simplified model, we just extract LBP feature on gray scale

image and the three channels and concatenate them together. We don’t change

the cell size of LBP to capture dependence on locality. Instead, we perform

evaluation with different image sizes and choose the one that works best for

all attributes together.

• No PCA No dimensionality reduction step is employed after feature extrac-

tion, because loading the PCA basis sets on a phone needs significant memory

space.

• No kernel A linear classifier is learned, because from memory usage in Table

2.8 it is impractical to load the kernelized classifiers into memory.

37



• No part-based attribute classifier We just train classifiers on the full face

image in the simplified model. Extracting the face parts from face image is not

a trivial task and adds to the complexity of the model. Also linear classifiers

optimize the weights that are directly related to pixel values, so choosing face

parts is taken care of by SVM optimization objective to some extent.

• Attribute dimmension value In Section 2.3.1, we took the weighted average

of binary decision values of the top five attribute classifiers as the dimension

value. In the simplified learning approach, we just use the distance from

margin of each attribute classifier. This is valid since we trained the attribute

classifiers with the same image size.

The interesting result is that the classifier with scale 0.5 performs better than

the ones from Section 2.3.1. The most important one is probably the last step of

the approach presented in Section 2.3.1. For the last step, we fuse the output of top

the top five SVMs to get a score by taking the weighted average of binary decision

values of each attribute classifier. This results in a discrete and finite range of scores.

However, the scores of the simplified model are the distances from the margins of

the linear classifiers which gives a continuous value and hence more discriminative

range of value for different faces.

2.3.11 Frames per second and power consumption

Since linear attribute classifiers on the full face turned out to be the winner

of accuracy-efficiency tradeoff, we test their speed and power consumption. For
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Method LBP AttrsSection3 L-SVM 1 L-SVM 0.7 L-SVM 0.5 L-SVM 0.3

Feature dim 19200 variable 76800 33280 16128 3840

Indoor lighting 0.13 0.14 0.16 0.19 0.11 0.22

Low lighting 0.31 0.18 0.20 0.20 0.15 0.24

Natural light 0.19 0.16 0.18 0.18 0.11 0.21

Altogether 0.33 0.30 0.29 0.29 0.25 0.37

Table 2.9: Comparison of EER values for LBP, attribute detectors of Section 2.3.1,
linear models of Section 2.3.8. The scale L-SVM 1 is trained on images of size
128 × 168 and the rest are scaled by the indicated value. The best EER is gained
from L-SVMs of Section 2.3.8 with scale 0.5.
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Figure 2.10: Comparison of linear SVMs with model learned in section 2.3.1 and
LBP. The best result among all is achieved with linear models of scale 0.5 i.e. face
crop size of 64× 80.

speed, we look at the number of frames that we can authenticate per second and

for power consumption we use the power consumption profiler presented by Zhang
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et al. [Zhang et al., 2010]. We extract the 44 dimensional feature vector for 5000

frames with each set of attribute classifiers indexed by scale. Android provides a

mechanism to get the time in miliseconds, so we can measure the exact time up to

miliseconds that it takes for each set of classifiers to process the 5000 frames. Also

the power profiler provides the energy consumption in Joules up to 0.1J for each

running application. The numbers for different setups of our algorithm are provided

in 2.10. The landmark detection which was done with Asthana et al. [Asthana

et al., 2013] in Section 2.3.1 is replaced by the algorithm of Kazemi et al. [Kazemi

and Sullivan, 2014] which is implemented using DLib [King, 2009]. This algorithm

adds a 90MB to memory consumption but it is very fast. The evaluation for each

scale is done in two settings, one with Haar face detection and DLib alignment and

one without this step. From the table we see that face detection and alignment step

add around 20mJ energy consumption per frame and reduces the FPS significantly.

In the worst case with fastest available face and landmark detection methods, our

algorithm can authenticate users at the speed of 4 frames per second. This is more

than enough for authentication task which probably requires authenticating every

couple of seconds.

Google Nexus 5 battery capacity is 2300mAh and the average working voltage is

3.8V which can be verified by running the power profiler of [Zhang et al., 2010].

This means that it has in total 8740mWh. If we run the profiler without our

authentication program on the phone for more than 5 minutes, it shows the average

power usage as 520mW which means the phone will last for 16.8 hours. The last

row of Table 2.10 shows how many hours our algorithm can run in background if
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Scale 0.3 0.5 0.7 1

Size/dim 32× 48/3840 64× 80/16128 88× 112/33280 128× 168/76800

Detection/Alignment W/O W/ W/O W/ W/O W/ W/O W/

FPS 114 29 31 16 13 8 5 4

Energy 26.8J 128.9J 93.5J 201.2J 207J 369.1J 524.9J 603J

Energy per frame 5.4mJ 25.8mJ 18.7mJ 40.2mJ 41.4mJ 73.8mJ 105mJ 120.6mJ

Endurance (hours) 16.6 16 16.2 15.6 15.6 14.7 14 13.6

Table 2.10: The speed and power consumption of different realization of the classi-
fiers learned with the simplified training framework on Google Nexus 5 device. W/O
column means our algorithm extract all the attributes given aligned and cropped
face. In last row we assumed that we are doing authentication with the speed 1fps.
W/ column first detects the face then extracts attributes. We can authenticate 17.6
hours every second employing our classifiers with best EER of Table 2.9 on a Nexus
5.

we do authentication once every second considering these numbers.

2.4 Efficient Deep Features for Attribute Detection on Mobile Phones

2.4.1 Methodology

In the mobile setting, there is a trade-off between hardware limitations such

as battery life and accuracy of the models. We design our models with the goal of

balancing this trade-off. Namely, we move from a computationally expensive but

specialized model to a computationally cheaper but accurate model.

We train and test four different sets of DCNNs, in total 100 of them, for the

task of attribute classification on a set of face regions. We crop the functional face

regions using landmarks detected by [Asthana et al., 2013]. These face regions can

be seen in Table2.13. Then for each part, we find the maximum size of the window

for that part in the dataset, then we crop the regions by putting the center of the

face part at the center of the crop window to avoid any scaling.
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5 o Clock Shadow 93 93 91 89 85 88 91

Arched Eyebrows 81 82 82 83 76 78 79

Attractive 81 81 81 82 78 81 81

Bags Under Eyes 83 84 83 82 76 79 79

Bald 99 99 96 98 89 96 98

Bangs 95 95 94 94 88 92 95

Big Lips 67 70 69 67 64 67 68

Big Nose 82 83 78 78 74 75 78

Black Hair 86 86 88 87 70 85 88

Blond Hair 95 95 94 94 80 93 95

Blurry 95 95 92 80 81 86 84

Brown Hair 86 86 86 84 60 77 80

Bushy Eyebrows 92 92 89 89 80 86 90

Chubby 95 95 87 91 86 86 91

Double Chin 96 96 89 93 88 88 92

Eyeglasses 99 99 99 99 98 98 99

Goatee 97 97 93 96 93 93 95

Gray Hair 98 98 92 97 90 94 97

Heavy Makeup 90 90 90 91 85 90 90

High Cheekbones 86 85 87 87 84 86 87

Male 98 97 97 98 91 97 98

Mouth Slightly Open 93 93 94 94 87 78 92

Mustache 97 96 88 95 91 87 95

Narrow Eyes 87 87 83 81 82 73 81

No Beard 95 95 95 96 90 75 95

Oval Face 72 73 73 70 64 72 66

Pale Skin 97 97 93 94 83 84 91

Pointy Nose 75 73 75 74 68 76 72

Receding Hairline 92 92 88 90 76 84 89

Rosy Cheeks 94 94 87 91 84 73 90

Sideburns 95 95 95 96 94 76 96

Smiling 92 92 92 92 89 89 92

Straight Hair 79 79 78 79 63 73 73

Wavy Hair 71 73 82 81 73 75 80

Wearing Earrings 83 84 86 79 73 92 82

Wearing Hat 98 98 98 98 89 82 99

Wearing Lipstick 92 92 93 93 89 93 93

Wearing Necklace 86 86 71 71 68 86 71

Wearing Necktie 95 96 93 95 86 79 93

Young 87 87 87 88 80 82 87

Average 89.4 89.5 87.7 87.9 81.1 83.6 87.3

Table 2.11: The performance comparison of attribute detection methods.
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2.4.2 Network architecture

The DCNNs have two different architectures. The architectures of the Deep

Convoulutional Neural Network for Acitve Authentication (Deep-CNNAA ) and

Wide-CNNAA can be found in Table 2.12. The four sets of models compared are:

BinaryDeep-CNNAA , BinaryWide-CNNAA , MultiDeep-CNNAA , and MultiWide-

CNNAA . First we describe the shared configuration that is used to train these

networks and then the ones that are specific to each class of the networks.

*Wide-CNNAA *Deep-CNNAA

input w × h× 128 input w × h× 3

type patch size type patch size

conv relu 7× 7× 128 conv relu 7× 7× 32

maxpool 3× 3/2(stride)

conv relu 5× 5× 128 conv relu 5× 5× 32
conv relu 5× 5× 32
conv relu 5× 5× 32

maxpool 3× 3/2

conv relu 3× 3× 128 conv relu 3× 3× 32
conv relu 3× 3× 32
conv relu 3× 3× 32
conv relu 3× 3× 32

maxpool 3× 3/2

FC relu dim× 128 FC relu dim× 64
FC relu 128× 128 FC relu 64× 32

logits Num Attr × 2

Softmax loss

Table 2.12: The architectures of our networks. The number of parameters depends
on the face region that they operate on and can be found in Table 2.16.

Shared configuration All of these 100 networks, 20 Multi*-CNNAA and 80
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face part

No. of Attributes 10 10 10 7 16

Size 53× 39 115× 41 65× 38 40× 56 90× 62

face part

No. of Attributes 15 21 15 15 14

Size 55× 82 115× 107 128× 52 128× 45 62× 100

Table 2.13: The face regions that are extracted by cropping around the landmark
points and their corresponding number of attributes. A Multi*-CNNAA that oper-
ates on a face crop has “No. of Attributes” tasks.

Binary*-CNNAA , are trained on the publicly available CelebA [Liu et al., 2015]

dataset. It has 200 thousands images of 10 thousands identities, each with 40

attribute labels. It is divided into 160k training, 20k development, and 20k test

images. The DCNNs are trained using the recently released Tensorflow [Abadi

et al., 2015a] which also has a mobile implementation. All of the networks are

initialized with random weights and are trained with the same policy. The Adam

optimizer is used to train all of these networks since it incorporates the adaptive

learning rate update step, and performs well without careful fine tuning of the

learning parameters [Kingma and Ba, 2014]. Subsequent fine tuning can give better

results. Early stopping [Prechelt, 1998] using the accuracy on the development set

is used to select the final model for each network. The inputs are colored face part

images that are randomly flipped and also their contrast and gamma are randomly

changed to augment the data that we have to prevent over-fitting.

Due to the nature of the attributes, most of them have an unequal number of

positive and negative labels. Extra care has been taken to make sure the networks
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are not biased toward one class with the help of data augmentation and stochastic

optimization.

Binary*-CNNAA The binary networks are for a single task and are trained

by the labels of one single attribute. The input face images are aligned to a canonical

coordinate using the landmarks given by [Asthana et al., 2013]. To balance the

training data, the class with the lower number of training data is distorted and

added to the input queue so that the number of images for each class is equal. Then

the data is shuffled and fed in batches to the training algorithm. The softmax cross

entropy loss lB is used to train these binary networks

lB(w) =
1

N

N∑
i=1

(1− yi) log p(yi = 0|w)

+ yi log p(yi = 1|w)

(2.4)

where yj ∈ {0, 1} is the attribute presence label, p(y = j|w) =
exp (fwj (x))∑1
i=0 exp (fwi (x))

where

fwi (x) is the logits of the ith output neuron of the network with weights w.

Multi*-CNNAA The Multi* networks are the proposed models that are

as complex as the binary models but predict multiple attributes at once. The face

parts and the number of attributes that are assigned to them can be found in Table

2.13. For each part, the corresponding network has an output layer that contains

neurons for each attribute that is assigned to that face part. We use the softmax
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cross entropy loss for part q as specified below:

lq(w) =
1

N

Nq∑
a=1

nq
a∑

i=1

(1− yai ) log p(yi = 0|w)

+ yai log p(yai = 1|w)

(2.5)

where N q is the number of attributes assigned to part q. nqa is the number of images

with the ath attribute of part q in the current batch. yai ∈ {0, 1} is 1 if the ith image

has the ath attribute and N is the batch size. p(yai = 1|w) is the same softmax as

Eq 2.4.

To deal with the class ratio imbalance of the attributes, we shuffle the training

data in a way that the network sees the rare class for each attribute frequently. For

example, for the attribute “Mustache”, the positive class is the rare one since most

of the 202k images do not have this attribute. To handle this imbalance, a queue

is created for each attribute and images that have the rare class are added to that

queue. A queue is also created for images with all the attributes belonging to the

major class. Then all of the queues are shuffled. We treat each queue as a circular

buffer so that the training batches are created by sampling with replacement from

one of these queues at random. Also, each time the images are distorted differently.

After training all the networks, most of the attributes are present in multiple

networks. For each attribute, we only take the embeddings of relevant parts. For

instance, for the attribute ”Mustache” in the MultiDeep-CNNAA , the 32 dimen-

sional embedding of the parts, mouth, mouth and nose, and mouth and chin are

taken and concatenated together. At first, 10000 examples, sampled from the train-
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ing portion of CelebA, are selected for training and the devolopment set of CelebA is

used for fine tuning the linear SVMs hyperparameters. Then, following the protocol

of [Liu et al., 2015], linear SVMs are trained with the selected parameters on the

development set as their training set and tested on the test set.

2.4.3 Comaprison of attribute detection methods
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Figure 2.11: Sample images from subspace clustering of face part embedding in
attribute space.

We compare our proposed networks with FaceTracer [Kumar et al., 2008],

PANDA [Zhang et al., 2014b], and CelebA [Liu et al., 2015] attribute networks.

These models capture a broad spectrum of possible automatic attribute detection

models.

FaceTracer [Kumar et al., 2008] attribute classifiers are trained by extracting

traditional low-level features like HOG and color histogram from aligned face parts

by incrementally finding the best set of features and training the Support Vector

47



Machines (SVM’s) on the selected features and parts for attribute detection. The

face crops are extracted from the ground truth landmarks.

PANDA ensembles multiple CNNs for the face parts and concatenates the

outputs of the last layer and train SVMs for each attribute. There are two differences

between our network architecture and PANDA networks. First, in PANDA, all of

the attributes are associated with all of the parts. Second, in our Multi*-CNNAA

networks, the last layer is shared between all of the attributes softmax losses, but in

PANDA there are two fully connected layers after the shared fully connected layer

for each one. As a result, in our network, the different attributes that are associated

with one network lie in the same Euclidean space of the last fully connected layer

of the network.

CelebA takes a different approach by pre-training their network with face iden-

tities of CelebFaces [Sun et al., 2014b] for both face verification and identification.

Then they extract features from multiple overlapping crops of the face and train

SVMs for each crop for each attribute. To predict the attribute they average over

the scores of SVMs. They use a localization network to detect the face region and

pass them onto the classifier networks.

We also follow [Levi and Hassner, 2015] and train a single task network for

each attribute in Binary*-CNNAA on the full face. Table 2.11 shows the accuracy

of each of these methods.

As it can be seen, our Multi*-CNNAA networks give equal or better results

than the rest. The MultiWide-CNNAA performs slightly better than the MultiDeep-

CNNAA in attribute prediction. This may be due to the large number of parameters
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that they have as shown in Table 2.16. However they are slower and consume more

energy.

2.4.4 Attribute discovery

As mentioned in the previous section, our Multi*-CNNAA networks transform

the input face regions to a shared Euclidean space for the attributes associated with

that part. To further explore this Euclidean space, we perform Sparse Subspace

Clustering (SSC) [Elhamifar and Vidal, 2009] on 10000 points that are selected

from the training portion of CelebA dataset. The intuition behind this clustering

is that the face parts that have the same attribute lie in the same subspace. SSC

uses the fact that each data point can be represented by a sparse linear combination

of the other points in the same subspace. Therefore it formulates the clustering

problem as

minimize
C∈Rn×n

|C|1 + ‖D −DC‖2
F (2.6)

subject to diag(C) = 0 (2.7)

where D ∈ Rd×n is the data matrix containing n points of dimension d and C ∈ Rn×n

is the affinity matrix. To enforce the constraint, for each datapoint they take it out

of D and then perform sparse coding. To get the clusters they perform spectral

clustering on C. We find 10 clusters per face regions. The clusters corresponding to

the “Hair-Forehead” region of the face and the “eyes” region can be seen in Figure

2.11. As illustrated, the “discovered” attributes overlap with the labels that we had
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in the training time mostly, but also some attributes are divided into finer categories.

For example, in the mouth and chin category (b) contains images of people with

chin shape similar to African-Americans which was not present in the labels. In

the “Hair-Forehead” region cluster (c) contains male images with short hair which

again was not seen in the labels. Also, the gender of the people in the same cluster

is the same for these two parts. As shown in the next section, these attributes give

good result for authentication.

2.4.5 Experiments

We evaluate the performance of CNNAA for the task of active authentication

using two publicly available datasets MOBIO [McCool et al., 2012] and AA [Fathy

et al., 2015]. These datasets contain videos of the users interacting with cell phones.

We compare the authentication performance of our DCNN attribute detectors and

discovered attributes with baseline Local Binary Patterns [Ahonen et al., 2006] and

ACAA [Samangouei et al., 2015] which is the only attribute-based approach for this

task. The extracted attribute features of ACAA [Samangouei et al., 2015] from

the videos of these two datasets are provided by the authors. We follow the same

protocol as ACAA to extract facial parts and video features. So, we average over

the extracted attribute outputs for the video frames to get the video descriptors.

We cast the problem of continuous authentication as a face verification prob-

lem in which a pair of videos is given and we determine whether they contain the

same identity or not. To compare the performance of the algorithms, the receiver
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operating characteristic (ROC) curve is used. Many other measures of performance

can be readily extracted from the ROC curve. ROC curve plots the relationship be-

tween false acceptance rates (FARs) and true acceptance rates (TARs). The ROC

curve can be computed from a similarity matrix S between gallery and probe videos.

We also report the EER value where TAR and FAR are equal. EER value gives a

good idea of the ROC curve shape since it can be extracted by plotting the diagonal

line on the curve and see how soon it hits it. Thus, the better the algorithm, the

lower is its EER value.

We give each video frame to the CNNAA networks and predict the attributes

with linear SVMs. For the learned attributes, we put the probabilistic output of the

SVMs which are trained by LIBSVM [Chang and Lin, 2011] as our final attribute

feature. Since the attribute outputs of our models are probability values we get the

similarity value si,j = 〈ei, tj〉, where ei is the feature vector for the enrollment video

and ti is the test video features.

To use the discovered attributes (DiscAttrs) for authentication, we extract

the attribute features by a similar approach to Sparse Representation Classification

[Wright et al., 2009]. Each face crop from the video frame is embedded to the

attribute space of MultiDeep-CNNAA . It is represented by the dictionary which

we used in Section 2.4.4, so that we know the cluster assignment of its atoms.

We normalize all of the dictionary atoms and the embedding and then get each

feature value by a softmax over the representation contribution of each cluster in
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Figure 2.12: Sample images of the three sessions of the AA01 dataset.

the attribute space. To do so, we first solve

minimize
f∈Rn

|f |1 + ‖f −Df‖2
F

(2.8)

to get the sparse representation f of the face crop of that video frame. Then we set

the ith feature for that face crop to p(c = i|D) which is calculated by

p(c = i|D) =
exp(‖D:,ifi‖)∑10
k=1 exp(‖D:,kfk‖)

(2.9)

whereD:,i is the dictionary atoms of cluster i and fi are the coefficients corresponding

to those atoms. Thus, if f is in the subspace spanned by the points in D that are in

52



cluster i, it will have more energy in non-zero values for those atoms. To solve (2.8)

we use the Orthogonal Matching Pursuit [Tropp and Gilbert, 2007] algorithm with

sparsity 20. We choose 20 because the subspaces of DeepMulti-CNNAA embedding

must have dimension less than the embedding space dimension which is 32 for Deep*-

CNNAA . Then we concatenate
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Figure 2.13: ROC curve of different experiments on AA01 [Fathy et al., 2015] and
MOBIO [McCool et al., 2012] dataset. (a) is the ROC curve of AA01 with all of the
sessions together in gallery and probe. (b) is the ROC curve of MOBIO with all of
the mobile sessions together with the last session videos as gallery and the rest of
the session as probe. (c) is the ROC curve of the cross-device experiment.
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1→ 1 0.14 0.13 0.11 0.14 0.16

2→ 2 0.19 0.31 0.18 0.22 0.17

3→ 3 0.16 0.20 0.10 0.10 0.13

1→ 2, 3 0.38 0.38 0.18 0.25 0.23

2→ 1, 3 0.31 0.33 0.26 0.30 0.31

3→ 1, 2 0.31 0.38 0.19 0.24 0.25

Altogether 0.30 0.34 0.20 0.25 0.25

Table 2.14: The EER values for the different experiments on AA01 [Fathy et al.,
2015] dataset. The sessions numbers are: 1. Office light 2. Low light 3. Natural
light. DiscAttrs column contains the EER values using the discovered attributes.
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Results

To plot the ROC curves and evaluate our method, in each dataset, for each

person one session’s videos are considered as the enrollment videos and the other

videos as test videos. The similarity matrix is then generated by pairwise distance

between the enrollment and the test videos. The corresponding ROC curve is plotted

for each experiment.

AA01 AA01 is a mobile dataset with 750 videos of 50 subjects. Each subject

has three sets of videos with three different lighting conditions. Each user is asked to

perform a set of actions on the phone while the front camera is recording the video.

The videos are captured by an iPhone 4 camera. The three lighting conditions

are: office light, low light, and natural light. The sample images of this dataset in

Figure 2.12 show the three different illuminations in each session. Figure2.12 also

presents some partial faces in the dataset. Each person has five videos of performing

five different tasks on the phone. There is a designated enrollment video for each

person. Three different experiments have been conducted on this dataset.

First, the enrollment and the test videos for all of the 50 subjects are taken from

the session with the same lighting condition. The EER values of this experiment can

be found in the first three rows of Table 2.14. It can be seen that our MultiDeep-

CNNAA has the lowest EER in all cases. This experiment reveals the discriminative

power of the features when the surrounding environment is the same. It can be seen

that in this case, high dimensional LBP features even beats ACAA in the office light

session.
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In the second one, the enrollment video is taken from one illumination session

and the test videos from another. The EER values corresponding to this experiment

are depicted in the next three rows of Table 2.14. The performance drop in our

method is 0.08 on average while ACAA suffers 0.17 and LBP 0.15. The reason is that

ACAA attribute classifiers use low level features that are sensitive to illumination

changes, but CNNAA is trained on a large-scale unconstrained dataset containing

a lot of variations and thus gives more robust features.

In the last experiment, all enrollment videos of the three sessions are put in

the gallery and all the test videos in the probe of to get the similarity matrix. The

ROC curve corresponding to the third general experiment is plotted in Figure 2.4.5.

It can be seen that MultiDeep-CNNAA performs the best and MultiWide-CNNAA

and the discovered attributes are tied as second best.

One explanation for lower performance of MultiWide-CNNAA compared to

MultiDeep-CNNAA is that it has many more parameters than MultiDeep-CNNAA

according to Table 2.16 and has overfitted to the celebrity faces distribution.

Figure 2.14: Sample images of the three sessions of the MOBIO dataset. First row
images are from different sites, second row is the pairs with the same identities in
two different sessions.
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MOBIO MOBIO [McCool et al., 2012] is a more challenging dataset of 152

subjects. The videos are taken in six different universities across Europe. For most

of the subjects 12 sessions of video are captured. All of the mobile videos are

captured with a Nokia N93i. The first session’s videos are also recorded with a

2008 MacBook laptop. We perform two experiments on this dataset. We take the

12th session videos as our training videos since they are the mostly available videos

accross the dataset. A few subjects have less than 12 session videos.

In the first experiment, we just consider videos that are taken by the mobile

device. We show the EER values for the mobile videos of the subjects within each site

as well as all of the videos together in Table 2.15. This experiment is similar to the

third experiment of AA01 dataset since the environment conditions for enrollment

videos and test videos can be the same or different. However, there are three times

more subjects in MOBIO and more variations in illumination condition of the videos.

The ROC curve for this experiment is plotted in Figure2.4.5.

The second experiment is about the cross sensor authentication, in which you

enroll yourself on one device and test on another device. To see how important

sensor change can be for low level features, one can look at the performance drop of

LBP feature in this experiment and the previous one in Table 2.15. The decrease

is 0.10 for the LBP feature and then 0.05 for ACAA which depends on low level

features, while CNNAA methods just have a decrease of 0.01 in EER value. The

ROC curve for this experiment is presented in Figure 2.4.5. Again, this is due to the

fact that CNNAA has seen more variations in the large training set. Our method

can also handle partial face verification if a partial face detector like [Mahbub et al.,
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but 0.26 0.36 0.19 0.20 0.23

idiap 0.25 0.35 0.27 0.25 0.24

lia 0.24 0.34 0.17 0.15 0.16

uman 0.27 0.33 0.18 0.20 0.21

unis 0.2 0.27 0.07 0.1 0.1

uoulu 0.18 0.23 0.14 0.14 0.19

Altogether 0.22 0.28 0.17 0.18 0.19

Mobile-PC 0.27 0.38 0.19 0.21 0.2

Table 2.15: The EER values corresponding to MOBIO dataset experiments.

2016] is available.

Mobile Efficiency

There is a trade-off among power consumption, authentication speed, and

accuracy of the model for the task of active authentication on mobile devices. The

response time is important since we do not want to freeze other running processes

and create an unpleasant user experience while authenticating. Power consumption

is also important because as frequent demands for charging the battery can be

annoying.

To show the effectiveness of our approach, we measure the attribute prediction

speed of our networks and the battery consumption on an LG Nexus 5 device. The

results are shown in Table 2.16. This mobile device has a quad-core QUALCOMM
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Input size Network Parameters Prediction time Network Parameters Prediction time

128× 52 D-UpperHead 275,360 0.15s W-UpperHead 1,825,664 0.26s

115× 41 D-BothEyes 227,936 0.11s W-BothEyes 1,447,552 0.19s

90× 62 D-EyesNose 244,704 0.13s W-EyesNose 1,580,160 0.22s

40× 56 D-Nose 170,400 0.06s W-Nose 988,032 0.1s

55× 82 D-NoseMouth 232,352 0.10s W-NoseMouth 1,481,600 0.18s

65× 38 D-Mouth 164,448 0.06s W-Mouth 939,648 0.11s

115× 107 D-EyesNoseMouth 441,632 0.28s W-EyesNoseMouth 3,154,304 0.48s

128× 45 D-MouthChin 244,640 0.13s W-MouthChin 1,579,904 0.23s

62× 100 D-Ear 256,864 0.14s W-Ear 1,677,952 0.25s

53× 39 D-Eye 162,400 0.06s W-Eye 923,264 0.08s

Overall MultiDeep-CNNAA 2.4M 1.22s MultiWide-CNNAA 15.6M 2.10s

128× 128 BinaryDeep-Full 584,160 0.36s BinaryWide-Full 4,289,664 0.637s

Table 2.16: Network size and prediction speed of the networks. The D-* means
it has MultiDeep-CNNAA architecture and W-* means it is MultiWide-CNNAA .
The Binary*-CNNAA network prediction times are just for one attribute. For all of
them together it will be 40 times this value.

Snapdragon 800 clocked at 2.26 GHz and 2 GB of RAM. This specification is consid-

ered average compared to the current smartphones. We use the Tensorflow [Abadi

et al., 2015a] implementation of CNNs on Android devices.

We take one shot with the smartphone camera and feed it to the network for

200 times and measure the prediction speed by looking at the average duration per

frame. To measure the power usage we use PowerTutor [Zhang et al., 2010] which

registers the energy usage per running application and also in total. We do not use

the camera continuously because it will bias the response time and power usage of

the network. We take the image and the application works in background. The

default Android processes are the only other processes that are running besides the

application that runs the networks and PowerTutor application.

According to Tabel 2.16 all of the attributes are detected in 1.22s with MultiDeep-

CNNAA running on CPU in the background without blocking other applications.
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MultiWide-CNNAA takes 2.10s. The BinaryDeep-CNNAA takes 14.4s and BinaryWide-

CNNAA 25.5s.

The MultiDeep-CNNAA architecture consumes 780mW power on average and

MultiWide-CNNAA drains 1100mW of the battery power. The average battery

usage of Android when it is not running the CNNAA networks is 600mW according

to PowerTutor. To see how this affects the battery life, suppose the battery capacity

is C Watt-hours (Wh). Then

d =
C

Pn + βαPd
(2.10)

where d is the mobile device’s battery life, Pn is the power consumption in normal

use, Pd is the power usage of the attribute detection algorithm, β is the fraction of

time that the mobile device is being used, α is the authentication ratio constant. α

shows how often we want to authenticate the user considering the prediction time

of the algorithm, i.e.,we authenticate every Ta
α

where Ta is the prediction speed of

the model. For instance, if α = 0.5 we authenticate every 2.44s using MultiDeep-

CNNAA and every 4.2s using MultiWide-CNNAA .

To make the feasibility of CNNAA clearer, suppose we authenticate the user

using the MultiDeep-CNNAA architecture on the Nexus 5 device. We choose the

MultiDeep-CNNAA since it performs well in the authentication task and also it

has a better runtime and power usage. The Nexus 5 has a 2300mAh battery with

3.8V voltage, so C = 8.74Wh. Pn = 0.6W for the “normal usage” state which

is when just Android 5 and the default applications are running. This gives 14.5
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hours battery life. Now if α = 1 which means we want to authenticate with the

highest speed possible and if we are using the phone all the time with β = 1 then

the battery life will be reduced to 6.3 hours in the worst case. In a realistic setting

with β = 0.2 and α = 0.5 it becomes 12.85 hours which is reasonable. Also, if a

GPU implementation of CNNs on Android [Sarkar et al., 2016] is used, attribute

prediction can happen much faster with less energy consumption.
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Chapter 3: Conditional Image Generation From Attribute Vectors

3.1 Introduction

High fidelity conditional image generation remains an elusive but highly sought

after goal of computer vision. Any such well-trained algorithm would allow users to

create an unlimited quantity of digital content for use in consumer photography, dig-

ital photo editing, and dataset generation. While this ultimate goal remains out of

reach of state-of-the-art algorithms, an approximation of this task has been phrased

as attribute-level image manipulation. The ability to manipulate and edit images

based on pre-defined attributes has various real-world applications. Consumer photo

editing software would ideally allow users to edit their images is specific ways, such

as re-touching hair-color or removing a hat from someone’s head. Additionally,

the ability to adequately model visual attributes may improve supervised learning

generalization via data augmentation.

Two recent works [Lample et al., 2017,Perarnau et al., 2016] have focused on

the problem of attribute-based image manipulation. In each, they train a condi-

tional generator on discretely represented binary attributes and a nuisance vector

which together completely encode an input image. This mechanism allows users to

manipulate, or Swap, a binary attribute of the input image and obtain a re-rendered
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output image. For example, if one of the attributes is “has hat”, they can optionally

add a hat to a person’s head or conversely, remove one.

These efforts are indeed impressive. However, attribute Swaps performed on

discrete binary representations are limited. They do not allow users to sample

from the space of possible realizations of a binary attribute. For example, if I

want to activate the “has hat” attribute, I might want to sample from various

hats. Furthermore, a user might observe a realization of a particular attribute in

a reference image and apply it to a query image. For example, one might want to

activate the “has hat” attribute with a particular Fedora from a reference image.

To address these shortcomings, we introduce CRISPR an algorithm for im-

age attribute manipulation that supports two new types of attribute manipulation

operations: Diverse Swaps and Borrows. A Swap is a change to a visual attribute

such that the input and output to our model have different visual attribute values,

such as hat versus no hat. A Diverse Swap is a change to a visual attribute that is

random: each time the operation is performed represents a sampling from the vi-

sual space that both ensures that the input and output images have different visual

attributes but also that subsequent samples have variety. For example, if the input

attribute is ’no hat’, then all output images should be wearing hats. However, each

sample from our model should produce different hats. Alternatively, a Borrow is an

operation where we can change a visual attribute in such a way that it ’borrows’ the

visual component from a reference image and substitutes it into a query image. In

particular, say the input has no hat and we wish to flip the ’hat’ attribute to ’has

hat’ in such a way that the particular hat should match a top hot, then we should
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be able to ’borrow’ the ’top hat’ representation from an example image and apply

it to the query image.

To summarize, our method exhibits the following unique characteristics:

• Models visual attributes more flexibly through a continuous, rather than dis-

crete, representation.

• Allows a user to alter an image by sampling from a learned distribution of

image attributes.

• Allows a user to alter an image by ’borrowing’ an attribute exemplar from

another image.

3.2 Related Work

Our work is related to research in two problems in generative models of images;

attribute-based image manipulation and learning disentangled representation.

[Yan et al., 2016] was the first to use a variational auto-encoder (VAE) to

build a conditional generative model where the image manipulation is performed

by inferring the latent state given the correct attributes and then changing the

attributes. [Perarnau et al., 2016] employed a similar encoder-decoder architecture,

but devised a adversarial training regime [Goodfellow et al., 2014a] in order to

improve the realism of manipulated images. [Antipov et al., 2017] utilized the same

idea to alter the facial appearance as a function of age. However, in both cases, the

training schemes lack a mechanism to ensure the decoder to utilize the annotator

labels information, which limits the quality of image manipulation. Fader Networks
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[Lample et al., 2017] aimed to alleviate this problem by imposing an additional

constraint on the latent code to be invariant under any attribute specific information

of input images, and showed a great improvement. However, all these approaches

feed the attribute labels as input to the decoder, which incurs two limitations; (1)

detailed information about the manifestation of each is attribute label is lost e.g.

we may know if the person wears glasses, but not the kind of the glasses; (2) there

is no natural means to generate diverse examples of altered attributes. Our method

in contrast learns multi-dimensional, continuous representation of attribute-specific

information with a mechanism to sample from these spaces.

Another strand of related research is that of learning disentangled represen-

tation. The closest to our work is Inverse Graphics Network proposed in [Kulkarni

et al., 2015] in which attribute-specific latent codes are learned within an auto-

encoder network that can be used to alter image appearance. However, the model

does not learn the attribute-invariant latent code, and thus limits the range of

viable image manipulation operations e.g. attribute transfer from one image to

another is not possible with this approach. By contrast, CRISPR models both

attribute-invariant and attribute-specific representation. Many other work in this

space such as predictability minimization framework [Schmidhuber, 1992], Info-

GAN [Chen et al., 2016], conditional GAN based approach in [Mathieu et al., 2016]

and neural photo editor [Brock et al., 2016], employed fully unsupervised methods,

without specification of attribute types. These methods aim to automatically ex-

tract factors of variations, which may not be necessarily aligned with the specific

demands of users in image editing applications.
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(a) (b)

Figure 3.1: Visualization of approaches to attribute manipulation as grahical mod-
els. (a) The graphical model for Fader Networks. (b) The graphical model for
CRISPR.

3.3 Model

Let x ∈ RW×H×C be an image with L binary attributes labels represented by

y = [y1, ..., yL] ∈ {0, 1}L. For example, visual attribute labels assigned to images

of faces can include man/woman, glasses/no glasses, beard/no beard. We define

our model as an encoder-generator architecture, endowed with disentangled latent

structures between attribute invariant and attribute specific components. More

precisely, the encoder network E is a convolutional network that maps a given image

x to a set of multi-dimensional, continuous vectors {z, a1, . . . , aL}, where z ∈ Rp is

a representation of x, invariant under any of the visual attributes [y1, ..., yL] while

each ai ∈ Rq encodes information in x specific to the ith attribute. On the other

hand, the generator G is a deconvolutional network that maps latent codes to an

image x̂. We refer to Einv(x) := z and Eattr(x) := [a1, . . . , aL] as attribute invariant

and attribute specific representations, respectively. We discuss our proposed training

scheme to impose such structures on the latent space in Sec.3.4.

While we represent each attribute in a high-dimensional continuous space, we

need to make sure that each attribute vector can be mapped to a discrete binary

label yi. Let Hi(ai) → yi represent an attribute-specific classifier that maps each

continuous ai to a binary variable. Let µ0
i and µ1

i represent cluster centroids of

attribute i for values 0 and 1, respectively. The graphical model of CRISPR can be

65



Encoder

Decoder

Discriminator

Figure 3.2: Architectural overview of the CRISPR architecture, best viewed in
color. The image x is encoded by E producing invariance vector z and attribute
vectors a0 and a1. These are concatenated and passed to decoder G which produces
reconstruction x̂. Each continuous attribute vector is decoded using a linear classi-
fier Hi. Auxiliary components of the architecture are framed by the dashed green
outline. Discriminator D encourages the reconstructions to both appear natural
and exhibit the expected attributes, classifier Cinv encourages z to encode only non-
attribute information and classifier Cattr encourages each attribute vector to encode
only its attribute information.

seen in Figure 3.1.

3.3.1 Inference

Reconstruction with our model is straightforward: x̂ = G(E(x)). However,

it is our continuous representation of attributes that permits two unique modes of

inference, Diverse Swaps and Borrows.

By using a discrete representation of attributes, regular attribute swaps are

easy in that one need only artificially alter a discrete binary embedding. However,

one cannot sample from the attribute space. Our model allows for Diverse Swaps:

stochastic invocations of the swap operation that produce different visual manifes-

tations. To formalize this operation, consider the oracale classifier Coracle(x, i)→ yi

which is able to classify the attributes of an image x. Then a swap on attribute i is an

operation S(x, i)→ x̂ such that Coracle(x, i) 6= Coracle(x̂, i). A Diverse Swap adheres
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to the same constraint but because it is a stochastic transformation, subsequent

invocations of S produce x̂ and x̂′ such that x̂ 6= x̂′.

In order to perform a Diverse Swap, one first embeds image x as {a0, ...ai...z}.

Next, one needs only sampling from a Gaussian distribution with mean µ0
i or µ1

i and

scaled standard deviation to produce a new sampled attribute vector a′i. Finally, the

resulting image is decoded via x̂ = G(a0, ..., a
′
i, ..., z). This partitioned representation

not only allows us to swap visual attributes, but also lets us produce a diverse set

of possible swaps.

A Borrow represents a transformation on attribute i such that attribute i

is borrowed from exemplar image xexemplar to image x. To perform a borrow, x is

encoded as {a0, ...ai...z}, xexemplar is encoded as {aex
0 , ...a

ex
i ...z

ex}, and an attribute

from xexemplar is borrowed to produce encoding {a0, ...a
ex
i ...z}. Finally, the resulting

image is decoded via x̂ = D(a0, ..., a
ex
i , ...z). The overview of our method is shown

in Figure 3.2.

3.4 Training

An ideally trained CRISPR model should exhibit several characteristics. First,

the image reconstructions should be high fidelity. Secondly, the encoder should

produce a partitioned representation with attribute-invariant and attribute-specific

components. Third, the latest attribute space must be amenable to sampling in

order to produce diverse and plausible samples. To this end, we introduce a set of

auxiliary components and losses to the model.
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3.4.1 Reconstruction

To ensure that our reconstructions are high fidelity, we use the thresholded

mean squared error Lrecon:

min
G,E

Ex
[

max(N−1‖G(E(x))i − x̂i‖2, κ)
]

(3.1)

where N = H×W ×C is the number of pixels and κ is a threshold used to avoid the

reconstruction loss dominating optimization. Additionally, we use an adversarial loss

to capture fine textures [Isola et al., 2017]. Formally, let discriminator D : X ×Y →

[0, 1] be a binary classifier trained to discriminate if a given image-label pair (x, y)

is real or fake. The following loss function is additionally optimized during training

LcGAN:

min
G,E

max
D

Ex,y
[

log
(
D(x, y)

)
+ log

(
1−D(G(E(x)), y)

)]
(3.2)

3.4.2 Learning attribute-invariant representation, z

Encoder E should learn to produce latent codes z that are independent at-

tributes [y0, ..., yL]. In particular, following [Lample et al., 2017, Mathieu et al.,

2016] we employ adversarial training on z where additional classifier Cinv is trained

to identify the true attributes y of an input image x from its latent code z = E(x).

This scheme aims to obtain invariance in z by training encoder E such that Cinv is

unable to identify the attributes from any input images.

The classifier Cinv takes z = Einv(x) and generates a vector of probabilities
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[C
(1)
inv(z), ..., C

(L)
inv (z)] ∈ [0, 1]L of respective attributes being present in the image i.e.

we estimate P (y|z) ≈
∏L

i=1 C
(i)
inv(z)yi · (1 − C

(i)
inv(z))1−yi . The weights of Cinv are

trained in an adversarial fashion: In one stage, we train the encoder to produce z

vectors that maximize the probability of misclassification by Cinv. In another step

we train the classifier Cinv to predict all of the attributes correctly from z. More

formally we optimize the invariance loss Linv:

min
Cinv

max
Einv

Ex,y
[
−

L∑
i=1

yi · logC
(i)
inv(Einv(x)) + (1− yi) · log(1− C(i)

inv(Einv(x)))
]

(3.3)

3.4.3 Decoupling attribute specific representations {ai}

In addition to latent code z not representing any attribute specific information,

we also want each attribute code ai to encode only information about that particular

attribute. To this end, we use an additional classifier Cattr to identify the true

attributes y based on one of latent codes {a1, ..., aL}. On the other hand, for each

attribute i, the encoder E is trained to generate a code ai = E
(i)
attr(x) such that

the classifier Cattr can correctly infer about the attribute yi while being maximally

confused about the other attribute identity i.e. C
(i)
attr(ai) = yi and C

(j)
attr(ai) = 0.5 for

j 6= i for any input images. More concretely, we propose the following encoder loss

Lattr to be maximized:

min
Cattr

max
Eattr

Ex,y
[ L∑
i,j=1

(−1)1i=j ·
[
yj ·logC

(j)
attr(E

(i)
attr(x))+(1−yj)·log(1−C(j)

attr(E
(i)
attr(x)))

]]
(3.4)
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In the maximization step, the encoder tries to fool the classifier with ith attribute

representation on all other labels but yi. In the discriminator step, the classifier

tries adjust its weights to learn to predict all the attributes from every single ai.

3.4.4 Sampling Attributes

Up to now, by just training with the aforementioned losses, we can already map

images to attribute specific representations {ai}Li=1, which allows us to perform the

“Borrow” operation mentioned in section 3.3 by transplanting these codes from one

image to another. However, there is no mechanism to map each of these attribute

specific codes to a discrete binary label yi, which prevents us from performing at-

tribute swap let alone generating multiple plausible samples of it (“DiverseSwap”).

To address this limitation, we further regularize the latent space with an addition

of center loss [Wen et al., 2016], which not only improves the quality of embedding

by encouraging images with similar attributes to cluster together, but also provide

“switches” in the latent space for manipulating attributes.

We now formalize our proposition. Suppose we want to alter the first at-

tribute of image x from y1 = 1 to y1 = 0. Given the latent representation E(x) =

[z, a1, ..., aL], we can define this operation of attribute swap as finding the alterna-

tive attribute code such that the probability of the reconstructed image does not

have the first attribute is maximized i.e. anew1 = argmaxa1P (y1 = 0|z, a1, ..., aL),

and subsequently reconstruct on the altered latent codes xnew = G(z, anew1 , ..., aL).

If we assume that given the code a1, the attribute label y1 is conditionally inde-
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pendent of the invariant code z and other attribute specific codes a2, ..., aL, and the

marginal distributions P (y1) and p(a1) are constant, we see that the attribute swap

reduces to finding anew1 = argmaxaiP (a1|y1 = 0). Our center loss based scheme

estimates P (a1|y1 = 0) with a Gaussian distribution N (a1;µ0
1, σ

0
1), and thus alters

the attribute by setting anew1 = µ0
1. To perform “DiverseSwap” in this example, we

generate a set of plausible attribute codes instead by sampling from this distribution

{anew,11 , anew,21 , ...} ∼ N (a1;µ0
1, σ

0
1). More generally, this scheme models the latent

of every attribute state as a Gaussian distribution i.e. P (ai|yi) ≈ N (ai;µ
yi
i , σ

yi
i ) for

i = 1, ..., L, yi ∈ {0, 1}.

We now describe how to learn means (centroids) and standard deviations

{µ0
i , µ

1
i , σ

0
i , σ

1
i }Li=1 of the attribute-specific latent codes. We learn the two in an

alternating fashion. First, given a set of {µ0
i , µ

1
i } initialized to zero vectors, we esti-

mate the standard deviations as follows. We train attribute specific linear classifiers

Clspec(ai) = wTai + bi in the space of attribute representations by minimizing the

standard cross-entropy loss Lispec, and estimate σ0
i , σ

1
i by the distance of the centroid

from the decision boundary of Clspec where c ∈ {0, 1}:

σci =
|wT

i µ
c
i + bi|
‖wi‖

(3.5)

We then estimate the centroids {µ0
i , µ

1
i } by minimizing Lcenter:

min
E,µ0i ,µ

1
i

Ex,y
[ L∑
i=1

1

σyii
||E(i)

attr(x)− µyii ||22
]

(3.6)
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where E
(i)
attr(x) is the attribute code ai for image x. The centers are updated in every

step of stochastic gradient descent with a batch-wise maximum likelihood update

step with momentum as in [Wen et al., 2016]:

∇µci{t} =
1

|Ind(yi = c)|
∑

k∈Ind(yi=c)

µci − E(xk) (3.7)

µci{t+ 1} = µci{t}+ α∇µci{t} (3.8)

where µic is the centroid of ith attribute for binary class c and Ind(yi = c) denotes

the set of indices in the batch in which attribute i has yi = c. On the other hand,

minimizing this loss with respect to the parameters of the encoder E encourages the

points to be closer to centroids that are near the hyperplane.

3.4.5 Prior on latent codes

We regularize the outputs of the encoder to be in the interval [−β, β] by Lprior:

min
E

Ex[ReLU(|E(x)| − β)] (3.9)

3.4.6 Optimization

Our final loss is defined as:

LCRISPR = LGAN + Lrecon + Linv + Lattr + Lcenter +
∑
i

Lispec (3.10)
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We iteratively optimize the model via three repetitive steps. First, we optimize

LGAN, Linv, Lattr for two steps with respect to D, Cinv, Cattr and H. Next, we

optimize Lprior, LGAN, Linv, Lattr, Lcenter for a single step with respect to E. Finally,

we optimize Lprior, LGAN, Lrecon, Lattr, Lcenter for a single step with respect to G.

All three are optimized using an Adam optimizer (beta=0.5).

3.5 Experiments

We evaluate our model on the CelebA dataset. Our goal is to verify that

the model produces plausible images that we can sample from the space of possible

attribute realizations and observe good diversity (Diverse Swaps) and we can encode

attributes from a reference image and borrow those attributes to apply to a query

image.

We use the standard train/validation/test splits in the following manner: 2k

images were used from the original validation set as the classifier-training set, all

160k images were used to train CRISPR, the remaining 14k validation images were

used for validation. We used the standard test set. We used binary class pairs

(glasses, no glasses) and (mustache, no mustache).

We illustrate examples of Diverse Swaps in Figure 3.3 and Figure 3.4. As

these images illustrate, our model is able to produce examples via sampling that

are not only visually pleasing but also diverse. For example, each row and column

in Figure 3.3 illustrates a sample from CRISPR with a different ’bangs’ attribute

vector. As the images illustrate, some of the samples differ subtly while others
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differ significantly. Figure 3.4 shows different samples of the ’eyeglasses’ attribute

vector. As the results indicate, different vectors result in very different styles of

attributes. For example, the final row shows several different glasses of varying

shape and shading. The second row also illustrates an interesting failure mode: one

side of the eyeglasses is light while the other is dark. This suggests that while our

sampling strategy largely produces coherent attributes, we may be sampling from a

part of the space that is not atomic: in other words, certain aspects of attributes

are being incorrectly broken up in the representation.

Examples of the Borrows are shown in Figure 3.5. The first column shows the

reference image from which we want to borrow a smile. The second column shows

the query image, whose smile we want to alter. The final column shows the output

of CRISPR when borrowing the smile attribute vector from the reference image.

Figure 3.3: Examples illustrating the Diverse Swap operation using the ’bangs’
attribute. The left-most column demonstrates the inputs and the remaining columns
illustrates the results of sampling from the space of bangs attributes.
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Figure 3.4: Examples illustrating the Diverse Swap operation using the ’eye-glasses’
attribute. The left-most column demonstrates the inputs and the remaining columns
illustrates the results of sampling from the space of bangs attributes. The results
demonstrate not only the diversity of the selection of eye-glasses, but also a failure
case (second row, last image), the sampled attributes may not all be atomic.

Query BorrowedReference

Figure 3.5: Examples illustrating the Borrow operation using the ’smile’ attribute’.
As these examples illustrate, CRISPR is able to effectively borrow the smile from
the reference image and apply it to the query image.
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Chapter 4: Model Explanation via Decision Boundary Crossing Trans-

formations

4.1 Introduction

Given a classifier, one may ask: What high-level, semantic features of an

input is the model using to discriminate between specific classes? Being able to

reliably answer this question amounts to an understanding of the classifier’s decision

boundary at the level of concepts or attributes, rather than pixel-level statistics.

The ability to produce a conceptual understanding of a model’s decision bound-

ary would be extremely powerful. It would enable researchers to ensure that a model

is extracting relevant, high-level concepts, rather than picking up on spurious fea-

tures of a dataset. For example, criminal justice systems could determine whether

their ethical standards were consistent with that of a model [Goodman and Flax-

man, 2016]. Additionally, it would provide some measure of validation to consumers

(e.g., medical applications, self-driving cars) that a model is making decisions that

are difficult to formalize and automatically verify.

Unfortunately, directly visualizing or interpreting decision boundaries in high

dimensions is effectively impossible and existing post-hoc interpretation methods
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fall short of adequately solving this problem. Dimensionality reduction approaches,

such as T-SNE [Maaten and Hinton, 2008], are often highly sensitive to their hyper-

parameters whose values may drastically alter the visualization [Wattenberg et al.,

2016]. Saliency maps are typically designed to highlight the set of pixels that con-

tributed highly to a particular classification. While they can be useful for explaining

factors that are present; they cannot adequately describe predictions made due to

objects that are missing from the input. Explanation-by-Nearest-Neighbor-Example

can indeed demonstrate similar images to a particular query, but there is no guar-

antee that similar enough images exist to be useful and similarity itself is often

ill-defined.

To overcome these limitations, we introduce a novel technique for post-hoc

model explanation. Our approach visually explains a model’s decisions by producing

images on either side of its decision boundary whose differences are perceptually

clear. Such an approach makes it possible for a practitioner to conceptualize how

a model is making its decisions at the level of semantics or concepts, rather than

vectors or pixels.

Our algorithm is motivated by recent successes in both pixel-wise domain

adaptation [Bousmalis et al., 2017,Liu et al., 2017,Zhu et al., 2017] and style transfer

[Johnson et al., 2016] in which generative models are used to transform images from

one domain to another. Given a pre-trained classifier, we introduce a second, post-

hoc explaining network called ExplainGAN, that takes a query image that falls on

one side of the decision boundary and produces a transformed version of this image

that falls on the other. ExplainGAN exhibits three important properties that make
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it ideal for post-hoc model interpretation:

Easily Visualizable Differences: Adversarial example [Szegedy et al., 2013]

algorithms produce decision boundary crossing images whose differences from the

originals are not perceptible, by design. In contrast, our model transforms the input

image in a manner that is clearly detectable by the human eye.

Localized Differences: Style transfer [Gatys et al., 2015] and domain adap-

tation approaches typically produce low-level, global changes. If every pixel in the

image changes, even slightly, it is not clear which of those changes actually influenced

the classifier to produce a different prediction. In contrast, our model yields changes

that are spatially localized. Such sparse changes are more easily interpretable by a

viewer as fewer elements change.

Semantically Consistent: Our model must be consistent with the behavior

of the pre-trained classifier to be useful: the class predicted for a transformed image

must not match with the predicted class of the original image.

We evaluate our model using standard approaches as well as a new metric for

evaluating this novel style of model interpretation by visualizing boundary-crossing

transformations. We also utilize a new medical images dataset where the concept

of objectness is not well defined, making it less amenable to domain adaptation

approaches that hinge on identifying an object and altering / removing it. Further-

more, this dataset represents a clear and practical use-case for model explanation.

To summarize, our work makes several contributions:

1. A new approach to model interpretation: visualizing human-interpretable,
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decision-boundary crossing images.

2. A new model, ExplainGAN, that produces post-hoc model-explanations via

such decision-boundary crossing images.

3. A new metric for evaluating the amount of information retained in decision-

boundary crossing transformations.

4. A new and challenging medical image dataset.

4.2 Related work

Post-Hoc Model Interpretation methods typically seek to provide some

kind of visualization of why a model has made a particular decision in terms of the

saliency of local regions of an input image. These approaches broadly fall into two

main categories: perturbation-based methods and gradient-based methods.

Perturbation-based methods [Zeiler and Fergus, 2014,Fong and Vedaldi, 2017],

perturb the input image and evaluate the consequent change in the output of the

classifier. Such perturbations remove information from specific regions of the in-

put by applying blur or noise, among other pixel manipulations. Perturbation-

based methods require multiple iterations and are computationally more costly than

activation-based methods.

The perturbation of finer regions also makes these methods vulnerable to the

artifacts of the classifier, potentially resulting in the assignment of high saliency to

arbitrary, uninterpretable image regions. In order to combat these artifacts, current
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methods such as [Fong and Vedaldi, 2017] are forced to perturb larger, less precise

regions of the input.

Gradient-based methods such as [Simonyan et al., 2013, Sundararajan et al.,

2017,Shrikumar et al., 2017,Shrikumar et al., 2016,Springenberg et al., 2014] back-

propagate the gradient for a given class label to the input image and estimate how

moving along the gradient affects the output. Although these methods are com-

putationally more efficient compared to perturbation-based methods, they rely on

heuristics for backpropagation and may not support different network architectures.

A subset of gradient-based methods, which we call activation-based meth-

ods, also incorporate neuron activations into their explanations. Methods such as

Gradient-weighted Class Activation Mapping Grad-CAM [Selvaraju et al., 2016b],

layer-wise Relevance Propagation (LRP) [Bach et al., 2015] and Deep Taylor De-

composition (DTD) [Montavon et al., 2017] can be considered as activation-based

methods. Grad-CAM visualizes the linear combination of (typically) the last convo-

lution layer and class specific gradients. LRP and DTD decompose the activations

of each neuron in terms of contributions (i.e. relevances) from its input.

All these explanation methods are based on identifying pixels which contribute

the most to the model output. In other words, these methods explain a model’s

decision by illustrating which pixels most affect a classifier’s prediction. This takes

the form of an attribution map, a heat map of the same size as the input image,

in which each element of the attribution map indicates the degree to which its

associated pixel contributed to the model output. In contrast, our model takes a

different approach by generating a similar image on the other side of the model’s
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decision boundary.

Adversarial Examples [Szegedy et al., 2013, Goodfellow et al., 2014b] are

created by performing minute perturbations to image pixels to produce decision-

boundary crossing transformations which are visually imperceptible to human ob-

servers. Such approaches are extremely useful for exploring ways in which a classifier

might be attacked. They do not, however, provide any high-level intuition for why

a model is making a particular decision.

Image-to-Image Transformation approaches, such as those used in do-

main adaptation [Bousmalis et al., 2017, Liu and Tuzel, 2016, Ganin et al., 2016]

have shown increased success in transforming an image in one domain to appear

as if drawn from another domain, such as synthetic-to-real or winter-to-summer.

These approaches are clearly the most similar to our own in that we seek to trans-

form images predicted as one class to appear to a pre-trained classifier as those

from another. These approaches do not, however, constrain the types of transfor-

mations allowed and we demonstrate Section 4.5.3 that significant constraints must

be applied Section 4.4 to ensure that the transformations produced are easily in-

terpretable. Other image-to-image techniques such as Style Transfer [Zhu et al.,

2017, Gatys et al., 2015, Gatys et al., 2016] typically produce very low-level and

comprehensive transformations to every pixel. In contrast, our own approach seeks

highly localized and high-level, semantic changes.
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4.3 Model

The goal of our model is to take a pre-trained binary classifier and a query

image and generate both a new, transformed image and a binary mask. The trans-

formed image should be similar to the query image, excepting a visually perceptible

difference, such that the pre-trained classifier assigns different labels to the query

and transformed image. The binary mask indicates which pixels from the query

image where changed in order to produce the transformed image. In this way, our

model is able to produce a decision-boundary crossing transformation of the query

image and illustrate both where, via the binary mask, and how, via the transformed

image, the transformation occurs.

More formally, given a binary classifier C(x) ∈ {0, 1} operating on an image

x, we seek to learn a function which predicts a transformed image t and a mask m

such that:

C(x) 6= C(t) (4.1)

x�m 6= t�m (4.2)

x� ¬m = t� ¬m (4.3)

where (4.1) indicates that the model believes x and t to be of different classes,

(4.2) indicates that the query and transformed image differ in pixels whose mask

values are 1 and (4.3) indicates that the query and transformed image match in
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Figure 4.1: Model architecture of ExplainGAN. Inference (in blue frame) consists
of passing an image x of class j into the appropriate encoder Ej to produce a hidden
vector zj. The hidden vector is decoded to simultaneously create its reconstruction
Gj(zj), a transformed image of the opposite class G1−j(zj) and a mask showing
where the changes were made Gm(zj). Composite images C0 and C1 merge the
reconstruction and transformation with the original image x.

pixels where mask values are 0.

4.3.1 Prerequisites

Given a dataset of images S = {xi|i ∈ 1 . . . N}, our pre-trained classifier

produces a set of predictions {ȳi|i ∈ 1 . . . N}. Given these predictions, we now can

split the dataset into two groups S0 = {xi|ȳi = 0} and S1 = {xi|ȳi = 1}.

4.3.2 Inference

Given a query image and a predicted label for that image, our model maps to

a reconstructed version of that image, an image of the opposite class and a mask

that indicates which pixels it changed. Formally, our model is composed of several

components. First, our model uses two class-specific encoders to produce hidden

codes:
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zj = Ej(x) j ∈ {0, 1}, x ∈ Sj (4.4)

Next, a decoder G maps the hidden representation zj to a reconstructed image

Gj(zj), a transformed image of the opposite class G1−j(zj) and a mask indicating

which pixels changed Gm(zj). In this manner, images of either class can be trans-

formed into similar looking images of the opposite class with a visually interpretable

change.

We also define the concept of a composite image Cj(x) of class j:

Cj(x1−j) = x1−j � (1−Gm(z1−j)) + Gj(z1−j)�Gm(z1−j) (4.5)

where z1−j is the code produced by encoding x1−j. The composite image

uses the mask to blend the original image x with either the reconstruction or the

transformed image.

4.3.3 Training

To train the model, several auxiliary components of the network are required.

First, two discriminators Dj(x) → {real, fake}, j ∈ {0, 1} are trained to evaluate

between real and fake images of class j.
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To train the model we optimize the following objective:

min
G,E0,E1

max
D0,D1

LGAN + Lclassifier + Lrecon + Lprior (4.6)

where LGAN is a typical GAN loss, Lclassifier is a loss that encourages the

generated and composite images to be likely according to the classifier, Lrecon ensures

that the reconstructions are accurate, and Lprior encodes our prior for the types of

transformations we want to encourage. LGAN is a combination of the GAN losses

for each class:

LGAN = LGAN:0 + LGAN:1 (4.7)

LGAN:j for class j discriminates between images x originally classified as class

j and reconstructions of x, transformations from x and composites from x. It is

defined as:

LGAN :j = Ex∼Sj
log(Dj(x)) (4.8)

+ Ex∼Sj
[log(1−Dj(Gj(Ej(x))]

+ Ex∼S1−j
[log(1−Dj(Gj(E1−j(x))]

+ Ex∼S1−j
[log(1−Dj(Cj(E1−j(x))]
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Note that this formulation, in which the reconstructions of x are also penalized

are part of ensuring that the auto-encoded images are accurate [Larsen et al., 2015]

and are included here, rather than as part of Lrecon out of convenience.

Next, we encourage the composite images to produce images that the classifier

correctly predicts:

Lclassifier = Ex∈S0 − log(C(C1(x))) (4.9)

+ Ex∈S1 − log(1− C(C0(x)) (4.10)

Finally, we have an auto-encoding loss for the reconstruction:

Lrecon =
∑
j∈0,1

Ex∈Sj
‖Gj(Ej(x))− x‖2 (4.11)

The mask priors are discussed in the following section.

4.4 Priors for Interpretable Image Transformations

There are many image transformations that will transform an image of one

class to appear like an image from another class. Not all of these transformations,

however, are equally useful for interpreting a model’s behavior at a conceptual level.

Adversarial example transformations will change the label but are not perceptible.

Style transfer transformations make low-level but not semantic changes. Domain
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Adaptation approaches may change every pixel in the image which makes it difficult

to determine which of these changes actually influenced the classifier. We want to

craft set of priors that encourage transformations that are local to a particular part

of the image and visually perceptible. To this end, we define our prior loss term as:

Lprior = Lconst + Lcount + Lsmoothness + Lentropy (4.12)

The consistency loss Lconst ensures that if a pixel is not masked, then the

transformed image hasn’t altered it.

Lconst =
∑
j∈0,1

Ex∈Sj
[‖(1−Gm(zj))� xj − (1−Gm(zj))�G(1− j)(zj)‖2] (4.13)

where zj = Ej(x). The count loss Lcount allows us to encode prior information

regarding a coarse estimate of the number of pixels we anticipate changing. We

approximate the l0 norm via an l1 norm:

Lcount =
∑
j∈0,1

Ex∈Sj
[max(

1

n
|Gm(zj)|, κ)] (4.14)

where κ is a constant that corresponds to the ratio of number of changed pixels

to the total number of the pixels. The smoothness loss encourages masks that are

localized by penalizing transitions via a total variation [Rudin et al., 1992] penalty:
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Lsmoothness =
∑
j∈0,1

Ex∈Sj
|∇Gm(zj)| (4.15)

Finally, we want to encourage the mask to be as binary as possible:

Lentropy =
∑
j∈0,1

Ex∈Sj
[min(Gm(zj), 1−Gm(zj))] (4.16)

4.5 Experiments

Our goal is to provide model explainability via visualization of samples on

either side of a model’s decision boundary. This is an entirely new way of performing

model explanation and requires a unique approach to evaluation.

To this end, we first demonstrate qualitative results of our approach and com-

pare to related approaches Section 4.5.3. Next, we evaluate our model using tra-

ditional criteria by demonstrating that our model’s inferred masks are highly com-

petitive as saliency maps when compared to state-of-the-art attribution approaches

Section 4.5.4. Next, we introduce two new metrics for evaluating the explainability

of decision-boundary crossing examples Section 4.5.5 and evaluate how our model

performs using these quantitative methods.
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Figure 4.2: An example of Ultrasound images from our Medical Ultrasound dataset.
(a) A canonical Apical 2 Chamber view. (b) A canonical Apical 4 Chamber view.
(c) A difficult Apical 2 Chamber view that is easily confused for a 4 Chamber view.
(d) A difficult Apical 4 Chamber view that is easily confused for a 2 Chamber view.

4.5.1 Datasets

We used four datasets as part of our evaluation: MNIST [LeCun et al., 1998],

Fashion-MNIST [Xiao et al., 2017a], CelebA [Liu et al., 2015] and a new Medical

Ultrasound dataset that will be released with the publication of this work. For each

dataset, four splits were used: A classifier-training set used to train the black-box

classifier, a training set used to train ExplainGAN, a validation set used to tune

hyperparameters and a test set.

MNIST, Fashion-MNIST: We use the standard train/test splits in the

following manner: The 60k training set is first split into 3 components: a 2k

classifier-training set, a 50k training set and an 8k validation set. We used the

standard test set. For MNIST, we used binary class pairs (3, 8), (4, 9) and (5, 6).

For Fashion-MNIST, we used binary class pairs (coat, shirt), (pullover, shirt) and

(coat, pullover).

CelebA: We use the standard train/validation/test splits in the following
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manner: 2k images were used from the original validation set as the classifier-training

set, all 160k images were used to train ExplainGAN, the remaining 14k validation

images were used for validation. We used the standard test set. We used binary

class pairs (glasses, no glasses) and (mustache, no mustache).

Medical Ultrasound: Our new medical ultrasound dataset is a collection

of 72k cardiac images taken from 5 different views of the heart. Each image was

labeled by several cardiac sonographers to determine the correct labels. An example

of images from the dataset can be found in 4.2. As the Figure illustrates, the dataset

is very challenging and is not as amenable to certain senses of ’objectness’ found in

most standard vision datasets. Of the 72k images, 2k were used as the classifier-

training set, 60k were used for training ExplainGAN, 4k were used for validation

and 6k were used for testing. We used the binary class pair (Apical 2-Chamber,

Apical 4-Chamber).

4.5.2 Implementation

The model architecture implementation for E, G and D is quite similar to the

DCGAN architecture [Radford et al., 2015]. We share the last few layers of E0 and

E1 and the last few layers of D0 and D1. Each loss term in our objective is scaled

by a coefficient whose values were obtained via cross-validation. In practice, the

coefficients were quite stable across datasets (we use the same set), other than the κ

hyperparameter which controls the effect of the count loss and the scaling coefficient

for Lsmoothness, the smoothness loss.
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4.5.3 Explanation by Qualitative Evaluation

We evaluated our model qualitatively on a number of datasets. We show

results on both the Medical Ultrasound dataset and CelebA dataset in 4.3. The use

of CelebA and a medical image dataset provides a useful contrast between images

whose relationships should be quite familiar to the average reader (glasses vs no-

glasses) and relationships that are likely to be foreign to the average reader (apical

2 chamber views versus apical 4 chamber views).

In each block, the “input” column represents images x ∈ S0, the “transformed”

column represents ExplainGAN’s transformation, G1(z0), to the opposite class. The

“mask” column illustrates the model’s changes, Gm(z0), and the “composite” column

shows the composite images, C1(z0).

The CelebA (top) results in 4.3 illustrates that the model’s transformations

for both “glasses vs no-glasses” and “mustache vs no-mustache” perform highly

localized changes and the corresponding mask effectively produces a segmentation

of the only visual feature being altered. Furthermore, the model is able to make

quite minimal but perceptible changes. For example, in the first row of the “glasses

vs no-glasses” task, the mask has preserved the hair over the eyeglasses.

The Ultrasound (bottom) results in 4.3 illustrates that the model has both

learned to model the anatomy of the heart and is able to transform from one view

of the heart to the other with minimal changes. The transformations and masks

clearly illustrate that the model is cuing predominantly on the presence of the right

ventricle, but interestingly not the right atrium, and the shape of the pericardium.
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Figure 4.3: Qualitative visualization of the ExplainGAN model on two datasets:
CelebA and our Medical Ultrasound dataset. The “input” column represents im-
ages x ∈ S0, the “transformed” column represents ExplainGAN’s transformation,
G1(z0), to the opposite class. The “mask” column illustrates the model’s changes,
Gm(z0), and the “composite” column shows the composite images, C1(z0). The re-
sults indicate that in the case of object-related transformations, such as glasses or
mustaches, ExplainGAN effectively performs a weakly supervised segmentation of
the object. In the ultrasound case, ExplainGAN illustrates which anatomical areas
the model is cuing on: the right ventricle and pericardium.

4.5.4 Explanation via Pixel-Wise Attribution

Many post-hoc explanation methods that use attribution or saliency rely on

visual, qualitative comparisons of attribution maps. Recently, [Samek et al., 2017]
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introduced a quantitative approach for comparing attribution maps in which pixels

are progressively perturbed in the order of predicted saliency. Performance is judged

by evaluating which methods require fewer perturbations to affect the classifier’s

prediction.

Our model is not designed for attribution / saliency as it produces a binary,

rather than continuous mask, which is also paired to a particular transformation

image. However, it is possible to loosely interpret our masks as an attribution map

in which pixel priority for all pixels in the mask is not known.

While the work of [Samek et al., 2017] perturbed individual pixels, we wanted

to avoid a comparison in which individual pixel changes, which are neither them-

selves interpretable, nor plausible as images, might alter the classification results.

Consequently, we adapt the approach of [Samek et al., 2017] by perturbing the image

by segments, rather than pixels. To choose the order of perturbation, we normalize

the maps to the range [0, 1], threshold them with t ∈ [0.5, 0.7, 0.9] and segment the

resulting binary maps. We then rank the segments based on the average map value

within each segment1. For perturbation, we replace each pixel in each segment with

uniform random noise in the range of the pixel values.

More concretely, we denote the image with k segments perturbed by x
(k)
SP . We

compute the area over the segment perturbation curve (AOSPC) as follows:

AOSPC =
1

K + 1

〈
K∑
k=0

f(x
(0)
SP)− f(x

(k)
SP)

〉
px

, (4.17)

1For ExplainGAN we take the average of the sigmoid outputs over all pixels in a segment.
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where K is the number of steps, 〈.〉px denotes the average over all the images, and

f : Rd → R is the classification function.

We report AOSPC after 10 steps for the explanation methods of Section 5.2

in Section 4.1. We choose the methods to cover the 3 main groups of methods (i.e.

perturbation-based, gradient-based and activation-based). A larger AOSPC means

that the sensitivity of the segments that are perturbed in 10 steps is higher. To

avoid cases where the segmentation assigns all or more than half of the pixels to

one segment we choose our threshold from ≥ 0.5 values. Our results demonstrate

that, despite not being explicitly optimized for finding the most informative pixels,

ExplainGAN performs on par with other explanation methods for classifiers. For

qualitative comparison of these methods see 4.4.

Table 4.1: AOSPC value (higher is better, see (4.17) after 10 steps for different segmentation
thresholds. Although, ExplainGAN is not directly optimized for this metric, its performance is
comparable to reasonable baselines for explanation in classifiers. A larger AOSPC means that the
sensitivity of the segments that are perturbed in 10 steps is higher.

Dataset MNIST Ultrasound

Threshold 0.5 0.7 0.9 0.5 0.7 0.9

Grad [Shrikumar et al., 2016] 1474 1563 240 712 291 81

Grad-CAM [Selvaraju et al., 2016b] 17.2 8 − − 70 432

Saliency [Simonyan et al., 2013] 817 718 126 30 63 298

Occlusion [Zeiler and Fergus, 2014] 2099 1946 1486 1215 539 142

LRP [Bach et al., 2015] 1736 1478 244 700 511 71

ExplainGAN 2622 2083 1474 1167 542 374
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Figure 4.4: Comparison of different methods for explaining the model’s decision.Fashion-
MNIST: transforming from pullover to shirt, Ultrasound: transforming from A2C to A4C (see
4.2 for examples of A2C and A4C views), CelebA: transforming from faces without eyeglasses to
faces with eyeglasses, MNIST: transforming from 4 to 9.
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Figure 4.5: Boundary-crossing images have varying explanatory power: images carry more
explanatory power if (1) they can be used as substitutes in the original dataset without affecting
the classifier and (2) they are different from a query image in small and easily localized ways. (a)
displays an image classified as a jacket and not a pullover. (b) shows an image of a pullover which
is substitutable and whose localized mask illustrates the models belief that removing a zipper and
the jacket ribs would make the original image into a pullover. (c) shows another pullover but non-
localized mask doesn’t explain why this is a pullover and not a jacket. (d) shows an adversarial
image which is completely unsubstitutable and provides no localized explanation.

Table 4.2: Quantitative substitutability experiments across datasets. Class 0 and Class 1 are
the classes that the given classifier is trained to identify. Transformed/Composite 0/1 column
shows the accuracy of the classifiers when just transformations/compositions of the images used
at training time. Ceiling represents the accuracy of the base classifier on the same test set.

Dataset Class 0 Class 1 Transformed 0 Transformed 1 Composite 0 Composite 1 Ceiling

Ultrasound A2C A4C 95.5 94.2 91.4 95.6 99.6

CelebA W/O Eyeglasses W/ Eyeglasses 93.6 96.2 96.05 96.2 96.5

CelebA W/O Mustache W/ Mustache 76.65 75.2 74.05 71.4 83.9

CelebA W/O Black hair W/ Blackhair 75.65 74.8 79.05 77.4 84.3

FMNIST Coat Pullover 75.8 73.7 84.8 69.1 94.1

FMNIST Coat Shirt 79.7 78.5 71.8 77.2 91.7

MNIST Three Eight 99.6 99.1 99.3 98.9 99.9

MNIST Four Nine 98.6 99.0 98.6 98.5 99.0

MNIST Three Five 98.5 99.3 98.2 98.2 99.2

4.5.5 Quantitative Assessment of Explainability

Given two similar images on either side of a model’s decision boundary, how

can we determine quantitatively whether they provide a conceptual explanation of

why a model discriminates between them? There are several high-level criteria that

must be met in order for people to find such explanatory images useful.

Localized but not minimal: In order for the boundary-crossing image to

clear demonstrate what pixels caused a label-changing event, it must deviate from
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the original image in a way that is localized to a clear sub-component of the image,

as opposed to every pixel changing or only one or two pixels changing.

Substitutable: If we are explaining a model by comparing an original image

from class A, and a boundary-crossing image is produced to appear like it came from

class B, then we define substitutability to be the property that we can substitute our

boundary-crossing image for one of the original images labeled as class B without

affecting our classifier’s performance.

To this end, we propose two metrics aimed at quantifying such an explanations

utility. First, the degree to which changes to a query image are localized can be

represented by the number of non-zero elements of the mask. Note that while other

measures of locality can be used (cohesiveness, connected components), we make no

such assumption as we found empirically that often such specific measures do not

correlate well with conveying the set of items changing.

Second, we define the substitutability metric as follows: Let an original train-

ing set Dtrain = {(xi, yi|i = 1..N}, a test set Dtest, and a classifier F(x) → y whose

empirical performance on the test set is some score S. Given a new set of model-

generated boundary-crossing images Dtrans = {(x′i, y′i|i = 1..N} we say that this set

is R%−substitutable if our classifier can be retrained using Dtrans to achieve perfor-

mance that is R% of S. For example, if our original dataset and classifier yield 90%

performance, and we substitute a generated dataset for our original dataset and a

re-trained classifier yields 45%, we would say the new dataset is 50% substitutable.

Table 4.2 illustrates the substitutability performance of our model on various

datasets. These results illustrate that our model produces images that are nearly
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Table 4.3: Substitutability on Ultrasound Dataset. Transformed/Composite 0/1 shows the accu-
racy of a classifier on test set when the original samples are replaced with Transformed/Composite
0/1 at training phase. Both Transformed/Composite shows the accuracy of the classifier when
all of the images are replaced with Transformed/Composite. Note that PixelDA is a oneway
transformer.

Transformed 0 Transformed 1 Both Transformed Composite 0 Composite 1 Both composite

PixelDA 87.6 N/A N/A N/A N/A N/A

CycleGAN 94 64 84.1 N/A N/A N/A

ExplainGAN-norec 94.5 83.9 96.1 N/A N/A N/A

ExplainGAN-nomask 93.9 97.3 95.1 N/A N/A N/A

ExplainGAN-full 95.5 94.2 97.3 91.4 95.6 91.4

Ceiling 99.7 99.7 99.7 99.7 99.7 99.7

perfectly substitutable on MNIST, the Ultrasound dataset, and CelebaA for the

Eyeglasses attribute. That being said, despite compelling qualitative results (Fig-

ure 4.4), there is still much room for improvement in terms of substitutability for

the other CelebA attributes.
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Chapter 5: Defense-GAN: Protecting Classifiers Against Adversarial

Attacks Using Generative Models

5.1 Introduction

Despite their outstanding performance on several machine learning tasks, deep

neural networks have been shown to be susceptible to adversarial attacks [Szegedy

et al., 2013,Goodfellow et al., 2014b]. These attacks come in the form of adversarial

examples : carefully crafted perturbations added to a legitimate input sample. In

the context of classification, these perturbations cause the legitimate sample to

be misclassified at inference time [Szegedy et al., 2013, Goodfellow et al., 2014b,

Papernot et al., 2016b, Liu et al., 2016]. Such perturbations are often small in

magnitude and do not affect human recognition but can drastically change the

output of the classifier.

Recent literature has considered two types of threat models: black-box and

white-box attacks. Under the black-box attack model, the attacker does not have

access to the classification model parameters; whereas in the white-box attack model,

the attacker has complete access to the model architecture and parameters, including

potential defense mechanisms [Papernot et al., 2017,Tramèr et al., 2017,Carlini and
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Wagner, 2017].

Various defenses have been proposed to mitigate the effect of adversarial at-

tacks. These defenses can be grouped under three different approaches: (1) modify-

ing the training data to make the classifier more robust against attacks, e.g., adver-

sarial training which augments the training data of the classifier with adversarial

examples [Szegedy et al., 2013,Goodfellow et al., 2014b], (2) modifying the training

procedure of the classifier to reduce the magnitude of gradients, e.g., defensive dis-

tillation [Papernot et al., 2016e], and (3) attempting to remove the adversarial noise

from the input samples [Hendrycks and Gimpel, 2017,Meng and Chen, 2017]. All of

these approaches have limitations in the sense that they are effective against either

white-box attacks or black-box attacks, but not both [Tramèr et al., 2017,Meng and

Chen, 2017]. Furthermore, some of these defenses are devised with specific attack

models in mind and are not effective against new attacks.

In this chapter, we propose a novel defense mechanism which is effective against

both white-box and black-box attacks. We propose to leverage the representative

power of GANs [Goodfellow et al., 2014a] to diminish the effect of the adversarial

perturbation, by “projecting” input images onto the range of the GAN’s generator

prior to feeding them to the classifier. In the GAN framework, two models are

trained simultaneously in an adversarial setting: a generative model that emulates

the data distribution, and a discriminative model that predicts whether a certain

input came from real data or was artificially created. The generative model learns

a mapping G from a low-dimensional vector z ∈ Rk to the high-dimensional input

sample space Rn. During training of the GAN, G is encouraged to generate samples
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which resemble the training data. It is, therefore, expected that legitimate samples

will be close to some point in the range of G, whereas adversarial samples will be

further away from the range of G. Furthermore, “projecting” the adversarial exam-

ples onto the range of the generator G can have the desirable effect of reducing the

adversarial perturbation. The projected output, computed using Gradient Descent

(GD), is fed into the classifier instead of the original (potentially adversarially mod-

ified) image. We empirically demonstrate that this is an effective defense against

both black-box and white-box attacks on two benchmark image datasets.

The rest of the chapter is organized as follows. We introduce the necessary

background regarding known attack models, defense mechanisms, and GANs in Sec-

tion 5.2. Our defense mechanism, which we call Defense-GAN, is formally motivated

and introduced in Section 5.3. Finally, experimental results, under different threat

models, as well as comparisons to other defenses are presented in Section 5.4.

5.2 Related work and background information

In this work, we use GANs for the purpose of defending against adversarial

attacks in classification problems. Before detailing our approach in the next section,

we explain related work in three parts. First, we discuss different attack models

employed in the literature. We, then, go over related defense mechanisms against

these attacks and discuss their strengths and shortcomings. Lastly, we explain

necessary background information regarding GANs.
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5.2.1 Attack models and algorithms

Various attack models and algorithms have been used to target classifiers. All

attack models we consider aim to find a perturbation δ to be added to a (legitimate)

input x ∈ Rn, resulting in the adversarial example x̃ = x + δ. The `∞-norm of the

perturbation is denoted by ε [Goodfellow et al., 2014b] and is chosen to be small

enough so as to remain undetectable. We consider two threat levels: black- and

white-box attacks.

White-box attack models

White-box models assume that the attacker has complete knowledge of all the

classifier parameters, i.e., network architecture and weights, as well as the details

of any defense mechanism. Given an input image x and its associated ground-truth

label y, the attacker thus has access to the loss function J(x, y) used to train the

network, and uses it to compute the adversarial perturbation δ. Attacks can be

targeted, in that they attempt to cause the perturbed image to be misclassified to a

specific target class, or untargeted when no target class is specified.

In this work, we focus on untargeted white-box attacks computed using the

Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014b], the Randomized

Fast Gradient Sign Method (RAND+FGSM) [Tramèr et al., 2017], and the Carlini-

Wagner (CW) attack [Carlini and Wagner, 2017]. Although other attack models ex-

ist, such as the Iterative FGSM [Kurakin et al., 2016], the Jacobian-based Saliency

Map Attack (JSMA) [Papernot et al., 2016b], and Deepfool [Moosavi-Dezfooli et al.,
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2016], we focus on these three models as they cover a good breadth of attack algor-

thims. FGSM is a very simple and fast attack algorithm which makes it extremely

amenable to real-time attack deployment. On the other hand, RAND+FGSM, an

equally simple attack, increases the power of FGSM for white-box attacks [Tramèr

et al., 2017], and finally, the CW attack is one of the most powerful white-box

attacks to-date [Carlini and Wagner, 2017].

Fast Gradient Sign Method (FGSM): Given an image x and its corresponding true

label y, the FGSM attack sets the perturbation δ to:

δ = ε · sign(∇xJ(x, y)). (5.1)

FGSM [Goodfellow et al., 2014b] was designed to be extremely fast rather than

optimal. It simply uses the sign of the gradient at every pixel to determine the

direction with which to change the corresponding pixel value.

Randomized Fast Gradient Sign Method (RAND+FGSM): The RAND+FGSM

[Tramèr et al., 2017] attack is a simple yet effective method to increase the power of

FGSM against models which were adversarially trained. The idea is to first apply a

small random perturbation before using FGSM. More explicitly, for α < ε, random

noise is first added to the legitimate image x:

x′ = x + α · sign(N (0n, In)). (5.2)
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Then, the FGSM attack is computed on x′, resulting in

x̃ = x′ + (ε− α) · sign(∇x′J(x′, y)). (5.3)

The Carlini-Wagner (CW) attack: The CW attack is an effective optimization-

based attack model. In many cases, it can reduce the classifier accuracy to almost 0%

[Carlini and Wagner, 2017]. The perturbation δ is found by solving an optimization

problem of the form:

min
δ∈Rn

||δ||p + c · f(x + δ)

subject to x + δ ∈ [0, 1]n, (5.4)

where f is an objective function that drives the example x to be misclassified,

and c > 0 is a suitably chosen constant. The `2, `0, and `∞ norms are considered.

We refer the reader to [Carlini and Wagner, 2017] for details regarding the approach

to solving (5.4) and setting the constant c.

Black-box attack models

For black-box attacks we consider untargeted FGSM attacks computed on a

substitute model [Papernot et al., 2017]. As previously mentioned, black-box adver-

saries have no access to the classifier or defense parameters. It is further assumed

that they do not have access to a large training dataset but can query the targeted

DNN as a black-box, i.e., access labels produced by the classifier for specific query
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images. The adversary trains a model, called substitute, which has a (potentially)

different architecture than the targeted classifier, using a very small dataset aug-

mented by synthetic images labeled by querying the classifier. Adversarial examples

are then found by applying any attack method on the substitute network. It was

found that such examples designed to fool the substitute often end up being mis-

classified by the targeted classifier [Szegedy et al., 2013, Papernot et al., 2017]. In

other words, black-box attacks are easily transferrable from one model to the other.

5.2.2 Defense mechanisms

Various defense mechanisms have been employed to combat the threat from

adversarial attacks. In what follows, we describe one representative defense strategy

from each of the three general groups of defenses.

Adversarial training

A popular approach to defend against adversarial noise is to augment the

training dataset with adversarial examples [Szegedy et al., 2013, Goodfellow et al.,

2014b,Moosavi-Dezfooli et al., 2016]. Adversarial examples are generated using one

or more chosen attack models and added to the training set. This often results

in increased robustness when the attack model used to generate the augmented

training set is the same as that used by the attacker. However, adversarial training

does not perform as well when a different attack strategy is used by the attacker.

Additionally, it tends to make the model more robust to white-box attacks than to
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black-box attacks due to gradient masking [Papernot et al., 2016c, Papernot et al.,

2017,Tramèr et al., 2017].

Defensive distillation

Defensive distillation [Papernot et al., 2016e] trains the classifier in two rounds

using a variant of the distillation [Hinton et al., 2015] method. This has the desir-

able effect of learning a smoother network and reducing the amplitude of gradients

around input points, making it difficult for attackers to generate adversarial exam-

ples [Papernot et al., 2016e]. It was, however, shown that, while defensive distillation

is effective against white-box attacks, it fails to adequately protect against black-box

attacks transferred from other networks [Carlini and Wagner, 2017].

MagNet

Recently, [Meng and Chen, 2017] introduced MagNet as an effective defense

strategy. It trains a reformer network (which is an auto-encoder or a collection of

auto-encoders) to move adversarial examples closer to the manifold of legitimate, or

natural, examples. When using a collection of auto-encoders, one reformer network

is chosen at random at test time, thus strengthening the defense. It was shown to be

an effective defense against gray-box attacks where the attacker knows everything

about the network and defense, except the parameters. MagNet is the closest defense

to our approach, as it attempts to reform an adversarial sample using a learnt auto-

encoder. The main differences between MagNet and our approach are: (1) we use
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GANs instead of auto-encoders, and, most importantly, (2) we use GD minimization

to find latent codes as opposed to a feedforward encoder network. This makes

Defense-GAN more robust, especially against white-box attacks.

5.2.3 Generative Adversarial Networks

Generative Adversarial Networks, originally introduced by [Goodfellow et al.,

2014a], consist of two neural networks, G and D. G : Rk → Rn maps a low-

dimensional latent space to the high dimensional sample space of x. D is a binary

neural network classifier. In the training phase, G and D are typically learned in

an adversarial fashion using actual input data samples x and random vectors z. An

isotropic Gaussian prior is usually assumed on z. While G learns to generate outputs

G(z) that have a distribution similar to that of x, D learns to discriminate between

“real” samples x and “fake” samples G(z). D and G are trained in an alternating

fashion to minimize the following min-max loss [Goodfellow et al., 2014a]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (5.5)

It was shown that the optimal GAN is obtained when the resulting generator

distribution pg = pdata [Goodfellow et al., 2014a].

However, GANs turned out to be difficult to train in practice [Gulrajani et al.,

2017], and alternative formulations have been proposed. [Arjovsky et al., 2017] in-

troduced Wasserstein GANs (WGANs) which are a variant of GANs that use the
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Wasserstein distance, resulting in a loss function with more desirable properties:

min
G

max
D

VW (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))]. (5.6)

In this work, we use WGANs as our generative model due to the stability of their

training methods, especially using the approach in [Gulrajani et al., 2017].

5.3 Proposed Defense-GAN

We propose a new defense strategy which uses a WGAN trained on legitimate

(un-perturbed) training samples to “denoise” adversarial examples. At test time,

prior to feeding an image x to the classifier, we project it onto the range of the

generator by minimizing the reconstruction error ||G(z)−x||22, using L steps of GD.

The resulting reconstruction G(z) is then given to the classifier. Since the generator

was trained to model the unperturbed training data distribution, we expect this

added step to result in a substantial reduction of any potential adversarial noise.

We formally motivate this approach in the following section.

5.3.1 Motivation

As mentioned in Section 5.2.3, the GAN min-max loss in (5.5) admits a global

optimum when pg = pdata [Goodfellow et al., 2014a]. It can be similarly shown

that WGAN admits an optimum to its own min-max loss in (5.6), when the set

{x | pg(x) 6= pdata(x)} has zero Lebesgue-measure. Formally,
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Lemma 1 A generator distribution pg is a global optimum for the WGAN min-

max game defined in (5.6), if and only if pg(x) = pdata(x) for all x ∈ Rn, potentially

except on a set of zero Lebesgue-measure.

A sketch of the proof can be found in Section 5.5.

Additionally, it was shown that, if G and D have enough capacity to represent

the data, and if the training algorithm is such that pg converges to pdata, then

Ex∼pdata

[
min
z
‖Gt(z)− x‖

]
−→ 0 (5.7)

where Gt is the generator of a GAN or WGAN1 after t steps of its training algorithm

[Kabkab et al., 2018].

This serves to show that, under ideal conditions, the addition of the GAN re-

construction loss minimization step should not affect the performance of the classifier

on natural, legitimate samples, as such samples should be almost exactly recovered.

Furthermore, we hypothesize that this step will help reduce the adversarial noise

which follows a different distribution than that of the GAN training examples.

5.3.2 Defense-GAN algorithm

Defense-GAN is a defense strategy to combat both white-box and black-box

adversarial attacks against classification networks. At inference time, given a trained

GAN generator G and an image x to be classified, z∗ is first found so as to minimize

1For simplicity, we will use GAN and WGAN interchangeably in the rest of this manuscript,
with the understanding that our implementation follows the WGAN loss.
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Figure 5.1: Overview of the Defense-GAN algorithm.

Figure 5.2: L steps of Gradient Descent are used to estimate the projection of the
image onto the range of the generator.

G(z∗) is then given as the input to the classifier. The algorithm is illustrated in

Figure 5.1. As (5.8) is a highly non-convex minimization problem, we approximate

it by doing a fixed number L of GD steps using R different random initializations

of z (which we call random restarts), as shown in Figures 5.1 and 5.2.

The GAN is trained on the available classifier training dataset in an unsuper-

vised manner. The classifier can be trained on the original training images, their

reconstructions using the generator G, or a combination of the two. As was discussed

in Section 5.3.1, as long as the GAN is appropriately trained and has enough ca-

pacity to represent the data, original clean images and their reconstructions should

not defer much. Therefore, these two classifier training strategies should, at least

theoretically, not differ in performance.

Compared to existing defense mechanisms, our approach is different in the
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following aspects:

1. Defense-GAN can be used in conjunction with any classifier and does not

modify the classifier structure itself. It can be seen as an add-on or pre-

processing step prior to classification.

2. If the GAN is representative enough, re-training the classifier should not be

necessary and any drop in performance due to the addition of Defense-GAN

should not be significant.

3. Defense-GAN can be used as a defense to any attack: it does not assume an at-

tack model, but simply leverages the generative power of GANs to reconstruct

adversarial examples.

4. Defense-GAN is highly non-linear and white-box gradient-based attacks will

be difficult to perform due to the GD loop. A detailed discussion about this

can be found in Section 5.6.

5.4 Experiments

We assume three different attack threat levels:

1. Black-box attacks: the attacker does not have access to the details of the

classifier and defense strategy. It therefore trains a substitute network to find

adversarial examples.

2. White-box attacks: the attacker knows all the details of the classifier and de-

fense strategy. It can compute gradients on the classifier and defense networks
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in order to find adversarial examples.

3. White-box attacks, revisited: in addition to the details of the architectures

and parameters of the classifier and defense, the attacker has access to the

random seed and random number generator. In the case of Defense-GAN, this

means that the attacker knows all the random initializations {z(i)
0 }Ri=1.

We compare our method to adversarial training [Goodfellow et al., 2014b] and

MagNet [Meng and Chen, 2017] under the FGSM, RAND+FGSM, and CW (with

`2 norm) white-box attacks, as well as the FGSM black-box attack. Details of all

network architectures used in this chapter can be found in Section 5.7. When the

classifier is trained using the reconstructed images (G(z∗)), we refer to our method

as Defense-GAN-Rec, and we use Defense-GAN-Orig when the original images (x)

are used to train the classifier. Our GAN follows the WGAN training procedure

in [Gulrajani et al., 2017], and details of the generator and discriminator network

architectures are given in Table 5.6. The reformer network (encoder) for the MagNet

baseline is provided in Table 5.7. Our implementation is based on TensorFlow [Abadi

et al., 2015b] and builds on open-source software: CleverHans by [Papernot et al.,

2016a] and improved WGAN training by [Gulrajani et al., 2017]. We use machines

equipped with NVIDIA GeForce GTX TITAN X GPUs.

In our experiments, we use two different image datasets: the MNIST handwrit-

ten digits dataset [LeCun et al., 1998] and the Fashion-MNIST (F-MNIST) clothing

articles dataset [Xiao et al., 2017b]. Both datasets consist of 60, 000 training images

and 10, 000 testing images. We split the training images into a training set of 50, 000
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images and hold-out a validation set containing 10, 000 images. For white-box at-

tacks, the testing set is kept the same (10, 000 samples). For black-box attacks, the

testing set is divided into a small hold-out set of 150 samples reserved for adversary

substitute training, as was done in [Papernot et al., 2017], and the remaining 9, 850

samples are used for testing the different methods.

5.4.1 Results on black-box attacks

In this section, we present experimental results on FGSM black-box attacks.

As previously mentioned, the attacker trains a substitute model, which could differ

in architecture from the targeted model, using a limited dataset consisting of 150 le-

gitimate images augmented with synthetic images labeled using the target classifier.

The classifier and substitute model architectures used and referred to throughout

this section are described in Table 5.5.

In Tables 5.1 and 5.2, we present our classification accuracy results and com-

pare to other defense methods. As can be seen, FGSM black-box attacks were

successful at reducing the classifier accuracy by up to 70%. All considered defense

mechanisms are relatively successful at diminishing the effect of the attacks. We

note that, as expected, the performance of Defense-GAN-Rec and that of Defense-

GAN-Orig are very close. In addition, they both perform consistently well across

different classifier and substitute model combinations. MagNet also performs in a

consistent manner, but achieves lower accuracy than Defense-GAN. Two adversar-

ial training defenses are presented: the first one obtains the adversarial examples
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assuming the same attack ε = 0.3, and the second assumes a different ε = 0.15.

With incorrect knowledge of ε, the performance of adversarial training generally

decreases. In addition, the classification performance of this defense method has

very large variance across the different architectures. It is worth noting that adver-

sarial training defense is only fit against FGSM attacks, because the adversarially

augmented data, even with a different ε, is generated using the same method as

the black-box attack (FGSM). In contrast, Defense-GAN and MagNet are general

defense mechanisms which do not assume a specific attack model.

The performances of defenses on the F-MNIST dataset, shown in Table 5.2,

are noticeably lower than on MNIST. This is due to the large ε = 0.3 in the FGSM

attack. Please see Appendix 5.8 for qualitative examples showing that ε = 0.3

represents very high noise, which makes F-MNIST images difficult to classify, even

by a human.

In addition, the Defense-GAN parameters used in this experiment were kept

the same for both Tables, in order to study the effect of dataset complexity, and can

be further optimized as investigated in the next section.

Effect of number of GD iterations L and random restarts R

Figure 5.3 shows the effect of varying the number of GD iterations L as well

as the random restarts R used to compute the GAN reconstructions of input im-

ages. Across different L and R values, Defense-GAN-Rec and Defense-GAN-Orig

have comparable performance. Increasing L has the expected effect of improving
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Table 5.1: Classification accuracies of different classifier and substitute model combi-
nations using various defense strategies on the MNIST dataset, under FGSM black-
box attacks with ε = 0.3. Defense-GAN has L = 200 and R = 10.

Classifier/
Substitute

No
Attack

No
Defense

Defense-
GAN-Rec

Defense-
GAN-Orig

MagNet
Adv. Tr.
ε = 0.3

Adv. Tr.
ε = 0.15

A/B 0.9970 0.6343 0.9312 0.9282 0.6937 0.9654 0.6223
A/E 0.9970 0.5432 0.9139 0.9221 0.6710 0.9668 0.9327
B/B 0.9618 0.2816 0.9057 0.9105 0.5687 0.2092 0.3441
B/E 0.9618 0.2128 0.8841 0.8892 0.4627 0.1120 0.3354
C/B 0.9959 0.6648 0.9357 0.9322 0.7571 0.9834 0.9208
C/E 0.9959 0.8050 0.9223 0.9182 0.6760 0.9843 0.9755
D/B 0.9920 0.4641 0.9272 0.9323 0.6817 0.7667 0.8514
D/E 0.9920 0.3931 0.9164 0.9155 0.6073 0.7676 0.7129

Table 5.2: Classification accuracies of different classifier and substitute model com-
binations using various defense strategies on the F-MNIST dataset, under FGSM
black-box attacks with ε = 0.3. Defense-GAN has L = 200 and R = 10.

Classifier/
Substitute

No
Attack

No
Defense

Defense-
GAN-Rec

Defense-
GAN-Orig

MagNet
Adv. Tr.
ε = 0.3

Adv. Tr.
ε = 0.15

A/B 0.9346 0.5131 0.586 0.5803 0.5404 0.7393 0.6600
A/E 0.9346 0.3653 0.4790 0.4616 0.3311 0.6945 0.5638
B/B 0.7470 0.4017 0.4940 0.5530 0.3812 0.3177 0.3560
B/E 0.7470 0.3123 0.3720 0.4187 0.3119 0.2617 0.2453
C/B 0.9334 0.2635 0.5289 0.6079 0.4664 0.7791 0.6838
C/E 0.9334 0.2066 0.4871 0.4625 0.3016 0.7504 0.6655
D/B 0.8923 0.4541 0.5779 0.5853 0.5478 0.6172 0.6395
D/E 0.8923 0.2543 0.4007 0.4730 0.3396 0.5093 0.4962

performance when no attack is present. Interestingly, with an FGSM attack, the

classification performance decreases after a certain L value. With too many GD

iterations on the mean squared error (MSE) ||G(z)− (x + δ)||22, some of the adver-

sarial noise components are retained. In the right Figure, the effect of varying R

is shown to be extremely pronounced. This is due to the non-convex nature of the

MSE, and increasing R enables us to sample different local minima.
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Figure 5.3: Classification accuracy of Model F using Defense-GAN on the MNIST
dataset, under FGSM black-box attacks with ε = 0.3 and substitute Model E. Left:
various number of iterations L are used (R = 10). Right: various number of random
restarts R are used (L = 100).

Effect of adversarial noise norm ε

We now investigate the effect of changing the attack ε in Table 5.3. As ex-

pected, with higher ε, the FGSM attack is more successful, especially on the F-

MNIST dataset where the noise norm seems to have a more pronounced effect with

nearly 37% drop in performance between ε = 0.1 and 0.3. Figure 5.7 in Section

5.8 shows adversarial samples as well as their reconstructions with Defense-GAN at

different values of ε. We can see that for large ε, the class is difficult to discern, even

for the human eye.

Even though it seems that increasing ε is a desirable strategy for the attacker,

this increases the likelihood that the adversarial noise is discernible and therefore

the attack is detected. It is trivial for the attacker to provide adversarial images

at very high ε, and a good measure of an attack’s strength is its ability to affect

performance at low ε. In fact, in the next section, we discuss how Defense-GAN can
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be used to not only diminish the effect of attacks, but to also detect them.

Table 5.3: Classification accuracy of Model F using Defense-GAN (L = 400, R =
10), under FGSM black-box attacks for various noise norms ε and substitute Model
E.

ε
Defense-GAN-Rec

MNIST
Defense-GAN-Rec

F-MNIST

0.10 0.9864± 0.0011 0.8844± 0.0017
0.15 0.9836± 0.0026 0.8267± 0.0065
0.20 0.9772± 0.0019 0.7492± 0.0170
0.25 0.9641± 0.0001 0.6384± 0.0159
0.30 0.9307± 0.0034 0.5126± 0.0096
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Figure 5.4: ROC Curves when using Defense-GAN MSE for FGSM attack detections
on the MNIST dataset (Classifier Model F, Substitute Model E). Left: Results for
various number of GD iterations are shown with R = 10, ε = 0.30. Middle: Results
for various number of random restarts R are shown with L = 100, ε = 0.30. Right:
Results for various ε are shown with L = 400, R = 10.

We intuitively expect that clean, unperturbed images will lie closer to the

range of the Defense-GAN generator G than adversarial examples. This is due

to the fact that G was trained to produce images which resemble the legitimate

data. In light of this observation, we propose to use the MSE of an image with

it is reconstruction from (??) as a “metric” to decide whether or not the image
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Figure 5.5: ROC Curves when using Defense-GAN MSE for FGSM attack detections
on the F-MNIST dataset (Classifier Model F, Substitute Model E). Left: Results for
various number of GD iterations are shown with R = 10, ε = 0.30. Middle: Results
for various number of random restarts R are shown with L = 100, ε = 0.30. Right:
Results for various ε are shown with L = 200, R = 10.

was adversarially manipulated. In order words, for a given threshold θ > 0, the

hypothesis test is:

||G(z∗)− x||22
attack

R
no attack

θ. (5.8)

We compute the reconstruction MSEs for every image from the test dataset,

and its adversarially manipulated version using FGSM. We show the Receiver Op-

erating Characteristic (ROC) curves as well as the Area Under the Curve (AUC)

metric for different Defense-GAN parameters and ε values in Figures 5.4 and 5.5.

The results show that this attack detection strategy is effective especially when the

number of GD iterations L and random restarts R are large. From the left and

middle Figures, we can conclude that the number of random restarts plays a very

important role in the detection false positive and true positive rates as was discussed

in Section 5.4.1. Furthermore, when ε is very small, it becomes difficult to detect

attacks at low false positive rates.
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Results on white-box attacks

We now present results on white-box attacks using three different strategies:

FGSM, RAND+FGSM, and CW. We perform the CW attack for 100 iterations of

projected GD, with learning rate 10.0, and use c = 100 in equation (5.4). Table

5.4 shows the classification performance of different classifier models across different

attack and defense strategies. We note that Defense-GAN significantly outperforms

the two other baseline defenses. We even give the adversarial attacker access to

the random initializations of z. However, we noticed that the performance does

not change much when the attacker does not know the initialization. Adversarial

training was done using FGSM to generate the adversarial samples. It is interesting

to mention that when CW attack is used, adversarial training performs extremely

poorly. As previously discussed, adversarial training does not generalize well against

different attack methods.

Due to the loop of L steps of GD, Defense-GAN is resilient to GD-based white-

box attacks, since the attacker needs to “un-roll” the GD loop and propagate the

gradient of the loss all the way across L steps. In fact, from Table 5.4, the perfor-

mance of classifier A with Defense-GAN on the MNIST dataset drops less than 1%

from 0.997 to 0.988 under FGSM. In comparison, from Figure 5.8, when L = 25, the

performance of the same network drops to 0.947 (more than 5% drop). This shows

that using a larger L significantly increases the robustness of Defense-GAN against

GD-based white-box attacks. This comes at the expense of increased inference time

complexity. We present a more detailed discussion about the difficulty of GD-based
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white-box attacks in Section 5.6 and time complexity in Section 5.11. Additional

white-box experimental results on higher-dimensional images are reported in 5.10.

5.5 Optimality of pg = pdata for WGANs

Sketch of proof of Lemma 1: The WGAN min-max loss is given by:

VW (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (5.9)

=

∫
x

pdata(x)D(x)dx−
∫
z

pz(z)D(G(z))dz (5.10)

=

∫
x

(pdata(x)− pg(x))D(x)dx (5.11)

For a fixed G, the optimal discriminator D which maximizes VW (D,G) is such that:

D∗G(x) =


1 if pdata(x) ≥ pg(x)

0 otherwise

(5.12)

Plugging D∗G back into (5.11), we get:

VW (D∗G, G) =

∫
x

(pdata(x)− pg(x))D∗G(x)dx (5.13)

=

∫
{x | pdata(x)≥pg(x)}

(pdata(x)− pg(x)) dx (5.14)
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Let X = {x | pdata(x) ≥ pg(x)}. Clearly, to minimize (5.14), we need to set

pdata(x) = pg(x) for x ∈ X . Then, since both pdfs should integrate to 1,

∫
X c

pg(x)dx =

∫
X c

pdata(x)dx (5.15)

However, this is a contradiction since pg(x) < pdata(x) for x ∈ X c, unless µ(X c) = 0

where µ is the Lebesgue measure. This concludes the proof.

5.6 Difficulty of GD-based white-box attacks on Defense-GAN

In order to perform a GD-based white-box attack on models using Defense-

GAN, an attacker needs to compute the gradient of the output of the classifier

with respect to the input. From Figure 5.1, the generator and the classifier can be

seen as one, combined, feedforward network, through which it is easy to propagate

gradients. The difficulty lies in the orange box of the GD optimization detailed in

Figure 5.2.

For the sake of simplicity, let’s assume that R = 1. Define L(x, z) = ||G(z)−

x||22. Then z∗ = zL, which is computed recursively as follows:

z1 = z0 + η0 ∇zL(x, z)|z=z0
(5.16)

z2 = z1 + η1 ∇zL(x, z)|z=z1
(5.17)

= z0 + η0 ∇zL(x, z)|z=z0
+ η1 ∇zL(x, z)|z=z0+η0∇zL(x,z)|z=z0

(5.18)

and so on. Therefore, computing the gradient of z∗ with respect to x involves a
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large number (L) of recursive chain rules and high-dimensional Jacobian tensors.

This computation gets increasingly prohibitive for large L.

5.7 Neural network architectures

We describe the neural network architectures used throughout the chapter.

The detail of models A through F used for classifier and substitute networks can be

found in Table 5.5. In Table 5.6, the GAN architectures are described, and in Table

5.7, the encoder architecture for the MagNet baseline is given. In what follows:

• Conv(m, k × k, s) refers to a convolutional layer with m feature maps, filter

size k × k, and stride s

• ConvT(m, k×k) refers to the transpose (gradient) of Conv (sometimes referred

to as “deconvolution”) with m feature maps, filter size k × k, and stride s

• FC(m) refers to a fully-connected layer with m outputs

• Dropout(p) refers to a dropout layer with probability p

• ReLU refers to the Rectified Linear Unit activation

• LeakyReLU(α) is the leaky version of the Rectified Linear Unit with parameter

α
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Table 5.5: Neural network architectures used for classifiers and substitute models.

A B, F* C D, E*

Conv(64, 5× 5, 1) Dropout(0.2) Conv(128, 3× 3, 1) FC(200)

ReLU Conv(64, 8× 8, 2) ReLU ReLU

Conv(64, 5× 5, 2) ReLU Conv(64, 3× 3, 2) Dropout(0.5)

ReLU Conv(128, 6× 6, 2) ReLU FC(200)

Dropout(0.25) ReLU Dropout(0.25) ReLU

FC(128) Conv(128, 5× 5, 1) FC(128) Dropout(0.5)

ReLU ReLU ReLU FC(10) + Softmax

Dropout(0.5) Dropout(0.5) Dropout(0.5)

FC(10) + Softmax FC(10) + Softmax FC(10) + Softmax

[ * : F (resp. E) shares the same architecture as B (resp. D) with the dropout layers removed ]
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5.8 Qualitative examples

Original Adv L = 10 L = 25 L = 50 L = 100 L = 200 Original Adv R = 1 R = 2 R = 5 R = 10 R = 20

Figure 5.6: Examples from MNIST and F-MNIST. Left: Original, FGSM adversarial

ε = 0.3, and reconstruction images for R = 1 and various L are shown. Right:

Original, FGSM adversarial ε = 0.3, and reconstruction images for L = 25 and

various R are shown.

Original

𝜖
=
0.
1
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=
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4

Original Original

Figure 5.7: Examples from MNIST and F-MNIST: Original, FGSM adversarial and

reconstruction images for L = 50, R = 15 and various ε are shown.
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5.9 Additional results on the effect of varying the number of GD

iterations L and random restarts R

Table 5.8: Classification accuracy of Model F using Defense-GAN with various

number of iterations L (R = 10), on the MNIST dataset, under FGSM black-box

attack with ε = 0.3.

L
Defense-GAN-Rec

No attack

Defense-GAN-Orig

No attack

Defense-GAN-Rec

Adversarial

Defense-GAN-Orig

Adversarial

25 0.9273± 0.0215 0.9141± 0.0033 0.7955± 0.0045 0.7998± 0.0063

50 0.9567± 0.0203 0.9371± 0.0048 0.8516± 0.0078 0.8472± 0.0026

100 0.9728± 0.0164 0.9560± 0.0051 0.8953± 0.0027 0.8911± 0.0024

200 0.9860± 0.0010 0.9712± 0.0028 0.9210± 0.0023 0.9155± 0.0032

400 0.9869± 0.0082 0.9808± 0.0044 0.9332± 0.0027 0.9307± 0.0034

800 0.9934± 0.0009 0.9938± 0.0004 0.9319± 0.0038 0.9216± 0.0005

1600 0.9963± 0.0013 0.9967± 0.0005 0.9081± 0.0062 0.9008± 0.0095
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Table 5.11: Classification accuracy of Model F using Defense-GAN with various

number of random restarts R (L = 100), on the F-MNIST dataset, under FGSM

black-box attack with ε = 0.3.

R
Defense-GAN-Rec

No attack

Defense-GAN-Orig

No attack

Defense-GAN-Rec

Adversarial

Defense-GAN-Orig

Adversarial

1 0.8425± 0.0008 0.5597± 0.0015 0.3504± 0.0102 0.3380± 0.0043

2 0.8994± 0.0051 0.7793± 0.0023 0.4050± 0.0148 0.3508± 0.0167

5 0.9260± 0.0028 0.6726± 0.0006 0.4521± 0.0177 0.4024± 0.0085

10 0.9101± 0.0032 0.8190± 0.0043 0.4808± 0.0088 0.4221± 0.0255

Figure 5.8: Classification accuracy of different models using Defense-GAN on the
MNIST dataset, under FGSM white-box attack with ε = 0.3, for various number of
iterations L and R = 10.

5.10 Additional results on white-box attacks

We report results on white-box attacks on the CelebFaces Attributes dataset

(CelebA) [Liu et al., 2015] in Table 5.12. The CelebA dataset is a large-scale face

dataset consisting of more than 200, 000 face images, split into training, validation,

and testing sets. The RGB images were center-cropped and resized to 64× 64. We

performed the task of gender classification on this dataset. The GAN architecture

is the same as that in Table 5.6, except for an additional ConvT(128, 5× 5, 1) layer

in the generator network.
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5.11 Time complexity

The computational complexity of reconstructing an image using Defense-GAN

is on the order of the number of GD iterations performed to estimate z∗, multiplied

by the time to compute gradients. The number of random restarts R has less

effect on the running time, since random restarts are independent and can run in

parallel if enough resources are available. Table 5.13 shows the average running

time, in seconds, to find the reconstructions of MNIST and F-MNIST images on

one NVIDIA GeForce GTX TITAN X GPU. For most applications, these running

times are not prohibitive. We can see a tradeoff between running time and defense

robustness as well as accuracy.

Table 5.13: Average time, in seconds, to compute reconstructions of MNIST/F-

MNIST images for various values of L and R.

L = 10 L = 25 L = 50 L = 100 L = 200

R = 1 0.043± 0.027 0.070± 0.003 0.137± 0.004 0.273± 0.006 L = 0.543± 0.017

R = 2 0.042± 0.026 0.067± 0.002 0.131± 0.003 0.261± 0.006 L = 0.510± 0.006

R = 5 0.043± 0.029 0.070± 0.002 0.136± 0.004 0.270± 0.004 L = 0.535± 0.008

R = 10 0.051± 0.032 0.086± 0.001 0.170± 0.002 0.338± 0.008 L = 0.675± 0.016

R = 20 0.060± 0.035 0.105± 0.003 0.209± 0.006 0.414± 0.012 L = 0.825± 0.022
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5.12 An unsuccessful attempt to attack Defense-GAN

Among seven defense methods that are proposed in 2018 International Con-

ference on Representation Learning (ICLR), this work is the only method that is

reported as not broken in the best paper award winner of 2018 International Con-

ference on Machine Learning (ICML) [Athalye et al., 2018]. In there, they first

approximate Defense-GAN with a differentiable function g(x) and use the gradients

of g(x) as an approximation to the gradients of Defense-GAN at test time. This

method is the same as the black-box attack methods mentioned in Section 5.2.1 and

they are not effective for attacking Defense-GAN. Their partial success is due to the

non-optimal setting of hyperparameters that they used at test time.

In general, the attacks that try to approximate Defense-GAN fail because of

the non-convex nature of the optimization that is solved at test time. Defense-GAN

does not reach the solutions that are found from the approximation methods since

the initialization, learning rate, and the number of steps are essential parameters of

the optimization which are usually discarded by such methods.
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Table 5.4: Classification accuracies of different classifier models using various defense
strategies on the MNIST (top) and F-MNIST (bottom) datasets, under FGSM,
RAND+FGSM, and CW white-box attacks. Defense-GAN has L = 200 and R = 10.

Attack
Classifier

Model
No

Attack
No

Defense
Defense-

GAN-Rec
MagNet

Adv. Tr.
ε = 0.3

A 0.997 0.217 0.988 0.191 0.651
FGSM B 0.962 0.022 0.956 0.082 0.060
ε = 0.3 C 0.996 0.331 0.989 0.163 0.786

D 0.992 0.038 0.980 0.094 0.732

A 0.997 0.179 0.988 0.171 0.774
RAND+FGSM B 0.962 0.017 0.944 0.091 0.138
ε = 0.3, α = 0.05 C 0.996 0.103 0.985 0.151 0.907

D 0.992 0.050 0.980 0.115 0.539

A 0.997 0.141 0.989 0.038 0.077
CW B 0.962 0.032 0.916 0.034 0.280

`2 norm C 0.996 0.126 0.989 0.025 0.031
D 0.992 0.032 0.983 0.021 0.010

Attack
Classifier

Model
No

Attack
No

Defense
Defense-

GAN-Rec
MagNet

Adv. Tr.
ε = 0.3

A 0.934 0.102 0.879 0.089 0.797
FGSM B 0.747 0.102 0.629 0.168 0.136
ε = 0.3 C 0.933 0.139 0.896 0.110 0.804

D 0.892 0.082 0.875 0.099 0.698

A 0.934 0.102 0.888 0.096 0.447
RAND+FGSM B 0.747 0.131 0.661 0.161 0.119
ε = 0.3, α = 0.05 C 0.933 0.105 0.893 0.112 0.699

D 0.892 0.091 0.862 0.104 0.626

A 0.934 0.076 0.896 0.060 0.157
CW B 0.747 0.172 0.656 0.131 0.118

`2 norm C 0.933 0.063 0.896 0.084 0.107
D 0.892 0.090 0.875 0.069 0.149
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Table 5.6: Neural network architectures used for GANs.

Generator Discriminator

FC(4096) Conv(64, 5× 5, 2)
ReLU LeakyReLU(0.2)

ConvT(256, 5× 5, 1) Conv(128, 5× 5, 2)
ReLU LeakyReLU(0.2)

ConvT(128, 5× 5, 1) Conv(256, 5× 5, 2)
ReLU LeakyReLU(0.2)

ConvT(1, 5× 5, 1) FC(1)
Sigmoid Sigmoid

Table 5.7: Neural network architecture used for the MagNet encoder.

Encoder

Conv(64, 5× 5, 2)
LeakyReLU(0.2)

Conv(128, 5× 5, 2)
LeakyReLU(0.2)

Conv(256, 5× 5, 2)
LeakyReLU(0.2)
FC(128) + tanh

Table 5.9: Classification accuracy of Model F using Defense-GAN with various
number of iterations L (R = 10), on the F-MNIST dataset, under FGSM black-box
attack with ε = 0.3.

L
Defense-GAN-Rec

No attack
Defense-GAN-Orig

No attack
Defense-GAN-Rec

Adversarial
Defense-GAN-Orig

Adversarial

25 0.8037± 0.0050 0.7595± 0.0009 0.4040± 0.0149 0.3910± 0.0119
50 0.8676± 0.0018 0.7898± 0.0016 0.4412± 0.0023 0.3980± 0.0114
100 0.9101± 0.0032 0.8190± 0.0043 0.4808± 0.0088 0.4221± 0.0255
200 0.9145± 0.0014 0.8373± 0.0054 0.5119± 0.0038 0.4594± 0.0056
400 0.9490± 0.0013 0.8557± 0.0049 0.5126± 0.0096 0.4754± 0.0102
800 0.9588± 0.0065 0.8832± 0.0042 0.5520± 0.0098 0.4644± 0.0092
1600 0.9640± 0.0010 0.9125± 0.0040 0.5335± 0.0226 0.4952± 0.0155
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Table 5.10: Classification accuracy of Model F using Defense-GAN with various
number of random restarts R (L = 100), on the MNIST dataset, under FGSM
black-box attack with ε = 0.3.

R
Defense-GAN-Rec

No attack
Defense-GAN-Orig

No attack
Defense-GAN-Rec

Adversarial
Defense-GAN-Orig

Adversarial

1 0.7035± 0.0035 0.6436± 0.0017 0.5329± 0.0094 0.5011± 0.0085
2 0.8619± 0.0010 0.8080± 0.0029 0.6722± 0.0041 0.6605± 0.0050
5 0.9523± 0.0006 0.9213± 0.0024 0.8199± 0.0097 0.8228± 0.0038
10 0.9810± 0.0015 0.9560± 0.0051 0.8956± 0.0032 0.8911± 0.0024
20 0.9966± 0.0009 0.9753± 0.0010 0.9456± 0.0031 0.9310± 0.0023

Table 5.12: Classification accuracies of different classifier models using vari-
ous defense strategies on the CelebA gender classification task, under FGSM,
RAND+FGSM, and CW white-box attacks. Defense-GAN has L = 200 and R = 2.

Attack
Classifier

Model
No

Attack
No

Defense
Defense-

GAN-Rec
MagNet

Adv. Tr.
ε = 0.3

A 0.9652 0.0870 0.9255 0.0985 0.1225
FGSM B 0.9468 0.0995 0.9140 0.0920 0.2345
ε = 0.3 C 0.9459 0.0460 0.9255 0.1085 0.1130

D 0.9476 0.0605 0.9205 0.0975 0.7755

A 0.9652 0.0560 0.9280 0.1105 0.0700
RAND+FGSM B 0.9468 0.1785 0.9030 0.1015 0.4515
ε = 0.3, α = 0.05 C 0.9459 0.0470 0.9200 0.1045 0.1055

D 0.9476 0.0665 0.9165 0.1105 0.696

A 0.9652 0.0460 0.8210 0.0985 0.5690
CW B 0.9468 0.0575 0.7465 0.0955 0.0725

`2 norm C 0.9459 0.0435 0.7985 0.0985 0.2635
D 0.9476 0.0660 0.7740 0.1040 0.5010
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Chapter 6: Summary and Future Directions

6.1 Summaries

In Chapter 2, we presented a continuous face-based authentication method

using facial attributes for mobile devices. We trained binary attribute classifiers

and showed their effectiveness as feature vectors for active authentication with ex-

tensive experiments. We showed that attribute-based scores alone could improve

the verification results. Furthermore, we showed that in situations where the low-

level features such as LBP are reliable, verification results could be further improved

by fusing the resulting scores with the attribute-based scores. We also evaluated

the different realizations of our method on an actual cell phone and showed that

the authentication algorithm could be implemented with low memory usage, power

consumption at more than four frames per second. We also proposed a feasible

multi-task DCNN architecture to extract accurate describable facial attributes on

mobile devices. Each network predicted multi facial attributes from a given face

component by mapping it to a shared embedding space. We showed that our at-

tribute prediction performance is comparable to state-of-the-art. We explored the

embedding space and illustrated that we could extract new attributes by looking

at subspace clusters of this space. We also have shown that our networks perform
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attribute-based authentication better than the previously proposed method. Finally,

we analyze the feasibility of our method by performing battery usage and prediction

speed experiments on an actual mobile device.

In Chapter 3, we presented a new attribute manipulation model that offers

unprecedented flexibility. Unlike previous models that represent attributes as dis-

crete classes, our multi-dimensional, continuous attribute representation allows for

a much richer set of attribute manipulations. These include Diverse Swaps, in which

an attribute can be changed but realized via a diverse set of choices, and Borrows,

in which an attribute realization can be taken from a reference image and applied

to a query image. Qualitative evaluation of our approach illustrates its efficacy for

use in a variety of applications.

In Chapter 4, we introduced ExplainGAN to interpret black-box classifiers by

visualizing boundary-crossing transformations. These transformations are designed

to be interpretable by humans and provide a high-level, conceptual intuition under-

lying a classifier’s decisions. This style of visualization can overcome limitations of

attribution and example-by-nearest-neighbor methods by making spatially localized

changes along with visual examples. While not explicitly trained to act as a saliancy

map, ExplainGAN’s maps are very competitive at demonstrating saliency. We also

introduced a new metric, Substitutability, that evaluates how much label-capturing

information is retained when performing boundary-crossing image transformations.

In Chapter 5, we proposed Defense-GAN, a novel defense strategy utilizing

GANs to enhance the robustness of classification models against black-box and

white-box adversarial attacks. Our method did not assume a particular attack
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model and was shown to be effective against most commonly considered attack

strategies. We empirically show that Defense-GAN consistently provides adequate

defense on two benchmark computer vision datasets, whereas other methods had

many shortcomings on at least one type of attack.

It is worth mentioning that, although Defense-GAN was shown to be a possi-

ble defense mechanism against adversarial attacks, one might come across practical

difficulties while implementing and deploying this method. The success of Defense-

GAN relies on the expressiveness and generative power of the GAN. However, train-

ing GANs is still a challenging task and an active area of research, and if the GAN

is not adequately trained and tuned, the performance of Defense-GAN will suffer on

both original and adversarial examples. Moreover, the choice of hyper-parameters

L and R is also critical to the effectiveness of the defense, and it may be challenging

to tune them without knowing the attack model.

6.2 Future Directions

As seen in Chapter 2, attributes are potent features for designing real-world

ML systems efficiently and interactively. We have shown that raw attribute scores

are useful for active authentication; however, a better way of coming up with the

score is possible. Although we have presented a sampling scheme to see rare labels

more frequently, it is worthwhile to see how active sampling methods can be used to

sample data more efficiently. For example, if the network is performing “well” for

an attribute, it might be better to sample data points in a way that is “beneficial”
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for training the other attributes.

Besides training the attribute classifier, given that a single CNN can be trained

for multiple tasks, an extension of our work may include loss functions for face

verification. More specifically, we can have a network that is trained with metric

learning loss or identity classification loss to get both attribute predictions and

identity-based similarity scores. This approach, however, requires a dataset labeled

with attributes and identities. In the case of not having such a dataset but having

multiple datasets with identity labels and multiple datasets with attribute labels, it

will be interesting to see how one can train different parts of the network with the

label at hand and not train for losses that we do not have labels for.

Another aspect of using attributes for active authentication is the phenomena

of domain shift. The reason is that the attributes are learned from datasets that are

usually gathered from the web, but the models are tested on mobile phone images.

These two domains are different in many ways. First of all, the images that are

acquired by the front camera of a cell phone are usually of low quality compared to

the ones that are available online. The phone cameras have lens distortion which

matters because we tend to hold the phone close to our face. The illumination is

different since usually, the cell phone images are acquired with indoor lighting or

low light, but the web images are usually outdoors, or if captured indoor, they are

taken in well lit conditions. All of these domain differences can be either dealt with

using data-driven domain adaptation methods.

In Chapter 3 we looked at the problem of conditional image generation. The

model that was used in this chapter had an encoder-decoder structure. As a future
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research direction, it will be interesting to see how we can extend the idea to just

a single generator. Conditional GANs have been around and are working with

binary attribute labels. One possible way of exploring this is to use an alternative

optimization method with one step reconstructing a given image and constraining

the latent codes, and the other step for minimax optimization.

In Chapter 4 we filled the semantic gap with attribute detectors. The pro-

posed method works for binary classifiers; thus the next step is to extend the work

for multiple classes. The primary issue in explaining a multi-class classifier is the

quadratic number of pairwise relationships between classes. More specifically in an

n class problem, having an input of one class, we want to get n− 1 transformations

and explanations for the same input. One way would be to embed the solution into

the network architecture. For example, one can put n transformation heads and

mask heads. Then for a given input of class A, all other heads will explain the

transfer from one class to the other. Several issues arise in this case. First of all, the

complexity of the network goes up linearly as n increases. This results in inefficient

training and inference speed. The second issue is that each head will be trained

with a subset of the data for that specific class, which means that we need a large

and balanced dataset regarding the labels.

Besides dataset size and label imbalance, there is a conceptual issue with con-

sidering all of the pairwise relationships. It might not be obvious apriori that all

the pairwise relationships are meaningful. Therefore approaches that consider all

of them together might fail at training time for this reason. One possible way to

overcome this issue is to selectively train different parts of the network for the mean-
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ingful relationships. However, this approach will still have the same computation

complexity. Another way would be to add target labels as inputs to the network

and keep the same network architecture. This way the network complexity will stay

almost the same, and we can efficiently train the network for meaningful class pairs.

In Chapter 5 we looked at how to protect attribute detectors from induced se-

mantic gap caused by adversarial perturbations using GANs. The primary challenge

with the current approach is the inference speed. This issue can be addressed by

approximating the latent codes with a feedforward CNN and continuing the gradient

descent steps from there.

Another future research direction for Chapter 5 is attacking a classifier that

is protected by the proposed method. As mentioned in Section 5.6, gradient-based

attacks, which are the dominant type of attacks, cannot work for the proposed

framework. One possible way is to attack each step of the unrolled gradient descent

steps. Such approaches have been successful for attacking RNNs [Papernot et al.,

2016d] and can possibly be extended to Defense-GAN.
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