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Performance evaluation of modern computer networks is challenging because

of their large sizes, high speeds of communication links, and complex state-

dependent control mechanisms. In particular, TCP congestion control reacts

in a nonlinear fashion to the state of the network at the time scale of round-

trip times, making analysis intractable. Thus packet-level simulation is the only

widely used method of performance evaluation. Although it can be accurate, it

is computationally expensive and thus can be applied only to small networks and

low link speeds.

Timestep Stochastic Simulation (TSS) is a novel method for generating sam-

ple paths of computer networks, in increments of time steps rather than packet

transmissions. TSS has a low computation cost independent of packet rates and

provides adequate accuracy for evaluating general state-dependent control mech-

anisms. TSS generates the evolution of the system state S(t) on a sample path in



time steps of size δ. At each step, S(t + δ) is randomly chosen according to S(t)

and the probability distribution Pr[S(t + δ)|S(t)], obtained using the diffusion

approximation. Because packet transmission and reception events are replaced

by time steps, TSS generates sample paths at a fraction of the cost of packet-

level simulation. Because TSS generates sample paths, it can accurately model

state-dependent control mechanisms, including TCP congestion control, adaptive

dynamic routing, and so on.

We have a TSS implementation for general computer networks with state-

dependent control. We have applied this to numerous networks with TCP and

state-dependent UDP flows, and confirmed its accuracy against packet-level sim-

ulation.
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Chapter 1

Introduction

Modern computer networks employ packet switching with various kinds of dy-

namic control mechanisms, including end-to-end congestion control, and adaptive

routing. This approach makes the network very flexible and expandable; large

networks can consist of hundreds of thousands of nodes and links. It also makes

the network capable of serving as a transportation medium for broad variety of

services ranging from simple bulk data transfers to voice and video transmissions.

However, the dynamic control mechanisms make the network very difficult ana-

lyze and to manage. Yet performance evaluation is crucial both for research and

development of new computer networks as well as for management and growth

of existing computer networks. In research, for example, whenever a new control

mechanism (e.g., a new web caching scheme) is proposed, its performance has to

be compared against existing control mechanisms before it can be considered a vi-

able alternative. In network management, for example, internet service providers

typically have “Service Level Agreements” with their customers, defining the

expected level of service as well as penalties for failing.

Although performance evaluation of computer networks is crucial, existing

evaluation techniques are not adequate for handling the large heterogeneous ar-
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chitectures and state-dependent control schemes that are intrinsic to modern com-

puter networks. Currently, the only viable method of performance evaluation of

computer networks is packet-level simulation, which simulates the computer

network at the level of transmissions and receptions of individual packets.

Packet-level simulation can be very accurate, but it is computationally very

expensive, precisely because every packet transmission and reception is explicitly

simulated. A recent study [1] of packet-level simulators concludes that about

100,000 packet transmissions can be simulated per second on a PC workstation.

Simulating a network of modest size and speed, for example, one with tens of 100

Mbps (megabit per second) links, can take many hours. In contrast, a single 20

Gbps (gigabit per second) link requires a packet-level simulator to handle more

than 2 million packet transmissions for each second of simulated time. A single

state-of-the-art Cisco 12000 series router [2] supports 16 links each of 20 Gbps

bandwidth. A modern network can consist of hundreds or thousands of such links.

Clearly, packet-level simulation of such networks is practically unattainable. One

can attempt to parallelize the simulation over many computers, but this is very

expensive and technically exceedingly difficult [3].

Purely analytical techniques (e.g. [4, 5]) do not capture the effects of state-

dependent control or realistic traffic mix with reasonable accuracy. They make so

many simplifying assumptions (e.g., stationary memoryless arrivals to each link)

that the estimates they provide are too inaccurate to be of use.

This current state of affairs has motivated techniques, such as fluid approxima-

tion (e.g. [6, 7, 8]), that can handle time-varying arrival and service distributions

and yield a single time evolution of the system, which is intended to be representa-

tive of (most or all) evolutions of the system (usually in some ensemble-averaged
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sense). However, these techniques do not yield sample paths or the time evolution

of metrics along sample paths, which is exactly what control schemes base their

decisions on. Consequently, these techniques are restricted to systems in which

most sample paths are “close” to each other so that the ensemble of sample paths

can be inferred from a single “representative” path. This is often the case when

control is time-dependent but not state-dependent, e.g., control based on time

of day. But it is usually not the case when the time dependency is caused by

state-dependent control, especially the nonlinear kind of state-dependent control

present in most computer networks. Here, small changes in observed state result

in small changes in behavior over small time scales, but lead to large changes

and diverse evolutions over large time scales. For example, a small difference in

link cost causes a change in next hop, which then gradually affects traffic flows

throughout the network; or a small difference in roundtrip time causes synchro-

nization between TCP flows sharing a bottleneck.

1.1 Diversity of sample paths

To explain this diversity of sample paths in more quantitative terms, consider a

system such as a network of TCP flows. Let S(t) denote the state of the system

at time t (e.g., router queue sizes, source window sizes, and so on). Let the

incremental evolution of the system be governed by an operator F (defined by the

control algorithms, queuing disciplines, network topology, etc.). So the evolution

of S(t) is governed by S(t + ∆) = F (S(t)) for some small ∆ (for example, TCP

roundtrip times).

In general, S(t) includes some random elements and F is a stochastic operator.

Thus the system has a set of possible evolutions (or sample paths). Each evolution
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x satisfies Sx(t + ∆) = Fx(Sx(t)), where Fx is F instantiated for the particular

sequence of random choices corresponding to x. Consider the set of possible

evolutions starting from a given state Sx(t) at time t. At time t+δ for δ < ∆, the

possible states S(t+δ) are clustered close to each other, and so the evolution over

the interval [t, t + δ] may be reasonably well characterized by a single evolution

S(t + δ) = F̄ (S(t)), where F̄ is F with stochastic operators replaced by their

expectations. However, over time scales much larger than ∆, the sample paths

will exhibit great diversity and would not be characterized by the single evolution

generated by S(t + δ) = F̄ (S(t)).

Averaging over the ensemble {Sx(t)} of evolutions yields the time evolution

of the instantaneous expected state, E[S(t)]. This characterizes the ensemble of

evolutions quite well and is something we are very much interested in. However,

it is very unlikely that E[S(t)] satisfies the incremental evolution E[S(t + ∆)] =

F (E[S(t)]) or E[S(t+∆)] = F̄ (E[S(t)]). In the same way, for a metric M(t) (say

the expectation of a component of S(t)), it is very unlikely that the evolution

of M(t) satisfies M(t + ∆) = F (M(t)) or E[M(t + ∆)] = F̄ (M(t)). But this is

exactly what is needed if the single “representative” evolution computed in the

above mentioned techniques is to be truly representative.

This discussion is illustrated in Figure 1.1, where a small difference in the

system state at time T can result in two very different future evolutions. The

congestion control adapts by reducing sending rate in case when S(T ) > s0,

forcing majority of the sample paths with this property to have low values of

S(t) for t > T . On the contrary, most of the sample paths for which S(T ) ≤ s0

have high values of S(t) for t > T . Fluid approximation will follow one of the

two paths (depending on the value of S(T ) as computed by fluid approximation).
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TimeT

ensemble mean

sample paths

fluid evolution

0

S(t)

0s

Figure 1.1: Two sample paths and time evolutions of ensemble queue size,
and ensemble queue size as computed by fluid approximation

The correct ensemble however is between the two extreme behaviors.

Diversity like that is common even in small TCP/IP networks, such as the

one depicted on Figure 1.2. The network consists of two communication links

both having service rate of 16Mbs and buffers of 1.6MB. Due to the service time

variability queue size process exhibits wide diversity on the timescale of hundreds

of seconds.

1.2 Timestep stochastic simulation

We propose a novel method, called Timestep Stochastic Simulation (TSS),

that combines discrete-event simulation and analytical approximations to yield

sample paths of high accuracy and low computational cost (independent of packet

rates and queue sizes). Our method computes the evolution of S(t) on a sample

path at time instants t0, t1, t2, · · ·, where ti+1 − ti = δ for some δ < ∆ and all i,

assuming a starting state S(t0).
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A two−hop TCP network

Each link is 16 Mbps and has 1.5MB buffer

Link 1

TCP TCP
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Figure 1.2: A TCP network (upper left) and three sample paths of queue
size of link 2.

The idea is to do the following for i = 0, 1, · · ·:

(1) Analytically obtain Pr[S(ti+1)|S(ti)], the probability distribution of S(ti+1)

given S(ti).

(2) Then randomly choose a value for S(ti+1) based on Pr[S(ti+1)|S(ti)].

Repeating these two steps for successive intervals generates a sample path. Fig-

ure 1.3 depicts this procedure.

The difficulty, of course, is in obtaining an analytical expression for Pr[S(ti+1)|S(ti)].

The arrival and service distributions in the interval [ti, ti+1] are available from

S(ti) and F because we choose δ to be smaller than the time-scale ∆ of the

control mechanisms. Even so, exact results for Pr[S(ti+1)|S(ti)] are not known
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Figure 1.3: Computation procedure. At each step, distribution of the next
state is computed and new state randomly chosen based on this distribution.

for most queuing systems of interest. However, the diffusion approximation, first

proposed by Kolmogorov [9] and later extended by Feller [10], proves to be ex-

cellent at obtaining a very accurate approximation of this distribution. So our

method generates sample paths of a stochastic process, say R(t), such that for

t0, t1, · · · and ti+1 − ti = δ < ∆,

Pr[R(ti+1)|R(ti)] ≈ Pr[S(ti+1)|S(ti)]

We refer to R(t) as a δ-timestep version of S(t).

The diffusion approximation has two critical advantages. First, packet arrival

and service distributions can be time-varying stochastic processes characterized

by the first two instantaneous moments, i.e., mean rate at time t and variance at

time t. This allows realistic modeling of traffic and service times. In particular,

the variation of a source at time t represents how much jitter the source exhibits

with respect to its mean rate at time t. Second, because the diffusion approxima-

tion is based on the law of large numbers, its accuracy increases with increasing

packet rates (and its computational cost is not affected).
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TSS provides the capability for performance evaluation of “large-scale” prob-

lems, i.e., which make sense only in the context of large networks and/or high-

speed links. One example of such a problem is the long-standing issue of how

aggressive TCP (or any end-to-end) congestion control can become and yet not

have its widespread deployment bring down a large network. Another example is

the efficacy of access and routing control mechanisms in providing QoS in large

ISP networks.

1.3 Contributions

TSS achieves stochastic simulation of computer networks at the level of timesteps,

rather than at the level of packet transmissions and receptions. That is, given

the state of the network at time t, TSS computes the probability distribution

of the network state at time t + δ and chooses the state randomly according

to the distribution. So the computational cost of each step is independent of

the link bandwidth, whereas in packet-level simulation, increasing link speed

increases both the computational cost (increased number of packet transmissions

per second of simulated time) and the memory cost (larger packet queues and

event lists).

Because TSS generates sample paths, it is suitable for handling networks

with general state-dependent control, unlike deterministic flow-level simulation

approaches, such as fluid approximation.

It is typical for computer networks to have communication links with utiliza-

tion close to 1 for extended periods of time. For example, consider a TCP flow

over a sequence of equal-speed links, and suppose that TCP source is capable of

saturating the first hop. TCP, after a brief slow-start period enters congestion

8



avoidance mode in which the first link is nearly constantly busy. Consequently,

the second-hop link on the path has utilization close to 1 for prolonged periods

of time. The queuing process of such a link exhibits very diverse behavior on

large timescales, thus strongly affecting delay on the path and the dynamics of

the connection. Situation like this is very well handled by TSS, and it is very

difficult to model using other approaches, such as fluid approximation.

Another advantage of our approach is the ability to generate not only the mean

evolution of the queue size, but also higher order moments. This is impossible

to obtain by any other means than the packet-level simulation, which, as we

discussed before, is computationally expensive.

Traffic source model in TSS is a time-stepped version of the packet-level

model. It is quite easy and intuitive to develop since it operates in terms of

sample executions and not ensembles as is the case in, for example, fluid approx-

imations. We illustrate the method with three source models: time-dependent

UDP, state-dependent UDP, and TCP.

Finally, we evaluate the accuracy of TSS by extensive comparison against

packet-level simulations.

1.4 Organization of the Dissertation

The remainder of the Dissertation is organized as follows. Chapter 2 reviews

related work, including the results in stochastic processes on which our approach

is based. Chapter 3 presents the details of timestep stochastic simulation for

one communication link. Chapter 4 describes the extension of the method to

networks, in particular, obtaining the first two moments of queue departure pro-

cesses and of processes resulting from merging and splitting processes. Chapter 5

9



describes how to design traffic flow models in the TSS. It also presents three ex-

amples of traffic sources: time-dependent UDP flow, state-dependent UDP flow,

and TCP. Chapter 6 presents results of numerical evaluation of TSS. The results

reported span multiple network architectures. Chapter 7 summarizes contribu-

tions and outlines possible directions of future research.
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Chapter 2

Related Work

Modeling and performance evaluation of computer networks is a broad research

area that builds upon techniques and methods from diverse fields, including

discrete-event simulation of computer systems, steady-state analysis of manufac-

turing processes, control systems theory, queuing theory, and road traffic analysis

and management.

We can divide the related work into several major categories. They include

packet-level simulation, analytical modeling, approximation techniques, numeri-

cal methods used in modeling, and congestion control schemes. The remainder

of this chapter reviews these categories, outlines their advantages and problems,

and contrasts with TSS method.

2.1 Packet-level simulation

One of the most widely used techniques for performance modeling of computer

networks is packet-level simulation [11, 3], in which an event is simulated for every

packet transmission and reception. This technique, if used carefully, can provide

very high accuracy. However, it becomes prohibitively expensive for high-speed

communication links and large network architectures. In particular, increasing

11



the bandwidth of communication links causes an explosion in the number of events

that need to be handled by the simulator. For example, a 10 Mbps link can handle

approximately 1200 1KB-packets per second, which results in 2400 arrival and

departure events. However, a modern fast communication link (such as at the

ports of a Cisco 12000 series router [2]) can have a speed of 20 Gbps, resulting

in a few million events per second. A study of currently available simulation

tools [1] concludes that the state-of-the-art simulators on a single PC can handle

less than 100,000 of packet transmissions per second corresponding to achieving

real-time simulation for at most a single 1 Gbps link.

2.2 Analytical methods

There are many analytical methods to solve for steady-state metrics of queuing

networks, for example, [4, 5, 12, 13, 14]. Most notably, it is possible to solve

Jacksonian-type networks, where external arrivals have stationary Poison dis-

tributions, service times are Markovian, and only random Bernoulli routing is

allowed. However, more general networks do not have analytical solutions. For

example, there are no known solutions even for the mean queue sizes of networks

of queues where either service or arrival processes are not Markovian. Time-

dependent traffic sources are even more difficult to treat analytically. The newest

solutions [15] for the simple case of one queue with time-dependent exponential

arrival and service do not generalize to network of queues. Modern computer

networks present even bigger challenges due to the predominance of dynamic

state-dependent control. There are no analytical methods that can address prob-

lem of obtaining even the simplest statistics of such systems.

12



2.3 Computational analysis methods

The prohibitive cost of packet-level simulation and the infeasibility of analytical

models has sparked significant research on developing approximation solutions

that would be applicable to a broader range of systems than that covered by

classical queuing theory. One such solution is Queuing Network Analyzer [16,

17]. It is applicable to steady-state analysis of network of queues with general

but stationary arrival and service processes. It approximates all traffic flows

using first two moments of a renewal process that matches best the original

process. The network is decomposed into a series of queues, and the mean size

of each of them is computed separately. Mean queue sizes are obtained using

Kraemer and Langenbach-Beltz approximation [18]. Several improvements to

the method were developed that address issues related to correlation of internal

network flows [19, 20], arising from merging and splitting of traffic flows as well as

deterministic routing [21]. Another decomposition-based approximation method

was developed by Kobayashi [22, 23]. It solves for mean steady-state queue sizes

in network of queues also assuming that all traffic flows and service are renewal

i.i.d. processes characterized by first two moments of their distributions. Diffusion

approximation is used to obtain mean queue size based on the first two moments

of arrival and service processes. Similar approaches are also used in [24, 25] and

in [26].

2.4 Mean value analysis of time-dependent systems

There is also work on computation of transient metrics in networks with time-

dependent control schemes, for example [27, 28], which extends the approach

13



of [24, 25]. However, these methods are not effective for solving networks with

complex state-dependent control schemes (such as TCP’s congestion control and

dynamic adaptive routing). Traffic sources in this model may adjust their sending

rate and variability, however not based on the network conditions (such as round-

trip time or loss rate) but only on time (for example source can double its rate

at 10th second of evolution). This constraint makes it impossible to extend the

method to state-dependent control schemes such as TCP.

There are also numerical-analytical approaches that yield the time evolution

of the instantaneous ensemble-averaged metric of a network. One example is the

Z-iteration [29, 30], which computes instantaneous ensemble-average metrics of

interest (e.g., queue size, loss rate, source rate) by approximating the relationship

between instantaneous metrics by their steady-state counterparts. It achieves

high accuracy and low computational cost for networks of M(t)/M(t)/*/* queues.

But it only computes a single evolution and so, as described in the Introduction,

cannot capture the effect of state-dependent control schemes that induce diversity

in sample paths.

Stochastic fluid approximation [6, 7, 31] is another approach that yields a

single time evolution of an instantaneous ensemble-averaged metric of a network.

This approach treats a packet flow as a fluid and represents the system by a set

of stochastic differential equations. However, the solution procedure considers

the differential equations only in the expectation, i.e., as a set of deterministic

differential equations. Consequently, the stochastic fluid approach solves only for

a single evolution, corresponding to the ensemble-averaged mean of the metrics.

Thus it too has the limitations described in the introduction regarding capturing

the effects of state-dependent control that induces diversity in sample paths.
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There are hybrid approaches that combine stochastic fluid approximations

with packet-level simulation, as in [8, 32]. Parts of the network are simulated

using packet-level simulation, while rest of the network is modeled using fluid-

based differential equations. These approaches inherit the limitations of stochas-

tic fluid approximation that makes it difficult to properly capture the effect of

state-dependent control causing diverse sample paths.

2.5 Diffusion approximation

We now describe the results in continuous stochastic processes that form the

foundation of our TSS approach. There is a large body of literature devoted to

diffusion approximations for obtaining queue size distributions. The approaches

date back to Kolmogorov [9], who first proposed diffusion equations. Feller [10]

extended his ideas and provided the framework for solving various problems using

diffusion. In a series of articles devoted to the analysis of road traffic [33, 34, 35],

Newell proposed a set of approximation techniques applicable in low, mild, and

heavy traffic conditions. Similar work also came from Gaver [36] and Kingman

[37].

Gelenbe [24, 25] and Kobayashi [22, 23] proposed the use of diffusion ap-

proximations with holding barriers to model queue size evolution for equilibrium

and non-equilibrium cases. (There are many other types of barriers, including

absorbing and reflecting.)

Whitt [16], Duda [27], Kuehn [26] and others have studied the problem of

obtaining the statistics of the departure process of a queue, building upon the

work by Marshall [38] relating the Laplace transforms of the distributions of ser-

vice time, idle period, and inter-departure time. Whitt [39], Fraker [40], and
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Kuehn [26] have studied the problem of determining the statistics of traffic flows

obtained by splitting and merging other traffic flows in the context of communi-

cation networks. Their approach for merging multiple flows was further refined

by Albin [19]. She proposed a convex combination of stationary-interval and

asymptotic approximations that minimizes the approximation error.

Using the diffusion approximation with holding barriers to obtain transient

queue size distribution requires one to work with Laplace transforms. There

are no closed-form solutions in the time domain, so numerical inversion of the

transform is required. We use Stehfest algorithm [41] for inversion. It numerically

inverts the transform computing its values only at real points. This approach is

fast, but may suffer from low accuracy.

2.6 Congestion control

TSS is designed to model computer networks with state-dependent congestion

control. There is a broad variety of protocols for managing data transmission

in IP networks. UDP (User Datagram Protocol) [42] supports data transmission

without congestion control. A UDP source sends data into the network without

any intrinsic constraints; it is restricted only by the application using UDP. More

interesting to model is TCP (Transmission Control Protocol) [43]. TCP uses a

window-based scheme to determine a data rate that results in efficient transport

while simultaneously protecting the network from permanent congestion. Since

its introduction in 1981, TCP has been significantly improved and extended.

Most notably, the introduction of slow-start, congestion avoidance, fast retrans-

mit, and fast recovery algorithms [44] has improved the protocol performance.

There are additional improvements (e.g., [45, 46]).
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Chapter 3

Timestep Stochastic Simulation for One Queue

This chapter develops the technique of timestep stochastic simulation for a sin-

gle communication link. We model the communication link by a single-server

queue in the usual way, with service rate equal to the link bandwidth (in pack-

ets/second), squared coefficient of variation capturing variability of service time,

and maximum queue size equal to the link buffer size (in packets). The state of

the link at time t is defined by the number of packets in the queue at time t,

denoted by N(t).

Recall that TSS computes a sample path in timesteps of size δ. We make the

following assumptions:

• Statistics of both inter-arrival and service time processes are described using

first two moments of their distributions and remain constant within each

timestep

• Mean arrival rate is large enough so that within each timestep of size δ, the

number of arriving customers is sufficiently large for the normal approxi-

mation to hold (i.e., not less than 30)

• Congestion control mechanisms, which adjust the external arrival rates and
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Figure 3.1: Computation procedure. At each step, distribution of the queue
size at next step is computed and new queue size randomly chosen based on
this distribution.

variability, make their adjustments in intervals ∆, where δ < ∆, and thus

the external arrival rates and variability is constant within each timestep

3.1 Overview

We compute a time-stepped evolution of the stochastic process N(t) given a

starting state N(t0) as illustrated in Figure 3.1 (which is the same as Figure 1.3

with S replaced by N). Divide the time axis into intervals defined by time

instants t0, t1, · · · where ti+1 − ti = δ and δ is smaller than the control time scale

∆. Then do the following iteratively for i = 0, 1, · · ·: compute Pr[N(ti+1)|N(ti)]

and choose a random value for N(ti+1) with this distribution.

TSS computational procedure for a single communication link is presented

on Figure 3.2. First, internal state of the arrival flow is initialized. This state

may be as simple as a fixed values of arrival rate λ and squared coefficient of

variation cA that remain constant throughout the entire simulation in case of

constant-rate UDP source, or as complex as the congestion control state in case
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initialize internal state of the traffic source;
initialize queue size N(0);
for t = 0 to StopT ime with step δ do

compute moments of the arrival process λ(t) and cA(t);
obtain probability distribution Pr[N(t + δ)|N(t)];
choose new queue size N(t + δ) according to distribution Pr;
dump metrics for time t;

end for;

Figure 3.2: TSS computational procedure for a single communication link
and one traffic flow.

of a TCP source. Next, the queue size N(0) is initialized. The remainder of the

TSS simulation proceeds in steps of size δ. In each step, the first two moments of

the arrival process are determined based on the internal state of the traffic source

as well as, in the case of TCP, on the queue size (including its history). Then

new queue size N(t + δ) is chosen based on the distribution Pr[N(t + δ)|N(t)].

It is obtained by inversion of Laplace transforms shown on Equations 3.14, 3.15,

and 3.18 using numerical procedure described in Section 3.4. Finally, the metrics

of interest are written to the file.

Obtaining the transient distribution Pr[N(ti+1)|N(ti)] for a general arrival

and service processes is non-trivial. Exact solutions exist only for special cases,

including, most notably, recent work for M(t)/M(t)/1 queue by Knessl and Yang

[15]. However, exact results are not known for the majority of queues of interest,

for example, single-server queues with high-variance arrival distributions and low-

variance service distributions. Thus we have to resort to approximate techniques

to obtain the distribution of interest.

Our choice is to use the diffusion approximation introduced by Kolmogorov [9]

and further refined by Feller [10]. In this approximation, the queue size stochastic

process N(t) is approximated by a continuous Wiener stochastic process. The
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arrival and service processes can each have a time-varying distribution character-

ized by the first two instantaneous moments. The Wiener process N(t) is subject

to a lower holding barrier at N(t) = 0 (corresponding to an empty queue) and an

upper holding barrier at N(t) = K (corresponding to a full queue). Whenever

N(t) reaches the lower (or upper) barrier, it stays there for a random duration

with a holding time distribution and then returns to the point N(t) = 1 (or

N(t) = K−1). [The theory allows for a random return point in the open interval

(0, K) with arbitrary distribution.]

The holding time distributions at the barriers depend on the arrival and ser-

vice distributions. If arrivals are exponential, the holding time at the lower barrier

is exponentially distributed with the same rate as that of arrivals. Similarly, if

service is exponential, the holding time at the upper barrier is exponentially dis-

tributed with the same rate as the service. For other arrival and service processes,

Gelenbe [25] proposed representing holding time distribution by the Coxian dis-

tributions [47]. Coxian distribution can fit an arbitrary number of moments of

any general distribution (if the parameters of the Coxian distribution are allowed

to take complex values [47]).

The following subsection introduces the diffusion equation with two holding

barriers.

3.2 Diffusion processes in one dimension

We start by informally introducing some concepts from the theory of diffusion

processes. Our treatment follows [48]. For more formal treatment see [10, 49].

Consider a particle moving on the real line initially positioned at the origin.

In each small time interval ∆t > 0, the particle changes its position by +∆x or
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−∆x for some ∆x > 0. Denote the magnitude of change by a random variable Z.

Let the probability of a move in the positive direction be p and in the negative

direction q = 1 − p. Thus:

Pr[Z = +∆x] = p

Pr[Z = −∆x] = q
(3.1)

Assume also that the steps are mutually independent. Moment generating func-

tion of one transition mZ(z) is given by:

mZ(z) = pe−z∆x + qez∆x (3.2)

Let X(t) denote the position of the particle at time t. Since the transitions

are mutually independent and identically distributed, the moment generating

function mX(t)(z) of the total displacement X(t) of the particle at time t may be

computed by multiplying mZ(z) with itself t
∆t

times.

mX(t)(z) = [mZ(z)]
t

∆t =
[

pe−z∆x + qez∆x
]

t
∆t (3.3)

The mean E[X(t)] and variance V [X(t)] of the displacement at time t may be

easily computed from this:

E[X(t)] = ∆x
∆t

(p − q)t

V [X(t)] = 4∆x2

∆t
pqt

(3.4)

Consider the limiting case of ∆x → 0 and ∆t → 0. To obtain a non-degenerate

21



result with the limiting process having mean β and variance α2, we need to set

the following constraints:

∆x = α
√

∆t

p = 1
2

(

1 + β
√

∆t
α

)

q = 1
2

(

1 − β
√

∆t
α

)

(3.5)

To derive the differential equation describing the flow of probability in this model,

denote by f(x, t|x0)∆x the probability that the particle at time t is in the interval

[x, x + ∆x] assuming that it was at x0 at time t = 0. From conservation of

probability mass, we have:

f(x, t|x0)∆x = pf(x − ∆x, t − ∆t|x0)∆x

+qf(x + ∆x, t − ∆t|x0)∆x
(3.6)

Replacing f(x−∆x, t−∆t|x0) and f(x+∆x, t−∆t|x0) by their Taylor expansions

around (x, t), replacing p, q, and ∆x with values from Equation 3.5 and finally

going to the limit ∆t → 0, we obtain the following diffusion differential equation

for the open real line (arguments of f are omitted for brevity):

∂f

∂t
=

α2

2

∂2f

∂x2
− β

∂f

∂x
(3.7)

Further refinement of the unbounded diffusion process is the introduction of bar-

riers, in our case constraining the particle to the interval [0, K]. There are sev-

eral types of barriers: reflecting, holding, and absorbing. For the purposes of

TSS we use holding barriers with Coxian holding distributions introduced by

Gelenbe [25]. Whenever the particle reaches one of the barriers (located at 0
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and K), it is held there for a period of time distributed according to the Coxian

distribution. Then it jumps to a random point within the open interval (0, K)

distributed according to fupper(x), x ∈ (0, K) if transiting from the upper barrier

and flower(x), x ∈ (0, K) if transiting from the lower barrier.
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Figure 3.3: Coxian distribution with n stages representing the distribution of
lower boundary holding time.
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Figure 3.4: Coxian distribution with m stages representing the distribution
of upper boundary holding time.

Assume that holding time at the lower barrier is distributed according to n-stage

Coxian distribution with i-th stage transition rate equal to λlower
i and i-th stage

escape probability of 1 − ai, as presented on Figure 3.3. Similarly, assume that

holding time at the upper barrier is distributed according to m-stage Coxian

distribution with i-th stage transition rate equal to λupper
i and i-th stage escape

probability of 1−bi, as presented on Figure 3.4. Denote the probability of finding

the particle at time t in stage i at the lower boundary by Pi(t) and in stage i

23



at the upper boundary by Qi(t). Probability mass conservation Equation 3.6

becomes:

f(x, t|x0)∆x = pf(x − ∆x, t − ∆t|x0)∆x + qf(x + ∆x, t − ∆t|x0)∆x

+
n
∑

i=1

Pi(t)f
lower(x)λlower

i (1 − ai)∆x∆t

+
m
∑

i=1

Qi(t)f
upper(x)λupper

i (1 − bi)∆x∆t

(3.8)

Equation 3.8, after the same limits as in the case of deriving Equation 3.7 from

Equation 3.6, leads to (again parameters of f are omitted for brevity):

∂f

∂t
=

α2

2

∂2f

∂x2
− β

∂f

∂x

+
n
∑

i=1

Pi(t)f
lower(x)λlower

i (1 − ai)

+
m
∑

i=1

Qi(t)f
upper(x)λupper

i (1 − bi)

(3.9)

with the following initial and boundary conditions, where δ∗(x) is the Dirac delta
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function:

f(0, t|x0) = 0 t ≥ 0

f(K, t|x0) = 0 t ≥ 0

f(x, 0|x0) = δ∗(x − x0) 0 < x < K

P1(0) =















0 x0 > 0

1 x0 = 0

Q1(0) =















0 x0 < K

1 x0 = K

(3.10)

Differential equations describing probability mass flow between the stages of the

lower (and also upper) boundary are obtained based on the probability mass

conservation equation. For the lower boundary we obtain:

dPi(t)

dt
=































−λlower
1 P1(t) +

[

α2

2
∂f
∂x

− βf
]

x=0
i = 0

−λlower
i Pi(t) + λlower

i−1 ai−1Pi−1(t) 1 < i ≤ n

(3.11)

Similarly, for the upper boundary we get:

dQi(t)

dt
=































−λupper
1 Q1(t) +

[

α2

2
∂f
∂x

− βf
]

x=K
i = 0

−λupper
i Qi(t) + λupper

i−1 bi−1Qi−1(t) 1 < i ≤ m

(3.12)
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3.3 Diffusion approximation for a single queue

We use the two-barrier diffusion equation introduced in Section 3.2 as an ap-

proximation of the queuing process N(t). Consider single communication link as

shown on Figure 3.5. Let us introduce the following notation:

• f(x, t|x0): conditional probability density of N(t) = x given N(0) = x0.

• λ and cA: mean rate and squared coefficient of variation of the arrival

process.

• µ and cS: mean rate and squared coefficient of variation of the service

process.

• K: queue capacity.

��
��

- -

K, µ, cS

λ, cA

Figure 3.5: Diffusion approximation of single server queue.

The time evolution of f(x, t|x0) is the solution to the Equation 3.9 with initial

and boundary conditions 3.10. The time evolution of the probability Pi(t) of being

at time t at the i-th stage of the lower boundary is the solution to Equation 3.11

also with initial and boundary conditions 3.10. Similarly, the time evolution of

the probability Qi(t) of being at time t at the i-th stage of the upper boundary

is the solution to Equation 3.12 also with initial and boundary conditions 3.10.

Parameters β and α2 are set to λ − µ and λcA + µcS, respectively. The return

functions f lower(x), x ∈ (0, K) and fupper(x), x ∈ (0, K) reflect the fact that the

26



particle after being held at the upper boundary returns to state K − 1 and after

being held at the lower boundary to state 1. Thus we substitute:

f lower(x) = δ∗(x − 1)

fupper(x) = δ∗(x − K + 1)
(3.13)

where δ∗(x) is the Dirac delta function.

The Laplace transform f ∗(x, s|x0) of f(x, t|x0) can be computed in terms of

the Laplace transform of the lower holding time distribution, denoted by h∗(s)

and upper holding time distribution H∗(s). The solution is as follows [28]:

f ∗(x, s|x0) = v∗(x, s|x0) + v∗(x, s|1)

∗ e−
β

α2 x0
[cosh(Ax0) − Z1 sinh(Ax0)] h

∗(s)

1 − h∗(s)e−
β

α2 [cosh(A) − Z1 sinh(a)]

+ v∗(x, s|K − 1)e−
β

α2 (K−x0)

∗ {cosh [A(K − x0)] − Z2 sinh [A(K − x0)]}H∗(s)

1 − H∗(s)e
β

α2 [cosh(A) − Z2 sinh(A)]

(3.14)

where

v∗(x, s|x0) =
e

β

α2 (x−x0)

α2A

[

e−A|x−x0| − e−A|x+x0| − 2e−2AK sinh(Ax0)

sinh(AK)
sinh(Ax)

]

Z1 =
cosh(AK) − H∗(s)e

β

α2 cosh [A(K − 1)]

sinh(AK) − H∗(s)e
β

α2 sinh [A(K − 1)]

Z2 =
cosh(AK) − h∗(s)e−

β

α2 cosh [A(K − 1)]

sinh(AK) − h∗(s)e−
β

α2 sinh [A(K − 1)]

A =

√
2α2s + β2

α2

(3.15)
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Equations 3.11 and 3.12 have solutions:

P ∗
i (s) = e−

β

α2 x0

[cosh(Ax0) − Z1 sinh(Ax0)]
ai

λlower
i

e∗i (s)

1 − h∗(s)e−
β

α2 [cosh(A) − Z1 sinh(A)]

Q∗
i (s) = e−

β

α2 (K−x0)
{cosh A[(K − x0)] − Z2 sinh[A(K − x0)]} bi

λ
upper
i

E∗
i (s)

1 − H∗(s)e
β

α2 [cosh(A) − Z1 sinh(A)]
(3.16)

where

e∗i (s) = Πi
j=1

λlower
j

λlower
j + s

, i = 1, . . . , n.

E∗
i (s) = Πi

j=1

λupper
j

λupper
j + s

, i = 1, . . . , m.

(3.17)

The Laplace transform P ∗(t) =
n
∑

i=1

P ∗
i (t) and Q∗(t) =

n
∑

i=1

Q∗
i (t) of the proba-

bilities of being at the boundaries are given by:

P ∗(s) =
1 − h∗(s)

s
e−

β

α2 x0
[cosh(Ax0) − Z1 sinh(Ax0)]

1 − h∗(s)e−
β

α2 [cosh(A) − Z1 sinh(A)]

Q∗(s) =
1 − H∗(s)

s
e−

β

α2 (K−x0){cosh[A(K − x0)] − Z2 sinh[A(K − x0)]}
1 − H∗(s)e

β

α2 [cosh(A) − Z1 sinh(A)]
(3.18)

Note that f ∗(x, s|x0), P ∗(t) and Q∗(t) depend only on the Laplace transforms

of lower and upper holding times and not explicitly on the parameters of the

Coxian distributions. Since Coxian distribution is almost general (i.e., can fit any
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number of moments of an arbitrary distribution), we can use Laplace transforms

of distributions of choice for h∗(s) and H∗(s).

3.4 Numerical inversion of the Laplace transform

There are several methods to numerically invert the transform. We use Stehfest’s

algorithm [41]. Assume that the Laplace transform is given as a function f ∗(s)

for a complex number s. We obtain the value of time-domain function f(t) at

instant t according to:

f(t) =
ln 2

t

L
∑

i=1

Vif
∗
(

ln 2

t
i

)

Vi = (−1)
L
2
+i

Min(i, L
2
)

∑

k= i+1

2

k
L
2
+1(2k)!

(L
2
− k)!k!(k − 1)!(i − k)!(2k − i)!

(3.19)

The constant L should be chosen based on the desired accuracy and available

precision of floating-point operations. We use L = 16 which results in a precision

of four significant digits. Note that values Vi in Equation 3.19 depend only on K

and may be precomputed.

3.5 Quality of diffusion approximation

Using the first two moments of arrival and service processes to obtain diffusion

approximations of steady-state queue size for GI/G/1 queues has been exten-

sively studied in the literature. In case of simpler queuing systems, it is possible

to compare closed-form solutions obtained using diffusion approximation with

known analytical formulas. In particular, in case of M/G/1 queuing system with
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mean arrival rate λ, mean service rate µ (with ρ =
λ

µ
), and squared coefficient

of variation of service time cS, the steady-state mean queue size N̄PK is given by

Pollaczek-Khintchine formula [4]:

N̄PK = ρ

[

1 +
ρ(1 + cS)

2(1 − ρ)

]

(3.20)

Steady-state solution of Equation 3.9 may be obtained as:

N̄Diff = ρ

[

1

2
+

ρcA + cS

2(1 − ρ)

]

(3.21)

Hence, the absolute error of the diffusion approximation in this case is:

NPK − NDiff =
ρ

2
(1 − cS) (3.22)

Note that the relative error approaches 0 with ρ approaching 1 (heavy traffic

situation). For a general GI/G/1 queuing system, no exact closed-form solution

is known even for mean queue size in steady-state. However, studies reported

in [17, 50, 51, 52] lead to the conclusion that the relative error of steady-state

queue size approximation is on the order of 0.05cA.

3.5.1 Transient queue size distribution

We are more interested in the quality of approximation for transient probability

distribution, specifically Pr[N(t + δ)|N(t)], for which exact closed-form solution

is not available. Also, the solution of Equation 3.9 may be obtained only in
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transformed domain. Thus we use simulations to quantify the quality of the

approximation offered by the transient solution to the diffusion equation. Simu-

lations cover configurations with the following values: ρ ranging from 0.1 to 1 (in

steps of 0.05); cA and cS ranging from 0.1 to 2.0 (in steps of 0.2), initial queue size

N(t) ranging from 0 to 5, and 3 timestep sizes of 0.05, 0.1, and 0.15 The distri-

butions used for generating service and arrival statistics were hyperexponential,

hypoexponential, exponential, Pareto, and uniform. For each configuration, we

compared the empirical cumulative distribution of queue size obtained using ns-

2 [11] simulator against the transient predicted by the diffusion approximation.

We found the average relative approximation error to be 3% with maximum error

of 39%.

Figure 3.6 presents eight example comparisons of cumulative queue size dis-

tributions. Figures 3.6a and 3.6b present results for the same value of ρ = 0.7

and δ = 0.1, but two different variability levels, namely cA = cS = 0.1 for (a)

and cA = 0.7, cS = 1.3 for (b). Note, that although N(0) = 0 in both cases,

higher variability of case (b) results in much larger range of likely states at time

δ. Similar effect is depicted on plots 3.6c and 3.6d, where in both cases ρ = 0.8,

cA = 1.1, cS = 0.9, and N(0) = 3, but the size of the timestep is different. Con-

figuration 3.6c has δ = 0.05, while 3.6d has δ = 0.15. The resulting difference

between queue size distributions at δ is significant. Figure 3.6e presents results

for the configuration with low utilization and variability, specifically, ρ = 0.15,

cA = cS = 0.1, and δ = 0.15. Probability of N(δ) > 1 is nearly 0. Finally, the

opposite case is presented on plot 3.6f. Here both the variability and step size are

large (ρ = 0.9, cA = 1.5, cS = 1.7, and δ = 0.15) resulting in huge spread of likely

states at δ. In all cases we observe excellent accuracy of diffusion approximation.

31



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

(a) N(0) = 0, ρ = 0.7, δ = 0.1 (b) N(0) = 0, ρ = 0.7, δ = 0.1
cA = cS = 0.1 cA = 0.7, cS = 1.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30  35  40

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

(c) N(0) = 3, ρ = 0.8, δ = 0.05 (d) N(0) = 3, ρ = 0.8, δ = 0.15
cA = 1.1, cS = 0.9 cA = 1.1, cS = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n

Queue size

simulation
diffusion approximation

(e) N(0) = 0, ρ = 0.15, δ = 0.15 (f) N(0) = 1, ρ = 0.9, δ = 0.15
cA = 0.1, cS = 0.1 cA = 1.5, cS = 1.7

Figure 3.6: Comparison of Pr[N(δ) ≤ x|N(0)] obtained by diffusion approx-
imation and by packet-level simulation for 8 example configurations.
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Figure 3.7: Simple network with state-dependent traffic source.

The biggest errors are usually for estimation of P [N(δ) = 1|N(0)].

3.5.2 State-dependent UDP example

We now illustrate how TSS may be applied to solve for metrics of interest for

a simple state-dependent traffic source operating over a single communication

link. Consider the configuration shown in Figure 3.7. A state-dependent UDP

source sends traffic to a sink via a communication link with buffer size K = 2000

packets, zero propagation delay, and service times uniformly distributed with

mean µ = 1900 packets/second and squared coefficient of variation of 0.05. The

source generates fixed-size packets with exponentially distributed inter-arrival

times. The sink sends an ACK for each data packet via a return link that has

0.2 second propagation delay and negligible queuing and service delays. (The

coefficient of variation of a source corresponds to how much jitter the source

exhibits with respect to its mean rate.)

The source uses the incoming stream of acknowledgments to measure the

roundtrip time (rtt) on the path, and uses this rtt to control its data rate. When-

ever the measured rtt becomes smaller than 0.25 seconds, the source increases

its rate to 1950 packets/second. Whenever the measured rtt becomes larger than
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1.0 second, the source decreases its rate to 1500 packets/second.

Figures 3.8a and 3.8b show several sample paths generated using ns simulator

and our TSS simulator (with δ = 0.05 seconds). Clearly, both techniques generate

very similar sample paths. TSS computes a sample path about 15 times faster

than ns, for the current link speed of 1900 packets/second, which, assuming

1KB packets, corresponds to a bandwidth of about 15 Mbps. If the bandwidth is

increased to 1Gbps, TSS is faster by a factor of 1500, because the time required by

TSS is independent of the link bandwidth whereas the time required by a packet-

level simulator (such as ns) increases dramatically with link speed. Packet-level

simulator actually scales worse than linearly because of non-linear effects such as

caching and virtual memory.

Although both TSS and ns generate very similar sample paths, we do not

expect two sample paths (even if generated by the same simulator) to be the

same (unless the same random number stream was used in both). But we can

compare the time evolutions of ensemble metrics produced by the two techniques.

Figure 3.9a depicts the time evolutions of E[N(t)], the instantaneous ensemble-

average queue size as computed by ns and by TSS. As we see, the two are practi-

cally identical, confirming the high accuracy of the TSS approach. This figure also

shows that TSS captures the time decay in the amplitude of the cyclic evolution

of E[N(t)], caused by the random arrival and service times and state-dependent

control. This effect would not be captured by a technique, such as fluid approx-

imation, that computes only one evolution of the system; there, the evolution

would be cyclical but would not decay over time.

Another advantage of TSS is that it may be used to compute the distributions

of metrics just as in discrete-event simulation. Figure 3.9b shows the distribution
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Figure 3.8: For the source-to-sink link in example network from Figure 3.7
two ns-generated sample paths (a), and two TSS-generated sample paths
(b) of queue size N(t).

of the queue size N(t) for t = 40 seconds as computed by ns and by TSS. Again,

the match is excellent. Such a metric cannot be obtained by a fluid approxima-

tion, which does not yield distributions.
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Figure 3.9: For the source-to-sink link in example network in Figure 3.7,
time evolutions of the instantaneous ensemble-average queue size E[N(t)]
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by TSS (dashed line) and by ns (solid line). Each is averaged over 2000 runs.
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Chapter 4

Extension to Networks of Queues

The previous chapter described Timestep Stochastic Simulation of a single link.

To extend this to a network of queues, we have to be able to compute the first two

moments of the departure process of a queue as well as that of processes obtained

by splitting and merging flows. We formulate equations for each of these cases

next. Throughout, we assume that the first two moments of the arrival and

service processes on each link are constant within each δ interval. As usual, this

assumption is valid because we set δ to be smaller than the control time scale ∆.

4.1 Departure process

We start with the problem of obtaining the first two moments of the departure

process of a queue. Obtaining the mean is, of course, easy. Obtaining the second

moment is very difficult, because the departure process of a queue is, in general,

not a renewal process (except for a few simple cases such as M/M/1 queue in

steady-state). We follow the approach of Whitt [16], Duda [27], Kuehn [26] and

others by approximating the departure process by a renewal process with match-

ing first two moments. The starting point here is the fundamental relationship

derived by Marshall [38] between the Laplace transforms of service time distri-
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bution g(s), idle period distribution h(s), and inter-departure time distribution

φ(s), all at steady-state:

φ(s) = (1 − π0)g(s) + π0g(s)h(s) (4.1)

where π0 is the probability that arriving customer finds the system empty.

This relationship may be used to approximate the first two moments of the

departure process ([27],[28],[16]) for various queuing systems in steady-state. We

need a time-dependent version of Equation 4.1. Assume that the only time-

dependent element in the formula is the probability π0 of an arrival finding an

empty queue. Then we can approximate the transient departure process by using

Marshall’s formula with π0 replaced with π0(t) as computed by the diffusion

approximation. Differentiation of Equation 4.1 leads to:

E[φ(t)] =
1

µ
+ π0(t)E[h]

E[φ(t)2] = Vs +
1

µ2
+ π0(t)

{

E[h2] + 2
E[h]

µ

}

(4.2)

where Vs is the variance of the service process, µ is the mean service rate, and

E[h] and E[h2] are first two moments of the idle period.

Figure 4.1 shows the first two moments of the departure process of a queue

averaged over an interval of size δ = 0.05 seconds, as computed by ns and by

TSS. The x-axis is the queue size N(t) at the beginning of the interval. The

y-axis represents the mean and the standard deviation of the inter-departure

time averaged over the interval. The results, obtained by averaging over 1000
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Figure 4.1: Comparison of the first two moments of queue departure process
over interval [t, t + δ] vs N(t) as computed by ns and TSS for λ = 1800,
µ = 1900, K = 300, cA = 1, cS = 0.05.

15-second runs, show excellent agreement between TSS and the simulation. The

queue has exponential arrivals of mean rate 1800, maximum queue size K = 300,

and uniformly distributed service times with mean 1/1900 and squared coefficient

of variation 0.05.

4.2 Merging processes

Consider the merge of n independent renewal processes (Figure 4.2). Analytical

solution of the distribution of the merged process is known only for the simplest

case when all component processes are Poisson. In such situation the merged

process is also Poisson with rate equal to the sum of the arrival rates of the

component processes. However, if at least one of the component processes is not

Poisson, the merged process is not even a renewal process. We use an approxi-

mating renewal process to capture the statistics of the merged process.

There are several approximation methods that may be used to determine
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Figure 4.2: Merging n component processes.

the first two moments of the merged process [53, 26, 28, 27, 19]. We use a

combination of two of these methods, namely the asymptotic method and the

stationary-interval method. The first approaches the correct solution as the traffic

intensity of the link (to which the merged traffic is fed) approaches 1, whereas

the second is asymptotically correct as n approaches infinity. By appropriately

combining the two, a value can be obtained that works for an adequate range.

4.2.1 Asymptotic method

The asymptotic method can be used to merge n component processes. For

i = 1, 2, . . . , n assume that the mean arrival rate and squared coefficient of varia-

tion of process i are λi and ci, respectively. Then mean arrival rate λ and squared

coefficient of variation c of the merged process are given by:

λ =
n
∑

i=1

λi

c =
n
∑

i=1

λi

λ
ci

(4.3)
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4.2.2 Stationary interval method

The stationary interval method may be used for merging two renewal processes;

to merge n processes, the method is applied n − 1 times for subsequent pairs of

processes until we are left with one process. Consider the merge of two inde-

pendent renewal processes as shown in Figure 4.3 having mean arrival rates and

squared coefficients of variations λ1, λ2, and c1, c2, respectively.

v
HHHHHHj -

������1

F1(t), λ1, c1

F2(t), λ2, c2

F (t), λ, c

Figure 4.3: Merging 2 component processes.

It turns out that the first two moments of the merged process depend not just on

the first two moments of the constituent renewal processes, but also on their dis-

tributions. Let F1(t) and F2(t) be their distributions. Following [26, 19, 53], the

distribution of the inter-arrival time of the merged process F (t) can be obtained

from the distributions of the inter-arrival times of the composite processes, F1(t)

and F2(t) as follows:

F (t) = 1 − λ1λ2

λ1 + λ2

{

F c
1 (t)

∫ ∞

t
F c

2 (u)du

+ F c
2 (t)

∫ ∞

t
F c

1 (u)du
}

(4.4)

where F c
i (t) = 1 − Fi(t) for i = 1, 2.
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The first moment of the merged process is λ = λ1 + λ2. To obtain the sec-

ond moment of the merged process, the so called substitution method can be

used. We substitute the distribution Fi(t) of each of the component processes

by either a shifted exponential or a hyper-exponential distribution. The former

is used if the squared coefficient of variation ci is less than or equal than 1, and

the latter if ci is greater than 1. The parameters of the substitute process are

determined based on the first two moments of the component process.

In particular, if Fi(t) has mean arrival rate λi and squared coefficient of vari-

ation ci ≥ 1, Fi(t) is replaced with a hyperexponential distribution of balanced

means denoted HyperExp(a1, a2, p1, p2), having density:

f(t) = p1a1e
−a1t + p2a2e

−a2t , t ≥ 0 (4.5)

where:

p1 =
1 +

√

(ci − 1)/(ci + 1)

2

p2 = 1 − p1

a1 = 2p1λi

a2 = 2p2λi

(4.6)

If ci < 1, Fi(t) is replaced with an exponential distribution of mean rate h shifted

by a constant d, denoted ShiftExp(h, d), with density:

f(t) = he−h(t−d) , t ≥ d (4.7)
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where:

h =
λi√
ci

d =
1

λi

− 1

h

(4.8)

The squared coefficient of variation of the merged process is then determined.

We first obtain the second moment of the interarrival time, I2, as follows:

• For F1 = HyperExp(a1, a2, p1, p2) and F2 = HyperExp(b1, b2, q1, q2)

I2 =
2λ1λ2

λ1 + λ2

2
∑

i=1

2
∑

j=1

piqj

aibj(ai + bj)
(4.9)

• For F1 = ShiftExp(h1, d1) and F2 = ShiftExp(h2, d2)

I2 =
2λ1λ2

λ1 + λ2

[

d1

λ1λ2

− d2
1

λ1 + λ2

2λ1λ2

+
d3

1

3
+

1 − e−h1(d2−d1)

λ2h
2
1

+
(1 + h1d2)e

−h1(d2−d1) − (1 + h1d1)

h3
1

+
e−h1(d2−d1)

h1h2(h1 + h2)

]

(4.10)

• For F1 = HyperExp(a1, a2, p1, p2) and F2 = ShiftExp(h, d)

I2 =
ea1dp1

a1h(a1 + h)
+

e−a2dp2

a2h(a2 + h)
+

p1(1 − e−a1d − a1de−a1d)

a3
1

−p2(1 − e−a2d − a2de−a2d)

a3
2

+
(

1

h
+ d

)

[

p1(1 − e−a1d)

a2
1

+
p2(1 − e−a2d)

a2
2

]

(4.11)
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Finally, we obtain the squared coefficient of variation of the merged process as:

c = I2(λ1 + λ2)
2 − 1 (4.12)

4.2.3 Combining asymptotic and stationary interval meth-

ods

As mentioned before, two approximations described above complement each other

in terms of accuracy. Albin [19] performed a series of simulations in order to de-

termine the best convex combination of the two approximations resulting in the

smallest error in approximation of steady-state queue size of the GI/G/1 queue

fed with the merged arrival process. She proposed to use a weighted average of

both approximations with weighting function depending on the effective number

of merged flows and utilization of the queue. The effective number of active flows

is defined as:

n∗ =
1

∑n
i=1(

λi

λ
)2

.

Utilization of the queue to which the traffic arrives is defined as ρ =
λ

µ
. In

such a setting, assuming that squared coefficient of variation of the merged flow

computed using stationary interval approximation and asymptotic method are cS

and cA, respectively, the resulting squared coefficient of variation c of the merged

flow is equal to:

c = w(ρ, n∗)cA + (1 − w(ρ, n∗))cS (4.13)
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Figure 4.4: Splitting a flow in case of Bernoulli routing.

where

w(ρ, n∗) =
1

1 + 6(1 − ρ)2.2n∗ (4.14)

This approach is very accurate in predicting mean steady-state queue size of

GI/G/1 queue fed with merged traffic flow. Simulations reported in [19] show

that average relative error is on the order of 3%.

4.3 Splitting a process

At a node of a network, the incoming traffic flow may be split into multiple

flows, depending on the routing probabilities. We need to express the first two

moments of the resulting flows based on the first two moments of the renewal

process that is being split as well as on the routing probabilities. We assume that

the routing probabilities remain constant within each δ-sized interval but may

change between intervals.

Consider the configuration depicted in Figure 4.4. Let the inter-arrival time

of the aggregate process being split have mean rate λ and squared coefficient of

variation c. The packets may enter one of n communication links with proba-

bilities q1, q1, . . . , qn such that
n
∑

i

qi = 1. Let the inter-arrival time of the ith

resulting process have mean rate λi and squared coefficient of variation ci.
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Following [4] and [26], the transition rates and squared coefficients of variation

of the ith component process are given by:

λi = λqi

ci = qic + (1 − qi)
(4.15)

4.4 Network flows

TSS computes a sample path of the queue size evolution for each communication

link in the network. In order to complete the description of the system and to

model congestion control schemes, we need to specify for each communication

link the number of packets of each flow that traversed the link in each timestep.

For each flow j and communication link i we introduce a series of flow-

conservation equations. Please refer to Table 4.1 for notation. Denote by N j
i (t)

the number of packets of flow j in queue i at time t, by Dj
i (t) the number of

packets of flow j departing from queue i during [t, t + δ], by λj
i (t) mean arrival

rate of packets of flow j to queue i during [t, t + δ], and by Aj
i (t) arrival count of

packets of flow j to link i during [t, t+ δ]. Under the assumption that the routing

is properly configured and flows do not have cycles, we have:

Aj
i (t) =































λj
i (t) ∗ δ if i is the first-hop of flow j

Dj
k(t) otherwise, where k is the previous link

on the path of flow j

(4.16)

Denote by Ai(t) =
∑

k

Ak
i (t) the total arrival count to the link i during [t, t + δ],

and by P full
i (t) the probability that a packet arriving during [t, t + δ] finds the

queue full. P full
i (t) is computed using the numerical inversion of Equation 3.18.
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λj
i (t) arrival rate of packets of flow j to link i during [t, t + δ]

cA,i(t) squared coefficient of variation of interarrival time to link i

during [t, t + δ]

µi(t) service rate of link i during [t, t + δ]

cS,i(t) squared coefficient of variation of service time of link i during [t, t + δ]

N j
i (t) number of packets of flow j in a queue of link i at time t

Aj
i (t) number of packets of flow j arriving to the link i during [t, t + δ]

Lj
i (t) number of packets of flow j lost due to overflow of the link i

during [t, t + δ]

Dj
i (t) number of packets of flow j departing the link i during [t, t + δ]

Ni(t) number of packets in a queue of link i at time t

Ai(t) number of packets arriving to the queue of link i during [t, t + δ]

Li(t) number of packets lost due to overflow of the link i during [t, t + δ]

Di(t) number of packets departing the link i during [t, t + δ]

P empty
i (t) probability that queue i is empty during [t, t + δ]

P full
i (t) probability that queue i is full during [t, t + δ]

Table 4.1: Notation.
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Total number of packets lost due to the overflow of queue i within time interval

[t, t + δ], denoted by Li(t), is determined as:

Li(t) = Ai(t)P
full
i (t) (4.17)

Losses are assigned to flows proportionally to the share of a flow in the aggregate

traffic. The number of packets lost by flow j on link i during [t, t + δ], denoted

by Lj
i (t), is:

Lj
i (t) = Li(t)

Aj
i (t)

Ai(t)
(4.18)

Denote the mean arrival rate and squared coefficient of variation of interarrival

times to link i during [t, t + δ] by λi(t) and cA,i(t), respectively. These values

are computed using techiques presented in Sections 4.1, 4.2, and 4.3. Mean

service rate and squared coefficient of variation of service time of queue i during

[t, t + δ] are denoted by µi(t) and cS,i(t), respectively. Queue size N(t + δ) is

randomly chosen according to the probability distribution computed as described

in Chapter 3 based on N(t), λi(t), cA,i(t), µi(t), and cS,i(t). Departure count of

flow j from link i within [t, t + δ] is determined according to:

Dj
i (t) = N j

i (t) − N j
i (t + δ) + Aj

i (t) − Lj
i (t) (4.19)
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Chapter 5

Source Model in TSS

This chapter describes how to model a source for use in TSS. Because TSS eval-

uates a computer network in timesteps, a traffic source model must also operate

on the same timescale. Users of packet-level simulators are familiar with discrete

models, where actions of the source are modeled at the level of packet arrivals

and transmissions. For example, a packet-level model of a time-dependent UDP

source would provide the simulator with the time instants of its packet genera-

tions. Whereas a TSS model of the same traffic source should provide the simula-

tor with the statistics of the traffic generated by source during each timestep, in

particular, the first two moments of the inter-generation time distribution during

each timestep.

The following sections present TSS models of three kinds of traffic sources:

time-dependent UDP, state-dependent UDP, and TCP. A time-dependent UDP

source injects packets into the network with rate and variation of interarrival

times based only on time and not the state of the network. This can be an

appropriate model for simple UDP sources such as streaming audio without dy-

namic rate control. The state-dependent UDP source adapts the arrival rate and

variability to the state of the network, such as measured round-trip time.
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A source model has a state of sufficient detail to obtain the rate and coefficient

of variation of its flow, and the state at the next timestep. For example, the state

of a TCP connection would include its congestion window and timer values. The

model also defines how the state is to be updated at each timestep, perhaps based

on some history of the network state.

We assume that the state of the source changes only at timestep boundaries,

i.e., at times t0, t0 + δ, t0 + 2δ, . . .. We also assume that arrival process is i.i.d.

within the interval, i.e., there is no correlation between interarrival times and

all interarrival times are drawn from a distribution having mean 1
λ

and squared

coefficient of variation c.

5.1 Time-dependent UDP source

As a first example of traffic source model in TSS consider a time-dependent

UDP source. This source varies the way in which data packets are sent into the

network based solely on time and not on network conditions, i.e., supplies TSS

with mean arrival rate and squared coefficient of variation of interarrival times

for each timestep [t, t + δ].

5.2 State-dependent UDP source

The second example of traffic source is a simple state-dependent UDP. The

source operates in two possible states differing in mean arrival rate of packets

and squared coefficient of variation of interarrival times. The state of the source

changes in response to network conditions. Precisely, it uses smoothed round-trip

time (srtt) to measure the network congestion; srtt is an average of several recent
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srtt > srtthigh

srtt < srttlow

λhigh,chigh λlow,clow

Figure 5.1: State-dependent UDP traffic source. Mean interarrival time and
squared coefficient of variation changes depending on smoothed round-trip
time.

round-trip time measurements. When srtt exceeds a fixed threshold srtthigh, the

source switches to a lower sending rate λlow and squared coefficient of variation

clow. When srtt falls below a certain threshold srttlow, the source switches to

higher sending rate λhigh and squared coefficient of variation chigh. The behavior

of the source is depicted on Figure 5.1.

A packet-level representation of this source measures the round-trip time of

each packet (using the stream of acknowledgments) and computes a running

average of the last several measurements. Based on the computed average, the

source adjusts its rate (according to Figure 5.1).

The TSS representation of this source performs the following actions for each

step [t, t + δ]:

• Compute srtt based on the queue sizes and propagation delays on all com-

munication links on the flow’s path.

• Set sending rate and coefficient of variation for the step based on the srtt.

5.3 TCP source

As a final example we present a timestep model of a TCP source. This illustrates

the high level of detail that may be captured in TSS when simulating com-

plex state-dependent congestion control schemes. Our model encapsulates TCP
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features such as slow-start, retransmissions, and congestion avoidance. This is

possible because TSS models the sample path of the state of the TCP source

(such as time evolution of congestion window).

We extend the information maintained at each queue for a TCP flow. In

addition to the number of packets (Chapter 4) TSS also keeps track of the lowest

and highest sequence number, denoted lseq and hseq, respectively. The number of

packets of the flow at a queue is equal to hseq − lseq if no packets have been lost;

otherwise it is less than hseq − lseq. Counters hseq and lseq are updated at each

timestep based on the arrival count and the loss count. The data arrival count

and variability at the TCP sink is used by the TCP source as representing the

acknowledgment stream. We make the assumption that the acknowledgments

encounter a fixed delay.

The state maintained by the source consists of the following pieces of infor-

mation:

• cwn - congestion window size, i.e., maximum number of packets that may

be “in-flight”

• sst - slow start threshold

• lastSeq - last acknowledged sequence number

• rto - rto timer value, i.e., time until which the last sent data segment has

to be acknowledged or loss will be assumed

The source based on the statistics of arrival acknowledgment stream adjusts

its congestion window. In particular, if the congestion window is smaller than the

slow-start threshold it gets increased by the number of received acknowledgments.
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Otherwise, if the source is in congestion avoidance mode, the congestion window

is expanded by the number of arriving acknowledgments divided by the current

size of the congestion window. Sending rate is determined based on the number

of new acknowledgments received (i.e., acknowledgments with sequence numbers

higher than last acknowledged segment).
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Chapter 6

Simulation Studies

In this chapter we present a series of simulation studies comparing TSS to packet-

level simulation for various network topologies and flow configurations. As a

packet-level simulator, we used modified ns that allowed for random service times.

While discussing the results we emphasize the accuracy of the TSS. Computa-

tional speed of TSS is 5 to 10 times higher than that of the packet-level simulation

for the link speeds used here. For faster communication links, such as 2 Gbps,

TSS is nearly 1000 times faster than ns. All TSS results reported in this chapter

were obtained with timestep δ = 0.05 second.

6.1 Single communication link

We start the evaluation of TSS with a simple network consisting of one commu-

nication link. Configuration is depicted on Figure 6.1. Data packets flow from

node N0 to N1. Link from N1 to N0 is much faster and does not cause any queu-

ing delay for acknowledgments. Service rate is 1000 packets/sec and we explore

multiple coefficients of variation.
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Figure 6.1: Single-link network.
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Figure 6.2: Comparison of simulation results with TSS for link N0 → N1

in Scenario 1 for network from Figure 6.1. Only one TCP flow is active
throughout the simulation. Service rate of the link is 1000 packets/sec with
squared coefficient of variation of 0.05.

Scenario 1

The service rate of the link is 1000 packets/sec with squared coefficient of variation

of service time equal to 0.05. The buffering capacity of the link is 500 packets.

Figures 6.2a and 6.2c present time evolutions of mean queue size and its

standard deviation, respectively. The results were obtained by averaging over
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100 repetitions. Note the very high accuracy of the approximation for both mean

queue size as well as the standard deviation. TSS captures properly the increased

variability around points where queue overflows. Variability is due to the fact that

the exact moment when the queue overflows is random. This is easily seen from

the sample paths of the queuing process. Two pairs of such paths are depicted

on Figures 6.2b and 6.2d.

Scenario 2

We now consider the same configuration as Scenario 1 except that instead of 1

TCP flow the link is shared by 100 TCP flows. In this case the frequency of

queue fluctuations is of course much higher than with one flow. This can be

seen on Figures 6.3b and 6.3d which contain two pairs of sample paths for this

case. Another important observation is that since the queue overflows very often

(compared to 1-flow case), the mean queue size as well as its standard deviation do

not exhibit oscillatory behavior. Evolutions of mean queue size and its standard

deviation are presented in Figures 6.3a and 6.3c. Note the very high accuracy

with which TSS predicts both metrics of interest.

Scenario 3

Consider the single link configuration with 1 TCP flow but much higher variability

of service. Squared coefficient of variation in this case equals 1.2. The mean

queue size looks similar to the first 1-flow example with low variability, however

the sample paths, shown on Figures 6.4b and 6.4d are much more jittery. Both

mean queue size as well as its standard deviation exhibit cyclic behavior as shown

on Figures 6.4a and 6.4c.
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Figure 6.3: Comparison of simulation results with TSS for link N0 → N1 in
Scenario 2 for network from Figure 6.1. The arrival traffic to the link is due
to 100 TCP flows. Service rate of the link is 1000 packets/sec with squared
coefficient of variation of 0.05.
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Figure 6.4: Comparison of simulation results with TSS for link N0 → N1

in Scenario 3 for network from Figure 6.1. Only one TCP flow is active
throughout the simulation. Service rate of the link is 1000 packets/sec with
squared coefficient of variation of 1.2.
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Scenario 4

Finally, in the last example for this configuration the link is shared by varying

number of TCP flows. 20 TCP flows are active from the beginning of the simu-

lation to 200 second. At 200 second all 20 flows stop and another 4 flows start.

At time 400 seconds all four flows stop and only one flow is started and remains

active until 550 second. At 550 second 10 flows become active and continues

transmission till the end of the simulation. Service rate of the link is 1000 pack-

ets/sec with squared coefficient of variation of 0.3. Figures 6.5a and 6.5c present

time evolution of mean queue size and its standard deviation. Observe significant

drop in variability of the queue size process between 400 and 550 second when

only one flow is active as compared to 0 to 200 second when 20 flows are active.

TSS predicts the behavior of the system very well for both the mean and the

variability. Also two pairs of sample paths are presented on Figures 6.5b and

6.5d. TSS evolutions mimic those generated by packet-level simulation.

6.2 Two links in tandem

In this scenario we examine quality of TSS approximation for two communication

links in tandem. Configuration is shown in Figure 6.6. Traffic flows from node

N0 to N2.

Scenario 1

We examine the case where the two links are identical, specifically they have

equal service rates of 1000 packets/sec, squared coefficient of variation of service

time of 0.05, and buffer capacity of 500 packets. There is one TCP flow sending
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Figure 6.5: Comparison of simulation results with TSS for link N0 → N1

in Scenario 4 for network from Figure 6.1. There is 35 TCP flows with
time-dependent start times sharing the link. Service rate of the link is 1000
packets/sec with squared coefficient of variability of 0.3.

N0 N1 N2

Figure 6.6: Two-link network.
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data from node N0 to node N2.

Figure 6.7 presents time evolutions of mean queue sizes and its standard

deviation for both links for network configuration in Figure 6.6. Figures 6.7a

and 6.7c show evolution of mean queue size for link N0 → N1 and N1 → N2,

respectively. Figures 6.7b and 6.7d show corresponding pair of time evolutions

of standard deviations of the queue size. TSS is very accurate in predicting the

behavior of both links. The queuing on the second communication link (N1 → N2)

is due to the service rates being the same for both links. Since the first link is

nearly always non-empty, the utilization of the second queue equals 1 for most of

the time. This results in sample paths of wide diversity. Figures 6.8c and 6.8d

show two pairs of sample paths as generated by packet-level simulation and TSS.

Similar pairs for the first communication link are shown on Figures 6.8a and 6.8b.

Scenario 2

Consider the tandem configuration with mean service rate of 2000 packets/sec for

link N0 → N1 and 1000 packets/sec for link N1 → N2. Both links have squared

coefficient of variation of service time equal to 0.05. Buffer capacities are 500

packets. There are 5 TCP flows sending data from N0 to N2.

The second link (N1 → N2) has high utilization and large queue size, whereas

the first queue has low utilization. Comparison of the mean queue size and

its standard deviation as computed by packet-level simulator and TSS for links

N0 → N1 are presented on Figures 6.9a and 6.9c. Figures 6.9b and 6.9d present

corresponding results for link N1 → N2. TSS has excellent accuracy not only for

highly utilized queue but also for the one with low utilization. Corresponding

pairs of sample paths as generated by packet-level simulation and TSS are shown
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Figure 6.7: Comparison of simulation results with TSS for links N0 → N1 and
N1 → N2 in Scenario 1 for network in Figure 6.6. Both communication links
have service rate of 1000 packets/sec with squared coefficient of variation of
service time equal to 0.05.
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Figure 6.8: Comparison of sample paths generated by packet-level simula-
tion with results obtained using TSS in Scenario 1 for tandem network in
Figure 6.6.
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Figure 6.9: Comparison of simulation results with TSS for links N0 → N1

and N1 → N2 in Scenario 2 for network in Figure 6.6. Communication link
N0 → N1 has service rate of 2000 packets/sec, N1 → N2 1000 packets/sec.
Both have squared coefficient of variation of service time equal to 0.05.

on Figure 6.10.

6.3 Six-node network

In this configuration we examine the approximation quality for six-node network

presented in Figure 6.11. We evaluate the accuracy for two scenarios, one with

bottleneck links on the edges of the network, and one with the bottleneck link

being the central link (N2 → N3).
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Figure 6.10: Comparison of sample paths generated by packet-level simula-
tion with results obtained using TSS in Scenario 2 for the tandem network
in Figure 6.6.
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Figure 6.11: Six-node network.

Scenario 1

Consider the configuration with service rate of 8000 packets/sec for the link N2 →

N3 and 2000 packets/sec for all remaining links. Squared coefficient of variation of

service time for all links is 0.05. Buffering capacities of all links are 1500 packets.

Traffic is generated by 10 TCP flows transferring data from nodes N0 to N4 and 10

TCP flows from nodes N1 to N5. Service rates of links used by acknowledgments

are much higher thus there are no queuing delays for acknowledgments.

Figure 6.12 presents evolution of mean and standard deviation of queue size

computed using 100 repetitions of packet-level simulation and TSS. Figures 6.12a

and 6.12e present time evolution of mean queue size as computed by TSS and

packet-level simulation for links N0 → N2 and N3 → N4, respectively.

Although service rate and its variability is the same for both links, the mean

queue sizes are different. Link N0 → N2 is the first hop on its TCP flows path

and thus exhibits cyclic behavior. On the contrary, utilization of N3 → N4 is

nearly all the time 1, and its queue builds up only because of randomness in

arrival and service processes. Note that TSS predicts time evolution of both

queues very accurately in the mean and standard deviation. Communication link

N2 → N3 is faster than combined service rate of links N0 → N2 and N1 → N2
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(a) mean queue size of N0 → N2 (b) standard deviation of queue size of N0 → N2
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(c) mean queue size of N2 → N3 (d) standard deviation of queue size of N2 → N3
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(e) mean queue size of N3 → N4 (f) standard deviation of queue size of N3 → N4

Figure 6.12: Comparison of simulation results with TSS for Scenario 1 for
the six-node network in Figure 6.11.
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(e) pair of sample paths for link N3 → N4 (f) pair of sample paths for link N3 → N4

Figure 6.13: Comparison of sample paths generated by packet-level simula-
tion with results obtained using TSS in Scenario 1 for the six-node network
in Figure 6.11.

thus the queue on this link is very small.

Even in this case TSS approximation is very close to the packet-level simulation

(Figures 6.12c and 6.12d). Figure 6.13 shows pairs of sample paths as generated
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by packet-level simulation and TSS. Especially interesting are the sample paths

of link N3 → N4 presented on Figures 6.13e and 6.13f. Behavior like this, when

a queue has utilization very close to 1 and the sample paths diversity is caused

by randomness of service and arrival processes, can not be captured by methods

such as fluid approximation. Furthermore, capturing it is important because the

queuing delay on such link is considerable and affects the behavior of its TCP

flows.

Scenario 2

This scenario presents TSS accuracy in case of a single bottleneck link. Service

rates and coefficients of variation for all links are the same as in Scenario 1 except

that link N2 → N3 has service rate of 3000 packets/sec which is less than the

maximum aggregate departure from links N0 → N2 and N1 → N2. Thus link

N2 → N3 is the bottleneck. Traffic is generated by 20 TCP flows, 10 from nodes

N0 to N4 and 10 from nodes N1 to N5. Buffering capacity of each link is 1500

packets.

Figure 6.14 presents the time evolution of mean queue size (a and b) and its

standard deviation (c and d) for links N0 → N2 and N2 → N3, respectively. TSS

approximation is very accurate for both the mean and the standard deviation.

Figure 6.15 presents pairs of samples paths for links N0 → N2 and N2 → N3 as

computed by packet-level simulator and TSS.

6.4 Small network

Next example configuration consists of 14 nodes and 13 communication links.

The central link (N12 → N13) has service rate of 2000 packets/sec and all other
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(c) standard deviation of queue size of N0 → N2 (d) standard deviation of queue size of N2 → N3

Figure 6.14: Comparison of simulation results with TSS for Scenario 2 for
the six-node network in Figure 6.11.
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(c) pair of sample paths for link N2 → N3 (d) pair of sample paths for link N2 → N3

Figure 6.15: Comparison of sample paths generated by packet-level simula-
tion with results obtained using TSS in Scenario 2 for the six-node network
in Figure 6.11.
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Figure 6.16: Small network topology.

links have service rates of 1000 packets/sec. Buffering capacity of all links is

1500, packets and squared coefficient of variation of service time is 0.05. Traffic

is generated by 40 TCP flows with time-dependent start and stop times. In

particular, 10 TCP flows from node N0 to N4 and 10 TCP flows from node N2 to

N6 are active from the beginning of the simulation till 300 second. Moreover, 10

TCP flows from node N1 to N5 and 10 TCP flows from node N3 to N7 are active

from 100 second till 200 second.

Figures 6.17 and 6.18 present comparison of mean queue size and its deviation

as computed using packet-level simulation and TSS. Figures 6.17a and 6.17b

present mean and standard deviation for link N2 → N9. Figures 6.17c and 6.17d

present mean and standard deviation for link N9 → N12. Figures 6.17e and 6.17f

present mean and standard deviation for link N12 → N13. Figures 6.18a and

6.18c present mean and standard deviation for link N0 → N8. Figures 6.18b and

6.18d present mean and standard deviation for link N8 → N12. TSS correctly

predicts periods of large queuing for all links of interest. It also approximates

variability of the queue size very well. Finally Figures 6.19a and 6.19b present
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(a) mean queue size of N2 → N9 (b) mean queue size of N2 → N9
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(c) mean queue size of N9 → N12 (d) mean queue size of N9 → N12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300

M
ea

n 
qu

eu
e 

si
ze

Time (sec.)

TSS
ns

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300

St
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

qu
eu

e 
si

ze

Time (sec.)

TSS
ns

(e) mean queue size of N12 → N13 (e) mean queue size of N12 → N13

Figure 6.17: Comparison of mean queue size and its standard deviation for
links N2 → N9, N9 → N12, and N12 → N13 for network in Figure 6.16.
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(a) mean queue size of N0 → N8 (b) mean queue size of N8 → N12
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(c) standard deviation of queue size of N0 → N8 (d) standard deviation of queue size of N8 → N12

Figure 6.18: Comparison of mean queue size and its standard deviation for
links N0 → N8 and N8 → N12 for network in Figure 6.16.

two pairs of sample paths for link N0 → N8. Similarly, figures 6.19c, 6.19d, and

figures 6.19e, 6.19f for links N8 → N12 and N11 → N7., respectively.
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6.5 Large network

This section examines the quality of TSS approximation for a 35-node network

with 35 communication links and 180 TCP flows shown in Figure 6.20. All

links have service rate of 5000 packets/sec, which corresponds to (assuming 1KB

packets) approximately 40 Mbps. Buffer capacities of communication links are

1000 packets for backbone ring (i.e., links connecting ring of nodes N0, N1, N2,

N3, N4, N5, N6), and 5000 packets for the remaining links. 10 bulk TCP flows

are continuously active for each of the following source-destinations: N14 → N17,

N15 → N18, N16 → N19, N14 → N23, N15 → N24, N16 → N25, N20 → N23,

N21 → N24, N22 → N25, N20 → N26, N21 → N27, N22 → N28, N29 → N32,

N30 → N33, N31 → N34, N29 → N17, N30 → N18, N31 → N19.

Because this configuration has multiple interacting TCP flows on a non-trivial

topology, it gives raise to various behaviors and is a good configuration for testing

the quality of TSS approximation. Figure 6.21 shows time evolution of metrics

of interest for link N0 → N1. Figures 6.21a and 6.21b present time evolution

of mean queue size and its standard deviation, respectively. TSS results match

nearly exactly those of packet-level simulation. Figures 6.21c and 6.21d show two

pairs of sample paths for this link as generated by TSS and the simulator. Finally,

figures 6.21e and 6.21f are magnifications of figures 6.21c and 6.21d, respectively.

Corresponding results (without sample paths magnification) for links N12 → N5,

N2 → N3 and, N7 → N0 are presented in Figures 6.22, 6.23, and 6.24, respectively.
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(a) pair of sample paths for link N0 → N8 (b) pair of sample paths for link N0 → N8
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(c) pair of sample paths for link N8 → N12 (d) pair of sample paths for link N8 → N12
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(e) pair of sample paths for link N11 → N7 (f) pair of sample paths for link N11 → N7

Figure 6.19: Pairs of queue size sample paths for links N0 → N8, N8 → N12,
and N11 → N7 for network configuration in Figure 6.16.
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Figure 6.20: Large network topology: 35-nodes, 35 communication links,
and 180 TCP flows.
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(a) mean queue size of N0 → N1 (b) standard deviation of queue size of N0 → N1
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(c) pair of sample paths for link N0 → N1 (d) pair of sample paths for link N0 → N1

 0

 200

 400

 600

 800

 1000

 1200

 100  110  120  130  140  150

In
st

an
te

no
us

 q
ue

ue
 s

iz
e

Time (sec.)

TSS sample path
ns sample path

 0

 200

 400

 600

 800

 1000

 1200

 100  110  120  130  140  150

In
st

an
te

no
us

 q
ue

ue
 s

iz
e

Time (sec.)

TSS sample path
ns sample path

(e) magnified pair of sample paths for link N0 → N1 (f) magnified pair of sample paths for link N0 → N1

Figure 6.21: Comparison of mean queue size, its standard deviation, and
sample paths as computed by packet-level simulator and TSS for link N0 →
N1 from network in Figure 6.20.
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(a) mean queue size of link N12 → N5 (b) pair of sample paths for link N12 → N5
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(c) standard deviation of queue size of N12 → N5 (d) pair of sample paths for link N12 → N5

Figure 6.22: Comparison of mean queue size, its standard deviation, and
sample paths as computed by packet-level simulator and TSS for link N12 →
N5 for network in Figure 6.20.
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(a) mean queue size of link N2 → N3 (b) pair of sample paths for link N2 → N3
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(c) standard deviation of queue size of N2 → N3 (d) pair of sample paths for link N2 → N3

Figure 6.23: Comparison of mean queue size, its standard deviation, and
sample paths as computed by packet-level simulator and TSS for link N2 →
N3 for network in Figure 6.20.
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(a) mean queue size of link N7 → N0 (b) mean queue size of link N7 → N0
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(c) standard deviation of queue size of N7 → N0 (d) standard deviation of queue size of N7 → N0

Figure 6.24: Comparison of mean queue size and its standard deviation as
computed by packet-level simulator and TSS for link N7 → N0 (with mag-
nifications) for network in Figure 6.20.
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Chapter 7

Conclusions and Future Directions

Performance evaluation of computer networks is an important and challenging

task. It is needed not only to design new protocols and test their efficiency, but

also to manage and optimize existing systems. Yet existing evaluation techniques

are not applicable to modern computer networks. The simplifying assumptions

required for analytical models make them applicable only to the simplest net-

works, such as networks where all arrival and service processes are Markovian.

Packet-level simulation, probably the most popular evaluation method, can be

very accurate but it has very high computational cost, and hence applicable

only to small networks and low-speed communication links. Other methods, for

instance fluid approximation, are not applicable to networks with general state-

dependent control, such as TCP’s congestion control.

This Dissertation presented Timestep Stochastic Simulation for fast genera-

tion of sample paths of computer networks. We first introduced the method for a

case of single communication link. The time evolution of the queue size is divided

into steps of size δ chosen to be smaller than the reaction time of the conges-

tion control protocol (e.g., TCP round-trip time). In each step the new state

of the system is chosen randomly based on the current state and a probability
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distribution obtained using diffusion approximation. Both the arrival and ser-

vice processes are represented using first two moments of approximating renewal

processes, assumed to be stationary within each timestep.

The method is much faster than packet-level simulation and has almost the

same accuracy. Because state-dependent control feedback is based on sample

path metrics, our method is more suitable for modeling state-dependent control

schemes (such as TCP’s) than fluid approximations. Since the transmission and

reception events are replaced with timesteps, TSS is not affected by the increase of

link bandwidth, as is the case with packet-level simulation. TSS also handles well

communication links with utilization close to 1 for large periods of time. This is

an extremely difficult case that other approaches do not handle. Queues with this

property (which is common in networks of links with equal transmission rates)

are ignored by fluid approximation, while in reality they contribute to queuing

delays and significantly affect the behavior of the network.

We then extended the method to handle networks of queues. The issue here

is to handle the internal flows, i.e., the departures processes of queues, and the

processes resulting from splitting and merging flows. These internal flows are in

general not renewal processes, and thus exact analytical formulas for moments of

internal flows are not available. We represent them using first two moments of

a suitable approximating renewal process. Again, we assume that the first two

moments are constant throughout each timestep δ.

TSS is a modeling framework in which general state-dependent congestion

control mechanisms may be represented. The flow model in TSS is time-stepped,

i.e., the state of the traffic source can be adjusted only at timesteps every δ. The

adjustment may be based on the history of the sample state of the network, such
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as round-trip time or loss rate averaged over last second, which makes our method

suitable for general state-dependent control. We illustrated applicability of the

TSS by presenting traffic models for time-dependent UDP flows, state-dependent

UDP flows, and TCP flows.

We validated the quality of approximation by comparing results obtained by

TSS against the corresponding results obtained using packet-level simulation.

TSS generates diverse sample paths that are very close (in the sense of their

distributions) to the ones generated by packet-level simulator for a fraction of

the computational cost. Averaging over multiple repetitions of both the TSS and

the packet-level simulation shows excellent agreement of the time evolution of

the first and second moments of queue size. It is also possible to obtain higher

order moments and other metrics of interest, such as probability of loss.

Possible future research involves applications of the method to various net-

working problems. One interesting problem is optimal placement of caches in a

network. TSS can be used to quickly test proposed configuration, thus enabling

automation of the placement process. Another interesting problem is dynamic

routing and load balancing. In this case TSS may be used by the research com-

munity to evaluate the efficiency of proposed routing mechanisms or balancing

schemes.
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