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The Mono Tiltrotor (MTR) is a new vertical takeoff and landing (VTOL)

rotorcraft concept. The premise of the MTR is a tilting coaxial rotor system for

lifting and propulsion, along with aerodynamically deployable fixed-wings for long-

range cruise. The symmetric and controlled self-deployment of these wings is a

critical design feature of the MTR concept. A mathematical model was developed

to predict the optimal wing hinge geometry to obtain satisfactory wing deployment.

The wing hinge design was then used to design and build a functional model that

was tested in the University of Maryland’s Glenn L. Martin wind tunnel. The

measurements showed that with suitable design features, the symmetric and con-

trolled deployment of the wings are possible using aerodynamic actuation alone.

The mathematical model has also been shown to be capable of predicting the dy-

namic, time-dependent behavior of the wings, as well as being able to predict the

overall nonlinear lift, drag, and pitching moments on the MTR wing and tail con-

figuration with good correlation to measured data. A finite element method (FEM)



model of the payload support structure was also developed to analyze forces, bend-

ing moments and displacements of the structure under load. Initial results show that

significant bending moments will be present throughout the entire support struc-

ture. This FEM model can be incorporated into a full dynamic model of the MTR

to study its dynamic behavior during flight maneuvers while carrying a payload.
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Chapter 1

Introduction

The interest in developing heavy-lift rotorcraft concepts has spanned several

decades [1, 2, 3, 4, 5]. Recently the U.S. Army has proposed requirements for

a Future Transport Rotorcraft (FTR) that must be capable of carrying a 20 ton

payload over a mission radius of 500 km (270 nm) under “hot and high” (95◦F, 4,000

ft), conditions [6]. These are unprecedented ranges and payloads for a conventional

helicopter, or even for a conventional tiltrotor. A vertical lift aircraft capable of

meeting these requirements would increase the tatical capablility of any military by

allowing them operations from small landing zones, yet transport more cargo over

greater distances than conventional rotorcraft concepts.

A tiltrotor aircraft is ideal to meets these requirements, because of its ability

to takeoff and land vertically but also be able to cruise with the much higher aero-

dynamic efficiencies that are associated with airplanes. Airplanes are more efficient

than rotorcraft in cruise because of their much higher lift to drag (L/D) ratios.

Helicopters tend to produce more drag, with a majority of it being as a result of

the airframe, rotor hub and exposed rotor shaft. Airplanes can also fly faster and

over longer ranges than helicopters. But, current VTOL aircraft lack the ability to

take off and land vertically and hover with large heavy payloads for any significant

amount of time. The thrust vectoring systems on VTOL aircraft tend to burn a

1



great deal of fuel, limiting aircraft range and hover time. Thus, an aircraft that

has both the VTOL capabilities of a helicopter and the high cruise efficiencies of an

airplane, is ideal.

(a)

(b)

Figure 1.1: Conceptual sketches of the MTR: (a) In hover with payload unit at-

tached; (b) Forward flight with wings and tail fully deployed. (Images courtesy of

Baldwin Technology Company.)

To meet these requirements, the Mono Tiltrotor (MTR), shown in Fig. 1.1, is a

proposed innovative vertical takeoff and landing (VTOL) rotorcraft concept that in-

tegrates a tilting coaxial proprotor, aerodynamically deployable wings system, and a
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suspended streamlined cargo handling unit. The MTR has been undergoing concep-

tual development over the past few years [6, 7]. The MTR design is characterized by

a coaxial proprotor system that converts (tilts) from a lifter to a propulsor between

vertical flight and forward flight modes. A lower disk loading and better power

loading in comparison to current tiltrotors allows for efficient hovering capability.

Using a coaxial rotor system, no tail rotor is required for anti-torque; roll, pitch,

and yaw control is provided using cyclic and differential blade pitch control.

An aerodynamically deployable folding wing system is a key design feature

of the MTR. Both the wings and tail fold down and rest vertically while in hover

to minimize aerodynamic download. This is a key advantage for the MTR over

current tiltrotor concepts, which all have large download penalties. Large download

penalties lead to higher engine power requirements and lower payload capabilities.

When the MTR is in the airplane configuration, the wings are deployed and locked

into position. A relatively high aspect ratio wing allows for high efficiency in cruising

flight and a higher L/D ratio than for a helicopter. Using solely aerodynamic forces

to deploy the wings minimizes the weight that would be associated with any heavy

mechanical actuation devices. In airplane mode, roll is controlled by conventional

ailerons and pitch and yaw control is provided by the elevator and rudder on the

tail, respectively. During wing deployment, the ailerons and flaps on each wing may

be deployed to control the wing deployment rate, and also to ensure symmetric wing

deployment.

For efficient payload deployment, the MTR utilizes a crane-type, aerodynam-

ically streamlined suspended payload unit, which allows the aircraft to rapidly ac-
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quire and deploy a diverse range of payloads that include standard MILVAN con-

tainers. Illustrations of the MTR with its payload unit attached are shown in hover

and forward flight in Fig. 1.1. Note how the payload unit is fully encapsulated in a

drag reducing fairing.

A series of sizing and performance studies have been conducted under prior

research to evaluate the feasibility of the MTR design concept. The research fo-

cused on lift-to-drag estimation, wing sizing, mission parameter studies, and point

optimization for long range missions. The research showed that the MTR can be

designed to be capable of carrying 20 tons of payload over 1,000 nm. In comparison

to the same requirements for a conventional helicopter the MTR concept is 50%

smaller and 65% lighter [6]. However, this research assumes the technical feasibil-

ity of the coaxial tiltrotor, aerodynamically deployable wings, and the suspended

payload unit.

The design methodology used was based upon a conceptual rotorcraft design

code developed over several years at the University of Maryland [8]. The methodol-

ogy uses as inputs the mission requirements and design parameters to converge on

a solution for performance characteristics and weight breakdowns. A flow chart of

the methodology is shown in Fig. 1.2. The weight breakdown is calculated based, in

part, from historical weight data for rotorcraft and fixed-wing aircraft. For initial

sizing estimates, the mission requirements that include payload weight, range, at-

mospheric conditions, and hover times are used, along with rotor and engine design

inputs to perform initial aircraft sizing calculations. These initial estimates are fed

into the equations that calculate power requirements and fuel efficiency to calculate
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Figure 1.2: MTR flow chart methodology.

fuel burn. Fuel burn calculation is accomplished by iterating the initial sizing values

until an aircraft size is acquired that matches the calculated fuel requirements. Once

a convergence is reached on fuel burn, the initial sizing and performance results led

to a detailed component weight breakdown. The total empty weight of the vehicle

can then be calculated. This entire process is iterated until converging on a weight

efficiency that matches the overall vehicle size and weight.

Three different mission profiles were studied [8]. Each mission profile can

used to evaluate changes in parameters such as hover times, design cruise speed,

density altitudes and flight range on each mission leg. The first mission profile

corresponds to the MTR transporting a payload in a long range cruise. The second

mission profile is for a radius of action mission as shown in Fig. 1.3, here the MTR

transports a payload to a destination, hovers for sometime over the destination to

deliver the payload and then returns with an optional payload unit attached. The

third mission profile is where the MTR is in helicopter mode originally to fly to a
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Figure 1.3: MTR radius of action mission profile.

destination to pick up a payload unit and then enters the airplane mode to deliver

the payload unit to a destination.

An L/D estimation of the MTR is shown in Fig. 1.4, for both helicopter and

airplane flight modes. These calculations were for a radius of action mission with

the MTR carrying 20 tons of payload over 500 nm. It is shown that in helicopter

mode the L/D is relatively low, as expected, and is comparable to conventional

helicopters. In airplane flight modes however, L/D ratios as high as 14 can be

obtained. This demonstrates the significant advantage the MTR over conventional

rotorcraft concepts in terms of L/D ratio.

Figure 1.5 shows the empty weight of the MTR and hypothetical single and

coaxial rotor helicopters required to travel 1,000 nm with a given payload. It is shown

that the MTR’s empty weight is up to 65% less that of a conventional helicopter

concept for the same range and payload carrying requirements. The reason for this

is that significantly less installed engine power is required for flight. This significant

reduction in empty weight when compared to other rotorcraft concepts allows the

MTR to have much higher payload and range capabilities then other rotorcraft

concepts.
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Figure 1.4: Lift-to-drag ratio of the MTR in helicopter and airplane flight modes.

Figure 1.5: Predicted empty weight for the MTR to meet a 1,000 nm range require-

ment versus payload compared with hypothetical conventional (single) and coaxial

rotor helicopters.
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In part, the MTR also has a smaller empty weight because of its reduction in

rotor size in comparison to conventional single and coaxial helicopters. Figure 1.6

shows the required rotor diameters of the MTR and hypothetical single and coaxial

rotors required to carry a given payload a 1,000 nm range. Overall it is shown that

the MTR’s rotor can be up 50% smaller in diameter than a conventional helicopter

design for the same payload and range carrying requirements.

Figure 1.6: Predicted rotor size (diameter) for the MTR to meet a 1,000 nm range

requirement versus hypothetical conventional (single) and coaxial rotor helicopters.

Figure 1.7 compares the payload versus range capabilities of the MTR and

legacy helicopter designs. It is shown that current rotorcraft fall short of the pay-

load versus range capabilities of the MTR. The MTR is shown to be capable of

transporting 20 tons of payload over 1,000 nm, 27 tons of payload over 500 nm or

10 tons over 1,700 nm. Overall, it is shown that if technically realized the MTR

will have unprecedented payload versus range capabilities over current rotorcraft.
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Figure 1.7: Predicted payload/range graph for the MTR concept when compared

with legacy helicopter designs and to the V-22.

This makes the MTR an extremely valuable concept to consider for future rotorcraft

technologies.

While the MTR concept has great potential, to be technically realized the

aerodynamic deployment of the wings and transportation of a suspended payload at

high flight speeds needs to be studied and demonstrated. The current work focused

on these tasks. An overview of the present work covered in this thesis is as follows,

first a mathematical model was developed to calculate kinematic and dynamic be-

havior of the wings. A comprehensive equilibrium analysis was conducted using the

mathematical model to determine most likely wing hinge angles that would allow

for aerodynamic wing deployment. A wind tunnel study was then accomplished

to study aerodynamic wing deployment and measure lift, drag and moment forces

on the MTR in various static configurations. The mathematical model was further
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refined using data obtained in the wind tunnel study. The mathematical model

showed good correlation between measured and predicted static forces, as well as

for the dynamic behavior of the wings during deployment. This mathematical model

may eventually be incorporated into a full dynamic model of the MTR.

An analysis on the payload support structure using finite element model-

ing (FEM) was also undertaken. The FEM analysis was required to analyze the

suspended payload support structure under load to determine deformations and

stresses. This FEM model may also be incorporated into a full dynamic model to

analyze the MTR maneuvering while carrying a payload. There was concern that a

torsional coupling effect may be present in the payload support structure which may

lead to adverse flight characteristics. Therefore, in future work, this FEM model

will be very beneficial in designing the payload support structure.

The specific objectives of the work reported in this thesis were:

1. To develop a suitable mathematical model with sufficient fidelity to faithfully

describe the kinematic and dynamic behavior of the wings during deployment.

2. To successfully demonstrate through wind tunnel studies the controlled and

repeatable wing deployment.

3. Using the mathematical model be capable of predicting the lift, drag and

moments on the MTR in static flight configurations.

4. To create an FEM model of the payload support structure so it could be

incorporated into a full dynamic model of the MTR.
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Overall, controlled symmetric wing deployment was obtained and demon-

strated in the wind tunnel study. The mathematical model was capable of

calculating the static lift, drag and moment forces on the model and also the

dynamic behavior of the wings during deployment with good correlation to

measured data. The FEM model has been shown to be capable of predicting

forces, moments and deformations within the payload support structure while

under load.
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Chapter 2

Mathematical Model

The previous chapter gave an introduction to the MTR concept and the sig-

nificant design advantages of the MTR over current tiltrotor and rotorcraft designs.

The current chapter describes the selection of a wing hinge design that would meet

the geometric design requirements for the folding wings and tail. A majority of the

chapter is dedicated to a description of the development of a mathematical model

to be used to predict lift, drag and moments, as well as the dynamic behavior of the

wings and tail during deployment.

2.1 Wing Hinge Design

The first step in the design process was to determine a kinematically suitable

wing hinge geometry that would allow for the wings to rest vertically while in hover,

yet allow the wings to be fully deployed when in forward flight. It was important that

the wing hinge design be simple to save weight and minimize cost. It was noted that

carrier-based WW2 aircraft used wing hinges to allow the wings to fold to conserve

space. One plane in particular, the F-4F “Wild Cat” had a folding wing hinge that

was similar to the design criteria. Figure 2.1 shows a photo of the F-4F with its

wing folded and resting parallel to the fuselage of the aircraft. To investigate further

this wing hinge design concept, a trip was taken to the National Air and Space

Museum Paul E. Garber Restoration Facility where an F-4F is preserved. It was

discovered that the F-4F uses a pin and collar type wing hinge that is canted outward
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Figure 2.1: Photo of the F4-F Wildcat with wings in the folded position. (Photo

courtesy of the Naval Historical Center.)

towards the wings and foward towards the nose of the aircraft. This pin and collar

type joint could be incorporated for the present purposes. Hence, this wing hinge

configuration was used as a starting point in the development of a mathematical

model to investigate possible wing hinge angle combinations to achieve proper wing

deployment with the MTR.

2.2 Theoretical Development - Introduction

A primary objective of the present work was to develop a mathematical model

to calculate the response of the tail and wing positions of the MTR to changing
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aerodynamic forces. In a later section of this thesis, the validation of this model is

conducted against measurements that were made on a test article in the Glenn L.

Martin wind tunnel.

Even a cursory examination of Fig. 1.1 shows that the kinematics of the folding

wings are relatively complicated; in fact, the analysis of the problem necessarily

involves several coordinate transformations to define the position vector of a point

on the wing with respect to a datum or reference coordinate system. The prediction

of the aerodynamic angles of attack along the wings and tail will then allow for an

estimate of the aerodynamic forces and moments on the wings during their folding

sequence.

Two-dimensional wing strip theory was used to predict the wing and tail aero-

dynamics. Because the wing folding sequence involves large excursions in angle of

attack, the aerodynamics of the wing both below stall and in the post-stall condition

were represented. Airfoil lift, drag and pitching moment characteristics for a full

360◦ angle of attack range were used, and these data were introduced into the mod-

eling by means of a table look-up routine. The coefficient of lift, drag and pitching

moment versus angle of attack used is shown in Fig. 2.2. Intermediate values in

the table were obtained by linear interpolation. The net forces (lift and drag) and

moments on the wings were then obtained by spanwise integration. The induced

effects were accounted for in the model by means of an aspect ratio correction.
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(a)

(b)

(c)

Figure 2.2: Coefficient of lift, drag and pitching moment versus angle of attack used

in the mathematical model. (a) Lift coefficient; (b) Drag coefficient; (c) Moment

coefficient.
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2.2.1 Coordinate Systems

A fixed set of Cartesian coordinate systems was used to define the MTR’s

body, tail, wing hinge angle, and wing surface relative to each other. Using several

coordinate transformations, a vector defined in one coordinate system can be trans-

ferred to another coordinate system [9]. The Cartesian coordinate system for the

body, tail, and wing are shown schematically in Figs. 2.3, 2.4 and 2.5, respectively.

In what follows, the equations needed to determine the dynamic behavior of the

MTR as a system are described.

Figure 2.3: Placement and orientation of the MTR’s body Cartesian coordinate

system.
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Figure 2.4: Placement and orientation of the MTR’s tail Cartesian coordinate sys-

tem.

Figure 2.5: Placement and orientation of the MTR’s wing Cartesian coordinate

system.
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2.2.2 Transformation Matrices

The coordinate transformation matrix from the tail to the wing hinge coordi-

nates is given by

[SHT ] = [SH2][S21][S1T ] (2.1)

where

[S1T ] =



1 0 0

0 cosφH sinφH

0 − sinφH cosφH


(2.2)

[S21] =



cos θH 0 − sin θH

0 1 0

sin θH 0 cos θH


(2.3)

and

[SH2] =



cosψH sinψH 0

− sinψH cosψH 0

0 0 1


(2.4)

The net coordinate transformation, shown in Fig. 2.6, is defined first as the

required rotation about the x-axis by the angle φ, as given by Eq. 2.2, then about

the y-axis by the angle θ, as given by Eq. 2.3, and then about the z-axis by the angle

ψ, as given by Eq. 2.4. This transformation is necessary to rotate the orientation of

the tail coordinate system into the wing hinge coordinate system. It is important to

note that the angle ψH is the angle that defines the rotation (pivoting) of the wing

about the wing hinge. The angles φH and θH are fixed angles that define the wing

hinge in terms of its inclination.
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Figure 2.6: Coordinate transformation from tail to wing hinge.
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The coordinate transformation matrices that are used from the wing to the

wing hinge coordinate system as depicted in Fig. 2.7 are given by

[SHW ] = [SH2][S21W
][S1W ] (2.5)

where

[S1W ] =



1 0 0

0 cosφW sinφW

0 − sinφW cosφW


(2.6)

[S21W
] =



cos θW 0 − sin θW

0 1 0

sin θW 0 cos θW


(2.7)

and

[SH2] =



1 0 0

0 1 0

0 0 1


(2.8)
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Figure 2.7: Coordinate transformation from wing to wing hinge.

21



The coordinate transformation matrix from the body to the tail, depicted in

Fig. 2.8 coordinates is given by

[STB] =



cos θT 0 − sin θT

0 1 0

sin θT 0 cos θT


(2.9)

where the angle θT defines the tail rotation about the tail hinge.

The coordinate transformation matrix from the wing hinge to the wing coor-

dinate system is given by

[SWH ] = [SHW ]T (2.10)

Figure 2.8: Coordinate transformation from body to tail.
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This transformation is developed by taking the transpose of the coordinate trans-

formation matrix from the wing to the wing hinge coordinates.

The coordinate transformation matrix from the tail to the wing coordinate

system is given by

[SWT ] = [SWH ][SHT ] (2.11)

This is done by multiplying the transformation matrix used for the wing hinge to

the wing coordinates by the transformation matrix from the tail to the wing hinge

coordinates.

The transformation matrix from the body to the wing coordinates is given by

[SWB] = [SWT ][STB] (2.12)

The transformation matrix from the wing to the tail coordinates is given by

[STW ] = [SWT ]T (2.13)

Finally, the transformation matrix from the wing to the body coordinates is

given by

[SBW ] = [SWB]T (2.14)

2.2.3 Relative Velocity Vector

The velocity of the body defined in wing coordinates, is given by the equation

VW = [SWB]VB (2.15)

This equation is used to calculate the local flow velocity from the body velocity at

points along the wingspan.
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The vector RPW , which is defined in Eq. 2.17, is the distance from the center

of gravity of the body to a point located on the wing; it is transfered to the wing

coordinate system using the required matrix transformation. The vector R1 is the

distance from the center of gravity of the body to the horizontal tail hinge attach-

ment point, and is defined in body coordinates. The vector R2W
is the distance from

the tail hinge attachment point to the wing hinge, and is defined in tail coordinates.

The vector R3W
is measured from the wing hinge to a given point on the wing, and

is defined in wing coordinates.

For the following calculations made in the mathematical model, the reference

point on the wing is located at the 1/4-chord location along the span of the wing.

The vector RPW is given by

RPW = R1iB +R1jB +R1kB +R2iT +R2jT +R2kT +R3iW +R3jW +R3kW (2.16)

In terms of the wing coordinate system RPW is given by

RPW = [SWB]



R1X

R1Y

R1Z


+ [SWT ]



R2WX

R2WY

R2WZ


+



R3WX

R3WY

R3WZ


(2.17)

and the components of vector RPW are shown in the schematic in Fig. 2.9.
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Figure 2.9: Components of vector RPW .
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The angular velocity ΩW , which is defined as

ΩW = piB + qjB + rkB + θ̇TjT + ψ̇HkH (2.18)

In terms of the wing coordinate system ΩW is given by

ΩW = [SWB]



p

q

r


+ [SWT ]



0

θ̇T

0


+ [SWH ]



0

0

ψ̇H


(2.19)

this is the angular velocity of the vector RPW resulting from the roll, pitch, and

yaw rates of the aircraft, respectively; they are defined by p, q and r about the body

axes, for the work done in this thesis they are set to zero. Also taken into account

is the angular velocity about the tail hinge θ̇T , and the angular velocity about the

wing hinge ψ̇H . This angular velocity has been transformed to be in terms of the

wing coordinate system.

The change in ΩW as a function of time is given by

Ω̇W = [SWT ]



0

θ̈T

0


+ [SWH ]



0

0

ψ̈H


+ [ṠWT ]



0

θ̇T

0


+ [ṠWH ]



0

0

ψ̇H


(2.20)

Note that the pitch, yaw and roll rates have been omitted due to being zero for

these equations.

The velocity VPW , which is defined in Eq. 2.21 [10], is the velocity at a given

point on the wing resulting from the time rate of change of the vector RPW and

26



also from the angular velocity ΩW , i.e.,

VPW =
dRPW

dt
+ ΩW ×RPW (2.21)

The total velocity at a given point on the wing, which is the sum of the

components VPW and VW , is given by

VTOTPW
= VPW + VW (2.22)

The magnitude of the total velocity, which is required to calculate the aero-

dynamic forces over a given section of the wing, is given by

V∞
PW

=
√
V 2

TOTPWX
+ V 2

TOTPWZ
(2.23)

The corresponding dynamic pressure at a given section on the wing is given

by

q∞
PW

=
1

2
ρV 2

∞
PW

(2.24)

2.2.4 Sweep Angle Correction

The independence principle was used to calculate the airloads in the attached

flow regime, but a correction was used in stalled flow. The local wing sweep angle

relative to the flow is given by

Λ = arctan

(
VWY

VWX

)
(2.25)

The value of this parameter is used to calculate a post-stall lift coefficient correction

that takes account of the elevated lift coefficients on the wing with sweep. The angle
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of attack at a point on the wing that takes into effect the amount of wing twist per

length of the wing, as defined by δ, is given by

α
PW

= arctan

(
VTOTPWZ

VTOTPWX

)
− δ

(
YW

Le

)
(2.26)

The corrected lift coefficient beyond the static stall angle of attack [9] is given

by

CLcorr = CL

(
1

cos Λ

)
(2.27)

2.2.5 Unsteady Aerodynamics

Unsteady aerodynamic effects from the changing angle of attack as a function

of time was modeled using a correction from classical unsteady aerodynamic theory

[11]. An effective angle of attack αeff , was used to find the instantaneous lift, drag

and moments, where

αeff = αt −Xt − Yt (2.28)

and where the deficiency functions X and Y are given by

Xt = X(t−δt)e
−b1∆S + A1 ∆α e−b1(∆S

2
) (2.29)

Yt = Y(t−δt)e
−b2∆S + A2 ∆α e−b2(∆S

2
) (2.30)

with

∆S =
2V∆t

c
(2.31)

and

∆α = αt − α(t−δt) (2.32)
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and where the coefficients A1=0.165, A2=0.335, b1=0.0455, and b2=0.3 come from

the exponential approximation to Wagner’s function.

2.2.6 Wing Forces and Moments

The sectional lift, drag and pitching moment about the 1/4-chord at each

elemental section of the wing were then computed. The sectional lift is given by

dLPW = q∞
PW
CL

PW

√√√√1−
(
YW

Le

)2

c
PW

dLw (2.33)

where the term dLW represents the spanwise width of the elemental section, and

c
PW

is the local wing chord at that particular section of the wing (in general, the

wing is both twisted and tapered). For the drag, the corresponding equation is

dDPW = q∞
PW
CD

PW
c

PW
dLw (2.34)

and for the pitching moment the equation is

dMPW = q∞
PW
CM

PW
c2

PW
dLw (2.35)

The components of the sectional lift and drag were transfered into wing coor-

dinates corresponding to the normal (z) and tangential (x) components, which are

given by

dNWZ
= −dLPW cosα

PW
− dDPW sinα

PW
(2.36)

and

dTWX
= dLPW sinα

PW
− dDPW cosα

PW
(2.37)
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The summation of the normal and tangential sectional components of the wing

lift and drag in wing coordinates along the span of the wing is given by

NWZ
=

i=KW∑
i=1

dNWZ
(2.38)

and

TWX
=

i=KW∑
i=1

dTWX
(2.39)

In each case, the index i is the wing section number, where KW is the total number

of sections.

A vector from the wing hinge to the aerodynamic center of an elemental section

located on the left wing is shown in Fig. 2.10 and is given by the equation

RWAC
=



R3WX

R3WY

R3WZ


(2.40)

The sectional pitching moment produced at the wing hinge, as defined in wing

coordinates, resulting from the lift and drag acting at the aerodynamic center of a

given elemental wing section, is given by

dMLD = RWAC
×



dTWX

0

dNWZ


(2.41)

The total sectional moment produced from the lift, drag, and the moment
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produced about the aerodynamic center point at a given wing section is given by

dMTOT =



0

dMPW

0


+ dMLD (2.42)

The total weight of the wing, which is defined in wing coordinates, is given by

WCGW
= [SWB]



0

0

W


(2.43)

The moment produced (as defined in wing coordinates from the weight of the

wing) is given by

MCGW
= RCG ×WCGW

(2.44)

Notice that RCG is a vector from the wing hinge to the center of gravity point on

the wing, and is defined in wing coordinates.

Figure 2.10: Vector RCG from wing hinge to the center of gravity point on the wing

and vector RWAC
from the wing hinge to the aerodynamic center point on a wing

strip section.
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The total moment (in wing coordinates) from the summation of the sectional

moments produced from the lift, drag and moment about the aerodynamic center

acting down the span of the wing is given by

MTOTW
=

KW∑
i=1

dMTOT + MCGW
(2.45)

Notice that the total moment also includes the moment resulting from the wing

weight, MCGW
.

The total moment acting on the wing hinge in wing hinge coordinates, trans-

fered from the total moment that is acting on the wing in wing coordinates, is given

by

MTOTH
= [SHW ]MTOTW

(2.46)

The total forces acting on the MTR’s body from the lift and drag produced

from the two (left- and right-hand) wings is given by

NTB
= 2[SBW ]



TWX

0

NWZ


(2.47)

Notice that these forces are expressed in body coordinates.

2.2.7 Tail Forces and Moments

The vector, RPT , is defined from the body center of gravity to a point on the

tail and is given by

RPT = R1iB +R1jB +R1kB +RT2iT +RT2jT +RT2kT (2.48)
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Expressed in terms of the tail coordinate system RPT is given by

RPT = [STB]



R1X

R1Y

R1Z


+



RT2X

RT2Y

RT2Z


(2.49)

The vector R1 is from the body center of gravity to the tail hinge point and is

defined in body coordinates. Vector RT2 is a vector from the tail hinge to a point

located on the tail, and is defined in tail coordinates. The scalar components of

vector RPT are shown in Fig. 2.11.

The angular velocity ΩT , as defined by

ΩT = piB + qjB + rkB + θ̇TjT (2.50)

Expressed in term of the tail coordinate system ΩT is given by

Figure 2.11: Vector components of vector RPT .
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ΩT = [STB]



p

q

r


+



0

θ̇T

0


(2.51)

this is the angular velocity of the vector RPT resulting from the roll, pitch, and

yaw rates, respectively, as defined by p, q and r of the body, and also including the

angular velocity about the tail hinge θ̇T. This angular velocity is transformed so as

to be in terms of the tail coordinate system.

The time rate of change of ΩT is given by

Ω̇T =



0

θ̈T

0


(2.52)

the effects in the term Ω̇T due to the pitch, yaw and roll rates have been omitted

because they equal zero for the work done in this thesis.

The velocity of a point on the horizontal tail resulting from ΩT and the time

rate of change of the vector RPT is given by

VPT =
dRPT

dt
+ ΩT ×RPT (2.53)

The velocity of a point on the horizontal tail in tail coordinates resulting from

the velocity of the body VB is given by

VT = [STB]VB (2.54)

The total velocity for a given point on the tail is given by

VTOTPT
= VT + VPT (2.55)
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The resultant relative flow velocity required to calculate the lift, drag and

pitching moment of a given section on the horizontal tail is given by

V∞
T

=
√
V 2

TOTPTX
+ V 2

TOTPTZ
(2.56)

The angle of attack on a section of the horizontal tail is given as

α
PT

= arctan

(
VTOTPTZ

VTOTPTX

)
− β (2.57)

Notice that β is the angle of incidence (pitch angle) of the tail section. This value is

needed to model the aerodynamics of tail Section 2 (see next), which has a variable

(adjustable) pitch setting.

The dynamic pressure at a particular section of the tail is given by

q∞
T

=
1

2
ρV 2

∞
T

(2.58)

The total lift, drag, and pitching moment at a given section on the horizontal

tail are given by the equations

LT = q∞
T
CLT

ST (2.59)

DT = q∞
T
CDT

ST (2.60)

and

MT = q∞
T
CMT

ST cT
(2.61)

respectively. Notice that the velocity VPT is calculated at 1/4-chord of the given

tail section. Furthermore, notice that there are two tail sections: Section 1 refers to

the mid-section part of the tail, and Section 2 refers to the stabilator section, which

has a variable incidence. The term ST is the surface area of the particular section.
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The normal and tangential force components on the tail resulting from lift and

drag in the tail coordinate system are given by

NZT
= (−LT cosα

PT
−DT sinα

PT
) cos β (2.62)

and

TXT
= (LT sinα

PT
−DT cosα

PT
) cos β (2.63)

The lift and drag components on tail Section 1 in tail coordinates is given by

NTT1
=



TXT1

0

NZT1


(2.64)

The lift and drag components on tail Section 2 in tail coordinates is given by

NTT2
=



TXT2

0

NZT2


(2.65)

The weight of tail Section 1 (mid-section wing), expressed in tail coordinates,

is given by

WCGT1
= [STB]



0

0

WT1


(2.66)

The weight of tail Section 2 (tail components), expressed in tail coordinates,

is given by

WCGT2
= [STB]



0

0

WT2


(2.67)
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The weight of tail Section 3 (tail boom and structure components), again

expressed in tail coordinates, is given by

WCGT3
= [STB]



0

0

WT3


(2.68)

The moment produced on the tail hinge (in tail coordinates) from the lift and

drag produced from tail Sections 1 and 2 is given by

MLDTH
= R1T

×NTT1
+ R2T

×NTT2
(2.69)

The vector R1T
is a vector from the tail hinge to the aerodynamic center of Section

1. The vector R2T
is a vector from the tail hinge to the aerodynamic center of

Section 2.

The moment (in tail coordinates) about the tail hinge from the weight of the

tail components is given by

MCGTH
= RCGT1

×WCGT1
+ RCGT2

×WCGT2
+ RCGT3

×WCGT3
(2.70)

The vectors RCGT1
, RCGT2

, and RCGT3
are the vectors from the tail hinge to the

center of gravity locations of tail Sections 1, 2 and 3, respectively.

The moment in tail coordinates about the tail hinge from the moments pro-

duced about the aerodynamic centers of tail Sections 1 and 2 is given by

MACTH
=



0

MT1

0


+



0

MT2

0


(2.71)
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The moment produced on the tail hinge (in tail coordinates) from the wing

moment that acts on the wing hinge and then onto the tail is given by

MTHM
= 2[STW ]MTOTW

(2.72)

Notice that this moment is multiplied by two to account for both the left- and

right-hand wing panels.

The force acting on the tail at the wing hinge angle location because of the

lift and drag acting on the wing is given by

FWLD
= [STB]NTB

(2.73)

This force is then transfered into tail coordinates.

The force acting on the tail at the wing hinge angle location resulting from

the weight of a wing is

FCGW
= [STW ]WCGW

(2.74)

Again, this force is transfered into the tail coordinates.

The sum of the moments acting on the tail hinge in tail coordinates from the

lift and drag forces on the wings, and also from the wing weight, is given by

MTHW
= RTH × 2FWLD

+ RTH × 2FCGW
(2.75)

Notice that these moments are again multiplied by two to account for the contribu-

tions from both wings.

The total moment acting on the tail hinge from summation of the moments

as described previously is given by

MTOTTH
= MLDTH

+ MCGTH
+ MACTH

+ MTHM
+ MTHW

(2.76)
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2.2.8 Inertia Calculations

The acceleration of a point on the wing in wing coordinates is given by

APW = Ω̇W ×RPW + ΩW × (ΩW ×RPW ) (2.77)

+2ΩW × dRPW

dt
+
d2RPW

dt2

where ΩW is defined in Eq. 2.19, Ω̇W is defined in Eq. 2.20 and RPW is defined in

Eq. 2.17 and is shown in Fig. 2.9.

The acceleration for a point on the tail in tail coordinates is given by

APT = Ω̇T ×RPT + ΩT × (ΩT ×RPT )

+2ΩT ×
dRPT

dt
+
d2RPT

dt2
(2.78)

where ΩT is defined in Eq. 2.51, Ω̇W is defined in Eq. 2.52 and RPT is defined in

Eq. 2.49 and is shown in Fig. 2.11.

The calculation of the inertia terms for the wing about the wing hinge angle

location, as expressed in wing coordinates, is given by

IW =

Lw∫
0

MAW
(L) (APW ×RWAC

) dLw (2.79)

in discretized form using the trapezoidal method of integration over each wing sec-

tion the inertia of the wing about the wing hinge is given by

IW =
i=KW∑

i=1

k ∆MAW
∆Lw (APW ×RWAC

) (2.80)

Notice that the term ∆MAW
is the section mass of the wing section, and ∆Lw

is the elemental width of the wing section. Vector RWAC
is a vector from the wing
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hinge to the aerodynamic center of a wing section. This formula is based on the

use of the trapezoidal method of integration, therefore, k = 0.5 if i = 1 or i = KW ,

where KW is the total number of elemental wing sections.

The inertia of the tail about the tail hinge expressed in tail coordinates is given

by

IT =

Lw∫
0

MAT
(L) (APT ×RT ) dLeT

(2.81)

in discretized form using the trapezoidal method of integration over each tail section

the inertia of the tail about the tail hinge is given by

IT =
i=KT∑
i=1

k ∆MAT
∆LeT

(APT ×RT ) (2.82)

The term ∆MAT
is the section mass of the tail section, and ∆LeT

is the elemental

length of the tail section. Vector RT is a vector from the tail hinge to the mass

location of a tail section. The term KT is the total number of elemental tail sections.

Again, k = 0.5 if i = 1 or i = KT .

2.2.9 Differential Equations of Motion

The final differential equations that describe the angular displacements and

acceleration, respectively, about the wing hinge and tail hinge from the inertia of

these bodies and also the moments produced about the hinge locations [10], are

given by
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

0

0

MTOTHZ


= [SHW ]

i=KW∑
i=1

k dMAW dLw

(
Ω̇W ×RPW + ΩW × (ΩW ×RPW )

+2ΩW × dRPW

dt
+
dR2

PW

dt2

)
×RWAC

(2.83)

and



0

MTOTTHY

0


=

i=KT∑
i=1

k dMAT dLeT

(
Ω̇T ×RPT

+ΩT × (ΩT ×RPT ) + 2ΩT ×
dRPT

dt
+
dR2

PT

dt2

)
×RT (2.84)

These equations describe the change in angular momentum from the moments

acting on the wing and tail hinges. The equations were solved using ode 45, which

is a non-stiff, ordinary differential equation solver. Inside these equations are the

terms for θ̈T and ψ̈H , using these terms the equations can be converted into a first

order form. The output gave the angular velocity and position about both the tail

hinge and wing hinge as defined by the matrix Y given below

Y = [θT , θ̇T , ψH , ψ̇H ] (2.85)

where θT is the angular position about the tail hinge, θ̇T is the angular velocity

about the tail hinge, ψH is the angular position about the wing hinge and ψ̇H is the
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angular velocity about the wing hinge.

The initial conditions required to solve the differential equations are the rota-

tion angle of the wing, ψH and the tail angle θT, when no aerodynamic forces are

applied, which can be solved for by first setting the relative velocity of the body

to zero to make the aerodynamic forces zero. The only forces acting on the wing

and tail will then be from gravity, and the wings and tail will pivot freely to reach

their equilibrium positions. The resulting wing and tail positions were then used as

initial conditions. The initial angular velocity about the tail and wing hinges were

set to zero.

Using this mathematical model the time dependent dynamic behavior of wings

and tail from aerodynamic forcing could be solved. Additionally the lift, drag and

moments on static configurations of the MTR could be easily calculated as well.
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Chapter 3

Equilibrium Analysis

The previous chapter discussed the development of a mathematical model to

predict the dynamic behavior of the wings and tail during deployment, as well as

calculating the lift, drag and moment forces on static configurations of the MTR. The

current chapter describes how a simplified version of the mathematical model can

be used to conduct an equilibrium analysis to predict optimal wing hinge geometry

for aerodynamic wing deployment. The goal of this chapter was to determine two

optimal wing hinge angle settings that would most likely allow for full aerodynamic

wing deployment.

3.1 Computer Aided Design Model

Using Computer Aided Design (CAD) modeling, an initial range of wing hinge

angle settings were determined that would allow for the geometric constraints of the

wings having to fold down and hang vertically during hover, and also to be in the

correct position when deployed during flight.

The mid-section wing and the left wing was modeled and attached to each

other using a pin and collar type wing hinge. Figure 3.3 shows example of the

model being used to look at the geometric positions of the wing and mid-section

wing during deployment. The position of the wing hinge about which rotation takes
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place can be defined by two angles, the rotation of the hinge around its x-axis

through an angle, φH, and the rotation of the hinge around its y-axis, θH, these

angles are depicted in Figs. 3.1 and 3.2, respectively. Both of these angles define the

wing hinge orientation, and are measured with respect to the coordinate system of

the tail. Using the CAD model, the range of wing hinge angles to allow for geometric

and kinematic feasibility was determined to be 25◦ ≤ φH ≤ 50◦ and 25◦ ≤ θH ≤ 50◦.

Figure 3.1: Front view of the outward orientation of the wing hinge axis by angle

φH.

Figure 3.2: Side view of the rearward orientation of the wing hinge axis by angle

θH.

3.2 Mathematical Model for Equilibrium Analysis

During the time period this work was being accomplished wing hinge angles

had to be selected in order to allow them to be manufactured in time for the wind

tunnel study. The full dynamic model was still under development, however the

model was capable of calculating the aerodynamic forces and moments on tail and
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(a)

(b)

(c)

Figure 3.3: Example of CAD model used to determine geometrically feasible wing

hinge angles: (a) Wing and mid-section wing hanging vertically during hover; (b)

Wing and mid-section wing during the deployment process; (c) Wing and mid-

section wing fully deployed.
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wing, and was also capable of calculating the moment about the wing and tail

hinges. To determine the wing hinge angles most likely to allow for successful wing

deployment, a static equilibrium analysis was implemented using the mathematical

model described in Chapter 2 to determine the wing and tail settling positions

at a given airspeed. These positions were determined by calculating the moment

on the tail hinge and wing hinge as the wing and tail deploy, and determining

where they equalled zero. In each case, the hinge was located at the 4/10-chord

point so that the lift acting at the aerodynamic center (near 1/4-chord) would

cause a deployment rotational moment about the hinge. The mathematical model

showed that for a given airspeed the wing and tail would deploy as long as there

was a positive deploying moment about wing and tail hinges. The wings and tail

would continue to deploy until they reach their settling position where the resultant

moment on the wing and tail hinge would equal zero. A zero moment on the wing

and tail hinge implies that the moments produced by gravity are exactly balanced

by the moments from the aerodynamic forces. Therefore, the wings and tail would

remained fixed at these equilibrium positions. This model was developed under the

assumption that the system was both statically and dynamically stable. That is

if the wings and tail were at their equilibrium positions and were perturbed, then

they would would then return back to their original equilibrium positions and not

diverge.
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3.3 Results from the Equilibrium Analysis

Using this static equilibrium analysis, the geometrically feasible wing hinge

angles in the ranges 25◦ ≤ φH ≤ 50◦ and 25◦ ≤ θH ≤ 50◦ were evaluated over 5◦

increments. The settling positions of the tail and wing where plotted for given wing

hinge configuration for airspeeds between 10 and 135 ft/sec. The most likely wing

hinge angles that allowed for full aerodynamic deployment were then determined by

evaluating those wing hinge angles that allowed the wing to become the closest to

fully deployed.

Figure 3.4 shows a plot of roughly how close the wings came to predicted

deployment for the evaluated wing hinge angles. The fully deployed wing position

is ψH = 0◦ and a fully deployed tail position is θT = 0◦. The results show that

the best wing hinge angle configurations to allow the wing to become the closest

to fully deployed were in the range 35◦ ≤ φH ≤ 40◦ and 25◦ ≤ θH ≤ 40◦. From

this evaluation, the hinges that were finally selected for experimental testing were

(φH,θH)=(−35◦, 30◦) and (φH, θH) = (−40◦, 40◦).

The equilibrium positions for the wing and tail versus airspeed for these two

wing hinge angles are shown in Figs. 3.5 and 3.6, respectively. The results show

that as the airspeed is increased, the tail progressively comes closer to being fully

deployed. In some cases the wings were shown to nearly fully deploy, however,

past this point it was predicted that as the tail continues to deploy the wings will

de-deploy. This de-deployment of the wings was later observed in the wind tunnel

studies, and is a result of the wings not being able to provide sufficient lift because
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of the decreasing angles of attack and hence decreasing lift through the kinematics

of the entire system as the tail drops down.

For comparison, Fig. 3.7 shows the results for the wing hinge angle of (φH, θH) =

(−30◦, 25◦), where it can be seen that this wing hinge angle is not the best choice.

This is because the closest the wings reach to deployment is 47◦ before the wings

de-deploy because of the reduced angles of attack caused by tail deployment.
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Figure 3.4: Subset of the most likely wing deployment positions over the range of

geometrically feasible wing hinge angles.
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Figure 3.5: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−35◦, 30◦).

Figure 3.6: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−40◦, 40◦).
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Figure 3.7: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−30◦, 25◦).

The additional equilibrium plots covering the full range of 25◦ ≤ φH ≤ 50◦ and

25◦ ≤ θH ≤ 50◦ are shown in Appendix A. In some of the plots, especially at the outer

boundaries of the geometrically feasible wing hinge angle settings, the mathematical

model was not able to converge on a wing or tail equilibrium position. This was

particular noticeable around the point at which the wings de-deploy because of the

deployment of the tail, as discussed previously. In the next chapter, a description

of the wind tunnel study on a sub-scale model using the two optimal wing hinge

angles is conducted.
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Chapter 4

Wind Tunnel Experiment

In the previous chapter the mathematical model was used to conduct an equi-

librium analysis to select two optimal wing hinge angle settings most likely to allow

for wing deployment. This chapter discusses the tests that were conducted in the

wind tunnel study using the two optimal wing hinge angle settings on a sub-scale

model. Also discussed is the drag measurements that were made on the suspended

payload units.

The folding wings and the tail of the sub-scale model of the MTR (which

has been called the Parametric Research Model or PRM) were tested in the Glenn

L. Martin wind tunnel (GLMWT). A photograph of the PRM with the suspended

payload unit attached is shown in Fig. 4.1. A primary goal of the testing was to

demonstrate the aerodynamic self-deployment of the wings, without any oscillatory

or divergent motion.

Displacement transducers positioned in both wing hinges, tail and tail-plane

were used to out put a voltage related to their displacements. A customized LabViewTM

program was developed, which allowed for both the continuous monitoring and

recording of all parameters. These voltages are first conditions through an amplifier

to remove any noise, sampled using a 12-bit analog-to-digital converter, and then

recorded using the LabViewTM software.
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Figure 4.1: Photograph of the complete wind tunnel model in the Glenn L. Martin

wind tunnel.
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To calibrate the wing hinge displacement transducers, their voltages were

recorded for a series of fixed wing positions. To set the wings at these positions,

they were positioned so that there is a certain distance between two defined points

on opposite sides of the wing hinge. The distance between the two defined points

to correspond with a given wing position was calculated from a CAD model of the

PRM. Next, the wings were positioned at these defined positions and the voltages

recorded. The tail and tail-plane displacements transducers were calibrated in a

similar manner, however their angular positions were measured using a digital level,

which measured their angle of inclination. By recording the transducer’s voltage

output for a series of known wing, tail and tail-plane positions, calibration graphs

were determined. From the calibration graphs, suitable curve fits where made to

relate the voltage and angular position of a particular parameter. The mathematical

formulas describing the curve fits were then entered into the developed LabViewTM

program. This allowed for an output of angular position.

For the wind tunnel study the PRM was suspended beneath a beam at the

ceiling of the wind tunnel. The beam was supported by two pillars on each side of

the wind tunnel and these pillars are attached to the balance. The balance measured

the three forces and three moments corresponding to a cartesian coordinate system.

Balance loads were made with the model in several configurations and for several

different operating conditions. Gravity tares were taken for all configurations. A

summary of the balance run log is given in Fig. 4.3. Note that Runs 4–10 have been

omitted because these became dynamic deployment tests and balance data were not

used.
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Figure 4.2: LabView program used during testing.
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Balance Data Log

Run No. Wing angle Stab. angle L aileron R aileron Wind speed Test details and comments
(deg.) (deg.) (deg.) (deg.) (ft/s)

1 n/a 0 n/a n/a 35 – 60 Tailboom only. Cl data suspect
2 65 0 0 0 35 – 60 Locked wing panels, 10-30 deg range tail position
3 65 0 0 0 35 – 60 Load cell failed & removed, locked wing panels

11 60 0 0 0 50 Wings locked, 50 ft/s
12 60 0 0 0 60 Wings locked, 60 ft/s
13 45 0 0 0 50 Wings locked, 50 ft/s
14 45 0 0 0 60 Wings locked, 60 ft/s
15 45 0 20 20 50 Wings locked, 50 ft/s
16 45 0 20 20 60 Wings locked, 60 ft/s
17 45 0 15 15 50 Wings locked, 50 ft/s
18 45 0 15 15 60 Wings locked, 60 ft/s
19 25 0 0 0 50 Wings locked, 50 ft/s
20 25 0 0 0 60 Wings locked, 60 ft/s
21 10 0 0 0 50 Wings locked, 50 ft/s
22 10 0 0 0 60 Wings locked, 60 ft/s
23 45 0 0 0 50 Wings locked, fences on, 50 ft/s
24 45 0 0 0 60 Wings locked, fences on, 60 ft/s
25 45 0 -5 -5 50 Wings locked, fences on, 50 ft/s
26 45 0 -5 -5 60 Wings locked, fences on, 60 ft/s
27 45 0 0 0 50 Wings locked, fences on, small payload unit, 50 ft/s
28 45 0 0 0 60 Wings locked, fences on, small payload unit, 60 ft/s
29 25 0 0 0 50 Wings locked, fences on, small payload unit, 50 ft/s
30 25 0 0 0 60 Wings locked, fences on, small payload unit, 60 ft/s
31 10 0 0 0 50 Wings locked, fences on, small payload unit, 50 ft/s
32 10 0 0 0 60 Wings locked, fences on, small payload unit, 60 ft/s
33 10 0 0 0 50 Wings locked, fences on, large payload unit, 50 ft/s
34 10 0 0 0 60 Wings locked, fences on, large payload unit, 60 ft/s
35 25 0 0 0 50 Wings locked, fences on, large payload unit, 50 ft/s
36 25 0 0 0 60 Wings locked, fences on, large payload unit, 60 ft/s
37 45 0 0 0 50 Wings locked, fences on, large payload unit, 50 ft/s
38 45 0 0 0 60 Wings locked, fences on, large payload unit, 60 ft/s
39 0 0 0 0 50 Wings fully deployed, fences on, large payload unit, 50 ft/s
40 0 0 0 0 60 Wings fully deployed, fences on, large payload unit, 60 ft/s
41 10 0 0 0 50.5 Wings locked, fences on, 50.5 ft/s
42 25 0 0 0 50.5 Wings locked, fences on, 50.5 ft/s
43 45 0 0 0 50.5 Wings locked, fences on, 50.5 ft/s
44 45 5 0 0 50.5 Wings locked, fences on, 50.5 ft/s
45 45 -15 0 0 50.5 Wings locked, fences on, 50.5 ft/s
46 n/a 0 0 0 50.5 Wings and hinges removed, center wing only, 50.5 ft/s
47 45 0 0 0 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
48 25 0 0 0 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
49 10 0 0 0 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
50 0 0 0 0 50.5 2nd hinge, wings fully deployed, fences on, 50.5 ft/s
51 45 5 10 -10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
52 45 -15 10 -10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
53 25 -15 -10 10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
54 25 5 -10 10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
55 45 0 -10 10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
56 45 0 10 -10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
57 10 0 10 -10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
58 10 0 -10 10 50.5 2nd hinge, wings locked, fences on, 50.5 ft/s
59 10 0 0 0 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
60 10 0 -10 10 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
61 25 0 -10 10 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
62 25 0 0 0 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
63 45 0 0 0 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
64 45 0 -10 10 50.5 Model yawed 3 degrees to starboard, 50.5 ft/s
65 0 0 0 0 50.5 Solid wing ONLY
66 0 0 0 0 50.5 Solid wing, large payload, 50.5 ft/s
67 n/a 0 n/a n/a 50.5 Tailboom only. Repeat of Run 1
68 n/a n/a n/a n/a q sweep Model support + struts + large payload unit
69 n/a n/a n/a n/a q sweep Model support ONLY
70 n/a n/a n/a n/a q sweep Model support + struts + small payload unit
71 n/a n/a n/a n/a q sweep Model support + 2 vertical struts only

Figure 4.3: Run log for balance data.
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4.1 Static Measurements

The first set of tests measured the lift, drag and moments acting on the just

the tail of the PRM for a range of tail positions between 0◦ and 90◦ in 2◦ increments.

A photograph of just the tail assembly is shown in Fig. 4.4. Next, this same test

was repeated with the addition of the mid-section wing. The wings were then added

and the test repeated for both wing hinge angle configurations and with the wings

locked at 0◦, 10◦, 25◦ and 45◦. This allowed the aerodynamic forces and moments

to be measured as a function of tailboom position; these results were essential for

the validation of the mathematical model describing the deployment process.

Measurements were made with both sets of wing hinges. Representative pho-

tographs of the PRM with the wings locked at the 25◦ position and the 45◦ position

are shown in Figs. 4.5 and 4.6, respectively.
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Figure 4.4: Photograph of the tail assembly of the PRM, with tail locked up in the

fully deployed position.
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Figure 4.5: Wings installed on the PRM and locked at the 25◦ position.
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Figure 4.6: Wings installed on the PRM and locked at the 45◦ position.
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4.2 Dynamic Measurements

A significant number of experiments were conducted to examine the dynamic,

free deployment of the wings. This included the effects of wind speed, tail position,

and aileron settings. Several combinations of conditions were found to produce

successful wing deployment.

In the first instance, the friction locks on the wings were released, but retight-

ened to values that allowed for some damping. The damping was checked by per-

forming a “drop test” on both wings, where they were held almost at their fully-

deployed position with the wind off and then simultaneously released. The wind

speed was then increased to 55 ft/sec and tail raised to the deployed position of 0◦.

The tail was then lowered down at a constant rate until the wings deployed up into

position, this usually occured at a tail position of approximately 30◦. The dynamic

responses of both wings were measured, and the damping on the hinges was then

adjusted to achieve both the required value of damping, as well as a symmetric

response with both wing panels responding essentially identically. The use of some

positive (downward) aileron deflections was found to aid in the wing deployment,

mainly by producing deployment at a lower tailboom angle and/or at a lower wind

speed. Some minor differential deployment of the ailerons also helped to ensure

symmetric wing deployment.

Representative results of the deployment are shown in Fig. 4.7, which are

a series of still images taken from the digital video tape. The wings were found

to deploy relatively slowly at first (either with increasing tailboom angle or with
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Sequence of still images taken from the digital video showing the wing

deployment: (a) Wings at approximately 70◦; (b) Wings at approximately 60◦;

(c) Wings at approximately 40◦; (d) Wings at approximately 30◦; (e) Wings at

approximately 20◦; (f) Wings fully deployed.
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increasing airspeed), but thereafter they deployed relatively quickly (over a period

of about 3 seconds) and locked into their final position.

Mini-tufts were also applied to the wings, which showed the development of

stall patterns as the wings passed through critical angle of attack and sweep angle

regions. It was immediately apparent that flow separation from the inboard wing

panel and at the wing hinges and joints was causing the inboard regions of the

outer wing panels to stall prematurely, losing lift and increasing drag. This was

rectified by the addition of fences on the outer wing panels that were located just

outboard of the wing hinges; these fences created a stable vortex flow and were

extremely effective in delaying premature flow separation on the outer wing panels.

The fences were also found to give to a much more controlled and repeatable wing

deployment, and were thus retained for the remainder of the tests.

4.3 Payload Units

Figures 4.8 (a) and (b) show photographs of the MTR in the wind tunnel

with the small and large payload units attached. A series of flow visualization

experiments were conducted to examine flow patterns on the payload units. A

mixture of titanium dioxide power and mineral oil was smeared evenly over each

unit. The wind was turned on for 5 minutes to allow the flow patterns to develop,

and then photographs were taken with the wind off. A photograph of the small

payload unit with developed flow patterns is shown in Fig. 4.9.

It is apparent from the photographs that there is laminar flow over the fore-
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(a)

(b)

Figure 4.8: MTR in windtunnel with: (a) small payload unit attached; (b) large

payload unit attached.

body up until it meets the corner where it attaches with the rectangular payload

box – see Fig. 4.10. At this point, a laminar separation bubble can be noted. The
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flow downstream of the laminar separation bubble reattaches as a turbulent bound-

ary layer. The flow is then shown to stay attached a short distance downstream

before separating. Approximately 60 % of flow over the payload unit was separated.

Secondary flow structures can be noted at the tail and tail cone – see Fig. 4.11.
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Figure 4.9: Example of oil flow visualization on the small payload unit.
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Figure 4.10: Detail of oil flow visualization at the nose of the small payload unit.
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Figure 4.11: Detail of oil flow visualization at the tail of the small payload unit

showing separated flow.
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Figure 4.12: Breakdown of measured drag force for support, struts, small payload

and large payload.

The measured drag force for the small and large payload units in comparison

to an untreated rectangular container is shown in Fig. 4.12. From the measured

data it appears that the large payload section produces slightly more drag then the

small payload unit. The large payload produced slightly more drag because it was

longer and hence produced more skin friction drag. A majority of the drag for both

the small and large payload units can be attributed to pressure drag. It is shown

that overall by incorporating rounded leading and trailing edges into the payload

unit the total drag in comparison to an untreated container (flat leading and trailing

edges) is less than half [12].
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Chapter 5

Discussion of Results

The previous chapter discusses the tests that were conducted in the wind tun-

nel study. In this chapter the results from measurements with static configurations

of the sub-scale model are compared to the predicted results obtained with the

mathematical model. The goal was to show that the mathematical model is capable

of predicting lift, drag and moment forces with good correlation to the measured

data.

5.1 Tail and Mid-Section Wing

The predicted and measured lift, drag, and pitching moment for just the tail,

and for the tail and mid-section wing are shown in Figs. 5.1 and 5.2, respectively.

The correlation to the measured data was improved after a series of corrections

to the lift curve slope data in the mathematical model were used to account for

the finite aspect ratio, lower Reynolds number, and three-dimensional interference

effects.

Figure 5.1 shows the lift, drag, and moment plots for the measured and

calculated data with the tail only. There is good correlation of the model with

measurements of the lift and drag over the range of 0◦ to 90◦ tail boom position. A

small difference between measured and calculated data was noted around the 20◦
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tail boom position, which corresponds to the onset of stall on the tail. The pitch-

ing moment data also correlates well, there being only a slight difference between

measured and calculated data at high angles of attack.

Figure 5.2 shows the lift, drag and moment for the mid-section wing and tail.

The predicted and measured data correlates very well up until the tail stalls and

the flow separates on the mid-section part of the wing. In the post-stall regime,

the predicted and measured drag force and pitching moments differed, especially

at the highest angles of attack. These differences are primarily associated with

the mid-section part of the wing, which based on flow visualization involved three-

dimensional flow separation and stalled regions.
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(a)

(b)

(c)

Figure 5.1: Lift, drag and pitching moment produced from the tail only versus tail

boom position.
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5.2 Full Configuration with Outer Wing Panels

As described in the previous section, several sets of balance measurements

were made with the wings locked at fixed positions. This allowed the quasi-steady

aerodynamic forces and pitching moments to be measured as a function of tailboom

position.

With the wings fully deployed, the force and pitching moment characteristics

were found to be typical of any finite wing. The deployment of the wings from

their locked position changes the relationship between the wing angle of attack and

the tailboom position, and so a series of different force and moment curves were

obtained for different fixed wing positions. There was also a substantial increase in

drag as the wing deploys; this is partly a result of the complex three-dimensional

flow separation that occurs at the wing joint.

Figure 5.3 shows the lift, drag, and moment coefficient results with the wings

locked at 0◦ with a wing hinge angle setting of (φH, θH) = (−40◦, 40◦). There

is overall a good correlation between the predictions and the measurements, but

again, in the post-stall region some differences were noted.

Figure 5.4 shows the lift, drag and moment coefficient plots with the wings

locked at 10◦ with a wing hinge angle setting of (φH, θH) = (−40◦, 40◦). The lift

curve slope predictions here showed an excellent correlation with the measurements

up until stall. The drag and moment results also showed good correlation up until

stall, which was encouraging despite the complexities of the flow state and the

relative simplicity of the mathematical model (aerodynamic strip theory).
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(a)

(b)

(c)

Figure 5.2: Lift, drag and pitching moment produced from the tail and mid-section

wing only versus tail boom position.
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Figure 5.5 shows the lift, drag and moment plots with the wings locked at

25◦ with a wing hinge angle setting of (φH, θH) = (−40◦, 40◦). In this case there

were slight differences noted between the measured and calculated results. The

differences can be associated with the increasing hinge gap.

Figure 5.6 shows the lift, drag and moment plots with the wings locked at 45◦

with a wing hinge angle setting of (φH, θH) = (−40◦, 40◦). The difference seen be-

tween the measured and calculated lift, drag, and moment data continue to increase

with increased wing hinge angle setting. These differences can be attributed to the

interference effects that are created resulting from flow separation at the wing joint

and also because of the high wing sweep angle, which generates significant spanwise

flow and three-dimensional post-stall airloads. Also note that the wing lift break

(stall) occurs at around the 35◦ tail boom position.

75



(a)

(b)

(c)

Figure 5.3: Lift, drag and pitching moment versus tail boom position. Wings locked

at 0◦, wing hinge angle of (φH, θH) = (−40◦, 40◦).
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(a)

(b)

(c)

Figure 5.4: Lift, drag and pitching moment versus tail boom position. Wings locked

at 10◦, wing hinge angle of (φH, θH) = (−40◦, 40◦).
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(a)

(b)

(c)

Figure 5.5: Lift, drag and pitching moment versus tail boom position. Wings locked

at 25◦, wing hinge angle of (φH, θH) = (−40◦, 40◦).
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(a)

(b)

(c)

Figure 5.6: Lift, drag and pitching moment versus tail boom position. Wings locked

at 45◦, wing hinge angle of (φH, θH) = (−40◦, 40◦).
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Figure B.1 shows the lift, drag and moment plots for the model with the

wings, midsection-wing and tail. The wings are locked at 0◦ and the wing hinge

angle setting is (φ, θ) = (−35◦, 30◦). There is overall good data correlation, post

stall some difference is noted between the measured and calculated lift data.

Notice that, overall, the predicted results and the measured data agree very

well, especially when the wings are set between 0◦ and 25◦. When the wings are set

at 45◦, there are large three-dimensional aerodynamic effects on the configuration,

and the correlations between the predictions and the measurements are not quite as

good, especially at large tail boom angle settings. This is because of the high angles

of attack the wings, mid-section, and tail are all experiencing along with the wing

sweep angle and flow interference that is created at the wing joint. The results for

the second set of wing hinge angles, (φ, θ) = (−35◦, 30◦) are included in Appendix

B. Overall the results for the (φ, θ) = (−35◦, 30◦) wing hinge angle closely matched

those of the (φ, θ) = (−40◦, 40◦) wing hinge angle.
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Chapter 6

Dynamic Deployment

6.1 Wing Hinge Friction Model

In the previous chapter the lift, drag and moment forces for static configu-

rations where measured and compared to the predicted data. In this section, the

predictions of the dynamic response of the free wings is considered. The development

of a friction and damping model of the wing hinge proved critical to the successful

prediction of the dynamic response. The wing hinge on the PRM is constructed

with a pin and collar type joint that is lapped into position, but this still creates

some friction.

Figure 6.1 shows the measured wing position for a wing drop test of the right

wing. The model was created to try to accurately match the measured data from

the wing drop tests, however it has proved difficult to do so with any kind of simple

model.

The hinge friction was calculated by solving for the normal force acting on the

wing hinge, and multiplying it by a coefficient of friction. The forces acting on the

wing hinge can be calculated using the equation

FH = [SHW ]



TWX

0

NWZ


+ [SHW ]WCGW

(6.1)
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The normal force, FN , is the z-component of FH . The coefficient of friction,

C
FRIC

, depends upon the angular velocity about the wing hinge axis. If the angular

velocity is zero, a static friction coefficient is used. If the angular velocity about

the wing hinge axis is non-zero, a kinetic friction coefficient is used. In general, the

kinetic friction coefficient is less than the static friction coefficient. The moment

produced about the wing hinge by friction is

M
FRIC

= FN C
FRIC

sgn(ψ̇H) (6.2)

Many variables that are involved in calculating the wing hinge friction are too

complex to model using this simple method [13]. The uncertainties in modeling

include the proper representation of the shearing and normal forces, and bending

moments as a function of the wing and tail positions. These forces and moments

create areas of locally high shear and normal force within the wing hinge, and hence

more friction is produced. While the friction was minimized using a graphite-based

lubricant, it was not totally eliminated. Furthermore, the area in contact within

Figure 6.1: Measured wing position for a “drop test” of the right wing.
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the wing hinge changes as a function of wing position about the hinge. Because of

the geometry built into the wing hinge, the variation in these quantities is rather

complicated. All of these uncertainties lead to friction effects that were observed

during wind tunnel testing.

To examine the wing hinge damping, a series of calculations were conducted to

simulate “drop tests.” The wings were held in their almost fully-deployed condition

with the wind off, and then dropped freely under the action of gravity alone, the

tail was positioned and remained at 10◦.

Figure 6.2 shows the effect of increasing the kinetic friction coefficient when the

static friction coefficient is zero. It was found that as the kinetic friction coefficient is

increased the time it takes for the wing to damp out to its final position is decreased

as expected. Furthermore, the maximum amplitude of displacement of the wing

position also decreases with increased kinetic friction coefficient.

Figure 6.3 shows the effect of increasing the static friction coefficient and

Figure 6.2: Wing drop test calculation with different kinetic friction coefficients.
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Figure 6.3: Wing drop damping calculation with different static friction coefficients.

holding the kinetic friction coefficient constant at a value of 0.10. When the static

friction coefficient is 0.125 and 0.25, the final resting position of the wing is 81◦ and

51◦, respectively. These calculations demonstrate how the final resting position of

the wings under gravity alone are influenced by any static friction present in the

wing hinge.

6.2 Dynamic Deployment Calculations

Figure 6.4 shows the deployment of the right wing in the wind tunnel versus

the predictions made with the mathematical model. For the dynamic deployment

experiments, the tail was not allowed to pivot freely, and its position was controlled

using the servo actuator. To compare the dynamic results, the tail position at a

particular time was set to match that measured with the wind tunnel model during

the tests. The airspeed was set to the wind tunnel airspeed of 55 ft/sec. The initial
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Figure 6.4: Predicted deployment of the wind tunnel model versus measurements.

Kinetic friction coefficient = 0.35.

tail position was 20◦, and it increased (moves downward) at a rate of 1.66◦/sec. The

static and kinetic damping coefficients used were 0.125 and 0.15, respectively.

It is apparent from the measured data that the wing stays at a relatively

constant position of about 60◦ until a time of 4 seconds, when the wing begins to

deploy. The wing stays at this constant position because of the static friction in the

wing hinge. The predicted results shows that without static friction the wing would

gradually deploy starting from time equal to zero. The initial starting position of

the wing is determined by where the wing would settle if it was dropped from the

deployed position with a tail position of 20◦ and without any wind velocity.

The predicted results show the initial starting position of the wing is 75◦,

however, the initial starting position of the measured wing position is 61◦. The

difference between the initial predicted and measured starting positions of the wing

may be a result of static friction. Static friction can prevent the wing from freely
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Figure 6.5: Predicted deployment of the wind tunnel model versus measurements.

Kinetic friction coefficient = 0.35.

rotating down and settling at its intended resting position. As the tail is being low-

ered, the AoA on the wing increases to produce enough lift on the wing to overcome

gravity and cause aerodynamic deployment. In this respect, both the measured and

predicted results clearly show that the deployments are very similar. The measured

complete deployment of the wing is 1.6 seconds longer then the predicted result,

and this difference is probably associated with the effects of hinge friction.

Figure 6.5 shows the predicted and measured wing deployment for the right

wing if the starting position of the wing in the mathematical model is matched to

the initial position in the measured data (61◦). It is apparent that the wing appears

to drop at first to its intended initial starting position, and then follows a very

similar deployment to that shown previously.
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6.3 Oscillatory Behavior

Occasionally, the wings did not lock into place or they bounced back off the

magnetic catches. If the tail continued to lower down past the deployment position

while this occurred, an oscillatory type wing motion behavior was observed. Under

these conditions, the wings would drop back under the action of gravity because of

sufficient aerodynamic force to keep them raised, but then would experience an in-

creased aerodynamic force as they dropped down. The wing panels then experienced

a form of limit cycle oscillation, periodically lifting themselves up and dropping back

down.

Figure 6.6 shows a measured example of this oscillatory limit cycle behavior

that can be encountered if the wings do not lock into position during deployment and

the tail continues to be lowered. When this oscillatory behavior was encountered in

the wind tunnel, it was quickly eliminated by raising the tail, as shown here.

It was also possible to predict this behavior with the mathematical model,

an example of which is shown in Fig. 6.7. This oscillatory behavior is shown to

occur around 30◦ tail position for the both the predicted and measured results. The

results show that the mathematical model is capable of predicting this limit cycle

behavior, and hence identifying the combination of conditions where this behavior

may occur in practice. To avoid this oscillatory behavior it was found imperative to

start the wing deployment process by lowering the tail with a tail starting position

of no greater than 20◦.
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Figure 6.6: Example of oscillatory limit cycle behavior during wing deployment in

wind tunnel, which is eliminated by raising the tail.

Figure 6.7: Example of the predicted limit cycle oscillatory behavior during wing

deployment.

88



Chapter 7

Finite Element Method Analysis of Payload Support Structure

Previous chapters covered the development of a mathematical model to predict

optimal wing hinge angle settings for wing deployment, the dynamic behavior of the

wings and tail and also to calculate the lift, drag and moment forces on the MTR.

Results from a wind tunnel study were then documented. This chapter discusses

the development of a finite element method model (FEM) of the suspended payload

support structure. The goal was to develop a model that is capable of predicting

the deformation, stresses and moments within the payload support structure while

under load. This model is to be incorporated into a full dynamic model to study

stability related issues of the MTR while carrying a suspended payload at high flight

speeds.

One particular mission of helicopters is to use them for carrying external sus-

pended payloads. Helicopters are excellent for this task in that they are able to

move heavy payloads to remote areas inaccessible to ground equipment. However,

external payloads can modify the dynamic flight characteristics of the helicopter.

The suspended payload is essentially a big pendulum, which is able to change the

natural frequencies and mode shapes of the rigid body motion of the helicopter [15].

Suspended payloads are usually not aerodynamically shaped bodies, hence they are

subject to large amplitude motions or even dynamic instabilities from unsteady
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aerodynamic forces. The aerodynamic forcing on the suspended payload unit can

make it unstable at certain flight conditions which can make the entire helicopter

unstable and compromise the safety of flight.

Poli and Cromack [16] studied the stability of the helicopter in forward flight

carrying rectangular and cylindrical payload units. They found that using long

cables, high speeds and low payload weights can increase the stability of the load.

Cliff and Bailey [17] also studied the stability of suspended payloads, they found out

lower payloads weights did improve stability however longer cables would decrease

stability. The contradiction in cable length between these two studies may be due

to the differences in the aerodynamics of the load used. The aerodynamics of the

payload unit is very important in relation to stability. Overall, it can be noted that

by lowering the drag on the payload unit stability is increased. Nagabhushan [18]

looked at low speed stability of a single point suspended payload configuration. He

concluded that cable length, attachment point of the cable, and load weight all af-

fected stability as well. By adjusting these parameters some modes could to be stable

and others unstable. The most state of art work has been done by Cicolani [19],

in the use of computer simulation to understand the sling load dynamics and flight

handling qualities of the UH-60 helicopter.

From a just a quick overview of previous research it can be shown that a great

deal of research must go into being able to transport a 20 ton payload unit suspended

beneath the MTR at flight speeds over 200 knots. In fact, this will be a remarkable

feat for the MTR if accomplished in comparison to the current suspended payload

capabilities of helicopters, which are no where near capable of carrying this much
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weight at such speeds. From the previous research the amount of weight carried,

dimensions of the payload support structure, and attachment points to the payload

all need to be studied. The first step in ensuring that the MTR suspended payload

unit is stable and safe for flight is the development of a finite element model (FEM)

of the payload support structure.

A FEM model of the MTR’s structural payload support system was devel-

oped to calculate the forces, bending moments and deformations within the payload

support structure. This FEM model is designed to be incorporated into a full dy-

namic model of the MTR to analyze the dynamic behavior of the MTR during

flight maneuvers with the payload unit attached. Torsional modes may be present

within the structure creating unwanted oscillations that may lead to adverse flight

characteristics.

A preliminary FEM model was used to analyze the forces, bending moments

and deformations on the payload support structure carrying a load that will stress

the vertical supports in tension. The model was composed of finite elements capable

to model both the in-plane and out of plane bending, as well the axial and torsional

displacements. The model was developed using a standard FEM approach such as

found in [20]. Initial results show that significant bending moments are present not

only in the top beam, but throughout the entire support structure.
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7.1 FEM Model

The following simplifying assumptions have been made for the initial finite

element model of the strut assembly:

1. The aircraft is hovering with zero roll angle.

2. The telescopic joints are not modeled.

3. Each portion of the struts is modeled as a Bernoulli–Euler beam, and cross-

sectional warping is neglected.

4. In-plane bending, out-of-plane bending, axial, and torsional displacements are

each decoupled from the others.

The beam finite element used to model the frame is shown in Fig. 7.1. Note

that the nodal degrees of freedom at each node are indicated in a local elemental

coordinate system.

The element used has a total of 3 nodes, 2 nodes located at each end and 1

node located in the middle of the element. The nodes located at the ends are used to

model the in-plane and out-plane bending and also torsional and axial deformations.

The node located in the middle is used just for axial and torsional deformations. For

each element there are 4 degrees of freedom for in-plane bending, 4 for out-of-plane

bending, 3 for torsion, and 3 for axial displacements, for a total of 14 degrees of

freedom. The vector of element local nodal degrees of freedom for one element is

xL = [vL vXL vR vXR wL wXL wR wXR uL uC uR φL φC φR ]T (7.1)
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Figure 7.1: Beam finite element used to model the suspension frame; front view

(top) and top view (bottom).

where VL and VR are the bending displacements out of the plane of the undeformed

frame at the left and right ends of the element, and VXL and VXR are the corre-

sponding slopes; WL and WR are the bending displacements in the plane of the

undeformed frame, and WXR and WXL are the corresponding slopes; UL, UC , and

UR are the axial displacements at the left end, the mid-element, and the right end

nodes of the element, respectively; and φL, φC , and φR are the torsional rotations at

the left end, the mid-element, and the right end nodes of the element, respectively.

It is important to note that vector xL may consist of more than one elements local

nodal degrees of freedom.

93



The element stiffness matrix [KL] for one element is given by

[KL] =



[Kvv] 0 0 0

0 [Kww] 0 0

0 0 [Kuu] 0

0 0 0 [Kφφ]


(7.2)

It is important to note that the matrix [KL] shown above is just for one

element, for the FEM analysis it is extended to include all elements in the structure.

The submatrix [Kvv] is the element stiffness matrix for out-of-plane bending,

and is given by

[Kvv] =
EI2
`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2


(7.3)

where EI2 is the out-of-plane bending stiffness, and ` is the length of the finite

element.

The submatrix [Kww] is the element stiffness matrix for in-plane bending, and

is given by

[Kww] =
EI3
`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2


(7.4)

where EI3 is the in-plane bending stiffness.
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The submatrix [Kuu] is the element stiffness matrix for axial displacements,

and is given by

[Kuu] =
EA

3`



7 −8 1

−8 16 −8

1 −8 7


(7.5)

where EA is the axial stiffness.

Finally, the submatrix [Kφφ] is the element stiffness matrix for torsion, and is

given by

[Kφφ] =
GJ

3`



7 −8 1

−8 16 −8

1 −8 7


(7.6)

where GJ is the torsional stiffness.

The finite element model used for the payload support structure is shown in

Fig. 7.2. The model is composed of 10 finite elements and 20 nodes, the top torsion

bar and the left and right vertical support structures are composed of three elements

each and the bottom support structure one element. This is the simplest model

possible to represent the payload support structure, more elements are required

to achieve convergence of loads and stresses. The top torsion bar is shown to be

supported at two locations corresponding to the arrangement in the actual aircraft.

The left-and right-hand vertical support structures each have two roll hinges as

shown. The roll hinges for the left and right vertical supports allow for free rotations

in the roll degree of freedom. The final model, which results for are shown later,

included a 28 element model.
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The corresponding nodal degrees of freedom in the global (strut assembly)

coordinate system are shown in Figs. 7.3 and 7.4 in a front view and a side view,

respectively. The vector xG of global degrees of freedom is given by
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xG = [u1 u3 u5 u7 u9 u11 u13 u15 u17 u19 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 . . .

v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 w1 w3 w5 w7 w9 w11 w13 . . .

w17 w19 φ1 φ2 φ3 φ4 φ5A φ5B φ6 φ7A φ7B φ8 φ9 φ10 φ11 φ12 φ13A . . .

φ13B φ14 φ15A φ15B φ16 φ17 φ18 φ19 φ20 θ1 θ3 θ5 θ7 θ9 θ11 θ13 θ15 θ17 . . .

θ19 ψ1 ψ3 ψ5 ψ7 ψ9 ψ11 ψ13 ψ15 ψ17 ψ19]
T (7.7)

There are a total of 84 degrees of freedom. Note that at nodes 5, 7, 13, and 15, the

rotational degree of freedom φ has two values, one for each side of the roll hinge.

The suspended load is modeled using two lumped masses located at the lower

corners of the payload support structure at nodes 9 and 11. If there is zero roll

angle, the problem is symmetric and only one half (left or right) of the frame needs

to be modeled. The entire frame has been been modeled however, to be able to be

used in non-zero roll angle conditions.

The transformation matrix TLG, shown below, is used to transform the vector

of global nodal degrees of freedom to the local nodal degrees of freedom coordinate

system, i.e.,

XL = [TLG]XG (7.8)

A global stiffness matrix can then be defined as

[KG] = [TLG]TKL[TLG] (7.9)
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Figure 7.2: Basic finite element model of the strut assembly.
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Figure 7.3: Global nodal degrees of freedom, front view.
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Figure 7.4: Global nodal degrees of freedom, side view (only the degrees of freedom

of the right half of the assembly are shown).
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To enforce constraints that are acting on the model, the particular row and

column corresponding to that nodal degree of freedom was deleted. For instance,

in the model the payload support structure is attached to the aircraft at nodes

1 and 19 and this inhibits any deformation in the plane and out plane bending

directions at these nodes. Hence, the corresponding row and column that pertain

to the in plane bending and out of plane bending displacements at nodes 1 and 19

are deleted from the global stiffness matrix. To ensure that no rigid bodies modes

are present, torsional springs have been added at the roll joints. These springs are

added by placing torsional spring constants k, and −k at the corresponding φA and

φB locations, respectively.

The global force vector, FG, defines the force or moment that can be acting

at each nodal degree of freedom in the global coordinate system. A moment in the

global force vector represents any of the nodal degrees of freedom corresponding to

angular displacements. A force corresponds to any nodal degree of freedoms that

has a linear displacement. Using a LU decomposition method the global coordinate

vector, XG, can be solved for using

FG = [KG]XG (7.10)

The displacements, slopes, moments and forces at any point in a element were

solved for using Hermite interpolation polynomials. Cubic interpolation polynomials

were used for bending, and quadratic interpolation polynomials were used for torsion

and axial displacements. The Hermite polynomials used are included in Appendix
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C.

7.2 FEM Results

The model used in these results is a 28 element model. The left and right

vertical supports contained 12 elements, each element being 12 inches in length.

The top element has 3 elements each 12 inches in length and the bottom element

1 element, 36 inches in length. Therefore, there are a total of 228 nodal degrees

of freedom. These dimensions represented a scaled version of the payload support

structure to be used as an initial starting point for the analysis.

The suspended load was simulated by applying two 10,000 lb forces, in the

vertical direction, onto the right and left ends of the lower horizontal bar. The

structure was assumed to be constructed out of a Graphite Epoxy (IM-613501-

6) composite. The modulus of rigidity and the modulus of elasticity depend on

number of plies, ply orientation, and matrix/fiber ratios. Values of 1·106 lb in−2

and 34.1 · 106lb in−2, respectively, were chosen for this material. The structure is

composed of tubular hollow ellipse elements of constant cross section throughout

the entire frame. The area moments of inertia about the local x- and y-axes were

0.118 in4 and 0.6483 in4, respectively. The cross sectional area was 0.28 in2 and the

polar moment of inertia was 0.3478 in4.

The results are presented for each portion of the strut assembly. Figures 7.5

and 7.6 show the bending displacement and slope for the top beam of the payload

support structure. The top beam is assumed to be supported by the fuselage of the
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Figure 7.5: In-plane bending displacement for the top beam of the strut assembly.

aircraft with cantilever boundary conditions for in-plane and out-of-plane bending.

The ends of the top beam are shown to deflect and bend downward, in-plane, 1.1

inches under the load. A non-zero slope is clearly shown at both ends, as a result,

a bending moment is transmitted down, to the vertical portion of the struts.

The in-plane bending moment for the top beam is shown in Fig. 7.7. The

largest moments are shown to occur at where the top beam is attached and supported

to the fuselage of the aircraft. As expected excellent symmetry between both ends of

the top beam is shown to exist. There is no displacement, slope or bending moment

in the middle section of the beam, between the attachment points to the fuselage.

No out-of-plane displacements were noted.

The axial displacement and force for the top beam are shown in Figs. 7.8

and 7.9 respectively. It is apparent that the top beam is in tension, and that both
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Figure 7.6: In-plane bending slope for the top beam of the strut assembly.

Figure 7.7: In-plane bending moment for the top beam of the strut assembly.
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Figure 7.8: Axial displacement for the top beam of the strut assembly.

ends have been displaced 0.5 inches axially outward.

Figure 7.10 shows the bending displacements in the plane of the strut assembly

for the right strut (top plot) and the left strut (bottom plot). Note that the x-axis of

the left strut’s bending displacement, slope and moment plots have been reversed to

show the symmetry that exists between the left and right vertical beams. The figure

clearly shows the effect of bending in the top portion of the struts (left portion of

each plot). The displacements in the middle portion of the struts, between the roll

hinges, and in the bottom portion, below the lower roll hinge, should be linear or

nearly linear. The curvature visible in these portions is caused by artificial springs

added at the hinges to remove the singularities in the stiffness matrix associated

with rigid body modes.

Figure 7.12 shows the corresponding bending moments for the right strut (top
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Figure 7.9: Axial force for the top beam of the strut assembly.

plot) and the left strut (bottom plot). The highest bending moments are at the top

of the struts (left portion of each plot). Discontinuities are shown in the moment

plots at where the roll hinges are located, these discontinuities are a result of the

springs that have been added at the joints. Softer spring were tried, but they

could not eliminate the singularities in the matrices. Modeling of the vertical struts

without roll hinges eliminated the discontinuities all-together.

Figure 7.13 shows the axial displacements in the right and left vertical struts.

The axial displacements are shown to increase linearly from the top of the vertical

strut, where it joins the top bar, to the bottom of the vertical strut where it meets

the bottom bar. The maximum axial displacement was 1.23 in.

Figure 7.14 shows the axial forces in the right and left vertical struts. As

expected, the axial forces in the vertical struts are constant throughout the struts,
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Figure 7.10: Bending displacements in the left and right beams.
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Figure 7.11: Slopes of the left and right beams.
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Figure 7.12: Bending moments in the right and left vertical struts.
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and the axial force in each strut is equal to one of the two applied loads of 10,000

lb.

Figures 7.15, 7.16 and 7.17 show the in-plane bending displacement, slope and

moment for the bottom beam, respectively. These figures show that the beam is

subject to a constant bending moment, and hence a quadratic bending displacement

occurs.

Figures 7.18 and 7.19 show the axial displacement and force for the bottom

beam. The axial displacement is shown to be linear and a maximum displacement

of 0.8 in. occurs at both ends of the bottom beam. The axial force is shown to be

constant.

Overall, this FEM model is the first step in creating a comprehensive model

to be eventually incorporated into a full dynamic model of the MTR. The next step

in this model would be the calculation of the mass matrix to be used in calculating

the time dependent response of the payload support structure to external forcing.
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Figure 7.13: Axial displacements in the right (top plot) and left (bottom plot)

vertical struts.
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Figure 7.14: Axial forces in the right (top plot) and left (bottom plot) vertical struts.

112



Figure 7.15: In-plane bending displacement for the bottom beam.

Figure 7.16: In-plane bending slope for the bottom beam.
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Figure 7.17: In-plane bending moment for the bottom beam.

Figure 7.18: Axial displacement for the bottom beam.
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Figure 7.19: Axial force for the bottom beam.
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Chapter 8

Conclusions and Recommendations for Future Work

A mathematical model was developed to calculate the static forces and dy-

namic behavior of the wings and tail of the MTR. Using the mathematical model

an equilibrium analysis was conducted to predict the wing hinge angle geometry to

produce aerodynamically deployable wings. A wind tunnel test was then conducted

on a sub-scale model, which demonstrated successful wing deployment using the

“most likely to succeed” wing hinge angle geometry predicted from the equilibrium

analysis.

The mathematical model was further refined and shown to predict the lift, drag

and moment forces on the MTR’s wing and tail configurations with good correlation

to the wind tunnel data. The predicted dynamic behavior of the wings during

deployment also showed good agreement with the measurements from the wind

tunnel study. The mathematical model was further shown to be capable of predicting

the oscillatory behavior of the wings that was observed at certain tail boom positions

during wind tunnel testing. An FEM model was developed to predict the forces,

bending moments and displacements within the payload support structure under

load. This FEM model was developed using 28 finite elements, additional FEM

studies in future must include adding more finite elements to reach a convergence

on calculated forces, bending moments, and displacements.
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The following specific conclusions have been drawn from the work reported in

this thesis

1. The mathematical model allowed for the determination of wing hinge angle

configurations for wing self-deployment. The selected hinge geometries re-

sulted in successful and repeatable wing deployments demonstrated in the

wind tunnel study.

2. A successful wind tunnel study was conducted to show aerodynamic wing de-

ployment is achievable in a controlled manner without oscillatory or divergent

behavior. Wing deployment was obtained at several different combinations

of wing hinge angles, wind speed, and tailboom angles, suggesting that there

would be a relatively wide deployment envelope on the actual aircraft.

3. The mathematical model successfully predicted the lift, drag and moment

forces on the MTR configuration with good correlation to measured wind

tunnel data. However, the correlation was found to be less acceptable at

higher angles of attack, most likely because of significant spanwise flow and

three-dimensional interference effects created at the wing hinge.

4. The predicted dynamic behavior of the wings during deployment agreed rea-

sonably well with the wind tunnel data. A wing hinge friction model was

developed and used to better model dynamic wing deployment. The oscil-

latory wing behavior encountered in the wind tunnel at certain tail boom

positions can be predicted with the mathematical model, and can be used in

further studies to help avoid this behavior.
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5. The FEM analysis has shown to be a useful tool in predicting the forces, mo-

ments and displacements in the payload support structure. An initial study

has shown that bending moments may be present throughout the entire struc-

ture while under load with the vertical supports struts in tension. Bending

moments present in the top beam support strut, where the suspended payload

structure is attached to the MTR, will have to be taken into consideration

during design of the actual aircraft.

Future work may include using the mathematical model to analyze the deploy-

ment of the wings with the addition of the downwash from the rotor. A wind tunnel

study could then be conducted with a coaxial rotor to evaluate the deployment of

the wings in the downwash. The mathematical model may also be used to study

wing deployment on a full scale MTR to find at what flight speeds and tail positions

wing deployment can be achieved. In addition a control system could be developed

to control the rate of deployment of the wings using ailerons. The FEM model will

be incorporated into a dynamic model of the MTR to analyze the flight stability

while carrying a suspended payload. A model of the unsteady aerodynamics on the

payload unit will have to be developed to model any unsteady aerodynamic forces

that may occur at high flight speeds as well.
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Appendix A

Additional Equilibrium Plots
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Figure A.1: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 25◦).

Figure A.2: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 30◦).
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Figure A.3: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 35◦).

Figure A.4: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 40◦).

121



Figure A.5: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 45◦).

Figure A.6: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−25◦, 50◦).
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Figure A.7: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−30◦, 30◦).

Figure A.8: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−30◦, 35◦).
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Figure A.9: Equilibrium positions of the wing and tail versus airspeed for wing hinge

angle setting (φH, θH) = (−30◦, 40◦).

Figure A.10: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−30◦, 45◦).
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Figure A.11: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−30◦, 50◦).

Figure A.12: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−35◦, 25◦).
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Figure A.13: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−35◦, 35◦).

Figure A.14: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−35◦, 40◦).
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Figure A.15: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−35◦, 45◦).

Figure A.16: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−35◦, 50◦).
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Figure A.17: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−40◦, 25◦).

Figure A.18: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−40◦, 30◦).
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Figure A.19: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−40◦, 35◦).

Figure A.20: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−40◦, 45◦).
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Figure A.21: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−40◦, 50◦).

Figure A.22: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 25◦).
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Figure A.23: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 30◦).

Figure A.24: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 35◦).
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Figure A.25: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 40◦).

Figure A.26: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 45◦).
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Figure A.27: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−45◦, 50◦).

Figure A.28: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 25◦).

133



Figure A.29: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 30◦).

Figure A.30: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 35◦).
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Figure A.31: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 40◦).

Figure A.32: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 45◦).
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Figure A.33: Equilibrium positions of the wing and tail versus airspeed for wing

hinge angle setting (φH, θH) = (−50◦, 50◦).
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Appendix B

Additional Lift, Drag and Moment Plots
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(a)

(b)

(c)

Figure B.1: Lift, drag and pitching moment versus tail boom position. Wings locked

at 0◦, wing hinge angle (φ, θ) = (−35◦, 30◦)
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(a)

(b)

(c)

Figure B.2: Lift, drag and pitching moment versus tail boom position. Wings locked

at 10◦, wing hinge angle (φ, θ) = (−35◦, 30◦)
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(a)

(b)

(c)

Figure B.3: Lift, drag and pitching moment versus tail boom position. Wings locked

at 25◦, wing hinge angle (φ, θ) = (−35◦, 30◦)
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(a)

(b)

(c)

Figure B.4: Lift, drag and pitching moment versus tail boom position. Wings locked

at 45◦, wing hinge angle (φ, θ) = (−35◦, 30◦)
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Appendix C

Hermite Interpolation Polynomials
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The term η can be defined as

η =
x

`
(C.1)

where x is the distance from the inboard (left-side) of the element to a point inside

the element, and ` is the total length of the element.

The Hermite interpolation polynomial used in calculating the out of plane and

in plane bending displacements is

Hv(xe) = Hw(xe) =



1− 3η2 + 2η3

η(1− 2η + η2)`

3η2 − 2η3

η(−η + η2)`


(C.2)

The Hermite interpolation polynomial used in calculating the out of plane and

in plane bending slopes is

Hv,x(xe) = Hw,x(xe) =
1

`



−6η + 6η2

(1− 4η + 3η2)`

6η − 6η2

(−2η + 3η2)`


(C.3)

The Hermite interpolation polynomial used in calculating the out of plane and

in plane bending moments is

143



Hv,xx(xe) = Hw,xx(xe) =
1

`2



−6 + 12η

(−4 + 6η)`

6− 12η

(−2 + 6η)`


(C.4)

The Hermite interpolation polynomial used in calculating the axial displace-

ment and torsional angular displacement is

Hu(xe) = Hφ(xe) =



1− 3η + 2η2

4η − 4η2

−η + 2η2


(C.5)

The Hermite interpolation polynomial used in calculating the axial force and

torsional moment is

Hu, x(xe) = Hφ,x(xe) =
1

`



−3 + 4η

4− 8η

−1 + 4η


(C.6)

A vector corresponding to an elements local nodal degrees of freedom for out

of plane bending displacements and slopes is defined as

yv =



vL

vxL

vR

vxR


(C.7)
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A vector corresponding to an elements local nodal degrees of freedom for in

plane bending displacements and slopes is defined as

yw =



wL

wxL

wR

wxR


(C.8)

A vector corresponding to an elements local nodal degrees of freedom for axial

displacements is

yu =



uL

uC

uR


(C.9)

A vector corresponding to an elements local nodal degrees of freedom for tor-

sional angular displacements is

yφ =



φL

φC

φR


(C.10)

The out of plane bending displacement for a point on an element can be defined

by

v(xe) = Hv(xe)yv (C.11)

The out of plane bending slope for a point on an element can be defined by
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v,x(xe) = Hv,x(xe)yv (C.12)

The out of plane bending moment for a point on an element can be defined by

Mv(xe) = EI2Hv,xx(xe)yv (C.13)

The in plane bending displacement for a point on an element can be defined

by

w(xe) = Hw(xe)yw (C.14)

The in plane bending slope for a point on an element can be defined by

w,x(xe) = Hw,x(xe)yw (C.15)

The in plane bending moment for a point on an element can be defined by

Mw(xe) = EI3Hw,xx(xe)yw (C.16)

The axial displacement for a point on an element can be defined by

u(xe) = Hu(xe)yu (C.17)

The axial force for a point on an element can be defined by

Fu(xe) = EAHu,x(xe)yu (C.18)
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The torsional angular displacement for a point on an element can be defined

by

φ(xe) = Hφ(xe)yφ (C.19)

The torsional moment for a point on an element can be defined by

Mφ(xe) = GJHφ,x(xe)yφ (C.20)
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